en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王林静,女,1989年出生,博士,助理研究员。主要研究方向为多元合金及复合材料设计及性能。E-mail: wanglinjing@nimte.ac.cn

常可可,男,1986年出生,博士,研究员,博士研究生导师。主要研究方向为深海深地、航天航空等苛刻环境服役材料设计与表面界面。E-mail: changkeke@nimte.ac.cn

通讯作者:

常可可,男,1986年出生,博士,研究员,博士研究生导师。主要研究方向为深海深地、航天航空等苛刻环境服役材料设计与表面界面。E-mail: changkeke@nimte.ac.cn

中图分类号:TB331

DOI:10.11933/j.issn.1007-9289.20231222002

参考文献 1
SHARMA A K,BHANDARI R,AHERWAR A,et al.A study of advancement in application opportunities of aluminum metal matrix composites[J].Materials Today:Proceedings,2020,26:2419-2424.
参考文献 2
GÜLER Ö,BAĞCI N.A short review on mechanical properties of graphene reinforced metal matrix composites[J].Journal of Materials Research and Technology,2020,9(3):6808-6833.
参考文献 3
DAS M,MISHRA D,MAHAPATRA T R.Machinability of metal matrix composites:A review[J].Materials Today:Proceedings,2019,18:5373-5381.
参考文献 4
SHARMA V K,KUMAR V,JOSHI R S.Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application[J].Journal of Materials Research and Technology,2019,8(4):3504-3516.
参考文献 5
UYYURU R K,SURAPPA M K,BRUSETHAUG S.Tribological behavior of Al-Si-SiCp composites/automobile brake pad system under dry sliding conditions[J].Tribology International,2007,40(2):365-373.
参考文献 6
BHASKAR S,KUMAR M,PATNAIK A.Effect of Si3N4 ceramic particulates on mechanical,thermal,thermo-mechanical and sliding wear performance of AA2024 alloy composites[J].Silicon,2020,14:239-262.
参考文献 7
SHARMA V K,SINGH R C,CHAUDHARY R.An experimental study of tribological behaviours of aluminium-and copper-based metal matrix composites for bearing applications[J].International Journal of Materials Engineering Innovation,2019,10(3):203-217.
参考文献 8
REN S,CHEN J,HE X,et al.Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering[J].Carbon,2018,127:412-423.
参考文献 9
ZHANG C,WANG R,CAI Z,et al.Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J].Surface and Coatings Technology,2015,277:299-307.
参考文献 10
HUANG L,AN Q,GENG L,et al.Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J].Advanced Materials,2021,33:2000688.
参考文献 11
ZHU B,CAI Y J.A strain rate-dependent enhanced continuum model for elastic-plastic impact response of metal-ceramic functionally graded composites[J].International Journal of Impact Engineering,2019,133:103340.
参考文献 12
LIU T,LYU W,LI Z,et al.Recent progress on corrosion mechanisms of graphene-reinforced metal matrix composites[J].Nanotechnology Reviews,2023,12:20220566.
参考文献 13
REKHA M Y,SRIVASTAVA C.Microstructure and corrosion properties of zinc-graphene oxide composite coatings[J].Corrosion Science,2019,152:234-248.
参考文献 14
LUO S,SONG T,LIU B,et al.Recent advances in the design and fabrication of strong and ductile(tensile)titanium metal matrix composites[J].Advanced Engineering Materials,2019,21(7):1801331.
参考文献 15
DUDINA D V,GEORGARAKIS K.Core-shell particle reinforcements-a new trend in the design and development of metal matrix composites[J].Materials(Basel),2022,15:2629.
参考文献 16
SHIRVANIMOGHADDAM K,HAMIM S U,AKBARI M K,et al.Carbon fiber reinforced metal matrix composites:fabrication processes and properties[J].Composites Part A:Applied Science and Manufacturing,2017,92:70-96.
参考文献 17
RAJAK D K,WAGH P H,MENEZES P L,et al.Critical overview of coatings technology for metal matrix composites[J].Journal of Bio-and Tribo-Corrosion,2019,6(1):1-18.
参考文献 18
XUE T,ATTARILAR S,LIU S,et al.Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties:Thematic review[J].Front Bioeng Biotechnol,2020,8:603072.
参考文献 19
SINGH S,KUMAR S,KHANNA V.A review on surface modification techniques[J/OL].Materials Today:Proceedings,2023,97:16-25[2023-01-13].http://www.sciencedirect.com/science/article/abs/pii/s2214785323000 202?via%3Dihub.
参考文献 20
KHALID M Y,UMER R,KHAN K A.Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites(MMCs)for aircraft applications[J].Results in Engineering,2023,20:101372.
参考文献 21
SADEGHI B,CAVALIERE P,SHABANI A.Design strategies for enhancing strength and toughness in high performance metal matrix composites:A review[J].Materials Today Communications,2023,37:107535.
参考文献 22
LANGSTON L S.Turbines,gas[J].Encyclopedia of Energy,2004,6:221-230.
参考文献 23
YE Y,ZHANG Y,HUANG T,et al.A critical review of laser shock peening of aircraft engine components[J].Advanced Engineering Materials,2023,25(16):2201451.
参考文献 24
FROES F H,FRIEDRICH H,KIESE J,et al.Titanium in the family automobile:the cost challenge[J].JOM,2004,56(2):40-44.
参考文献 25
温诗铸,黄平,田煜,等.摩擦学原理[M].北京:清华大学出版社,2018.WEN Shizhu,HUANG Ping,TIAN Yu,et al.Principles of tribology[M].Beijing:Tsinghua University Press,2018.(in Chinese)
参考文献 26
谢玉洪,刘书杰,杨进,等.深水油气钻探技术装备发展现状与趋势[J].前瞻科技,2023,2(2):22-31.XIE Yuhong,LIU Shujie,YANG Jin,et al.Development status and trend of deepwater oil and gas drilling technologies and equipment[J].Science and Technology Foresight,2023,2(2):22-31.(in Chinese)
参考文献 27
MA Y,HUANG Z,LI Q,et al.Cutter layout optimization for reduction of lateral force on PDC bit using Kriging and particle swarm optimization methods[J].Journal of Petroleum Science and Engineering,2018,163:359-370.
参考文献 28
MUKHOPADHYAY D.Identifying the causes of residual stress in polycrystalline diamond compact(PDC)cutters by X-Ray diffraction technique[J].Results in Materials,2021,11:100216.
参考文献 29
SADOWSKI M J.Nuclear fusion-energy for future[J].Nukleonika,2005,50(S3):53-58.
参考文献 30
WANG J L,CHEN X Y,BINAMA M,et al.A numerical study on mechanical seal dynamic characteristics within a reactor coolant pump[J].Frontiers in Energy Research,2022,10:879198.
参考文献 31
HUANG Q,LI X,ZHU J,et al.Analysis of sealing performance of combined seal structure with metal C-ring with built-in spring[J].Vibroengineering Procedia,2023,51:94-100.
参考文献 32
STAF H.Mechanical modelling of powder compaction[D].Stockholm:KTH Royal Institute of Technology,2020.
参考文献 33
GRADL P R,PROTZ C S.Technology advancements for channel wall nozzle manufacturing in liquid rocket engines[J].Acta Astronautica,2020,174:148-158.
参考文献 34
GHIONEA I,PREDINCEA N,GHIONEA A.Cutting parameters and analysis by FEA simulation of their influence on the re-profilation of the wheels of the railway wheelset[J].Acta Technica Napocensis,2018,61(1):73-84.
参考文献 35
GONZÁLEZ-BARRIO H,CALLEJA-OCHOA A,LAMIKIZ A,et al.Manufacturing processes of integral blade rotors for turbomachinery,processes and new approaches[J].Applied Sciences,2020,10(9):3063.
参考文献 36
BAZELA R.Selected issues of increasing the fire effectiveness of combat vehicles[J].Journal of KONBiN,2020,50(3):417-438.
参考文献 37
VINEETH-KUMAR V,SENTHIL-KUMARAN S,DHANALAKSHMI S,et al.Tribological performance evaluation of fused mullite-reinforced hybrid composite brake pad for defence application[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(4):179.
参考文献 38
YU H,FAN Q,ZHU X.Effect of the layer sequence on the ballistic performance and failure mechanism of Ti6Al4V/CP-Ti laminated composite armor[J].Materials(Basel),2020,13(17):3886.
参考文献 39
陈舸.金属基复合材料在航空航天领域的应用和发展[J].橡塑技术与装备,2016,42(8):63-65.CHEN Ke.Application and development of metal matrix composite in the aerospace field[J].Plastics Technology and Equipment,2016,42(8):63-65.(in Chinese)
参考文献 40
吕一中,崔岩,曲敬信.金属基复合材料在航空航天领域的应用[J].北京工业职业技术学院学报,2007,6(3):1-4.LÜ Yizhong,CUI Yan,QU Jingxin.Application of metal matrix composites to aerospace[J].Journal of Beijing Polytechnic College,2007,6(3):1-4.(in Chinese)
参考文献 41
SAMAL P,VUNDAVILLI P R,MEHER A,et al.Recent progress in aluminum metal matrix composites:a review on processing,mechanical and wear properties[J].Journal of Manufacturing Processes,2020,59:131-152.
参考文献 42
马宗义,肖伯律,张峻凡,等.航天装备牵引下的铝基复合材料研究进展与展望[J].金属学报,2023,59(4):457-466.MA Zongyi,XIAO Bolü,ZHANG Junfan,et al.Overview of research and development for aluminum matrix composites driven by aerospace equipment demand[J].Acta Metallurgica Sinica,2023,59(4):457-466.(in Chinese)
参考文献 43
HAYAT M D,SINGH H,HE Z,et al.Titanium metal matrix composites:An overview[J].Composites Part A:Applied Science and Manufacturing,2019,121:418-438.
参考文献 44
TENNEY D R,DAVIS JR J G,PIPES R B,et al.NASA composite materials development:lessons learned and future challenges[C]//NATO RTO AVT-164 Workshop on Support of Composite Systems,October 19-22,2009,NATO Research and Technology Organization.Germany:Bonn,2013:76-84.
参考文献 45
刘世锋,宋玺,薛彤,等.钛合金及钛基复合材料在航空航天的应用和发展[J].航空材料学报,2020,40(3):77-94.LIU Shifeng,SONG Xi,XUE Tong,et al.Application and development of titanium alloy and titanium matrix composites in aerospace field[J].Journal of Aeronautical Materials,2020,40(3):77-94.(in Chinese)
参考文献 46
LOU M,CHEN L,XU K,et al.Tribocorrosion of TiC-based composites incorporating Ni and Co binders in saline solutions[J].International Journal of Refractory Metals and Hard Materials,2024,119:106519.
参考文献 47
曹帅帅.新型深海能源钻采材料自主创新与关键技术[J].化工管理,2021,30:93-94.CAO Shuaishuai.Independent innovation and key technologies of new deep-sea energy drilling materials[J].Chemical Engineering Management,2021,30:93-94.(in Chinese)
参考文献 48
屈少鹏,尹衍升.深海极端环境服役材料的研究现状与研发趋势[J].材料科学与工艺,2019,27(1):1-8.QU Shaopeng,YIN Yansheng.Research status and development trend of service materials in deep sea extreme environment[J].Materials Science and Technology,2019,27(1):1-8.(in Chinese)
参考文献 49
REYES M,NEVILLE A.Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore[J].Wear,2003,255(7):1143-1156.
参考文献 50
TANG T,XIAO X,XU K,et al.Corrosion-resistant WC-Co based cemented carbides:computational design and experimental verification[J].International Journal of Refractory Metals and Hard Materials,2023,110:106044.
参考文献 51
WEN S,DU Y,LIU Y,et al.Manipulation of the thermal conductivity for two-phase WC-Ni composites through a microstructure-based model along with key experiments[J].Journal of Materials Research and Technology,2023,22:895-912.
参考文献 52
唐瑞,刘海定,王东哲,等.油气工程用镍基耐蚀合金718的研究进展[J].金属热处理,2018,43(7):54-59.TANG Rui,LIU Haiding,WANG Dongzhe,et al.Developing progress of oilfield-grade corrosion resistant alloy 718[J].Heat Treatment of Metals,2018,43(7):54-59.(in Chinese)
参考文献 53
LOU M,CHANG K,XU K,et al.Selective oxidation induced wear degradation in cemented carbides[J].Wear,2023,530:205021.
参考文献 54
ZHOU Q,HUANG D,XU K,et al.Effect of La2O3 addition on microstructure and mechanical properties of TiC-based cermets[J].Ceramics International,2023,49(11):18125-18133.
参考文献 55
常可可,王立平,薛群基.极端工况下机械表面界面损伤与防护研究进展[J].中国机械工程,2020,31(2):206-220.CHANG Keke,WANG Liping,XUE Qunji.Progress of damage and protection for surfaces and interfaces in machinery under extreme operating conditions[J].China Mechanical Engineering,2020,31(2):206-220.(in Chinese)
参考文献 56
励行根,励勇,励洁,等.核电站石墨密封垫片的试验研究[J].液压气动与密封,2010,30(11):29-32.LI Xinggen,LI Yong,LI Jie,et al.Experiment research of graphite sealing gaskets for nuclear power plant[J].Hydraulics Pneumatics & Seals,2010,30(11):29-32.(in Chinese)
参考文献 57
吴新洲,徐义华,杨蓓,等.基于响应面法的C型金属封严环优化设计及其蠕变疲劳寿命计算[J].失效分析与预防,2022,17(4):220-228,246.WU Xinzhou,XU Yihua,YANG Bei,et al.Optimization design based on response surface method and creep fatigue life calculation of C-type metal sealing ring[J].Failure Analysis and Prevention,2022,17(4):220-228,246.(in Chinese)
参考文献 58
黎永镇.现代化机械制造工艺及精密加工技术深入研究分析[J].模具制造,2023,23(11):142-144.LI Yongzhen.Deep research and analysis of modern mechanical manufacturing processes and precision machining technologies[J].Die & Mould Manufacture,2023,23(11):142-144.(in Chinese)
参考文献 59
CHEN L,ZHANG Z,WANG J,et al.Rigid three-dimensional networks of hafnium diboride for improving mechanical and wear properties of boron carbide[J].Materials & Design,2021,210:110069.
参考文献 60
WANG Y,MONETTA T.Systematic study of preparation technology,microstructure characteristics and mechanical behaviors for SiC particle-reinforced metal matrix composites[J].Journal of Materials Research and Technology,2023,25:7470-7497.
参考文献 61
WU C,FANG X,KANG Q,et al.Formation mechanism,interface characteristics and the application of metal/SiC thin-film ohmic contact after high-temperature treatment[J].Journal of Materials Research and Technology,2023,24:2428-2441.
参考文献 62
武高辉,乔菁,姜龙涛.Al 及其复合材料尺寸稳定性原理与稳定化设计研究进展[J].金属学报,2019,55(1):33-44.WU Gaohui,QIAO Jing,JIANG Longtao.Research progress on principle of dimensional stability and stabilization design of Al and its composites[J].Acta Metallurgica Sinica,2019,55(1):33-44.(in Chinese)
参考文献 63
赵宇宏,景舰辉,陈利文,等.装甲防护陶瓷-金属叠层复合材料界面研究进展[J].金属学报,2021,57(9):1107-1125.ZHAO Yuhong,JING Jianhui,CHEN Liwen,et al.Current research status of interface of ceramic-metal laminated composite material for armor protection[J].Acta Metallurgica Sinica,2021,57(9):1107-1125.(in Chinese)
参考文献 64
焦丽娟,李军.陶瓷-金属功能梯度复合材料在装甲防护中的应用[J].四川兵工学报,2006,27(4):22-23.JIAO Lijuan,LI Jun.Application of ceramic metal functional gradient composite materials in armor protection[J].Journal of Ordnance Equipment Engineering,2006,27(4):22-23.(in Chinese)
参考文献 65
晁振龙,姜龙涛,魏嘉伟,等.基体合金对 B4C/Al 复合材料力学及抗弹性能的影响[J].兵器材料科学与工程,2020,43(1):6-10.CHAO Zhenlong,JIANG Longtao,WEI Jiawei,et al.Effect of matrix on mechanical properties and elastic properties of B4C/Al composites[J].Ordnance Material Science and Engineering,2020,43(1):6-10.(in Chinese)
参考文献 66
张国昌,吕杰,宋宝强,等.激光熔覆涂层硬度强化研究进展[J].制造技术与机床,2023,12:65-72.ZHANG Guochang,LÜ Jie,SONG Baoqiang,et al.Research progress on hardness strengthening of laser cladding coating[J].Manufacturing Technology & Machine Tool,2023,12:65-72.(in Chinese)
参考文献 67
彭武强,冉龙华,钱铎可,等.分子级混合法制备金属基复合材料研究进展[J].材料研究与应用,2022,16(4):637-649.PENG Wuqiang,RAN Longhua,QIAN Duoke,et al.Research progress on the preparation of metal matrix composites by molecular-level mixing process[J].Materials Research and Application,2022,16(4):637-649.(in Chinese)
参考文献 68
MISTRY J M,GOHIL P P.Research review of diversified reinforcement on aluminum metal matrix composites:fabrication processes and mechanical characterization[J].Science and Engineering of Composite Materials,2018,25(4):633-647.
参考文献 69
HU Y,CONG W.A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J].Ceramics International,2018,44(17):20599-20612.
参考文献 70
MAXIMOV M,MAXIMOV O C,CRACIUN L,et al.Bioactive glass-an extensive study of the preparation and coating methods[J].Coatings,2021,11(11):1386.
参考文献 71
MERAH N,ABDUL-AZEEM M,ABUBAKER H M,et al.Friction stir processing influence on microstructure,mechanical,and corrosion behavior of steels:A review[J].Materials(Basel),2021,14(17):5023.
参考文献 72
CASATI R,BONOLLO F,DELLASEGA D,et al.Ex situ Al-Al2O3 ultrafine grained nanocomposites produced via powder metallurgy[J].Journal of Alloys and Compounds,2014,615(S1):S386-S388.
参考文献 73
PRAKASH K S,GOPAL P M,ANBUROSE D,et al.Mechanical,corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites[J].Ain Shams Engineering Journal,2018,9(4):1489-1496.
参考文献 74
WANG Z,LIN T,HE X,et al.Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J].International Journal of Refractory Metals and Hard Materials,2016,58:14-21.
参考文献 75
ZHENG Z,LÜ J,LOU M,et al.Macro-gradient structures generated in Ti(C,N)-based cermets with supersaturated WC:an experimental and thermodynamic investigation[J].Materials Research Letters,2022,11(2):152-158.
参考文献 76
PAKDEL A,WITECKA A,RYDZEK G,et al.A comprehensive microstructural analysis of Al-WC microand nano-composites prepared by spark plasma sintering[J].Materials & Design,2017,119:225-234.
参考文献 77
GHASALI E,ALIZADEH M,EBADZADEH T.TiO2 ceramic particles-reinforced aluminum matrix composite prepared by conventional,microwave,and spark plasma sintering[J].Journal of Composite Materials,2017,52(19):2609-2619.
参考文献 78
DIXIT S,MAHATA A,MAHAPATRA D R,et al.Multi-layer graphene reinforced aluminum-manufacturing of high strength composite by friction stir alloying[J].Composites Part B:Engineering,2018,136:63-71.
参考文献 79
TU Z,NGANBE M.Modelling and assessment of carbon fiber reinforced aluminum matrix composites and their laminate squeeze casting fabrication[J].Materials Research Express,2020,7(8):086518.
参考文献 80
陈旭栋,徐军,尹翠翠,等.Ti 增强镁基复合材料搅拌铸造中颗粒分散行为的研究[J].材料研究与应用,2023,17(4):619-624.CHEN Xudong,XU Jun,YIN Cuicui,et al.Study of particle dispersion behavior in stir casting of Ti reinforcement magnesium matrix composites[J].Materials Research and Application,2023,17(4):619-624.(in Chinese)
参考文献 81
FREUDENBERGER R,ZIELONKA A,FUNK M,et al.Recent developments in the preparation of nano-gold composite coatings[J].Gold Bulletin,2010,43(3):169-180.
参考文献 82
武高辉.金属基复合材料发展的挑战与机遇[J].复合材料学报,2014,31(5):1228-1237.WU Gaohui.Development challenge and opportunity of metal matrix composites[J].Acta Materiae Compositae Sinica,2014,31(5):1228-1237.(in Chinese)
参考文献 83
ASHWATH P,XAVIOR M A.Surface modification on aluminum metal matrix composite for high strength application-current state of art[J].Materials Today:Proceedings,2021,46:7130-7134.
参考文献 84
ZHANG X,FU W,LEI Z,et al.Microstructure evolution of the W-C hard coatings using directed energy deposition on tungsten alloy surface[J].Surface and Coatings Technology,2023,470:129827.
参考文献 85
张盼,孙宇海,孙磊,等.激光合金化掺杂TiC对等离子喷涂8YSZ热障涂层热腐蚀行为的影响[J].中国表面工程,2023,36(6):126-134.ZHANG Pan,SUN Yuhai,SUN Lei,et al.Effect of laser alloying TiC doping on the hot corrosion behavior of plasma sprayed 8YSZ thermal barrier coatings[J].China Surface Engineering,2023,36(6):126-134.(in Chinese)
参考文献 86
王兴涛,吴一凡,孙金峰,等.等离子熔覆制备AlCrFeMnNi高熵合金涂层的微观组织与性能[J].中国表面工程,2023,36(4):107-117.WANG Xingtao,WU Yifan,SUN Jinfeng,et al.Microstructure and properties of an AlCrFeMnNi high-entropy alloy coating prepared using plasma cladding[J].China Surface Engineering,2023,36(4):107-117.(in Chinese)
参考文献 87
REN X,ZOU H,DIAO Q,et al.Surface modification technologies for enhancing the tribological properties of cemented carbides:A review[J].Tribology International,2023,180:108257.
参考文献 88
TUFFY K,BYRNE G,DOWLING D.Determination of the optimum TiN coating thickness on WC inserts for machining carbon steels[J].Journal of Materials Processing Technology,2004,155-156:1861-1866.
参考文献 89
CHEN L,ZHANG Z,LOU M,et al.High-temperature wear mechanisms of TiNbWN films:role of nanocrystalline oxides formation[J].Friction,2022,11(3):460-472.
参考文献 90
LIU S,CHANG K,MRÁZ S,et al.Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films[J].Acta Materialia,2019,165:615-625.
参考文献 91
LOU M,WANG L,CHEN L,et al.Role of refractory metal elements addition on the early oxidation behavior of TiN coatings[J].Materials Letters,2023,331:133406.
参考文献 92
XU Y X,CHEN L,PEI F,et al.Effect of the modulation ratio on the interface structure of TiAlN/TiN and TiAlN/ZrN multilayers:first-principles and experimental investigations[J].Acta Materialia,2017,130:281-288.
参考文献 93
KUMAR C H R V,NAIR P K,RAMAMOORTHY B.Characterization of multilayer pvd nanocoatings deposited on tungsten carbide cutting tools[J].International Journal of Advanced Manufacturing Technology,2007,38(5-6):622-629.
参考文献 94
VARDELLE A,MOREAU C,THEMELIS N J,et al.A perspective on plasma spray technology[J].Plasma Chemistry and Plasma Processing,2014,35(3):491-509.
参考文献 95
BABU P D,PRASANNAKUMAR B,MARIMUTHU P,et al.Microstructure,wear and mechanical properties of plasma sprayed TiO2 coating on Al-SiC metal matrix composite[J].Archives of Civil and Mechanical Engineering,2019,19(3):756-767.
参考文献 96
ABBASS M K.Laser surface treatment and modification of aluminum alloy matrix composites[J].Lasers in Manufacturing and Materials Processing,2018,5(2):81-94.
参考文献 97
何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progess in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)
参考文献 98
HU J,KONG L C,LIU G.Structure and hardness of surface of Al18B4O33w/Al composite by laser surface melting[J].Materials Science and Engineering:A,2008,486(1-2):80-84.
参考文献 99
HU J,WU P L,KONG L C,et al.The effect of YAG laser surface treatment on corrosion resistance of Al18B4O33w/2024Al composite[J].Materials Letters,2007,61(29):5181-5183.
参考文献 100
RAMS J,PARDO A,UREÑA A,et al.Surface treatment of aluminum matrix composites using a high power diode laser[J].Surface and Coatings Technology,2007,202(4-7):1199-1203.
参考文献 101
ZHAO X,WEI C,GAI Z,et al.Chemical vapor deposition and its application in surface modification of nanoparticles[J].Chemical Papers,2019,74(3):767-778.
参考文献 102
BESMANN T M,STINTON D P,LOWDEN R A.Chemical vapor deposition techniques[J].MRS Bulletin,2013,13(11):45-51.
参考文献 103
SUN F H,ZHANG Z M,CHEN M,et al.Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools[J].Diamond and Related Materials,2003,12(3-7):711-718.
参考文献 104
TANG Y,LI Y S,YANG Q,et al.Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates[J].Thin Solid Films,2010,519(5):1606-1610.
参考文献 105
WAN B Q,SUN X Y,MA H T,et al.Plasma enhanced chemical vapor deposition of diamond coatings on Cu-W and Cu-WC composites[J].Surface and Coatings Technology,2015,284:133-138.
参考文献 106
PARVEEZ B,MALEQUE M A,JAMAL N A.Influence of agro-based reinforcements on the properties of aluminum matrix composites:A systematic review[J].Journal of Materials Science,2021,56(29):16195-16222.
参考文献 107
IZADI H,NOLTING A,MUNRO C,et al.Friction stir processing of Al/SiC composites fabricated by powder metallurgy[J].Journal of Materials Processing Technology,2013,213(11):1900-1907.
参考文献 108
STAWIARZ M,KURTYKA P,RYLKO N,et al.Influence of FSP process modification on selected properties of Al-Si-Cu/SiCp composite surface layer[J].Composites Theory and Practice,2019,19(4):161-168.
参考文献 109
MISHRA R S,MA Z Y,CHARIT I.Friction stir processing:a novel technique for fabrication of surface composite[J].Materials Science and Engineering:A,2003,341(1-2):307-310.
参考文献 110
RAMANATHAN A,KRISHNAN P K,MURALIRAJA R.A review on the production of metal matrix composites through stir casting-furnace design,properties,challenges,and research opportunities[J].Journal of Manufacturing Processes,2019,42:213-215.
参考文献 111
李滋阳,王思佳,邓文举.陶瓷颗粒增强金属基复合材料研究进展[J].轻工科技,2021,37(4):41-44.LI Ziyang,WANG Sijia,DENG Wenju.Research progress on ceramic particle-reinforced metal matrix composites[J].Light Industry Science and Technology,2021,37(4):41-44.(in Chinese)
参考文献 112
李丹.自主创新,勇于超越,助力大国重器[J].航空制造技术,2020,63(12):68-69.LI Dan.Independent innovation,courage to surpass,assistance to the pillars of a great power[J].Aeronautical Manufacturing Technology,2020,63(12):68-69.(in Chinese)
参考文献 113
LOU M,XU K,CHEN L,et al.Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation[J].Journal of Materials Informatics,2021,1:5.
参考文献 114
LOU M,CHANG K,XU K,et al.Achieving exceptional wear resistance in cemented carbides using B2 intermetallic binders[J].Composites Part B:Engineering,2023,249:110400.
参考文献 115
ZHENG Z,LV J,LOU M,et al.Mechanical and tribological properties of WC incorporated Ti(C,N)-based cermets[J].Ceramics International,2022,48(7):10086-10095.
参考文献 116
马红玉,张嗣伟.金属基复合材料涂层摩擦学的研究进展[J].中国表面工程,2005,18(1):8-15.MA Hongyu,ZHANG Siwei.Progress in studies on tribology of metal-based composite coatings[J].China Surface Engineering,2005,18(1):8-15.(in Chinese)
参考文献 117
MANIKONDA R D,KOSARAJU S,RAJ K A,et al.Wear behavior analysis of silica carbide based aluminum metal matrix composites[J].Materials Today:Proceedings,2018,5(9):20104-20109.
参考文献 118
ZHAN Y,ZHANG G.Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles[J].Tribology Letters,2004,17(1):91-98.
参考文献 119
LOU M,CHEN X,XU K,et al.Temperature-induced wear transition in ceramic-metal composites[J].Acta Materialia,2021,205:116545.
参考文献 120
邹芹,王鹏,徐江波,等.金属基自润滑复合材料固体润滑剂研究进展[J].燕山大学学报,2023,47(5):398-410.ZOU Qin,WANG Peng,XU Jiangbo,et al.Research progress of solid lubricants of metal matric self-lubricating composites[J].Journal of Yanshan University,2023,47(5):398-410.(in chinese)
参考文献 121
李晋.金属基复合材料的现状与未来发展[J].现代盐化工,2022,2(2):22-23.LI Jin.Current state and future development of metal matrix composites[J].Modern Salt and Chemical Industry,2022,2(2):22-23.(in chinese)
参考文献 122
MUNGARA S R,MANOHAR H S,DUBEY S,et al.Investigating the effect of heat treatment on B4C reinforced aluminum metal matrix composites[J].Materials Today:Proceedings,2021,45:100-104.
参考文献 123
许彦可,严红燕,李慧,等.金属基复合材料的制备方法及应用[J].热加工工艺,2012,100:1-5.XU Yanke,YAN Hongyan,LI Hui,et al.Preparation method and application of metal matrix composite materials[J].Hot Working Technology,2012,100:1-5.(in Chinese)
参考文献 124
常可可,陈雷雷,周若男,等.极端环境表面工程及其共性科学问题研究进展[J].中国机械工程,2022,33(12):1388-1417.CHANG Keke,CHEN Leilei,ZHOU Ruonan,et al.Progresses of surface engineering in extreme environments and its common scientific problems[J].China Mechanical Engineering,2022,33(12):1388-1417.(in Chinese)
参考文献 125
ZHANG Y,WANG B,QIU F,et al.Superior wear resistance of dual-phased TiC-TiB2 ceramic nanoparticles reinforced carbon steels[J].Journal of Materials Research and Technology,2023,24:653-662.
参考文献 126
RUYS A J.Silicon carbide ceramics[M].Netherlands:Elsevier,2023.
参考文献 127
KUMAR N,IRFAN G.A review on tribological behaviour and mechanical properties of Al/ZrO2 metal matrix nano composites[J].Materials Today:Proceedings,2021,38:2649-2657.
参考文献 128
ZHU S,CHENG J,QIAO Z,et al.High temperature solid-lubricating materials:A review[J].Tribology International,2019,133:206-223.
参考文献 129
黄仁忠,孙文,郭双全,等.冷喷涂技术的研究进展与应用[J].中国表面工程,2020,33(4):16-25.HUANG Renzhong,SUN Wen,GUO Shuangquan,et al.Research developments and applications of cold spray technology[J].China Surface Engineering,2020,33(4):16-25.(in Chinese)
参考文献 130
REN S,CUI M,MARTINI A,et al.Macroscale superlubricity enabled by rationally designed MoS2-based superlattice films[J].Cell Reports Physical Science,2023,4(5):101390.
参考文献 131
陈百明,张俊喜,郭小汝,等.BN 和 MoS2 对镍基材料摩擦磨损性能的影响[J].粉末冶金技术,2019,37(4):273-278.CHEN Baiming,ZHANG Junxi,GUO Xiaoru,et al.Effects of BN and MoS2 on friction and wear properties of nickel-based materials[J].Powder Metallurgy Technology,2019,37(4):273-278.(in Chinese)
参考文献 132
严晓华,陈国需.固体润滑技术的研究现状及展望[J].能源研究与信息,2005,21(2):69-74.YAN Xiaohua,CHEN Guoxu.Current development and future prospects on solid lubricating techniques[J].Energy Research and Information,2005,21(2):69-74.(in chinese)
参考文献 133
KHELGE S,KUMAR V,SHETTY V,et al.Effect of reinforcement particles on the mechanical and wear properties of aluminium alloy composites:Review[J].Materials Today:Proceedings,2022,52:571-576.
参考文献 134
XIAO X,CHANG K,XU K,et al.Efficient prediction of corrosion behavior in ternary Ni-based alloy systems:theoretical calculations and experimental verification[J].Journal of Materials Science & Technology,2023,167:94-106.
参考文献 135
LIU R,CUI Y,LIU L,et al.A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution[J].Corrosion Science,2020,165:108402.
参考文献 136
AYDIN F.A review of recent developments in the corrosion performance of aluminium matrix composites[J].Journal of Alloys and Compounds,2023,949:169508.
参考文献 137
ESEN Z,ÖCAL E B,AKKAYA A,et al.Corrosion behaviours of Ti6Al4V-Mg/Mg-Alloy composites[J].Corrosion Science,2020,166:108470.
参考文献 138
HIHARA L H,BAKKAR A.Corrosion of metal matrix composites[M].Netherlands:Elsevier,2016.
参考文献 139
SONG G L,ZHANG C,CHEN X,et al.Galvanic activity of carbon fiber reinforced polymers and electrochemical behavior of carbon fiber[J].Corrosion Communications,2021,1:26-39.
参考文献 140
王春雨,武高辉,张强,等.铝基复合材料的腐蚀与防护研究现状[J].中国腐蚀与防护学报,2008,28(1):59-64.WANG Chunyu,WU Gaohui,ZHANG Qiang,et al.A review for corrosion resistance and protection methods for aluminum matrix composites[J].Journal of Chinese Society for Corrosion and Protection,2008,28(1):59-64.(in Chinese)
参考文献 141
AYLOR D M,MORAN P J.Effect of reinforcement on the pitting behavior of aluminum-base metal matrix composites[J].Journal of the Electrochemical Society,1985,132(6):1277-1281.
参考文献 142
HAMDY A S,BECCARIA A M,TEMTCHENKO T.Improving the corrosion protection of AA6061 T6-10% Al2O3 using new surface pre-treatments prior to fluoropolymer coatings[J].Surface and Coatings Technology,2002,155(2):184-189.
参考文献 143
WIELAGE B,DORNER A.Corrosion studies on aluminium reinforced with uncoated and coated carbon fibres[J].Composites Science and Technology,1999,59(8):1239-1245.
参考文献 144
KUMAR N M S,SHASHANK T N,DHEERAJ N U,et al.Coatings on reinforcements in aluminum metal matrix composites[J].International Journal of Metalcasting,2023,17(2):1049-1064.
参考文献 145
WIELAGE B,DORNER A,SHÜRER C,et al.Corrosion protection of carbon fibre reinforced aluminium composite by diamondlike carbon coatings[J].Materials Science and Technology,2000,16(3):344-348.
参考文献 146
ZAKARIA H M.Microstructural and corrosion behavior of Al/SiC metal matrix composites[J].Ain Shams Engineering Journal,2014,5(3):831-838.
参考文献 147
MOSLEH-SHIRAZI S,HUA G,AKHLAGHI F,et al.Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite[J].Scientific Reports,2015,5(1):18154.
参考文献 148
ZHANG Y,WANG Q,CHEN G,et al.Mechanical,tribological and corrosion physiognomies of CNT-Al metal matrix composite(MMC)coatings deposited by cold gas dynamic spray(CGDS)process[J].Surface and Coatings Technology,2020,403:126380.
参考文献 149
CHEN H J,CHEN Y C,LIN P C,et al.Study of atomic layer deposition nano-oxide films on corrosion protection of Al-SiC composites[J].Materials,2023,16(18):6149.
参考文献 150
YANG K,LI W,XU Y,et al.Using friction stir processing to augment corrosion resistance of cold sprayed AA2024/Al2O3 composite coatings[J].Journal of Alloys and Compounds,2019,774:1223-1232.
参考文献 151
XU K,CHANG K,DU Y,et al.Design of novel NiSiAlY alloys in marine salt-spray environment:Part I.Al-Si-Y and Ni-Si-Y subsystems[J].Journal of Materials Science & Technology,2021,88:66-78.
参考文献 152
XU K,CHANG K,YU M,et al.Design of novel NiSiAlY alloys in marine salt-spray environment:Part II.Al-Ni-Si-Y thermodynamic dataset[J].Journal of Materials Science & Technology,2021,89:186-198.
参考文献 153
WANG F,ZHOU R,XU K,et al.Effect of Si content on the surface high-temperature oxidation mechanism in Ni5Y-containing NiAIYSi alloys[J].Corrosion Science,2023,218:111173.
参考文献 154
GRABOŚ A,HUEBNER J,RUTKOWSKI P,et al.Microstructure and hardness of spark plasma sintered Inconel 625-NbC composites for high-temperature applications[J].Materials,2021,14(16):4606.
参考文献 155
BAKKAR A,AHMED M M Z,ALSALEH N A,et al.Microstructure,wear,and corrosion characterization of high TiC content Inconel 625 matrix composites[J].Journal of Materials Research and Technology,2019,8(1):1102-1110.
参考文献 156
HUEBNER J,KATA D,KUSIŃSKI J,et al.Microstructure of laser cladded carbide reinforced Inconel 625 alloy for turbine blade application[J].Ceramics International,2017,43(12):8677-8684.
参考文献 157
GRABOŚ A,RUTKOWSKI P,HUEBNER J,et al.Oxidation performance of spark plasma sintered Inconel 625-NbC metal matrix composites[J].Corrosion Science,2022,205:110453.
参考文献 158
迟静,李敏,王淑峰,等.原位自生 MC(M=Ti,V,Nb)与WC复合增强镍基涂层[J].中国表面工程,2023,36(4):129-139.CHI Jing,LI Min,WANG Shufeng,et al.In-situ MC(M=Ti,V,Nb)and WC composite reinforcement Ni based coatings[J].China Surface Engineering,2023,36(4):129-139.(in Chinese)
参考文献 159
GERAMIFARD G,GOMBOLA C,FRANKE P,et al.Oxidation behaviour of NiAl intermetallics with embedded Cr and Mo[J].Corrosion Science,2020,177:108956.
目录contents

