-
0 前言
-
海洋工程装备是保障国家海洋战略实施的重要基础和支撑,处于海洋产业价值链的核心环节[1-2]。但在浅海到远海服役环境中,海工装备关键金属运动系统将直接暴露于海洋多场耦合环境,长期面临高湿盐雾、交变载荷等严苛环境下的磨损、腐蚀强耦合损伤的共性挑战。如船舶动力装置、潮汐能发电装置、海水液压传动装置、深潜器浮力调节装置、风电机组关键部件等的磨蚀损伤,会严重影响海工装备稳定性和服役寿命,甚至造成重大安全事故[3-5]。因此,设计和发展高性能海洋环境抗磨蚀防护材料与技术迫在眉睫,同时也成为表面工程与海洋学科领域的研究交叉前沿。
-
采用先进表面涂层防护技术,可在保持金属材料优异性能的基础上,进一步提高材料的使用寿命,是保障海工装备高性能长寿命可靠服役的关键途径,主要应用包括大体积钢铁结构构件防护、关键部件表面强化、抗空泡腐蚀和冲蚀涂层、关键部件再造等(图1)。其中,针对不同关键部件的磨蚀防护需求,多种表面涂层技术已被用于研究和生产,包括聚合物涂料、高能束表面改性、阳极氧化、微弧氧化、喷涂、激光熔覆、电镀和物理气相沉积 (Physical vapor deposition,PVD)等[6-8]。例如,聚合物改性砂浆用于沿海核电厂海水管道磨蚀防护[9],微弧氧化铝合金用于船用离合器摩擦靴防护[10],喷涂 WC10Co4Cr 金属陶瓷涂层用于核电海水循环泵的叶轮磨蚀防护[11],美国“海军先进非晶涂层”项目将热喷涂非晶金属涂层用于“近海战斗舰”湿态任务区甲板[12],电镀 Cr 涂层用于舰炮身管内膛防护等[13]。
-
图1 表面工程技术在海洋工程装备中的典型应用
-
Fig.1 Typical application of surface engineering technology in marine engineering equipments
-
PVD 涂层技术是在真空条件下将固体或液体材料源气化,使其变成气态原子、分子或部分电离形成离子,并在低压气体或等离子体作用下,最终沉积在基材表面以实现涂层制备的技术。由于 PVD 硬质陶瓷涂层兼具致密均匀、光洁度高、耐老化、耐磨性、耐腐蚀等优势,特别是可满足深海或远海机械系统相关精密运动部件的高可靠性与稳定性要求,PVD 涂层技术已成为海洋装备运动部件抗磨蚀防护的有效技术手段之一[14-15]。
-
本文围绕海洋环境 PVD 抗磨蚀防护涂层材料技术,主要介绍了海洋环境 PVD 抗磨蚀防护涂层材料体系,归纳了主要的涂层磨蚀性能的评价方法, 讨论了 PVD 复合其他表面防护技术的研究进展,列举了 PVD 抗磨蚀防护涂层的应用实例,最后对本领域的未来发展方向进行思考和展望。
-
1 海洋常用 PVD 磨蚀防护涂层
-
1.1 碳基涂层
-
类金刚石碳基(Diamond-like carbon,DLC)涂层是一大类亚稳非晶态物质体系,主要由碳的 sp 3 杂化金刚石结构和 sp 2 杂化石墨结构组成[16]。根据是否含氢,DLC 涂层可大致分为含氢类金刚石涂层 (Hydrogenated amorphous carbon,a-C:H)以及无氢类金刚石涂层(Hydrogen-free amorphous carbon,a-C)。由于其高硬度、高化学稳定性、减磨及润滑特性,DLC 涂层在海洋磨蚀防护领域具有广泛的应用前景。但在 DLC 涂层沉积过程中,高能碳粒子轰击作用导致涂层中常具有较高的残余应力,易剥落失效,制约了其抗磨蚀防护效果。
-
在 DLC 涂层中引入适量掺杂元素,是改善涂层力学性能、提高膜基结合力、实现其优异的抗磨蚀防护性能的常用有效方法之一。WANG 等[17]使用磁过滤电弧(Filtered cathodic vacuum arc,FCVA)技术制备了非晶包裹纳米晶结构的 TiC / a-C:H 涂层,涂层中 TiC 晶粒大小为 3~5 nm。该涂层具有优异的钝化恢复能力,在 3.5wt.% NaCl 溶液中的摩擦因数相较于基体降低了一倍,磨损率降低了两个数量级,具有良好的耐磨蚀性能。刘健等[18]在 DLC 涂层中掺杂 7.23at.