    摘要

    随着我国航空航天、海洋、核能、高端制造等工业的快速发展,重大工程机械装备面临日益苛刻的服役环境,多因素强耦合环境使机械系统的安全可靠服役面临严峻挑战。金属基复合材料可设计性强,通过合理设计结合制备工艺,能够实现优异的强韧一体化力学性能,经过表面改性后更是兼具高比强度、耐高温、耐磨损、耐腐蚀等优势,实现多性能协同。金属基复合材料作为结构与表面功能一体化材料在重大工程领域发挥着日益重要的作用。综述航空航天、海洋钻探、核用密封、精密加工和装甲防护五类典型苛刻环境用金属基复合材料的服役环境、材料性能要求、主要金属基复合材料体系及其面临的挑战,介绍典型的金属基复合材料制备工艺及表面改性技术,提出针对不同金属基复合材料体系制定合适的制备工艺以及表面改性技术是开发综合性能优异的金属基复合材料的有效手段,针对典型应用环境面临的突出表面问题,即摩擦、腐蚀、氧化,梳理金属基复合材料表面性能研究现状,指出改善金属基复合材料耐磨性、耐蚀性和抗氧化性的策略,并对金属基复合材料未来的发展方向进行展望,为开发强韧性、耐磨、防腐、耐高温等结构-表面功能一体化金属基复合材料提供思路。

    Abstract

    With the rapid development of the aerospace, marine, nuclear, and high-end manufacturing industries, mechanical equipments for major projects face increasingly harsh service environments with coupling effects from multiple factors, which brings severe challenges to the high safety and reliability of mechanical systems. Metal-matrix composites allow the properties of a designable structure to be tailored, enabling the achievement of excellent strength-ductility synergy and multi-performance synergy,particularly after surface modification, which play an increasingly important role in major engineering fields as structural-surface functional integrated materials. Metal-matrix composites are widely used as functional and structural materials in aerospace, deep-sea drilling, nuclear sealing, precision machining, armor protection, and other fields owing to their low coefficient of thermal expansion, high strength, high stiffness, extreme temperature resistance, and good tribological properties. Several conventional metal-matrix composites for harsh environments were reviewed, including the characteristics of service environments, requirements for material performance, and major metal-matrix composite systems. To address the severe challenges caused by friction, corrosion, fatigue, temperature, erosion, and wear, innovations in the preparation process and surface modification technology of metal-matrix composites should be urgently developed to ensure the safe and reliable service of components. Conventional fabrication processing and surface modification techniques for metal-matrix composites have been introduced, including solid-state, liquid-state, and gas-state fabrication techniques commonly used in the preparation of metal-matrix composites and physical, chemical, and mechanical techniques used in the surface modification of metal-matrix composites. Solid-state preparation technology includes powder metallurgy and diffusion bonding, which involve die casting and pressure-free osmosis methods, whereas gaseous preparation technology includes physical vapor deposition and chemical vapor deposition. The surface properties of metal-matrix composites prepared using the aforementioned methods can be further improved by applying surface modification technology to obtain integrated metal-matrix composites with structure-surface functions and realize multi-performance synergy. Although the combination of the preparation process and surface modification technology can effectively develop metal-matrix composites with excellent comprehensive properties, formulating appropriate preparation processes and surface modification technologies for different metal-matrix composite systems remains difficult. In view of surface problems such as friction, corrosion, and oxidation faced by typical application environments, the research status of the surface properties of metal-matrix composites was investigated, and control strategies for improving the wear resistance, corrosion resistance, and oxidation resistance of metal-matrix composites were summarized. Based on research on the design and performance of metal-matrix composites, a series of metal-matrix composite systems with customized properties have been developed for specific applications, which compensate for the poor performance of pure metal and traditional metal alloys in harsh environments and provide important opportunities for major construction machinery and equipment upgrades. In recent years, continuous improvements in manufacturing processing and surface modification technology have steadily improved the surface properties of metal-matrix composites; however, further systematic research should be conducted to meet the needs of increasingly harsh service environments. Future development directions are suggested. A configuration design theory should be developed, and the strategies for structural design, microstructural control, and surface-interface tight regulation of metal-matrix composites should be promoted. A basic database of metal-matrix composites should be constructed using efficient research methods, such as machine learning, and a design theory and metal-matrix composite model should be established, reducing the high trial-and-error costs incurred by blind design. Automatic special equipment should be developed to achieve high process controllability, improve production efficiency, and accelerate the transition from traditional to intelligent manufacturing. This study provides ideas for the development of the properties of structure-surface functional integrated metal-matrix composites, such as strength, toughness, wear resistance, corrosion resistance, and high-temperature resistance.

  • 0 前言

  • 随着我国航空航天、海洋工程、核电军工、高端制造等关键领域的跨越式发展和技术进步,日益苛刻的工况对材料提出了更为严苛的要求。亟须研发兼具强韧性、耐磨、防腐、耐高温等结构-表面功能一体化材料,以应对热、力、介质等多因素强耦合造成的材料变形失效及表面损伤。针对重大工程应用对经济、高效和轻质刚性材料的迫切需求,对材料的探索呈现由传统金属或合金转到复合材料的趋势。金属基复合材料具有高比强度、低热膨胀系数、良好的耐磨性和耐蚀性等优势,而这些特性是均质材料难以获得的,因此金属基复合材料成为国内外高新技术研究和开发的热点[1-2]

  • 金属基复合材料由金属基体和增强相组成,按金属基体可分为 Al 基、Cu 基、Mg 基、Ti 基、Ni 基、Fe 基复合材料等;按增强相的形态可分为颗粒增强、纤维增强和层状金属基复合材料。随着装备技术的快速升级,金属基复合材料几乎取代了传统材料在所有领域的应用,从高温采矿到空间极低温制冷,再到海洋高腐蚀性环境应用以及高耐磨轴承应用[3]。金属基复合材料的高比强度使其具有极大的减重潜力,满足航空航天和汽车行业的轻量化需求[4-5]。金属基复合材料耐磨性优于传统材料,适用于轴承和齿轮等长期处于高速、高负荷工作环境下严重磨损的机械零件[6-7]。金属基复合材料出色的导热性和导电性,使其在电子封装领域备受青睐[8-9]。金属基复合材料突出的高强度和高刚度,使其成为航空航天和国防工业重点发展的一类材料[10-11]。此外,金属基复合材料具有较传统材料更高的耐腐蚀性,适用于海洋工业等恶劣服役环境[12-13]。然而,高昂的制造成本和有限的技术积累对金属基复合材料的推广应用构成挑战,因此进一步提高性能和降低制造成本,是提高金属基复合材料竞争力的有效手段。

  • 金属基复合材料可设计性强,可以根据特定应用需求对其进行定制化设计[14-15]。金属基复合材料的性能与金属基体和增强相的性质以及二者的相对含量有关。为应对摩擦、腐蚀、疲劳、温度、侵蚀和磨损等因素带来的严峻挑战,对金属基复合材料的制备工艺以及表面改性技术提出更严苛的要求,以确保关键部件的安全可靠服役。因此,本文首先综述了航空航天、深海钻探、核用密封、精密加工以及装甲防护等苛刻环境用金属基复合材料。考虑到制备工艺及表面改性工艺对金属基复合材料的表面服役行为至关重要,介绍了传统和先进的金属基复合材料制备技术,包括固相法、液相法等[16-17],及其表面改性技术,包括物理、化学、机械等方法[18-19],并关注制备及表面改性工艺对金属基复合材料性能的影响,如机械强度、耐腐蚀性等。针对典型的服役环境,总结了金属基复合材料的表面性能研究现状,梳理了相关体系的发展需求和优化思路。最后指出金属基复合材料存在的问题并对其未来发展方向进行展望。

  • 1 苛刻环境用金属基复合材料

  • 金属基复合材料作为功能和结构材料引起了研究者的广泛关注。金属基复合材料是由金属或合金材料作为基体,以一些其他金属、非金属或有机化合物作为增强相,通过相应的工艺复合而成的综合性能优异的材料,具有低热膨胀系数、高强度、高刚度、耐极端温度和良好的摩擦学性能,是航空航天、海洋环境、核电、高端加工等领域的理想材料 (图1)[20-21]。对应金属基复合材料构件不同的服役性能要求,提高工件在苛刻环境下的使用寿命,解决极端环境服役装备的技术难题,是推动我国极端环境材料研发的关键。

  • 图1 苛刻环境用金属基复合材料[22-38]

  • Fig.1 Metal-matrix composites for harsh environment applications [22-38]

  • 1.1 航空航天

  • 随着航空航天行业的快速发展,飞机、航天器等关键材料面临着高温、高应力、高冲击载荷、辐照等复杂苛刻环境,对复合材料的服役性能提出了新的要求和挑战。航空航天领域对材料的要求主要围绕轻量化、高强度、耐疲劳、耐腐蚀等方面。航空领域多采用以轻金属,如 Al、Ti、Mg 等为基体,以高性能的纤维、陶瓷颗粒等作为增强体的金属基复合材料[39-40]。例如,Al 基复合材料因其高耐腐蚀性、耐磨性、比模量和轻重量而被视为最有前途的结构材料[41],其优异的物理、力学特性在“祝融号”火星车上得到很好的体现。四种不同 SiC 含量的 SiC / Al 复合材料已应用于火星车行走机构、驱动机构、探测器等 50 余种零部件,为火星车在严苛环境下得以顺利完成探测任务提供了关键保障。 SiC / Al 复合材料还广泛用于嫦娥 5 号、空间站等多个航天与国防关键工程中[42]。Ti 基复合材料较传统 Ti 合金具有更高的模量、更好的高温性能和更优越的耐磨性[43],目前应用于航空领域的 Ti 合金以高温 Ti 合金为主,前 NASA 工程师在 2009 年发表的一份报告指出,美国 F-22 战斗机中 Ti 基复合材料的使用量接近 40%[44]。同样,荷兰皇家空军 F16 起落架的下阻力支撑现在由 SiC 纤维增强 Ti 基复合材料制成,与高强度钢相比,Ti 基复合材料使部件的重量减轻了 40%[4345]

  • 1.2 深海钻探

  • 与陆地环境相比,海洋钻探装备材料面临着多种载荷条件和环境条件的综合影响,同时,还受到温差大、油气介质、磨损损坏、微生物腐蚀等多种因素的作用[46]。在这种严苛复杂的条件下,海洋钻探装备材料服役寿命大大缩减。在深海石油钻采过程中,钻采部件常常承受深海高压环境下的磨蚀和高 H2S、CO2、高含 S 深海热液环境区域的严重侵蚀,在多因素耦合作用下,部件的使用寿命非常短,严重影响了深海钻采工作的执行[47-48]。对于海洋石油钻探材料的选择,通常使用具有优良的耐高温耐磨蚀性能的 Co 基合金、WC-金属复合材料(Ni 基、 Co基、Cu基等金属)和WC强化镍基复合涂层[49-51]。目前 Ni 基和 FeNi 基耐蚀合金被广泛用于制造耐蚀性油管、泵阀、单流阀阀体等,以及符合 APIApec6A 与 17D 规范的 HH 级井口装置和采油零部件[52]。但是,当前使用的钻头主体材料仍是 Co 基合金,很多研究人员对金属基复合材料在深海钻探的应用方面还停留在试验室阶段,如广泛应用于石油钻探的 WC、TiC 颗粒增强金属基复合陶瓷的表面改性技术[4653-54],有望在未来应用到深海钻探领域,以达到海洋石油装备的高安全性、高稳定性、高可靠性的要求。

  • 1.3 核用密封

  • 在船舶、核电等领域,密封件是必不可少的一个小零件。在核电领域中,核级密封件是在强辐照、高温、高压、强腐蚀交变的极端工作环境下防止核泄漏的一个关键部件,对保障核安全起到至关重要的作用[55]。金属石墨垫片因其优异的耐高温、抗辐射、低蠕变松弛系数和高可靠性,广泛应用于核电站压力容器和管道系统。核级金属石墨垫片由三部分组成:内金属环、外金属环和石墨密封环,它通常由 304、316 不锈钢和其他合金材料制成。这些材料通过螺旋填塞与石棉、石墨、聚四氟乙烯 (Polytetrafluoroethylene,PTFE)等相互交替重叠螺旋缠绕而成,被广泛用作阀门、泵、换热器等法兰连接处的静密封原件[56]。金属 C 型密封环是一种具有形状记忆功能的弹簧赋能型结构的材料,被广泛用作核反应堆压力容器的主要部件。当反应堆工作时,内部产生的高压和高温会导致封闭容器膨胀,密封环也会受到拉伸;在反应结束时,密封环可以恢复到其原始状态,可以达到防止核泄漏的效果[57]。随着核电行业的发展,垫圈承受的各种热应力也在不断加剧,可靠性和安全性问题日益增多,必须充分利用组件的机械强度,多种材料并行发展,才能更好地控制和保持密封性。

  • 1.4 精密加工

  • 精密加工技术是一种先进的信息化技术,它融合了计算机和集成电路的优点,是实现机械设计与生产数字化运作、推动机械设计与制造向自动化发展、提高生产效率的重要一步。精密加工追求加工上的精度和表面质量极限,从而获得高精度、复杂和长寿命的产品[58]。例如,在 B4C 中加入硬质 HfB2,可以有效抑制 B4C 晶粒的变形和脱碳,从而提高力学性能并降低磨损率,拓宽 B4C 在金属成型和机械加工行业的应用范围[59]。红外导引系统中,用 SiC 颗粒增强 Al 基复合材料代替原来的不锈钢制造万向节零件,可以减轻 62%的重量[60]。对于高精度仪器或轴承,在长期储存和使用环境中保持尺寸稳定性和高精度是很重要的,尺寸稳定性的好坏是零件精密度的直接衡量标准。例如,陀螺仪、加速度计和恒星传感器等设备是确定火箭、卫星和其他飞机定位精度的角度、速度和位置传感器,这些精密仪器的精度对零件的微小变形非常敏感。SiC 颗粒增强 Al 基复合材料具有更高的微屈服强度和抗压性,使其成为惯性导航设备中 Be 合金的潜在替代品[61]。如哈尔滨工业大学武高辉团队[62]基于长期贮存条件下尺寸稳定性的表征新方法以及 Al 基复合材料尺寸稳定性的基本原理,设计出一种高尺寸稳定性的仪表级、光学级 SiC / 2024Al 复合材料。仪表级 SiC / 2024Al 复合材料微屈服强度高、冷热循环条件下尺寸稳定性高、热膨胀系数匹配度高于 Be 材,仪表的精度稳定性优于 Be 陀螺。此类型的仪表级 SiC / 2024Al 复合材料用于电推系统转向机构的零件以及高精度液浮陀螺仪的零件[2562],与国外在相关精密零件中使用 Be 或 BeAl 合金相比,我国探索出了一种低成本、高性能的精密零件材料技术方法。

  • 1.5 装甲防护

  • 具有精确攻击和高效毁伤能力的武器是现代战争的主要作战装备。随着现代武器系统的不断发展,军用装甲防护技术也在不断提高。装甲防护的基本原理是消耗弹丸的能量,使弹丸减速并达到无害。鉴于未来在陆地作战领域的对抗,装甲车必须具有高机动性和强大的防御能力。因此,现代装甲防护材料必须满足“三高一低”的原则,即“高强度、高硬度、高韧性、低密度”[63]。20 世纪开始,装甲防护材料多采用金属材料以及陶瓷材料。陶瓷材料被广泛用于保护各种装甲车和飞机的关键部件,其具有高强度、低密度和良好的抗冲击性,但其生产成本高,脆性严重。金属材料在装甲车辆中得到了广泛应用,合金材料的弹性模量不如陶瓷材料,但其抗拉强度和比强度都很高,可以弥补陶瓷材料的不足。金属-陶瓷梯度复合材料兼具了金属的强度、韧性和陶瓷材料的耐高温、耐腐蚀的特性,美国已把金属-陶瓷功能梯度防护装甲作为未来主战坦克主装甲的首选材料[63-64]。晁振龙等[65]通过多尺度和梯度结构设计,制备了具有高抗侵彻能力的梯度 B4C / Al 复合材料。试验表明,在相同的抗弹能力下,与现役金属装甲相比,梯度 B4C / Al 复合材料可以承受多次打击,解决了传统陶瓷装甲损坏严重、无法承受多次打击的问题。这为提高装甲车的防护能力提供了一种新的材料技术解决方案。随着武器有效杀伤能力的不断提高,新材料技术也不断融入到装甲防护技术的发展中。在未来,装甲防护材料不可避免地朝着抗穿透能力和抗冲击能力的方向发展。

  • 2 金属基复合材料制备工艺及表面改性技术

  • 为满足在苛刻环境下服役性能的需要,考虑到金属基复合材料由金属或合金基体相与增强相复合而成,合理的制备工艺及表面改性技术对金属基复合材料整体性能的协同提升起着关键作用。常见的制备技术主要可分为固态法、液态法、气态法、原位自生法等。固态法制备技术包含粉末冶金、扩散结合等;液态法制备技术包含压铸法、无压渗透法等;气态法制备技术包含物理气相沉积、化学气相沉积等[16-1766-67]。通过以上方法制备得到的复合材料样品,通过采用表面改性技术,可进一步提高其表面性能,从而获得结构-表面功能一体化的金属基复合材料,实现多性能协同(图2)。

  • 图2 金属基复合材料制备工艺及表面改性技术[1968-71]

  • Fig.2 Fabrication processing and surface modification techniques for metal-matrix composites [19, 68-71]

  • 2.1 金属基复合材料制备工艺

  • 通过合金化优化金属基体,结合增强体相表面处理技术,同时选择合适的加工方法与成型工艺,可制备得到综合性能良好的金属基复合材料,从而满足苛刻环境条件下服役的性能需求。常用于金属基复合材料的制备工艺包括粉末冶金法、铸造成型工艺、喷涂沉积技术等。

  • 粉末冶金法。粉末冶金法是目前最广泛使用的金属基复合材料制备技术。粉末冶金的工艺步骤:首先均匀混合粉末,随后在模具中压实粉末,然后在烧结炉中进行烧结[72-73]。几何形状简单的零件易通过粉末冶金工艺制造,并且具有低成本、可大规模生产的优点。粉末冶金法的优点是基体相和增强体相的可选范围广,可制备含高体积分数增强体的复合材料,增强体在基体中分布均匀,力学性能较好[74]。针对粉末冶金工艺调控,研究人员已开展大量研究工作,并引入多元合金进行成分优化,获得了耐腐蚀、耐高温磨损以及耐磨蚀的金属基复合材料[465075]

  • 放电等离子烧结方法。放电等离子烧结方法也称外场辅助烧结工艺。它是一种通过直流电、低电压以及压力辅助烧结下的制造工艺。放电等离子烧结方法可用于制造晶粒尺寸均匀的高密度复合材料,其高加热速率可实现复合材料的快速均匀制备[76],且脉冲电流发生放电过程,能够活化材料颗粒,从而加速材料的扩散[77],因此,复合材料的致密化程度高,可消除传统致密化过程中发生的粗化现象。因此,该工艺可改善材料的力学性能。

  • 搅拌铸造工艺。搅拌铸造工艺是一种比较传统的工艺,长期以来一直用于生产非连续颗粒增强金属基复合材料。搅拌铸造技术属于液态成型技术,它是通过机械搅拌的方式将所需的增强体颗粒加入并混合到熔融的金属基体中,并通过模铸成型。该技术的关键是控制熔融金属和增强体颗粒的机械搅拌[78]。增强体材料通常采用粉末形式,因此该技术面临的一个主要问题是液态金属不能使增强相颗粒完全润湿,并且难以获得均匀分散的颗粒。

  • 挤压铸造技术。挤压铸造技术是挤压和铸造两种工艺的结合。该技术制备步骤为:首先预热金属,然后将熔融金属浇注到模具中,随后向熔融金属施加压力,最后从冲头和模具装置中取出制备得到的复合材料。在这个过程中,熔融金属在压力下凝固,增强体材料在压力的作用下混合到熔融金属基体中。通过该工艺,可以在控制相关工艺参数的情况下制备出无缺陷的金属基复合材料[79-80]

  • 喷涂沉积技术。喷涂沉积工艺中,需要采用喷枪喷涂基体相和短纤维形式的增强体材料。喷枪可同时喷涂基体相和增强体相,二者相互独立。固化过程可在常温或高温下完成。固化过程完成后,打开模具,即可得到所制得的复合材料。通过喷射法制造的产品体积大、增强相含量高,但力学性能一般较差[81]

  • 激光熔覆技术。激光熔覆技术以高能量密度的激光作为热源,通过将粉末原料快速熔化,在基体上快速凝固形成具有特殊性能的熔覆层[82]。激光熔覆通常为快速加热和快速冷却过程,因此采用激光熔覆获得的材料晶粒细小、硬度较高、热影响区较小,基本不会破坏基体材料的性能,常用于金属基复合材料的制备过程。