%的 B 元素后,该涂层致密度增大,并在海水中磨损率显著降低。SHEN等[19]采用FCVA 技术制备了 Ti 元素掺杂 DLC 涂层,Ti 元素含量 9.82at.%的涂层在 3.5wt.% NaCl 溶液中的最低摩擦因数为 0.055,磨损率为 3.56×10−7 mm 3 /(N·m),同时表现出高开路电位(Open circuit potential,OCP)值约 0.116 V。类似地,适量 Cr 元素掺杂 DLC 涂层可以同时降低干摩擦的摩擦因数,并提高在 3.5wt.% NaCl 溶液中的耐蚀性[20]。
-
在多元掺杂方面,DONG 等[21]制备了系列 TaB2 复合 DLC 涂层,其中非晶碳占比约 8at.%的样品,其结构特征为 a-C 嵌入 TaCB 基质,而非晶碳占比约 18at.%的样品,其结构特征为 TaCB 嵌入 a-C 基质。与 TaB2相比,非晶碳含量 8at.%的样品具有更好的化学惰性,且磨损率降低了两个数量级,这是由于在摩擦过程中 C 元素的引入起到固体润滑剂的作用,形成的润滑相避免了严重的磨损和摩擦化学反应。刘孟奇等[22]制备了 Cr 元素和 WC 掺杂 DLC 涂层。相比 DLC 涂层,掺杂 DLC 涂层的韧性和结合力更优,在海水中磨损率最低可达 10−9 mm 3 /(N·m)。XU 等[23-24]制备了 Ti 元素和 Al 元素共掺杂 DLC 涂层,在 3.5wt.% NaCl 溶液中,优化涂层的腐蚀电流密度比 316 不锈钢降低了两个数量级,摩擦因数由 0.6 降低至最低 0.06,磨损率 3.61×10−7 mm 3 /(N·m)。SUI 等[25]采用磁控溅射制备了 Cr 元素和 Cu 元素共掺杂 DLC 涂层,在 3.5wt.% NaCl 溶液中,优化涂层最低摩擦因数为 0.06,同时具有较好的抗污损性能。ZHANG 等[26] 采用磁控溅射技术制备了以 Ti 为过渡层、Cu 元素及 MoS2 多元复合 DLC 涂层,优化涂层在人工海水中最低摩擦因数为 0.036,磨损率 5×10−8 mm 3 /(N·m)。
-
此外,引入合适的过渡层及多层结构也是提升碳基涂层抗磨蚀特性的常用方法。SHI 等[27]在不同厚度 a-C 涂层中添加 Ti 过渡层来降低残余应力,发现涂层厚度增加,耐腐蚀能力下降。首先,过厚的 a-C 导致涂层本身高残余应力和低结合力。其次,厚度增加,涂层 sp 2 含量升高,具有较高导电性和更多表面缺陷。这种弱结合界面和多表面缺陷为腐蚀液提供了更多通道,加速涂层或基体腐蚀。相较于大气环境摩擦,在 3.5wt.% NaCl 溶液中,涂层前期的摩擦因数较小,但是在后期明显上升。这主要是由于无转移膜生成,接触界面处自由 σ 键和水分子之间形成了共价键。ZHAO 等[28-29]采用高功率脉冲磁控溅射( High power impulse magnetron sputtering,HiPIMS)技术制备了 DLC / CrN 多层涂层,DLC / CrN 调制比为 2∶1 的涂层在大气环境下摩擦因数及磨损率最低,主要取决于涂层硬度、抗塑性变形能力及内应力水平。在 3.5wt.% NaCl 溶液中,DLC / CrN 调制比为 1∶1 的涂层耐蚀性最佳,这主要取决于涂层的致密性及对腐蚀离子的阻碍作用。
-
LI 等[30]设计了不同厚度 Cr 过渡层,发现过渡层和涂层调制比为 1∶3 的 Cr / a-C 涂层具有低硬度和弹性模量,但是同时表现出最低的摩擦因数和磨损率。此外,涂层在摩擦磨损过程中,其本征缺陷和纵向生长间隙不断扩大,成为腐蚀离子交换通道,涂层脆性剥落是造成损伤的主要原因。基于此,LI 等[31]通过复合磁控溅射方法制备了 Cr / a-C 多层涂层,研究了不同调制周期涂层在模拟海水中的磨蚀行为。研究发现,当调制周期从 1 000 nm 减小到 250 nm 时,涂层硬度上升,最高达到 20.03 GPa,同时有效减少了涂层的剥落面积。作者认为该多层结构阻止了贯穿型孔隙的形成,限制了磨蚀过程中的缺陷延展。同时,引入顶层 a-C 增厚结构的优化设计显著改善了涂层抗磨蚀性能。