  • 以上为金属基复合材料制备技术中常用的固态法、液态法、气态法中的代表性工艺。金属基复合材料的性能与制备工艺直接相关,采用不同制备工艺获得的材料的组织形貌、均匀性、界面结合状态差异较大。针对不同金属基复合材料体系制定合适的制备工艺仍然面临挑战。新型制备工艺,如激光熔覆技术,为金属基复合材料的制备提供了新思路,但其处于起步阶段,如何利用其优势进一步提升金属基复合材料的综合性能仍须进一步探索;产业升级提升应用需求,催生新型金属基复合材料的开发,相应的制备技术也亟待优化,现有制备技术如何适应新型金属基复合材料,也是未来金属基复合材料发展面临的一个重要问题。此外,针对上述制备工艺得到的金属基复合材料,为提升其表面性能,需结合表面改性技术,以开发综合性能优异的金属基复合材料。

  • 2.2 金属基复合材料表面改性技术

  • 表面改性技术是指用物理、化学、机械等方法改变材料表面的化学成分或者组织结构,以提高材料表面的性能[1883-86]。表面改性技术可应用于金属、陶瓷、塑料、纤维等,以改善它们的耐磨性、抗腐蚀性、抗疲劳性等。针对金属基复合材料,对其常用的表面改性技术进行介绍。

  • 物理气相沉积法。在材料表面沉积功能性涂层是实现表面改性较为简单的方式。溅射,尤其是磁控溅射,是一种应用广泛的涂层沉积技术,具有灵活性和通用性,且沉积的涂层致密、表面光滑、附着力和均匀性高[87]。磁控溅射技术已应用于金属基复合材料表面涂层的制备,可以改善金属基复合材料的摩擦学性能,延长部件使用寿命。TiN 是一种经济高效的涂层,常用于硬质合金刀具。TUFFY等[88]探究了 TiN 涂层厚度对硬质合金刀片加工性能的影响,结果表明厚度为 3.5 μm 的 TiN 涂层使刀具的寿命至少延长了 40 倍。通过在 TiN 涂层中掺杂 Al、V、Ta、Nb、W 等元素可以进一步改善涂层的性能[89-91]。CHEN 等[89]设计了一种新的中熵氮化物体系 TiNbWN,并探索了其在 25~750℃温度范围内的摩擦磨损性能。研究发现,在较高温度(750℃) 下,滑动过程中原位形成了纳米晶氧化物(WnO3n−2、 TiO2和 γTiOx),提高了涂层的硬度,并起到了固体润滑作用,有助于降低磨损。此外,还可以采用磁控溅射技术在金属基复合材料表面沉积多层涂层,通过不同涂层的组合获得预期的性能[92-93]

  • 等离子喷涂法。等离子喷涂法是商业上最成功的涂层方法之一,用于涂覆汽车零件,以改善其表面特性,如硬度、耐腐蚀性、耐磨性、热绝缘或电绝缘 / 导电性能[94]。等离子喷涂法具有沉积速率高、清洁、环保、经济性等优势,并且沉积均匀,能够确保性能的均匀性,提高涂层的延展性。SiC 颗粒增强 Al 合金具有较高的比强度、耐磨性、疲劳强度和热稳定性。为了实现表面性能的均匀性,BABU 等[95]采用等离子喷涂工艺在 Al / SiC 复合材料上沉积硬质 TiO2涂层,并采用 Ni-Cr 合金作为结合涂层以提高涂层与基体的附着力,使复合材料的耐刮擦性、硬度、断裂粗糙度和耐磨性显著提高。

  • 激光重熔技术。激光重熔技术以脉冲或连续激光束来熔化材料表面,并随激光束移开发生重熔层的快速凝固。激光重熔能够实现表面晶粒细化并促进金属间化合物的生成,有利于提高材料表面硬度和耐磨性,同时重熔使表面成分均匀化,有利于耐腐蚀性提升[96-97]。HU 等[98-99]采用 Nd∶YAG 激光重熔 Al18B4O33w / Al 复合材料,表面重熔层晶须和 CuAl2 金属间化合物溶解,形成 γ-Al2O3和 B2O3,且重熔层微观结构均匀、晶粒细化、无缺陷。采用激光重熔改性后的复合材料耐腐蚀性能提高,显微硬度从178 HV增加到294 HV。RAMS等[100]对SiC / Al 复合材料的腐蚀行为研究发现,复合材料中 SiC 颗粒的存在破坏了样品表面 Al2O3保护层的连续性,加之 SiC / Al 界面处存在位错和界面等缺陷,导致点蚀等局部侵蚀的发生。通过使用高功率二极管激光器对 SiC / Al 复合材料表面进行均匀化并细化晶粒,消除 SiC 颗粒,使其硬度提高了 48%~80%。与未改性的 SiC / Al 复合材料相比,该材料表现出更高的阻抗,并且腐蚀和点蚀电位值降低,点蚀减少。

  • 化学气相沉积法。化学气相沉积是一种受控的气相化学过程,气相中的挥发性前体反应形成固相化合物并沉积在材料表面上,涉及气相中的均相气相反应和材料表面或附近的非均相化学反应[101]。化学气相沉积是微电子、光学、光电电子和航空航天工业中许多高科技部件制造的重要技术之一,也是耐磨部件的制造以及工具和轴承涂层的重要制备手段[102]。金刚石涂层因其独特的特性,如化学惰性、高硬度和耐磨性、良好的导热性以及低摩擦和热膨胀系数,被认为是理想的切削工具涂层。金刚石涂层化学气相沉积技术的发展使金刚石的优越性能与基体材料的优越性能得以结合。然而,由于金刚石在钢、WC-Co 等切削工具及工程材料上的成核和生长困难,金刚石涂层的许多潜在应用受到限制[103]。 TANG 等[104]将碳化物形成元素(Ti、Cr 和 W)作为中间涂层,以改善金刚石在 WC-Co 基体上的形核和生长。结果表明,碳化物形成元素中间层具有非晶/纳米晶结构,有利于金刚石形核,且远高于广泛使用的金属氮化物中间层。Cu 是具有极高导热性和导电性的材料,是许多应用的理想材料。WAN 等[105]研究了 Cu-WC 复合材料上的金刚石沉积行为,发现复合材料中的 W 元素促进了金刚石的生长,提高了涂层与基体的界面附着力,避免了金刚石和 Cu 的热膨胀系数不匹配导致的较大热应力,研究表明该结果与预处理和沉积阶段的还原和再碳化反应密切相关。

  • 摩擦搅拌工艺。摩擦搅拌工艺能够在复合材料表面形成更均匀的微观组织,改善复合材料中增强体相的分布,从而优化其表面性能,实现更高的表面硬度和抗蠕变性,已被用作粉末冶金的后处理工艺[106]。粉末冶金制备金属基复合材料孔隙率高,且金属基体颗粒之间增强颗粒存在偏析,会导致力学性能下降。采用摩擦搅拌工艺对粉末冶金金属基复合材料进行后处理,消除孔隙或颗粒偏析等缺陷,细化微观组织,使增强颗粒分布均匀,能够获得更高的延展性和强度。IZADI 等[107]证实摩擦搅拌工艺可以提高传统粉末冶金和烧结方法生产的Al-SiC复合材料的显微硬度。摩擦搅拌过程中搅拌区的材料塑性流动成功使 SiC 颗粒在基体中均匀分布,并消除了孔隙,改性后样品的硬度增加。STAWIARZ 等[108]对摩擦搅拌处理前后的 Al-Si-Cu / SiC 复合材料表面进行力学和摩擦学测试,发现改性后 SiC 颗粒分布的各向异性系数降低了一个数量级,颗粒尺寸减小,材料的均匀性显著提升,改性后复合材料的代表性区域显微硬度提高了 30%,摩擦因数增加了 40%,比磨损率降低了近 25%。此外,搅拌摩擦工艺还促进了表面金属基复合材料的发展[109]

  • 3 金属基复合材料的表面性能

  • 随着制备工艺和表面改性技术不断进步,新型高性能金属基复合材料逐渐涌现,为满足重大工程的苛刻环境应用需求提供了新材料。重点介绍金属基复合材料在耐磨、耐腐蚀和抗氧化性能方面的研究现状。

  • 3.1 耐磨性能

  • 全球每年因摩擦消耗的能源占总量的 30%~50%,磨损导致的零件损坏比例高达 80%[25]。随着机械装备部件在复杂工况的应用需求愈加紧迫,对基础材料性能提出了更高的性能指标。金属基复合材料作为具有较高比刚度和比强度、高温加工性能优异、热膨胀系数较低、耐磨性能优异的新一类工程类材料,已成为替代传统金属材料不可或缺的战略新材料[110-111]。目前,国内外对金属基复合材料的研究主要聚焦在 Al、Mg、Ti、Cu 及金属间化合物等合金体系上,其质量轻、价格低廉、易加工、工程可靠等优势极大促进其在航空、航天和汽车工业领域等轻型结构部件的广泛应用。而作为机械装备系统的关键结构部件,服役过程中运动部件连续的磨蚀磨损问题极易导致机械装备的服役性能急剧退化乃至失效[112-113]

  • 关键机械装备部件材料需要高可靠性的耐磨性能,深入分析金属基复合材料在设计、制造和服役过程中的摩擦磨损行为和摩擦损伤失效机制,探究相应的摩擦磨损机理,对探索和发展新的长寿命、耐摩擦、高可靠的机械运动部件及相关技术至关重要[50114-115]。针对金属基复合材料在摩擦磨损过程中接触表面的宏观力学性能研究已相对深入,主要着重于摩擦磨损过程中接触表面的应力和应变分布,软 / 硬材料的设计与适配、弹塑性变形行为、磨屑形成过程及其动力学[116]。但对于摩擦磨损过程中微观应力和应变的形成、微裂纹的萌生与扩展、摩擦反应膜的转移和磨屑形成原理等相关微观力学机制还有待深入研究[54]。除了考虑复合材料磨损行为及过程的变化,滑动摩擦过程中机械部件所处的工作环境、接触介质特性及可能发生的摩擦化学反应均对摩擦磨损性能产生很大的影响[111117]。相关试验表明,在大气及高温环境下,摩擦过程中多数金属均极易形成氧化膜,氧化膜性质差异决定其耐摩擦磨损性能[118-119]。如 CuO 比金属更易剪切,润滑效果更佳;而 Al2O3 则非常坚硬,剪切强度大; Pb 和 MoS2形成的氧化膜具有低剪切微观机制,因此具有极低的摩擦因数和高耐磨性[120]

  • 优化金属基复合材料的摩擦学性能的研究主要包括以下三个方面(图3):① 采用增强颗粒、晶须或纤维等增强体提升复合材料的硬度和耐磨性能,以抵抗摩擦磨损行为[111];② 加入固体润滑剂降低复合材料的摩擦因数和磨损率[111120-122];③ 通过表面改性技术,改善复合材料表面性能,提升耐摩擦磨损性能[123-124]。基于以上研究思路,金属基复合材料主要分为以下三类:在 Al、Mg 等金属基体中加入大量高硬度、化学性质稳定、耐磨的陶瓷增强体,这是最广泛使用的方法之一。这不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性能。此类金属基复合材料具有良好的耐磨性,已在机械工业中展现出极大的应用潜力[55111]。在金属基体中加入具有自润滑作用的 MoS2、CaFe2、BaF2 等固体润滑剂以降低复合材料的摩擦阻力,进而获得具有良好自润滑性能的复合材料[131-132]。此外,由于摩擦磨损直接发生摩擦副表面位置,通过采用表面改性技术改善材料表面组织结构、表面粗糙度、表面硬度等力学性能,优化材料表面的物理化学性能,可进一步提升复合材料的摩擦学特性[133]

  • 图3 耐磨金属基复合材料调控策略[125-130]

  • Fig.3 Regulating strategies for wear-resistant of metal-matrix composites [125-130]

  • 目前,随着高端装备的快速发展,在高温、高负载、高精度、强辐射、强腐蚀以及高清洁复杂工况下运行的摩擦系统和传动部件仅依赖单一硬质强化颗粒掺杂等复合方式,难以满足愈发苛刻的服役需求,探究具有协同强化和自润滑作用的新型金属基复合材料及相关技术至关重要[55]。随着固体自润滑技术的广泛应用,固体润滑剂逐渐显露出一些弊端,即多种传统固体润滑剂在摩擦磨损过程中磨损物的溅落破坏了润滑膜,降低了服役的可靠性。为了使机械装备部件能长时稳定运行、延长其使用寿命,在工件表面制备防护涂层是最直接有效的方法。而多种新兴的涂层制备技术,如气相沉积、激光熔覆、等离子体等技术为探索不同防护形式的高耐磨性金属基复合材料提供了强有力支撑[124]。因此,在深入了解材料摩擦损伤机理的基础上,研究涂层的组分-工艺-结构-性能之间的关系,采用多工艺、多组分制备具有优异表面性能的金属基复合材料,协同自润滑与强化效应,共同提升金属基体的耐磨性能成为未来发展的趋势。

  • 3.2 耐腐蚀性能

  • 腐蚀是金属基材料在服役过程中面临的巨大威胁之一,空气中的水分、土壤中的微生物以及海水中的盐离子均在加速材料的腐蚀。为了应对腐蚀问题,耐蚀金属备受关注,Ti、Al、Ni 及其合金因其良好的耐蚀性能被广泛应用于航空航天、汽车、船舶和国防工业[2050134-135]。其中金属基复合材料因其优异的力学性能而受到更为广泛的关注[136-137]。Al 基复合材料作为金属基复合材料中最常用、最重要的材料之一,既结合了 Al 的低密度和高耐蚀性,也因增强相而拥有了高强度及良好的高温性能[136]。然而复合材料在应用过程中不仅面临着外部环境引起的腐蚀问题,同时面临着内部结构导致的腐蚀加速问题。Al基复合材料因增强相与基体间的界面问题,较单纯的 Al 合金更易受到腐蚀影响,其中增强相的导电性决定了复合材料的腐蚀方式[138]

  • 一般而言,金属基体具有更高的电化学活性,导电的增强相如碳纤维、石墨、碳纳米管等作为惰性阴极,会导致电偶腐蚀,是金属复合材料的主要腐蚀因素[139]。其次,由于中间相 Al3C4 会发生水解生成 CH4和 Al(OH)3,降低了钝化膜的完整性[140]。而对于 SiC 半导体增强相或 Al2O3 绝缘体增强相,理论上与 Al 基体之间不存在电偶腐蚀效应。然而,由于 SiC / Al 复合材料界面处存在缝隙,会发生缝隙腐蚀和缝隙导致的点蚀,同样也存在应力腐蚀开裂问题。SiC / Al 复合材料在海水中相比于 C / Al 复合材料具有更好的耐蚀性。但合金基体不同会导致其腐蚀机理发生相应变化。SiC 晶须会提高纯 Al 的应力腐蚀敏感性,但在 2024 铝合金中却存在相反的作用[141]。Al2O3 / Al 复合材料相比于前两者具有更好的耐蚀性能,一是因为不发生电偶腐蚀,二是可以通过增加中间层提高界面润湿性、降低孔隙率,从而减少局部腐蚀的发生[142]。因此针对 Al 基复合材料的腐蚀,主要通过优化界面来解决。

  • 碳纤维增强复合材料的比强度和比模量是现有结构材料中最高的,改善其耐蚀性能对于拓宽其工业应用具有重要意义。通过在纤维上沉积涂层隔绝其与基体之间的接触以改善碳纤维与 Al 基体之间电偶腐蚀是一种可行方案。WIELAGE 等[143]将金属 Ni 沉积在碳纤维上以改善纤维与基体间的润湿性,期望能够改善复合材料的电偶腐蚀。研究发现,尽管Ni涂层能够降低纤维 / 基体界面出现微裂缝的概率,但沉积的 Ni 涂层完全溶解在 Al 基体中,并促进界面上碳化物的生成,如图4a 所示,这导致 Al 基复合材料的耐蚀性能进一步恶化。目前大多研究都表明金属涂层并不能降低纤维增强金属基复合材料的耐腐蚀性,相反还可能会促进腐蚀[144]。类金刚石(Diamond-like carbon,DLC)涂层出色的耐化学性以及与 C / Al 复合材料的良好相容性可以减缓金属基复合材料的电化学腐蚀。如表1 所示,具有 DLC 涂层的 Al 基体的腐蚀电流密度为无涂层的 Al 基体的 1 / 5,具有 DLC 涂层的 C / Al 复合材料的腐蚀电流密度仅为无涂层的 C / Al 复合材料的 1 / 15 [145]。对于 SiC / Al 复合材料体系,有研究指出可以通过调节 SiC 的体积分数和颗粒大小改变复合材料的密度,从而有效提高其耐腐蚀性能[146]。MOSLEHSHIRAZI 等[147]通过计算纳米级 SiC 对 Al 基复合材料耐蚀性能的影响,发现纳米级复合材料的整体电子功函数增加,腐蚀电位正移。电子局域化函数显示价电子主要集中在 SiC-Al 界面处,导致整体功函数增大,建立更高的势垒,阻碍材料中的电子参与腐蚀反应。

  • 表1 3.5wt.% NaCl 溶液中材料的腐蚀电化学数据[145]

  • Table1 Electrochemical data for materials in 3.5wt.% NaCl solution[145]

  • 图4 表面界面改性优化金属基复合材料耐腐蚀性能

  • Fig.4 Surface and interface modification of metal matrix composites for advanced corrosion resistance

  • 制备工艺的提升和材料表面改性方法也能在一定程度上改善金属基复合材料的耐蚀性能。ZHANG等[148]利用冷气动态喷涂工艺制备 CNT-Al 复合涂层材料,其腐蚀电流密度比纯 Al 涂层低一个数量级,如图4b 所示。通过在 SiC-Al 复合材料表面进行原子沉积形成纳米级氧化物薄膜可以使材料表面微裂纹得到极大改善,其中 HfO2 沉积后的复合材料对点蚀具有有效抑制作用[149]。YANG 等[150]通过摩擦搅拌后处理工艺改善 AA2024 / Al2O3 复合涂层的耐蚀性,摩擦搅拌改性后的表面 Al2O3 颗粒明显细化,改善了复合材料的表面组织,提高了材料的耐蚀性。

  • 3.3 抗氧化性能

  • Ni 基高温合金通过稀土改性[151-152]、非金属元素改性[153]等方法,获得较好的高温强度、低密度、延展性和抗氧化性能,因此被广泛用于航空发动机。航空发动机的升级换代以推重比的提高为标志,提升推重比一方面可以减小自重,采用更轻的材料,另一方面是增大发动机的推力,主要通过提升发动机的涡轮进口温度实现,但是这对航空发动机热端及近热端部件材料的高温力学性能和抗氧化性能提出挑战,传统的 Ni 合金力学性能不能满足越来越苛刻的服役环境。为了进一步提升 Ni 合金的力学性能,使用多种增强体,例如纤维、颗粒等[154],制备 Ni 基复合材料,以突破 Ni 合金性能的限制。考虑到发动机所处的高温环境,Ni 基复合材料在高温下的氧化行为研究至关重要,已开展大量相关研究。

  • TiC[155]、WC[156]和 NbC[157]是常用的 Ni 基复合材料的陶瓷增强相[158],包含这些增强相的 Ni 基复合材料通常具有优异的性能,但是大多数研究只关注其力学性能的提升,忽视了抗氧化性能的研究。 GRABOŚ 等[154]在 Inconel625 合金中引入了不同质量分数的 NbC,使复合材料的整体硬度提升,并探究了最佳力学性能和抗氧化性能的成分区间。通过对三种 Inconel625-NbC 复合材料的氧化行为进行研究,发现三种复合材料中的 NbC 增强相均被氧化,并且随着 NbC 质量分数的增大,氧化越来越严重。Inconel625 合金具有良好的抗氧化性能,其能够生成富 Cr 氧化膜阻碍 O 原子进入,而 NbC 在氧化过程中生成不具有保护作用的 Nb2O5,O 原子容易通过其扩散进入复合材料内部,造成复合材料失效。Cr2O3 也可以和 Nb2O5 反应生成 CrNbO4,能够阻碍 O 原子的扩散。但是如果增强相 NbC 的添加量太高,没有足够的 Cr 元素形成具有保护性的氧化物,合金将在高温下失效。

  • 除 Ni 基合金外,NiAl 合金也是高温结构部件的理想材料之一。NiAl 合金具有优越的低密度、高模量和良好的抗氧化性等特点,展现出良好的应用前景。NiAl 合金在高温氧化过程中能够快速生成 Al2O3,保护其不被氧化。但较高的 Al 元素含量导致 NiAl 合金室温力学性能较差,相关研究表明 Mo 或者 Cr 纤维增强相可以有效提高其力学性能。 GERAMIFARD 等[159]使用 Cr 纤维作为增强相,提升了 NiAl 合金的力学性能,并通过试验和热力学计算,解释了 NiAl-Cr 复合材料的氧化机理。NiAl-Cr 复合材料在 1 300℃中氧化 50 h 后的截面形貌如图5 所示,NiAl 相表面生成了 Al2O3,Cr 表面生成了 Cr2O3,而在 NiAl 相、Cr 相和空气界面处生成了一层(Al,Cr)2O3 氧化物。此外,GERAMIFARD 等[159] 结合热力学计算对 NiAl-Cr 复合材料的氧化过程进行了解释,如图6a 所示。合金氧化初期,即氧分压 lg(pO2)= −24 时,NiAl 和富 Cr 相能够稳定存在,与 NiAl-Cr 复合材料初期氧化试验一致。随着氧化时间的延长(图6b),NiAl 和富 Cr 相消失,(Al,Cr)2O3 逐渐占据主导地位,富 Al 端生成富 Al 的(Al,Cr)2O3,富 Cr 端生成富 Cr 的(Al,Cr)2O3。这解释了 NiAl 相和富 Cr 相表面生成不同氧化物的原因,同时也解释了 NiAl 相、富 Cr 相和空气界面处生成的(Al,Cr)2O3 氧化物。氧化末期,即 lg(pO2)= −16 时(图6c),相图中只有(Al,Cr)2O3 相,和试验结果一致。通过氧化试验结合热力学计算,明确了 NiAl-Cr 复合材料的氧化过程,揭示了氧化膜的生长机理,为 NiAl-Cr 复合材料的应用提供了理论基础。

  • 图5 NiAl-Cr 复合材料在 1 300℃下氧化 50 h 后的截面形貌及其元素分布[159]

  • Fig.5 Cross-sectional morphology and EDX of NiAl-Cr composite after oxidation at 1 300℃ for 50 h[159]

  • 图6 1 300℃不同氧势下 Ni-Al-Cr-O 稳定性相图(x(Al)、x(Cr)、x(Ni)分别为组元 Al、Cr、Ni 的原子分数)[159]

  • Fig.6 Stability phase diagram of Ni-Al-Cr-O at 1 300℃ under different oxygen partial pressures (x (Al) , x (Cr) and x (Ni) are the atomic fractions of the components Al, Cr and Ni, respectively) [159]

  • 4 结论与展望

  • 随着我国航空航天、海洋工程、核电军工、高端制造等关键领域的快速发展,重大工程机械装备须应对摩擦、腐蚀、疲劳、温度、侵蚀和磨损等因素带来的严峻挑战,这对材料提出了更严苛的要求,以确保关键部件安全可靠服役。介绍了苛刻环境用金属基复合材料及其制备工艺与表面改性技术,并概述了金属基复合材料的表面性能研究现状,总结如下:

  • (1)金属基复合材料作为功能和结构材料,因低热膨胀系数、高强度、高刚度、耐极端温度和良好的摩擦学性能,广泛应用于航空航天、深海钻探、核用密封、精密加工装甲防护等领域。

  • (2)制备工艺结合表面改性技术是开发综合性能优异的金属基复合材料的有效手段,然而针对不同金属基复合材料体系制定合适的制备工艺和表面改性技术仍然面临挑战。

  • (3)针对典型应用环境面临的摩擦磨损、腐蚀、氧化等表面问题,梳理了金属基复合材料表面性能研究现状,归纳了改善金属基复合材料耐磨性、耐蚀性和抗氧化性的调控策略。

  • 基于对金属基复合材料设计及性能研究,针对特定应用已开发出一系列具有定制性能的金属基复合材料体系,弥补了纯金属和传统金属合金在苛刻环境中的性能不足,为重大工程机械装备升级提供重要机遇。近年来,制造工艺和表面改性技术的不断完善使得金属基复合材料表面性能稳步提升,但仍须进一步开展系统性研究,以满足日益苛刻的服役环境需求,主要有以下几个方面值得关注:

  • (1)针对重大工程机械装备日益复杂的服役环境,发展结构与功能一体化的高性能金属基复合材料成为趋势。近年来,构型设计推动了复合材料的发展,丰富了金属基复合材料体系,实现了多性能协同。但构型设计理论尚不完善,结构复杂化也使金属基复合材料的结构设计与调控、表界面精细调控面临更大挑战。

  • (2)充分利用金属基复合材料可设计性强的优势,围绕具体工程应用背景的性能需求,对金属基复合材料基体和增强相材料、形状、尺寸、含量进行逆向设计,能够有效降低新材料开发成本。然而,金属基复合材料的基础数据库尚不完善,盲目设计会造成高昂的试错成本。在后续的研究工作中,有必要结合机器学习等高效研究手段,建立金属基复合材料的设计理论与模型。

  • (3)金属基复合材料的多性能协同优势使其对传统材料的替代呈指数增长。金属基复合材料应用需求的快速增长推动制备及表面改性技术的升级,催生更经济、高效的制造方法。受限于当前的制备工艺控制水平,金属基复合材料的性能稳定性较差,亟须开发自动化专用设备,实现工艺高可控性,提升生产效率,加速传统制造向智能制造的转型。

  • 参考文献

    • [1] SHARMA A K,BHANDARI R,AHERWAR A,et al.A study of advancement in application opportunities of aluminum metal matrix composites[J].Materials Today:Proceedings,2020,26:2419-2424.

    • [2] GÜLER Ö,BAĞCI N.A short review on mechanical properties of graphene reinforced metal matrix composites[J].Journal of Materials Research and Technology,2020,9(3):6808-6833.

    • [3] DAS M,MISHRA D,MAHAPATRA T R.Machinability of metal matrix composites:A review[J].Materials Today:Proceedings,2019,18:5373-5381.

    • [4] SHARMA V K,KUMAR V,JOSHI R S.Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application[J].Journal of Materials Research and Technology,2019,8(4):3504-3516.

    • [5] UYYURU R K,SURAPPA M K,BRUSETHAUG S.Tribological behavior of Al-Si-SiCp composites/automobile brake pad system under dry sliding conditions[J].Tribology International,2007,40(2):365-373.

    • [6] BHASKAR S,KUMAR M,PATNAIK A.Effect of Si3N4 ceramic particulates on mechanical,thermal,thermo-mechanical and sliding wear performance of AA2024 alloy composites[J].Silicon,2020,14:239-262.

    • [7] SHARMA V K,SINGH R C,CHAUDHARY R.An experimental study of tribological behaviours of aluminium-and copper-based metal matrix composites for bearing applications[J].International Journal of Materials Engineering Innovation,2019,10(3):203-217.

    • [8] REN S,CHEN J,HE X,et al.Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering[J].Carbon,2018,127:412-423.

    • [9] ZHANG C,WANG R,CAI Z,et al.Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J].Surface and Coatings Technology,2015,277:299-307.

    • [10] HUANG L,AN Q,GENG L,et al.Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J].Advanced Materials,2021,33:2000688.

    • [11] ZHU B,CAI Y J.A strain rate-dependent enhanced continuum model for elastic-plastic impact response of metal-ceramic functionally graded composites[J].International Journal of Impact Engineering,2019,133:103340.

    • [12] LIU T,LYU W,LI Z,et al.Recent progress on corrosion mechanisms of graphene-reinforced metal matrix composites[J].Nanotechnology Reviews,2023,12:20220566.

    • [13] REKHA M Y,SRIVASTAVA C.Microstructure and corrosion properties of zinc-graphene oxide composite coatings[J].Corrosion Science,2019,152:234-248.

    • [14] LUO S,SONG T,LIU B,et al.Recent advances in the design and fabrication of strong and ductile(tensile)titanium metal matrix composites[J].Advanced Engineering Materials,2019,21(7):1801331.

    • [15] DUDINA D V,GEORGARAKIS K.Core-shell particle reinforcements-a new trend in the design and development of metal matrix composites[J].Materials(Basel),2022,15:2629.

    • [16] SHIRVANIMOGHADDAM K,HAMIM S U,AKBARI M K,et al.Carbon fiber reinforced metal matrix composites:fabrication processes and properties[J].Composites Part A:Applied Science and Manufacturing,2017,92:70-96.

    • [17] RAJAK D K,WAGH P H,MENEZES P L,et al.Critical overview of coatings technology for metal matrix composites[J].Journal of Bio-and Tribo-Corrosion,2019,6(1):1-18.

    • [18] XUE T,ATTARILAR S,LIU S,et al.Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties:Thematic review[J].Front Bioeng Biotechnol,2020,8:603072.

    • [19] SINGH S,KUMAR S,KHANNA V.A review on surface modification techniques[J/OL].Materials Today:Proceedings,2023,97:16-25[2023-01-13].http://www.sciencedirect.com/science/article/abs/pii/s2214785323000 202?via%3Dihub.

    • [20] KHALID M Y,UMER R,KHAN K A.Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites(MMCs)for aircraft applications[J].Results in Engineering,2023,20:101372.

    • [21] SADEGHI B,CAVALIERE P,SHABANI A.Design strategies for enhancing strength and toughness in high performance metal matrix composites:A review[J].Materials Today Communications,2023,37:107535.

    • [22] LANGSTON L S.Turbines,gas[J].Encyclopedia of Energy,2004,6:221-230.

    • [23] YE Y,ZHANG Y,HUANG T,et al.A critical review of laser shock peening of aircraft engine components[J].Advanced Engineering Materials,2023,25(16):2201451.

    • [24] FROES F H,FRIEDRICH H,KIESE J,et al.Titanium in the family automobile:the cost challenge[J].JOM,2004,56(2):40-44.

    • [25] 温诗铸,黄平,田煜,等.摩擦学原理[M].北京:清华大学出版社,2018.WEN Shizhu,HUANG Ping,TIAN Yu,et al.Principles of tribology[M].Beijing:Tsinghua University Press,2018.(in Chinese)

    • [26] 谢玉洪,刘书杰,杨进,等.深水油气钻探技术装备发展现状与趋势[J].前瞻科技,2023,2(2):22-31.XIE Yuhong,LIU Shujie,YANG Jin,et al.Development status and trend of deepwater oil and gas drilling technologies and equipment[J].Science and Technology Foresight,2023,2(2):22-31.(in Chinese)

    • [27] MA Y,HUANG Z,LI Q,et al.Cutter layout optimization for reduction of lateral force on PDC bit using Kriging and particle swarm optimization methods[J].Journal of Petroleum Science and Engineering,2018,163:359-370.

    • [28] MUKHOPADHYAY D.Identifying the causes of residual stress in polycrystalline diamond compact(PDC)cutters by X-Ray diffraction technique[J].Results in Materials,2021,11:100216.

    • [29] SADOWSKI M J.Nuclear fusion-energy for future[J].Nukleonika,2005,50(S3):53-58.

    • [30] WANG J L,CHEN X Y,BINAMA M,et al.A numerical study on mechanical seal dynamic characteristics within a reactor coolant pump[J].Frontiers in Energy Research,2022,10:879198.

    • [31] HUANG Q,LI X,ZHU J,et al.Analysis of sealing performance of combined seal structure with metal C-ring with built-in spring[J].Vibroengineering Procedia,2023,51:94-100.

    • [32] STAF H.Mechanical modelling of powder compaction[D].Stockholm:KTH Royal Institute of Technology,2020.

    • [33] GRADL P R,PROTZ C S.Technology advancements for channel wall nozzle manufacturing in liquid rocket engines[J].Acta Astronautica,2020,174:148-158.

    • [34] GHIONEA I,PREDINCEA N,GHIONEA A.Cutting parameters and analysis by FEA simulation of their influence on the re-profilation of the wheels of the railway wheelset[J].Acta Technica Napocensis,2018,61(1):73-84.

    • [35] GONZÁLEZ-BARRIO H,CALLEJA-OCHOA A,LAMIKIZ A,et al.Manufacturing processes of integral blade rotors for turbomachinery,processes and new approaches[J].Applied Sciences,2020,10(9):3063.

    • [36] BAZELA R.Selected issues of increasing the fire effectiveness of combat vehicles[J].Journal of KONBiN,2020,50(3):417-438.

    • [37] VINEETH-KUMAR V,SENTHIL-KUMARAN S,DHANALAKSHMI S,et al.Tribological performance evaluation of fused mullite-reinforced hybrid composite brake pad for defence application[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(4):179.

    • [38] YU H,FAN Q,ZHU X.Effect of the layer sequence on the ballistic performance and failure mechanism of Ti6Al4V/CP-Ti laminated composite armor[J].Materials(Basel),2020,13(17):3886.

    • [39] 陈舸.金属基复合材料在航空航天领域的应用和发展[J].橡塑技术与装备,2016,42(8):63-65.CHEN Ke.Application and development of metal matrix composite in the aerospace field[J].Plastics Technology and Equipment,2016,42(8):63-65.(in Chinese)

    • [40] 吕一中,崔岩,曲敬信.金属基复合材料在航空航天领域的应用[J].北京工业职业技术学院学报,2007,6(3):1-4.LÜ Yizhong,CUI Yan,QU Jingxin.Application of metal matrix composites to aerospace[J].Journal of Beijing Polytechnic College,2007,6(3):1-4.(in Chinese)

    • [41] SAMAL P,VUNDAVILLI P R,MEHER A,et al.Recent progress in aluminum metal matrix composites:a review on processing,mechanical and wear properties[J].Journal of Manufacturing Processes,2020,59:131-152.

    • [42] 马宗义,肖伯律,张峻凡,等.航天装备牵引下的铝基复合材料研究进展与展望[J].金属学报,2023,59(4):457-466.MA Zongyi,XIAO Bolü,ZHANG Junfan,et al.Overview of research and development for aluminum matrix composites driven by aerospace equipment demand[J].Acta Metallurgica Sinica,2023,59(4):457-466.(in Chinese)

    • [43] HAYAT M D,SINGH H,HE Z,et al.Titanium metal matrix composites:An overview[J].Composites Part A:Applied Science and Manufacturing,2019,121:418-438.

    • [44] TENNEY D R,DAVIS JR J G,PIPES R B,et al.NASA composite materials development:lessons learned and future challenges[C]//NATO RTO AVT-164 Workshop on Support of Composite Systems,October 19-22,2009,NATO Research and Technology Organization.Germany:Bonn,2013:76-84.

    • [45] 刘世锋,宋玺,薛彤,等.钛合金及钛基复合材料在航空航天的应用和发展[J].航空材料学报,2020,40(3):77-94.LIU Shifeng,SONG Xi,XUE Tong,et al.Application and development of titanium alloy and titanium matrix composites in aerospace field[J].Journal of Aeronautical Materials,2020,40(3):77-94.(in Chinese)

    • [46] LOU M,CHEN L,XU K,et al.Tribocorrosion of TiC-based composites incorporating Ni and Co binders in saline solutions[J].International Journal of Refractory Metals and Hard Materials,2024,119:106519.

    • [47] 曹帅帅.新型深海能源钻采材料自主创新与关键技术[J].化工管理,2021,30:93-94.CAO Shuaishuai.Independent innovation and key technologies of new deep-sea energy drilling materials[J].Chemical Engineering Management,2021,30:93-94.(in Chinese)

    • [48] 屈少鹏,尹衍升.深海极端环境服役材料的研究现状与研发趋势[J].材料科学与工艺,2019,27(1):1-8.QU Shaopeng,YIN Yansheng.Research status and development trend of service materials in deep sea extreme environment[J].Materials Science and Technology,2019,27(1):1-8.(in Chinese)

    • [49] REYES M,NEVILLE A.Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore[J].Wear,2003,255(7):1143-1156.

    • [50] TANG T,XIAO X,XU K,et al.Corrosion-resistant WC-Co based cemented carbides:computational design and experimental verification[J].International Journal of Refractory Metals and Hard Materials,2023,110:106044.

    • [51] WEN S,DU Y,LIU Y,et al.Manipulation of the thermal conductivity for two-phase WC-Ni composites through a microstructure-based model along with key experiments[J].Journal of Materials Research and Technology,2023,22:895-912.

    • [52] 唐瑞,刘海定,王东哲,等.油气工程用镍基耐蚀合金718的研究进展[J].金属热处理,2018,43(7):54-59.TANG Rui,LIU Haiding,WANG Dongzhe,et al.Developing progress of oilfield-grade corrosion resistant alloy 718[J].Heat Treatment of Metals,2018,43(7):54-59.(in Chinese)

    • [53] LOU M,CHANG K,XU K,et al.Selective oxidation induced wear degradation in cemented carbides[J].Wear,2023,530:205021.

    • [54] ZHOU Q,HUANG D,XU K,et al.Effect of La2O3 addition on microstructure and mechanical properties of TiC-based cermets[J].Ceramics International,2023,49(11):18125-18133.

    • [55] 常可可,王立平,薛群基.极端工况下机械表面界面损伤与防护研究进展[J].中国机械工程,2020,31(2):206-220.CHANG Keke,WANG Liping,XUE Qunji.Progress of damage and protection for surfaces and interfaces in machinery under extreme operating conditions[J].China Mechanical Engineering,2020,31(2):206-220.(in Chinese)

    • [56] 励行根,励勇,励洁,等.核电站石墨密封垫片的试验研究[J].液压气动与密封,2010,30(11):29-32.LI Xinggen,LI Yong,LI Jie,et al.Experiment research of graphite sealing gaskets for nuclear power plant[J].Hydraulics Pneumatics & Seals,2010,30(11):29-32.(in Chinese)

    • [57] 吴新洲,徐义华,杨蓓,等.基于响应面法的C型金属封严环优化设计及其蠕变疲劳寿命计算[J].失效分析与预防,2022,17(4):220-228,246.WU Xinzhou,XU Yihua,YANG Bei,et al.Optimization design based on response surface method and creep fatigue life calculation of C-type metal sealing ring[J].Failure Analysis and Prevention,2022,17(4):220-228,246.(in Chinese)

    • [58] 黎永镇.现代化机械制造工艺及精密加工技术深入研究分析[J].模具制造,2023,23(11):142-144.LI Yongzhen.Deep research and analysis of modern mechanical manufacturing processes and precision machining technologies[J].Die & Mould Manufacture,2023,23(11):142-144.(in Chinese)

    • [59] CHEN L,ZHANG Z,WANG J,et al.Rigid three-dimensional networks of hafnium diboride for improving mechanical and wear properties of boron carbide[J].Materials & Design,2021,210:110069.

    • [60] WANG Y,MONETTA T.Systematic study of preparation technology,microstructure characteristics and mechanical behaviors for SiC particle-reinforced metal matrix composites[J].Journal of Materials Research and Technology,2023,25:7470-7497.

    • [61] WU C,FANG X,KANG Q,et al.Formation mechanism,interface characteristics and the application of metal/SiC thin-film ohmic contact after high-temperature treatment[J].Journal of Materials Research and Technology,2023,24:2428-2441.

    • [62] 武高辉,乔菁,姜龙涛.Al 及其复合材料尺寸稳定性原理与稳定化设计研究进展[J].金属学报,2019,55(1):33-44.WU Gaohui,QIAO Jing,JIANG Longtao.Research progress on principle of dimensional stability and stabilization design of Al and its composites[J].Acta Metallurgica Sinica,2019,55(1):33-44.(in Chinese)

    • [63] 赵宇宏,景舰辉,陈利文,等.装甲防护陶瓷-金属叠层复合材料界面研究进展[J].金属学报,2021,57(9):1107-1125.ZHAO Yuhong,JING Jianhui,CHEN Liwen,et al.Current research status of interface of ceramic-metal laminated composite material for armor protection[J].Acta Metallurgica Sinica,2021,57(9):1107-1125.(in Chinese)

    • [64] 焦丽娟,李军.陶瓷-金属功能梯度复合材料在装甲防护中的应用[J].四川兵工学报,2006,27(4):22-23.JIAO Lijuan,LI Jun.Application of ceramic metal functional gradient composite materials in armor protection[J].Journal of Ordnance Equipment Engineering,2006,27(4):22-23.(in Chinese)

    • [65] 晁振龙,姜龙涛,魏嘉伟,等.基体合金对 B4C/Al 复合材料力学及抗弹性能的影响[J].兵器材料科学与工程,2020,43(1):6-10.CHAO Zhenlong,JIANG Longtao,WEI Jiawei,et al.Effect of matrix on mechanical properties and elastic properties of B4C/Al composites[J].Ordnance Material Science and Engineering,2020,43(1):6-10.(in Chinese)

    • [66] 张国昌,吕杰,宋宝强,等.激光熔覆涂层硬度强化研究进展[J].制造技术与机床,2023,12:65-72.ZHANG Guochang,LÜ Jie,SONG Baoqiang,et al.Research progress on hardness strengthening of laser cladding coating[J].Manufacturing Technology & Machine Tool,2023,12:65-72.(in Chinese)

    • [67] 彭武强,冉龙华,钱铎可,等.分子级混合法制备金属基复合材料研究进展[J].材料研究与应用,2022,16(4):637-649.PENG Wuqiang,RAN Longhua,QIAN Duoke,et al.Research progress on the preparation of metal matrix composites by molecular-level mixing process[J].Materials Research and Application,2022,16(4):637-649.(in Chinese)

    • [68] MISTRY J M,GOHIL P P.Research review of diversified reinforcement on aluminum metal matrix composites:fabrication processes and mechanical characterization[J].Science and Engineering of Composite Materials,2018,25(4):633-647.

    • [69] HU Y,CONG W.A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J].Ceramics International,2018,44(17):20599-20612.

    • [70] MAXIMOV M,MAXIMOV O C,CRACIUN L,et al.Bioactive glass-an extensive study of the preparation and coating methods[J].Coatings,2021,11(11):1386.

    • [71] MERAH N,ABDUL-AZEEM M,ABUBAKER H M,et al.Friction stir processing influence on microstructure,mechanical,and corrosion behavior of steels:A review[J].Materials(Basel),2021,14(17):5023.

    • [72] CASATI R,BONOLLO F,DELLASEGA D,et al.Ex situ Al-Al2O3 ultrafine grained nanocomposites produced via powder metallurgy[J].Journal of Alloys and Compounds,2014,615(S1):S386-S388.

    • [73] PRAKASH K S,GOPAL P M,ANBUROSE D,et al.Mechanical,corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites[J].Ain Shams Engineering Journal,2018,9(4):1489-1496.

    • [74] WANG Z,LIN T,HE X,et al.Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J].International Journal of Refractory Metals and Hard Materials,2016,58:14-21.

    • [75] ZHENG Z,LÜ J,LOU M,et al.Macro-gradient structures generated in Ti(C,N)-based cermets with supersaturated WC:an experimental and thermodynamic investigation[J].Materials Research Letters,2022,11(2):152-158.

    • [76] PAKDEL A,WITECKA A,RYDZEK G,et al.A comprehensive microstructural analysis of Al-WC microand nano-composites prepared by spark plasma sintering[J].Materials & Design,2017,119:225-234.

    • [77] GHASALI E,ALIZADEH M,EBADZADEH T.TiO2 ceramic particles-reinforced aluminum matrix composite prepared by conventional,microwave,and spark plasma sintering[J].Journal of Composite Materials,2017,52(19):2609-2619.

    • [78] DIXIT S,MAHATA A,MAHAPATRA D R,et al.Multi-layer graphene reinforced aluminum-manufacturing of high strength composite by friction stir alloying[J].Composites Part B:Engineering,2018,136:63-71.

    • [79] TU Z,NGANBE M.Modelling and assessment of carbon fiber reinforced aluminum matrix composites and their laminate squeeze casting fabrication[J].Materials Research Express,2020,7(8):086518.

    • [80] 陈旭栋,徐军,尹翠翠,等.Ti 增强镁基复合材料搅拌铸造中颗粒分散行为的研究[J].材料研究与应用,2023,17(4):619-624.CHEN Xudong,XU Jun,YIN Cuicui,et al.Study of particle dispersion behavior in stir casting of Ti reinforcement magnesium matrix composites[J].Materials Research and Application,2023,17(4):619-624.(in Chinese)

    • [81] FREUDENBERGER R,ZIELONKA A,FUNK M,et al.Recent developments in the preparation of nano-gold composite coatings[J].Gold Bulletin,2010,43(3):169-180.

    • [82] 武高辉.金属基复合材料发展的挑战与机遇[J].复合材料学报,2014,31(5):1228-1237.WU Gaohui.Development challenge and opportunity of metal matrix composites[J].Acta Materiae Compositae Sinica,2014,31(5):1228-1237.(in Chinese)

    • [83] ASHWATH P,XAVIOR M A.Surface modification on aluminum metal matrix composite for high strength application-current state of art[J].Materials Today:Proceedings,2021,46:7130-7134.

    • [84] ZHANG X,FU W,LEI Z,et al.Microstructure evolution of the W-C hard coatings using directed energy deposition on tungsten alloy surface[J].Surface and Coatings Technology,2023,470:129827.

    • [85] 张盼,孙宇海,孙磊,等.激光合金化掺杂TiC对等离子喷涂8YSZ热障涂层热腐蚀行为的影响[J].中国表面工程,2023,36(6):126-134.ZHANG Pan,SUN Yuhai,SUN Lei,et al.Effect of laser alloying TiC doping on the hot corrosion behavior of plasma sprayed 8YSZ thermal barrier coatings[J].China Surface Engineering,2023,36(6):126-134.(in Chinese)

    • [86] 王兴涛,吴一凡,孙金峰,等.等离子熔覆制备AlCrFeMnNi高熵合金涂层的微观组织与性能[J].中国表面工程,2023,36(4):107-117.WANG Xingtao,WU Yifan,SUN Jinfeng,et al.Microstructure and properties of an AlCrFeMnNi high-entropy alloy coating prepared using plasma cladding[J].China Surface Engineering,2023,36(4):107-117.(in Chinese)

    • [87] REN X,ZOU H,DIAO Q,et al.Surface modification technologies for enhancing the tribological properties of cemented carbides:A review[J].Tribology International,2023,180:108257.

    • [88] TUFFY K,BYRNE G,DOWLING D.Determination of the optimum TiN coating thickness on WC inserts for machining carbon steels[J].Journal of Materials Processing Technology,2004,155-156:1861-1866.

    • [89] CHEN L,ZHANG Z,LOU M,et al.High-temperature wear mechanisms of TiNbWN films:role of nanocrystalline oxides formation[J].Friction,2022,11(3):460-472.

    • [90] LIU S,CHANG K,MRÁZ S,et al.Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films[J].Acta Materialia,2019,165:615-625.

    • [91] LOU M,WANG L,CHEN L,et al.Role of refractory metal elements addition on the early oxidation behavior of TiN coatings[J].Materials Letters,2023,331:133406.

    • [92] XU Y X,CHEN L,PEI F,et al.Effect of the modulation ratio on the interface structure of TiAlN/TiN and TiAlN/ZrN multilayers:first-principles and experimental investigations[J].Acta Materialia,2017,130:281-288.

    • [93] KUMAR C H R V,NAIR P K,RAMAMOORTHY B.Characterization of multilayer pvd nanocoatings deposited on tungsten carbide cutting tools[J].International Journal of Advanced Manufacturing Technology,2007,38(5-6):622-629.

    • [94] VARDELLE A,MOREAU C,THEMELIS N J,et al.A perspective on plasma spray technology[J].Plasma Chemistry and Plasma Processing,2014,35(3):491-509.

    • [95] BABU P D,PRASANNAKUMAR B,MARIMUTHU P,et al.Microstructure,wear and mechanical properties of plasma sprayed TiO2 coating on Al-SiC metal matrix composite[J].Archives of Civil and Mechanical Engineering,2019,19(3):756-767.

    • [96] ABBASS M K.Laser surface treatment and modification of aluminum alloy matrix composites[J].Lasers in Manufacturing and Materials Processing,2018,5(2):81-94.

    • [97] 何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progess in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)

    • [98] HU J,KONG L C,LIU G.Structure and hardness of surface of Al18B4O33w/Al composite by laser surface melting[J].Materials Science and Engineering:A,2008,486(1-2):80-84.

    • [99] HU J,WU P L,KONG L C,et al.The effect of YAG laser surface treatment on corrosion resistance of Al18B4O33w/2024Al composite[J].Materials Letters,2007,61(29):5181-5183.

    • [100] RAMS J,PARDO A,UREÑA A,et al.Surface treatment of aluminum matrix composites using a high power diode laser[J].Surface and Coatings Technology,2007,202(4-7):1199-1203.

    • [101] ZHAO X,WEI C,GAI Z,et al.Chemical vapor deposition and its application in surface modification of nanoparticles[J].Chemical Papers,2019,74(3):767-778.

    • [102] BESMANN T M,STINTON D P,LOWDEN R A.Chemical vapor deposition techniques[J].MRS Bulletin,2013,13(11):45-51.

    • [103] SUN F H,ZHANG Z M,CHEN M,et al.Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools[J].Diamond and Related Materials,2003,12(3-7):711-718.

    • [104] TANG Y,LI Y S,YANG Q,et al.Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates[J].Thin Solid Films,2010,519(5):1606-1610.

    • [105] WAN B Q,SUN X Y,MA H T,et al.Plasma enhanced chemical vapor deposition of diamond coatings on Cu-W and Cu-WC composites[J].Surface and Coatings Technology,2015,284:133-138.

    • [106] PARVEEZ B,MALEQUE M A,JAMAL N A.Influence of agro-based reinforcements on the properties of aluminum matrix composites:A systematic review[J].Journal of Materials Science,2021,56(29):16195-16222.

    • [107] IZADI H,NOLTING A,MUNRO C,et al.Friction stir processing of Al/SiC composites fabricated by powder metallurgy[J].Journal of Materials Processing Technology,2013,213(11):1900-1907.

    • [108] STAWIARZ M,KURTYKA P,RYLKO N,et al.Influence of FSP process modification on selected properties of Al-Si-Cu/SiCp composite surface layer[J].Composites Theory and Practice,2019,19(4):161-168.

    • [109] MISHRA R S,MA Z Y,CHARIT I.Friction stir processing:a novel technique for fabrication of surface composite[J].Materials Science and Engineering:A,2003,341(1-2):307-310.

    • [110] RAMANATHAN A,KRISHNAN P K,MURALIRAJA R.A review on the production of metal matrix composites through stir casting-furnace design,properties,challenges,and research opportunities[J].Journal of Manufacturing Processes,2019,42:213-215.

    • [111] 李滋阳,王思佳,邓文举.陶瓷颗粒增强金属基复合材料研究进展[J].轻工科技,2021,37(4):41-44.LI Ziyang,WANG Sijia,DENG Wenju.Research progress on ceramic particle-reinforced metal matrix composites[J].Light Industry Science and Technology,2021,37(4):41-44.(in Chinese)

    • [112] 李丹.自主创新,勇于超越,助力大国重器[J].航空制造技术,2020,63(12):68-69.LI Dan.Independent innovation,courage to surpass,assistance to the pillars of a great power[J].Aeronautical Manufacturing Technology,2020,63(12):68-69.(in Chinese)

    • [113] LOU M,XU K,CHEN L,et al.Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation[J].Journal of Materials Informatics,2021,1:5.

    • [114] LOU M,CHANG K,XU K,et al.Achieving exceptional wear resistance in cemented carbides using B2 intermetallic binders[J].Composites Part B:Engineering,2023,249:110400.

    • [115] ZHENG Z,LV J,LOU M,et al.Mechanical and tribological properties of WC incorporated Ti(C,N)-based cermets[J].Ceramics International,2022,48(7):10086-10095.

    • [116] 马红玉,张嗣伟.金属基复合材料涂层摩擦学的研究进展[J].中国表面工程,2005,18(1):8-15.MA Hongyu,ZHANG Siwei.Progress in studies on tribology of metal-based composite coatings[J].China Surface Engineering,2005,18(1):8-15.(in Chinese)

    • [117] MANIKONDA R D,KOSARAJU S,RAJ K A,et al.Wear behavior analysis of silica carbide based aluminum metal matrix composites[J].Materials Today:Proceedings,2018,5(9):20104-20109.

    • [118] ZHAN Y,ZHANG G.Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles[J].Tribology Letters,2004,17(1):91-98.

    • [119] LOU M,CHEN X,XU K,et al.Temperature-induced wear transition in ceramic-metal composites[J].Acta Materialia,2021,205:116545.

    • [120] 邹芹,王鹏,徐江波,等.金属基自润滑复合材料固体润滑剂研究进展[J].燕山大学学报,2023,47(5):398-410.ZOU Qin,WANG Peng,XU Jiangbo,et al.Research progress of solid lubricants of metal matric self-lubricating composites[J].Journal of Yanshan University,2023,47(5):398-410.(in chinese)

    • [121] 李晋.金属基复合材料的现状与未来发展[J].现代盐化工,2022,2(2):22-23.LI Jin.Current state and future development of metal matrix composites[J].Modern Salt and Chemical Industry,2022,2(2):22-23.(in chinese)

    • [122] MUNGARA S R,MANOHAR H S,DUBEY S,et al.Investigating the effect of heat treatment on B4C reinforced aluminum metal matrix composites[J].Materials Today:Proceedings,2021,45:100-104.

    • [123] 许彦可,严红燕,李慧,等.金属基复合材料的制备方法及应用[J].热加工工艺,2012,100:1-5.XU Yanke,YAN Hongyan,LI Hui,et al.Preparation method and application of metal matrix composite materials[J].Hot Working Technology,2012,100:1-5.(in Chinese)

    • [124] 常可可,陈雷雷,周若男,等.极端环境表面工程及其共性科学问题研究进展[J].中国机械工程,2022,33(12):1388-1417.CHANG Keke,CHEN Leilei,ZHOU Ruonan,et al.Progresses of surface engineering in extreme environments and its common scientific problems[J].China Mechanical Engineering,2022,33(12):1388-1417.(in Chinese)

    • [125] ZHANG Y,WANG B,QIU F,et al.Superior wear resistance of dual-phased TiC-TiB2 ceramic nanoparticles reinforced carbon steels[J].Journal of Materials Research and Technology,2023,24:653-662.

    • [126] RUYS A J.Silicon carbide ceramics[M].Netherlands:Elsevier,2023.

    • [127] KUMAR N,IRFAN G.A review on tribological behaviour and mechanical properties of Al/ZrO2 metal matrix nano composites[J].Materials Today:Proceedings,2021,38:2649-2657.

    • [128] ZHU S,CHENG J,QIAO Z,et al.High temperature solid-lubricating materials:A review[J].Tribology International,2019,133:206-223.

    • [129] 黄仁忠,孙文,郭双全,等.冷喷涂技术的研究进展与应用[J].中国表面工程,2020,33(4):16-25.HUANG Renzhong,SUN Wen,GUO Shuangquan,et al.Research developments and applications of cold spray technology[J].China Surface Engineering,2020,33(4):16-25.(in Chinese)

    • [130] REN S,CUI M,MARTINI A,et al.Macroscale superlubricity enabled by rationally designed MoS2-based superlattice films[J].Cell Reports Physical Science,2023,4(5):101390.

    • [131] 陈百明,张俊喜,郭小汝,等.BN 和 MoS2 对镍基材料摩擦磨损性能的影响[J].粉末冶金技术,2019,37(4):273-278.CHEN Baiming,ZHANG Junxi,GUO Xiaoru,et al.Effects of BN and MoS2 on friction and wear properties of nickel-based materials[J].Powder Metallurgy Technology,2019,37(4):273-278.(in Chinese)

    • [132] 严晓华,陈国需.固体润滑技术的研究现状及展望[J].能源研究与信息,2005,21(2):69-74.YAN Xiaohua,CHEN Guoxu.Current development and future prospects on solid lubricating techniques[J].Energy Research and Information,2005,21(2):69-74.(in chinese)

    • [133] KHELGE S,KUMAR V,SHETTY V,et al.Effect of reinforcement particles on the mechanical and wear properties of aluminium alloy composites:Review[J].Materials Today:Proceedings,2022,52:571-576.

    • [134] XIAO X,CHANG K,XU K,et al.Efficient prediction of corrosion behavior in ternary Ni-based alloy systems:theoretical calculations and experimental verification[J].Journal of Materials Science & Technology,2023,167:94-106.

    • [135] LIU R,CUI Y,LIU L,et al.A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution[J].Corrosion Science,2020,165:108402.

    • [136] AYDIN F.A review of recent developments in the corrosion performance of aluminium matrix composites[J].Journal of Alloys and Compounds,2023,949:169508.

    • [137] ESEN Z,ÖCAL E B,AKKAYA A,et al.Corrosion behaviours of Ti6Al4V-Mg/Mg-Alloy composites[J].Corrosion Science,2020,166:108470.

    • [138] HIHARA L H,BAKKAR A.Corrosion of metal matrix composites[M].Netherlands:Elsevier,2016.

    • [139] SONG G L,ZHANG C,CHEN X,et al.Galvanic activity of carbon fiber reinforced polymers and electrochemical behavior of carbon fiber[J].Corrosion Communications,2021,1:26-39.

    • [140] 王春雨,武高辉,张强,等.铝基复合材料的腐蚀与防护研究现状[J].中国腐蚀与防护学报,2008,28(1):59-64.WANG Chunyu,WU Gaohui,ZHANG Qiang,et al.A review for corrosion resistance and protection methods for aluminum matrix composites[J].Journal of Chinese Society for Corrosion and Protection,2008,28(1):59-64.(in Chinese)

    • [141] AYLOR D M,MORAN P J.Effect of reinforcement on the pitting behavior of aluminum-base metal matrix composites[J].Journal of the Electrochemical Society,1985,132(6):1277-1281.

    • [142] HAMDY A S,BECCARIA A M,TEMTCHENKO T.Improving the corrosion protection of AA6061 T6-10% Al2O3 using new surface pre-treatments prior to fluoropolymer coatings[J].Surface and Coatings Technology,2002,155(2):184-189.

    • [143] WIELAGE B,DORNER A.Corrosion studies on aluminium reinforced with uncoated and coated carbon fibres[J].Composites Science and Technology,1999,59(8):1239-1245.

    • [144] KUMAR N M S,SHASHANK T N,DHEERAJ N U,et al.Coatings on reinforcements in aluminum metal matrix composites[J].International Journal of Metalcasting,2023,17(2):1049-1064.

    • [145] WIELAGE B,DORNER A,SHÜRER C,et al.Corrosion protection of carbon fibre reinforced aluminium composite by diamondlike carbon coatings[J].Materials Science and Technology,2000,16(3):344-348.

    • [146] ZAKARIA H M.Microstructural and corrosion behavior of Al/SiC metal matrix composites[J].Ain Shams Engineering Journal,2014,5(3):831-838.

    • [147] MOSLEH-SHIRAZI S,HUA G,AKHLAGHI F,et al.Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite[J].Scientific Reports,2015,5(1):18154.

    • [148] ZHANG Y,WANG Q,CHEN G,et al.Mechanical,tribological and corrosion physiognomies of CNT-Al metal matrix composite(MMC)coatings deposited by cold gas dynamic spray(CGDS)process[J].Surface and Coatings Technology,2020,403:126380.

    • [149] CHEN H J,CHEN Y C,LIN P C,et al.Study of atomic layer deposition nano-oxide films on corrosion protection of Al-SiC composites[J].Materials,2023,16(18):6149.

    • [150] YANG K,LI W,XU Y,et al.Using friction stir processing to augment corrosion resistance of cold sprayed AA2024/Al2O3 composite coatings[J].Journal of Alloys and Compounds,2019,774:1223-1232.

    • [151] XU K,CHANG K,DU Y,et al.Design of novel NiSiAlY alloys in marine salt-spray environment:Part I.Al-Si-Y and Ni-Si-Y subsystems[J].Journal of Materials Science & Technology,2021,88:66-78.

    • [152] XU K,CHANG K,YU M,et al.Design of novel NiSiAlY alloys in marine salt-spray environment:Part II.Al-Ni-Si-Y thermodynamic dataset[J].Journal of Materials Science & Technology,2021,89:186-198.

    • [153] WANG F,ZHOU R,XU K,et al.Effect of Si content on the surface high-temperature oxidation mechanism in Ni5Y-containing NiAIYSi alloys[J].Corrosion Science,2023,218:111173.

    • [154] GRABOŚ A,HUEBNER J,RUTKOWSKI P,et al.Microstructure and hardness of spark plasma sintered Inconel 625-NbC composites for high-temperature applications[J].Materials,2021,14(16):4606.

    • [155] BAKKAR A,AHMED M M Z,ALSALEH N A,et al.Microstructure,wear,and corrosion characterization of high TiC content Inconel 625 matrix composites[J].Journal of Materials Research and Technology,2019,8(1):1102-1110.

    • [156] HUEBNER J,KATA D,KUSIŃSKI J,et al.Microstructure of laser cladded carbide reinforced Inconel 625 alloy for turbine blade application[J].Ceramics International,2017,43(12):8677-8684.

    • [157] GRABOŚ A,RUTKOWSKI P,HUEBNER J,et al.Oxidation performance of spark plasma sintered Inconel 625-NbC metal matrix composites[J].Corrosion Science,2022,205:110453.

    • [158] 迟静,李敏,王淑峰,等.原位自生 MC(M=Ti,V,Nb)与WC复合增强镍基涂层[J].中国表面工程,2023,36(4):129-139.CHI Jing,LI Min,WANG Shufeng,et al.In-situ MC(M=Ti,V,Nb)and WC composite reinforcement Ni based coatings[J].China Surface Engineering,2023,36(4):129-139.(in Chinese)

    • [159] GERAMIFARD G,GOMBOLA C,FRANKE P,et al.Oxidation behaviour of NiAl intermetallics with embedded Cr and Mo[J].Corrosion Science,2020,177:108956.

  • 参考文献

    • [1] SHARMA A K,BHANDARI R,AHERWAR A,et al.A study of advancement in application opportunities of aluminum metal matrix composites[J].Materials Today:Proceedings,2020,26:2419-2424.

    • [2] GÜLER Ö,BAĞCI N.A short review on mechanical properties of graphene reinforced metal matrix composites[J].Journal of Materials Research and Technology,2020,9(3):6808-6833.

    • [3] DAS M,MISHRA D,MAHAPATRA T R.Machinability of metal matrix composites:A review[J].Materials Today:Proceedings,2019,18:5373-5381.

    • [4] SHARMA V K,KUMAR V,JOSHI R S.Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application[J].Journal of Materials Research and Technology,2019,8(4):3504-3516.

    • [5] UYYURU R K,SURAPPA M K,BRUSETHAUG S.Tribological behavior of Al-Si-SiCp composites/automobile brake pad system under dry sliding conditions[J].Tribology International,2007,40(2):365-373.

    • [6] BHASKAR S,KUMAR M,PATNAIK A.Effect of Si3N4 ceramic particulates on mechanical,thermal,thermo-mechanical and sliding wear performance of AA2024 alloy composites[J].Silicon,2020,14:239-262.

    • [7] SHARMA V K,SINGH R C,CHAUDHARY R.An experimental study of tribological behaviours of aluminium-and copper-based metal matrix composites for bearing applications[J].International Journal of Materials Engineering Innovation,2019,10(3):203-217.

    • [8] REN S,CHEN J,HE X,et al.Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering[J].Carbon,2018,127:412-423.

    • [9] ZHANG C,WANG R,CAI Z,et al.Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J].Surface and Coatings Technology,2015,277:299-307.

    • [10] HUANG L,AN Q,GENG L,et al.Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J].Advanced Materials,2021,33:2000688.

    • [11] ZHU B,CAI Y J.A strain rate-dependent enhanced continuum model for elastic-plastic impact response of metal-ceramic functionally graded composites[J].International Journal of Impact Engineering,2019,133:103340.

    • [12] LIU T,LYU W,LI Z,et al.Recent progress on corrosion mechanisms of graphene-reinforced metal matrix composites[J].Nanotechnology Reviews,2023,12:20220566.

    • [13] REKHA M Y,SRIVASTAVA C.Microstructure and corrosion properties of zinc-graphene oxide composite coatings[J].Corrosion Science,2019,152:234-248.

    • [14] LUO S,SONG T,LIU B,et al.Recent advances in the design and fabrication of strong and ductile(tensile)titanium metal matrix composites[J].Advanced Engineering Materials,2019,21(7):1801331.

    • [15] DUDINA D V,GEORGARAKIS K.Core-shell particle reinforcements-a new trend in the design and development of metal matrix composites[J].Materials(Basel),2022,15:2629.

    • [16] SHIRVANIMOGHADDAM K,HAMIM S U,AKBARI M K,et al.Carbon fiber reinforced metal matrix composites:fabrication processes and properties[J].Composites Part A:Applied Science and Manufacturing,2017,92:70-96.

    • [17] RAJAK D K,WAGH P H,MENEZES P L,et al.Critical overview of coatings technology for metal matrix composites[J].Journal of Bio-and Tribo-Corrosion,2019,6(1):1-18.

    • [18] XUE T,ATTARILAR S,LIU S,et al.Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties:Thematic review[J].Front Bioeng Biotechnol,2020,8:603072.

    • [19] SINGH S,KUMAR S,KHANNA V.A review on surface modification techniques[J/OL].Materials Today:Proceedings,2023,97:16-25[2023-01-13].http://www.sciencedirect.com/science/article/abs/pii/s2214785323000 202?via%3Dihub.

    • [20] KHALID M Y,UMER R,KHAN K A.Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites(MMCs)for aircraft applications[J].Results in Engineering,2023,20:101372.

    • [21] SADEGHI B,CAVALIERE P,SHABANI A.Design strategies for enhancing strength and toughness in high performance metal matrix composites:A review[J].Materials Today Communications,2023,37:107535.

    • [22] LANGSTON L S.Turbines,gas[J].Encyclopedia of Energy,2004,6:221-230.

    • [23] YE Y,ZHANG Y,HUANG T,et al.A critical review of laser shock peening of aircraft engine components[J].Advanced Engineering Materials,2023,25(16):2201451.

    • [24] FROES F H,FRIEDRICH H,KIESE J,et al.Titanium in the family automobile:the cost challenge[J].JOM,2004,56(2):40-44.

    • [25] 温诗铸,黄平,田煜,等.摩擦学原理[M].北京:清华大学出版社,2018.WEN Shizhu,HUANG Ping,TIAN Yu,et al.Principles of tribology[M].Beijing:Tsinghua University Press,2018.(in Chinese)

    • [26] 谢玉洪,刘书杰,杨进,等.深水油气钻探技术装备发展现状与趋势[J].前瞻科技,2023,2(2):22-31.XIE Yuhong,LIU Shujie,YANG Jin,et al.Development status and trend of deepwater oil and gas drilling technologies and equipment[J].Science and Technology Foresight,2023,2(2):22-31.(in Chinese)

    • [27] MA Y,HUANG Z,LI Q,et al.Cutter layout optimization for reduction of lateral force on PDC bit using Kriging and particle swarm optimization methods[J].Journal of Petroleum Science and Engineering,2018,163:359-370.

    • [28] MUKHOPADHYAY D.Identifying the causes of residual stress in polycrystalline diamond compact(PDC)cutters by X-Ray diffraction technique[J].Results in Materials,2021,11:100216.

    • [29] SADOWSKI M J.Nuclear fusion-energy for future[J].Nukleonika,2005,50(S3):53-58.

    • [30] WANG J L,CHEN X Y,BINAMA M,et al.A numerical study on mechanical seal dynamic characteristics within a reactor coolant pump[J].Frontiers in Energy Research,2022,10:879198.

    • [31] HUANG Q,LI X,ZHU J,et al.Analysis of sealing performance of combined seal structure with metal C-ring with built-in spring[J].Vibroengineering Procedia,2023,51:94-100.

    • [32] STAF H.Mechanical modelling of powder compaction[D].Stockholm:KTH Royal Institute of Technology,2020.

    • [33] GRADL P R,PROTZ C S.Technology advancements for channel wall nozzle manufacturing in liquid rocket engines[J].Acta Astronautica,2020,174:148-158.

    • [34] GHIONEA I,PREDINCEA N,GHIONEA A.Cutting parameters and analysis by FEA simulation of their influence on the re-profilation of the wheels of the railway wheelset[J].Acta Technica Napocensis,2018,61(1):73-84.

    • [35] GONZÁLEZ-BARRIO H,CALLEJA-OCHOA A,LAMIKIZ A,et al.Manufacturing processes of integral blade rotors for turbomachinery,processes and new approaches[J].Applied Sciences,2020,10(9):3063.

    • [36] BAZELA R.Selected issues of increasing the fire effectiveness of combat vehicles[J].Journal of KONBiN,2020,50(3):417-438.

    • [37] VINEETH-KUMAR V,SENTHIL-KUMARAN S,DHANALAKSHMI S,et al.Tribological performance evaluation of fused mullite-reinforced hybrid composite brake pad for defence application[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(4):179.

    • [38] YU H,FAN Q,ZHU X.Effect of the layer sequence on the ballistic performance and failure mechanism of Ti6Al4V/CP-Ti laminated composite armor[J].Materials(Basel),2020,13(17):3886.

    • [39] 陈舸.金属基复合材料在航空航天领域的应用和发展[J].橡塑技术与装备,2016,42(8):63-65.CHEN Ke.Application and development of metal matrix composite in the aerospace field[J].Plastics Technology and Equipment,2016,42(8):63-65.(in Chinese)

    • [40] 吕一中,崔岩,曲敬信.金属基复合材料在航空航天领域的应用[J].北京工业职业技术学院学报,2007,6(3):1-4.LÜ Yizhong,CUI Yan,QU Jingxin.Application of metal matrix composites to aerospace[J].Journal of Beijing Polytechnic College,2007,6(3):1-4.(in Chinese)

    • [41] SAMAL P,VUNDAVILLI P R,MEHER A,et al.Recent progress in aluminum metal matrix composites:a review on processing,mechanical and wear properties[J].Journal of Manufacturing Processes,2020,59:131-152.

    • [42] 马宗义,肖伯律,张峻凡,等.航天装备牵引下的铝基复合材料研究进展与展望[J].金属学报,2023,59(4):457-466.MA Zongyi,XIAO Bolü,ZHANG Junfan,et al.Overview of research and development for aluminum matrix composites driven by aerospace equipment demand[J].Acta Metallurgica Sinica,2023,59(4):457-466.(in Chinese)

    • [43] HAYAT M D,SINGH H,HE Z,et al.Titanium metal matrix composites:An overview[J].Composites Part A:Applied Science and Manufacturing,2019,121:418-438.

    • [44] TENNEY D R,DAVIS JR J G,PIPES R B,et al.NASA composite materials development:lessons learned and future challenges[C]//NATO RTO AVT-164 Workshop on Support of Composite Systems,October 19-22,2009,NATO Research and Technology Organization.Germany:Bonn,2013:76-84.

    • [45] 刘世锋,宋玺,薛彤,等.钛合金及钛基复合材料在航空航天的应用和发展[J].航空材料学报,2020,40(3):77-94.LIU Shifeng,SONG Xi,XUE Tong,et al.Application and development of titanium alloy and titanium matrix composites in aerospace field[J].Journal of Aeronautical Materials,2020,40(3):77-94.(in Chinese)

    • [46] LOU M,CHEN L,XU K,et al.Tribocorrosion of TiC-based composites incorporating Ni and Co binders in saline solutions[J].International Journal of Refractory Metals and Hard Materials,2024,119:106519.

    • [47] 曹帅帅.新型深海能源钻采材料自主创新与关键技术[J].化工管理,2021,30:93-94.CAO Shuaishuai.Independent innovation and key technologies of new deep-sea energy drilling materials[J].Chemical Engineering Management,2021,30:93-94.(in Chinese)

    • [48] 屈少鹏,尹衍升.深海极端环境服役材料的研究现状与研发趋势[J].材料科学与工艺,2019,27(1):1-8.QU Shaopeng,YIN Yansheng.Research status and development trend of service materials in deep sea extreme environment[J].Materials Science and Technology,2019,27(1):1-8.(in Chinese)

    • [49] REYES M,NEVILLE A.Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore[J].Wear,2003,255(7):1143-1156.

    • [50] TANG T,XIAO X,XU K,et al.Corrosion-resistant WC-Co based cemented carbides:computational design and experimental verification[J].International Journal of Refractory Metals and Hard Materials,2023,110:106044.

    • [51] WEN S,DU Y,LIU Y,et al.Manipulation of the thermal conductivity for two-phase WC-Ni composites through a microstructure-based model along with key experiments[J].Journal of Materials Research and Technology,2023,22:895-912.

    • [52] 唐瑞,刘海定,王东哲,等.油气工程用镍基耐蚀合金718的研究进展[J].金属热处理,2018,43(7):54-59.TANG Rui,LIU Haiding,WANG Dongzhe,et al.Developing progress of oilfield-grade corrosion resistant alloy 718[J].Heat Treatment of Metals,2018,43(7):54-59.(in Chinese)

    • [53] LOU M,CHANG K,XU K,et al.Selective oxidation induced wear degradation in cemented carbides[J].Wear,2023,530:205021.

    • [54] ZHOU Q,HUANG D,XU K,et al.Effect of La2O3 addition on microstructure and mechanical properties of TiC-based cermets[J].Ceramics International,2023,49(11):18125-18133.

    • [55] 常可可,王立平,薛群基.极端工况下机械表面界面损伤与防护研究进展[J].中国机械工程,2020,31(2):206-220.CHANG Keke,WANG Liping,XUE Qunji.Progress of damage and protection for surfaces and interfaces in machinery under extreme operating conditions[J].China Mechanical Engineering,2020,31(2):206-220.(in Chinese)

    • [56] 励行根,励勇,励洁,等.核电站石墨密封垫片的试验研究[J].液压气动与密封,2010,30(11):29-32.LI Xinggen,LI Yong,LI Jie,et al.Experiment research of graphite sealing gaskets for nuclear power plant[J].Hydraulics Pneumatics & Seals,2010,30(11):29-32.(in Chinese)

    • [57] 吴新洲,徐义华,杨蓓,等.基于响应面法的C型金属封严环优化设计及其蠕变疲劳寿命计算[J].失效分析与预防,2022,17(4):220-228,246.WU Xinzhou,XU Yihua,YANG Bei,et al.Optimization design based on response surface method and creep fatigue life calculation of C-type metal sealing ring[J].Failure Analysis and Prevention,2022,17(4):220-228,246.(in Chinese)

    • [58] 黎永镇.现代化机械制造工艺及精密加工技术深入研究分析[J].模具制造,2023,23(11):142-144.LI Yongzhen.Deep research and analysis of modern mechanical manufacturing processes and precision machining technologies[J].Die & Mould Manufacture,2023,23(11):142-144.(in Chinese)

    • [59] CHEN L,ZHANG Z,WANG J,et al.Rigid three-dimensional networks of hafnium diboride for improving mechanical and wear properties of boron carbide[J].Materials & Design,2021,210:110069.

    • [60] WANG Y,MONETTA T.Systematic study of preparation technology,microstructure characteristics and mechanical behaviors for SiC particle-reinforced metal matrix composites[J].Journal of Materials Research and Technology,2023,25:7470-7497.

    • [61] WU C,FANG X,KANG Q,et al.Formation mechanism,interface characteristics and the application of metal/SiC thin-film ohmic contact after high-temperature treatment[J].Journal of Materials Research and Technology,2023,24:2428-2441.

    • [62] 武高辉,乔菁,姜龙涛.Al 及其复合材料尺寸稳定性原理与稳定化设计研究进展[J].金属学报,2019,55(1):33-44.WU Gaohui,QIAO Jing,JIANG Longtao.Research progress on principle of dimensional stability and stabilization design of Al and its composites[J].Acta Metallurgica Sinica,2019,55(1):33-44.(in Chinese)

    • [63] 赵宇宏,景舰辉,陈利文,等.装甲防护陶瓷-金属叠层复合材料界面研究进展[J].金属学报,2021,57(9):1107-1125.ZHAO Yuhong,JING Jianhui,CHEN Liwen,et al.Current research status of interface of ceramic-metal laminated composite material for armor protection[J].Acta Metallurgica Sinica,2021,57(9):1107-1125.(in Chinese)

    • [64] 焦丽娟,李军.陶瓷-金属功能梯度复合材料在装甲防护中的应用[J].四川兵工学报,2006,27(4):22-23.JIAO Lijuan,LI Jun.Application of ceramic metal functional gradient composite materials in armor protection[J].Journal of Ordnance Equipment Engineering,2006,27(4):22-23.(in Chinese)

    • [65] 晁振龙,姜龙涛,魏嘉伟,等.基体合金对 B4C/Al 复合材料力学及抗弹性能的影响[J].兵器材料科学与工程,2020,43(1):6-10.CHAO Zhenlong,JIANG Longtao,WEI Jiawei,et al.Effect of matrix on mechanical properties and elastic properties of B4C/Al composites[J].Ordnance Material Science and Engineering,2020,43(1):6-10.(in Chinese)

    • [66] 张国昌,吕杰,宋宝强,等.激光熔覆涂层硬度强化研究进展[J].制造技术与机床,2023,12:65-72.ZHANG Guochang,LÜ Jie,SONG Baoqiang,et al.Research progress on hardness strengthening of laser cladding coating[J].Manufacturing Technology & Machine Tool,2023,12:65-72.(in Chinese)

    • [67] 彭武强,冉龙华,钱铎可,等.分子级混合法制备金属基复合材料研究进展[J].材料研究与应用,2022,16(4):637-649.PENG Wuqiang,RAN Longhua,QIAN Duoke,et al.Research progress on the preparation of metal matrix composites by molecular-level mixing process[J].Materials Research and Application,2022,16(4):637-649.(in Chinese)

    • [68] MISTRY J M,GOHIL P P.Research review of diversified reinforcement on aluminum metal matrix composites:fabrication processes and mechanical characterization[J].Science and Engineering of Composite Materials,2018,25(4):633-647.

    • [69] HU Y,CONG W.A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J].Ceramics International,2018,44(17):20599-20612.

    • [70] MAXIMOV M,MAXIMOV O C,CRACIUN L,et al.Bioactive glass-an extensive study of the preparation and coating methods[J].Coatings,2021,11(11):1386.

    • [71] MERAH N,ABDUL-AZEEM M,ABUBAKER H M,et al.Friction stir processing influence on microstructure,mechanical,and corrosion behavior of steels:A review[J].Materials(Basel),2021,14(17):5023.

    • [72] CASATI R,BONOLLO F,DELLASEGA D,et al.Ex situ Al-Al2O3 ultrafine grained nanocomposites produced via powder metallurgy[J].Journal of Alloys and Compounds,2014,615(S1):S386-S388.

    • [73] PRAKASH K S,GOPAL P M,ANBUROSE D,et al.Mechanical,corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites[J].Ain Shams Engineering Journal,2018,9(4):1489-1496.

    • [74] WANG Z,LIN T,HE X,et al.Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J].International Journal of Refractory Metals and Hard Materials,2016,58:14-21.

    • [75] ZHENG Z,LÜ J,LOU M,et al.Macro-gradient structures generated in Ti(C,N)-based cermets with supersaturated WC:an experimental and thermodynamic investigation[J].Materials Research Letters,2022,11(2):152-158.

    • [76] PAKDEL A,WITECKA A,RYDZEK G,et al.A comprehensive microstructural analysis of Al-WC microand nano-composites prepared by spark plasma sintering[J].Materials & Design,2017,119:225-234.

    • [77] GHASALI E,ALIZADEH M,EBADZADEH T.TiO2 ceramic particles-reinforced aluminum matrix composite prepared by conventional,microwave,and spark plasma sintering[J].Journal of Composite Materials,2017,52(19):2609-2619.

    • [78] DIXIT S,MAHATA A,MAHAPATRA D R,et al.Multi-layer graphene reinforced aluminum-manufacturing of high strength composite by friction stir alloying[J].Composites Part B:Engineering,2018,136:63-71.

    • [79] TU Z,NGANBE M.Modelling and assessment of carbon fiber reinforced aluminum matrix composites and their laminate squeeze casting fabrication[J].Materials Research Express,2020,7(8):086518.

    • [80] 陈旭栋,徐军,尹翠翠,等.Ti 增强镁基复合材料搅拌铸造中颗粒分散行为的研究[J].材料研究与应用,2023,17(4):619-624.CHEN Xudong,XU Jun,YIN Cuicui,et al.Study of particle dispersion behavior in stir casting of Ti reinforcement magnesium matrix composites[J].Materials Research and Application,2023,17(4):619-624.(in Chinese)

    • [81] FREUDENBERGER R,ZIELONKA A,FUNK M,et al.Recent developments in the preparation of nano-gold composite coatings[J].Gold Bulletin,2010,43(3):169-180.

    • [82] 武高辉.金属基复合材料发展的挑战与机遇[J].复合材料学报,2014,31(5):1228-1237.WU Gaohui.Development challenge and opportunity of metal matrix composites[J].Acta Materiae Compositae Sinica,2014,31(5):1228-1237.(in Chinese)

    • [83] ASHWATH P,XAVIOR M A.Surface modification on aluminum metal matrix composite for high strength application-current state of art[J].Materials Today:Proceedings,2021,46:7130-7134.

    • [84] ZHANG X,FU W,LEI Z,et al.Microstructure evolution of the W-C hard coatings using directed energy deposition on tungsten alloy surface[J].Surface and Coatings Technology,2023,470:129827.

    • [85] 张盼,孙宇海,孙磊,等.激光合金化掺杂TiC对等离子喷涂8YSZ热障涂层热腐蚀行为的影响[J].中国表面工程,2023,36(6):126-134.ZHANG Pan,SUN Yuhai,SUN Lei,et al.Effect of laser alloying TiC doping on the hot corrosion behavior of plasma sprayed 8YSZ thermal barrier coatings[J].China Surface Engineering,2023,36(6):126-134.(in Chinese)

    • [86] 王兴涛,吴一凡,孙金峰,等.等离子熔覆制备AlCrFeMnNi高熵合金涂层的微观组织与性能[J].中国表面工程,2023,36(4):107-117.WANG Xingtao,WU Yifan,SUN Jinfeng,et al.Microstructure and properties of an AlCrFeMnNi high-entropy alloy coating prepared using plasma cladding[J].China Surface Engineering,2023,36(4):107-117.(in Chinese)

    • [87] REN X,ZOU H,DIAO Q,et al.Surface modification technologies for enhancing the tribological properties of cemented carbides:A review[J].Tribology International,2023,180:108257.

    • [88] TUFFY K,BYRNE G,DOWLING D.Determination of the optimum TiN coating thickness on WC inserts for machining carbon steels[J].Journal of Materials Processing Technology,2004,155-156:1861-1866.

    • [89] CHEN L,ZHANG Z,LOU M,et al.High-temperature wear mechanisms of TiNbWN films:role of nanocrystalline oxides formation[J].Friction,2022,11(3):460-472.

    • [90] LIU S,CHANG K,MRÁZ S,et al.Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films[J].Acta Materialia,2019,165:615-625.

    • [91] LOU M,WANG L,CHEN L,et al.Role of refractory metal elements addition on the early oxidation behavior of TiN coatings[J].Materials Letters,2023,331:133406.

    • [92] XU Y X,CHEN L,PEI F,et al.Effect of the modulation ratio on the interface structure of TiAlN/TiN and TiAlN/ZrN multilayers:first-principles and experimental investigations[J].Acta Materialia,2017,130:281-288.

    • [93] KUMAR C H R V,NAIR P K,RAMAMOORTHY B.Characterization of multilayer pvd nanocoatings deposited on tungsten carbide cutting tools[J].International Journal of Advanced Manufacturing Technology,2007,38(5-6):622-629.

    • [94] VARDELLE A,MOREAU C,THEMELIS N J,et al.A perspective on plasma spray technology[J].Plasma Chemistry and Plasma Processing,2014,35(3):491-509.

    • [95] BABU P D,PRASANNAKUMAR B,MARIMUTHU P,et al.Microstructure,wear and mechanical properties of plasma sprayed TiO2 coating on Al-SiC metal matrix composite[J].Archives of Civil and Mechanical Engineering,2019,19(3):756-767.

    • [96] ABBASS M K.Laser surface treatment and modification of aluminum alloy matrix composites[J].Lasers in Manufacturing and Materials Processing,2018,5(2):81-94.

    • [97] 何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progess in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)

    • [98] HU J,KONG L C,LIU G.Structure and hardness of surface of Al18B4O33w/Al composite by laser surface melting[J].Materials Science and Engineering:A,2008,486(1-2):80-84.

    • [99] HU J,WU P L,KONG L C,et al.The effect of YAG laser surface treatment on corrosion resistance of Al18B4O33w/2024Al composite[J].Materials Letters,2007,61(29):5181-5183.

    • [100] RAMS J,PARDO A,UREÑA A,et al.Surface treatment of aluminum matrix composites using a high power diode laser[J].Surface and Coatings Technology,2007,202(4-7):1199-1203.

    • [101] ZHAO X,WEI C,GAI Z,et al.Chemical vapor deposition and its application in surface modification of nanoparticles[J].Chemical Papers,2019,74(3):767-778.

    • [102] BESMANN T M,STINTON D P,LOWDEN R A.Chemical vapor deposition techniques[J].MRS Bulletin,2013,13(11):45-51.

    • [103] SUN F H,ZHANG Z M,CHEN M,et al.Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools[J].Diamond and Related Materials,2003,12(3-7):711-718.

    • [104] TANG Y,LI Y S,YANG Q,et al.Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates[J].Thin Solid Films,2010,519(5):1606-1610.

    • [105] WAN B Q,SUN X Y,MA H T,et al.Plasma enhanced chemical vapor deposition of diamond coatings on Cu-W and Cu-WC composites[J].Surface and Coatings Technology,2015,284:133-138.

    • [106] PARVEEZ B,MALEQUE M A,JAMAL N A.Influence of agro-based reinforcements on the properties of aluminum matrix composites:A systematic review[J].Journal of Materials Science,2021,56(29):16195-16222.

    • [107] IZADI H,NOLTING A,MUNRO C,et al.Friction stir processing of Al/SiC composites fabricated by powder metallurgy[J].Journal of Materials Processing Technology,2013,213(11):1900-1907.

    • [108] STAWIARZ M,KURTYKA P,RYLKO N,et al.Influence of FSP process modification on selected properties of Al-Si-Cu/SiCp composite surface layer[J].Composites Theory and Practice,2019,19(4):161-168.

    • [109] MISHRA R S,MA Z Y,CHARIT I.Friction stir processing:a novel technique for fabrication of surface composite[J].Materials Science and Engineering:A,2003,341(1-2):307-310.

    • [110] RAMANATHAN A,KRISHNAN P K,MURALIRAJA R.A review on the production of metal matrix composites through stir casting-furnace design,properties,challenges,and research opportunities[J].Journal of Manufacturing Processes,2019,42:213-215.

    • [111] 李滋阳,王思佳,邓文举.陶瓷颗粒增强金属基复合材料研究进展[J].轻工科技,2021,37(4):41-44.LI Ziyang,WANG Sijia,DENG Wenju.Research progress on ceramic particle-reinforced metal matrix composites[J].Light Industry Science and Technology,2021,37(4):41-44.(in Chinese)

    • [112] 李丹.自主创新,勇于超越,助力大国重器[J].航空制造技术,2020,63(12):68-69.LI Dan.Independent innovation,courage to surpass,assistance to the pillars of a great power[J].Aeronautical Manufacturing Technology,2020,63(12):68-69.(in Chinese)

    • [113] LOU M,XU K,CHEN L,et al.Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation[J].Journal of Materials Informatics,2021,1:5.

    • [114] LOU M,CHANG K,XU K,et al.Achieving exceptional wear resistance in cemented carbides using B2 intermetallic binders[J].Composites Part B:Engineering,2023,249:110400.

    • [115] ZHENG Z,LV J,LOU M,et al.Mechanical and tribological properties of WC incorporated Ti(C,N)-based cermets[J].Ceramics International,2022,48(7):10086-10095.

    • [116] 马红玉,张嗣伟.金属基复合材料涂层摩擦学的研究进展[J].中国表面工程,2005,18(1):8-15.MA Hongyu,ZHANG Siwei.Progress in studies on tribology of metal-based composite coatings[J].China Surface Engineering,2005,18(1):8-15.(in Chinese)

    • [117] MANIKONDA R D,KOSARAJU S,RAJ K A,et al.Wear behavior analysis of silica carbide based aluminum metal matrix composites[J].Materials Today:Proceedings,2018,5(9):20104-20109.

    • [118] ZHAN Y,ZHANG G.Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles[J].Tribology Letters,2004,17(1):91-98.

    • [119] LOU M,CHEN X,XU K,et al.Temperature-induced wear transition in ceramic-metal composites[J].Acta Materialia,2021,205:116545.

    • [120] 邹芹,王鹏,徐江波,等.金属基自润滑复合材料固体润滑剂研究进展[J].燕山大学学报,2023,47(5):398-410.ZOU Qin,WANG Peng,XU Jiangbo,et al.Research progress of solid lubricants of metal matric self-lubricating composites[J].Journal of Yanshan University,2023,47(5):398-410.(in chinese)

    • [121] 李晋.金属基复合材料的现状与未来发展[J].现代盐化工,2022,2(2):22-23.LI Jin.Current state and future development of metal matrix composites[J].Modern Salt and Chemical Industry,2022,2(2):22-23.(in chinese)

    • [122] MUNGARA S R,MANOHAR H S,DUBEY S,et al.Investigating the effect of heat treatment on B4C reinforced aluminum metal matrix composites[J].Materials Today:Proceedings,2021,45:100-104.

    • [123] 许彦可,严红燕,李慧,等.金属基复合材料的制备方法及应用[J].热加工工艺,2012,100:1-5.XU Yanke,YAN Hongyan,LI Hui,et al.Preparation method and application of metal matrix composite materials[J].Hot Working Technology,2012,100:1-5.(in Chinese)

    • [124] 常可可,陈雷雷,周若男,等.极端环境表面工程及其共性科学问题研究进展[J].中国机械工程,2022,33(12):1388-1417.CHANG Keke,CHEN Leilei,ZHOU Ruonan,et al.Progresses of surface engineering in extreme environments and its common scientific problems[J].China Mechanical Engineering,2022,33(12):1388-1417.(in Chinese)

    • [125] ZHANG Y,WANG B,QIU F,et al.Superior wear resistance of dual-phased TiC-TiB2 ceramic nanoparticles reinforced carbon steels[J].Journal of Materials Research and Technology,2023,24:653-662.

    • [126] RUYS A J.Silicon carbide ceramics[M].Netherlands:Elsevier,2023.

    • [127] KUMAR N,IRFAN G.A review on tribological behaviour and mechanical properties of Al/ZrO2 metal matrix nano composites[J].Materials Today:Proceedings,2021,38:2649-2657.

    • [128] ZHU S,CHENG J,QIAO Z,et al.High temperature solid-lubricating materials:A review[J].Tribology International,2019,133:206-223.

    • [129] 黄仁忠,孙文,郭双全,等.冷喷涂技术的研究进展与应用[J].中国表面工程,2020,33(4):16-25.HUANG Renzhong,SUN Wen,GUO Shuangquan,et al.Research developments and applications of cold spray technology[J].China Surface Engineering,2020,33(4):16-25.(in Chinese)

    • [130] REN S,CUI M,MARTINI A,et al.Macroscale superlubricity enabled by rationally designed MoS2-based superlattice films[J].Cell Reports Physical Science,2023,4(5):101390.

    • [131] 陈百明,张俊喜,郭小汝,等.BN 和 MoS2 对镍基材料摩擦磨损性能的影响[J].粉末冶金技术,2019,37(4):273-278.CHEN Baiming,ZHANG Junxi,GUO Xiaoru,et al.Effects of BN and MoS2 on friction and wear properties of nickel-based materials[J].Powder Metallurgy Technology,2019,37(4):273-278.(in Chinese)

    • [132] 严晓华,陈国需.固体润滑技术的研究现状及展望[J].能源研究与信息,2005,21(2):69-74.YAN Xiaohua,CHEN Guoxu.Current development and future prospects on solid lubricating techniques[J].Energy Research and Information,2005,21(2):69-74.(in chinese)

    • [133] KHELGE S,KUMAR V,SHETTY V,et al.Effect of reinforcement particles on the mechanical and wear properties of aluminium alloy composites:Review[J].Materials Today:Proceedings,2022,52:571-576.

    • [134] XIAO X,CHANG K,XU K,et al.Efficient prediction of corrosion behavior in ternary Ni-based alloy systems:theoretical calculations and experimental verification[J].Journal of Materials Science & Technology,2023,167:94-106.

    • [135] LIU R,CUI Y,LIU L,et al.A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution[J].Corrosion Science,2020,165:108402.

    • [136] AYDIN F.A review of recent developments in the corrosion performance of aluminium matrix composites[J].Journal of Alloys and Compounds,2023,949:169508.

    • [137] ESEN Z,ÖCAL E B,AKKAYA A,et al.Corrosion behaviours of Ti6Al4V-Mg/Mg-Alloy composites[J].Corrosion Science,2020,166:108470.

    • [138] HIHARA L H,BAKKAR A.Corrosion of metal matrix composites[M].Netherlands:Elsevier,2016.

    • [139] SONG G L,ZHANG C,CHEN X,et al.Galvanic activity of carbon fiber reinforced polymers and electrochemical behavior of carbon fiber[J].Corrosion Communications,2021,1:26-39.

    • [140] 王春雨,武高辉,张强,等.铝基复合材料的腐蚀与防护研究现状[J].中国腐蚀与防护学报,2008,28(1):59-64.WANG Chunyu,WU Gaohui,ZHANG Qiang,et al.A review for corrosion resistance and protection methods for aluminum matrix composites[J].Journal of Chinese Society for Corrosion and Protection,2008,28(1):59-64.(in Chinese)

    • [141] AYLOR D M,MORAN P J.Effect of reinforcement on the pitting behavior of aluminum-base metal matrix composites[J].Journal of the Electrochemical Society,1985,132(6):1277-1281.

    • [142] HAMDY A S,BECCARIA A M,TEMTCHENKO T.Improving the corrosion protection of AA6061 T6-10% Al2O3 using new surface pre-treatments prior to fluoropolymer coatings[J].Surface and Coatings Technology,2002,155(2):184-189.

    • [143] WIELAGE B,DORNER A.Corrosion studies on aluminium reinforced with uncoated and coated carbon fibres[J].Composites Science and Technology,1999,59(8):1239-1245.

    • [144] KUMAR N M S,SHASHANK T N,DHEERAJ N U,et al.Coatings on reinforcements in aluminum metal matrix composites[J].International Journal of Metalcasting,2023,17(2):1049-1064.

    • [145] WIELAGE B,DORNER A,SHÜRER C,et al.Corrosion protection of carbon fibre reinforced aluminium composite by diamondlike carbon coatings[J].Materials Science and Technology,2000,16(3):344-348.

    • [146] ZAKARIA H M.Microstructural and corrosion behavior of Al/SiC metal matrix composites[J].Ain Shams Engineering Journal,2014,5(3):831-838.

    • [147] MOSLEH-SHIRAZI S,HUA G,AKHLAGHI F,et al.Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite[J].Scientific Reports,2015,5(1):18154.

    • [148] ZHANG Y,WANG Q,CHEN G,et al.Mechanical,tribological and corrosion physiognomies of CNT-Al metal matrix composite(MMC)coatings deposited by cold gas dynamic spray(CGDS)process[J].Surface and Coatings Technology,2020,403:126380.

    • [149] CHEN H J,CHEN Y C,LIN P C,et al.Study of atomic layer deposition nano-oxide films on corrosion protection of Al-SiC composites[J].Materials,2023,16(18):6149.

    • [150] YANG K,LI W,XU Y,et al.Using friction stir processing to augment corrosion resistance of cold sprayed AA2024/Al2O3 composite coatings[J].Journal of Alloys and Compounds,2019,774:1223-1232.

    • [151] XU K,CHANG K,DU Y,et al.Design of novel NiSiAlY alloys in marine salt-spray environment:Part I.Al-Si-Y and Ni-Si-Y subsystems[J].Journal of Materials Science & Technology,2021,88:66-78.

    • [152] XU K,CHANG K,YU M,et al.Design of novel NiSiAlY alloys in marine salt-spray environment:Part II.Al-Ni-Si-Y thermodynamic dataset[J].Journal of Materials Science & Technology,2021,89:186-198.

    • [153] WANG F,ZHOU R,XU K,et al.Effect of Si content on the surface high-temperature oxidation mechanism in Ni5Y-containing NiAIYSi alloys[J].Corrosion Science,2023,218:111173.

    • [154] GRABOŚ A,HUEBNER J,RUTKOWSKI P,et al.Microstructure and hardness of spark plasma sintered Inconel 625-NbC composites for high-temperature applications[J].Materials,2021,14(16):4606.

    • [155] BAKKAR A,AHMED M M Z,ALSALEH N A,et al.Microstructure,wear,and corrosion characterization of high TiC content Inconel 625 matrix composites[J].Journal of Materials Research and Technology,2019,8(1):1102-1110.

    • [156] HUEBNER J,KATA D,KUSIŃSKI J,et al.Microstructure of laser cladded carbide reinforced Inconel 625 alloy for turbine blade application[J].Ceramics International,2017,43(12):8677-8684.

    • [157] GRABOŚ A,RUTKOWSKI P,HUEBNER J,et al.Oxidation performance of spark plasma sintered Inconel 625-NbC metal matrix composites[J].Corrosion Science,2022,205:110453.

    • [158] 迟静,李敏,王淑峰,等.原位自生 MC(M=Ti,V,Nb)与WC复合增强镍基涂层[J].中国表面工程,2023,36(4):129-139.CHI Jing,LI Min,WANG Shufeng,et al.In-situ MC(M=Ti,V,Nb)and WC composite reinforcement Ni based coatings[J].China Surface Engineering,2023,36(4):129-139.(in Chinese)

    • [159] GERAMIFARD G,GOMBOLA C,FRANKE P,et al.Oxidation behaviour of NiAl intermetallics with embedded Cr and Mo[J].Corrosion Science,2020,177:108956.

  • 手机扫一扫看