-
基于多层结构延长腐蚀路径及多元掺杂构筑强韧一体化涂层的研究思路,LI 等[32]利用线性阳极层离子源和直流磁控溅射(Direct current magnetron sputter,DCMS)技术在 S32750 不锈钢基材上沉积了三种碳基多层涂层(Ti / DLC、TiCx / DLC 和 Ti-TiCx / DLC 涂层),并系统研究了其在 3.5wt.% NaCl 溶液中的短期(滑动距离 72 m)和长期(滑动距离 1 728 m)磨蚀行为。结果表明,TiCx / DLC 涂层由于其高硬度而表现出最优异的短期耐磨蚀性能。 Ti-TiCx / DLC 涂层由于优异的断裂韧性和高硬度而表现出最佳的长期抗摩擦腐蚀性能。此外,Ti-TiCx / DLC 涂层在 5 N 下可承受超过 24 h 长期测试,同时在 20 N 载荷下,相应滑动距离约为 1 728 m,且摩擦因数低至约 0.06。基于磨痕分析,提出了界面处石墨化非晶碳和氧化物纳米晶导致 Ti / TiCx / DLC 涂层的耐磨蚀损伤容限特性,如图2 所示。
-
针对深海环境防护需求,LIU 等[33]对比了 HiPIMS和DCMS技术制备的非晶碳在30 MPa静水压力(3 000 m)腐蚀后的磨蚀性能。与 DCMS 相比,HiPIMS 制备的 a-C 中 sp 3 (59 %)含量更高,承载能力更强。此外,由于其结构更致密,在 30 MPa 下的耐腐蚀性更强,更适用于深海环境下部件腐蚀及磨蚀防护。
-
目前,碳基涂层抗磨蚀性能在很大程度上仍取决于膜基界面结合强度、涂层致密性等关键因素。此外,涂层中掺杂元素以及金属基体也可能参与磨蚀,并影响摩擦界面上摩擦膜形成过程,导致出现加速磨损或者损伤容限等不同特性。
-
图2 Ti / TiCx / DLC 涂层界面结构、长期磨蚀性能及耐磨蚀损伤容限特性[32]
-
Fig.2 Interface structure, tribocorrosion performance and failure tolerance of Ti / TiCx / DLC coatings in long-term tribocorrosion[32]
-
1.2 氮基涂层
-
氮基涂层包括过渡金属氮化物及其二元、三元、多元衍生物,如 CrN、TiN、CrSiN 等,本身具有优异的耐磨及耐腐蚀特性。在海洋腐蚀环境中,Cr 和 Ti 元素由于可以自发形成致密的钝化膜,阻隔腐蚀介质,以 CrN、TiN 等为代表性的氮基抗磨蚀防护涂层体系获得了较多关注。
-
CHEN 等[34]研究了 CrN 涂层在 3.5wt.% NaCl 溶液中的磨蚀失效行为。结果表明,摩擦后涂层出现了分层失效和大量交叉裂纹。作者提出制备无择优取向且结构致密涂层是重要的调控方向之一。 SHAN 等[35]通过控制氮气流量制备了 CrNx涂层,发现CrN或Cr2N相涂层在海水中磨蚀坑更大,而Cr2N 和 CrN 两相复合涂层耐蚀性能更加优异,这是由于两相共存能抑制裂纹扩展且涂层更加致密。
-
针对二元氮基涂层高脆性问题,研究人员尝试引入元素掺杂以改善过渡金属氮化物硬脆性,细化晶粒尺寸并提高涂层耐蚀及耐磨性能,常用元素如 Ni[36]、C[37-39]、Si[40-42]、Al[43-44]等。单磊等[45]利用多弧离子镀技术制备了含 Al 元素的 CrN 涂层,相比 CrN,CrAlN 中形成的 AlN 相可在一定程度上阻碍柱状晶生长,减缓海水沿涂层晶界进入膜基界面。该 CrAlN 涂层腐蚀电流密度为 1.5×10−7 A / cm2,低于 CrN。此外,AlN 相可与水发生反应生成 Al2O3,在摩擦过程中具有一定的润滑作用,因此降低了涂层磨损率。WANG 等[46]制备了 TiSiCN 超硬纳米复合涂层,在 3.5wt.% NaCl 溶液中,最低摩擦因数为 0.11,磨损率为 3.23×10−6 mm 3 /(N·m)。ZHOU 等[47]制备了不同 Ag 元素含量的 CrMoN 涂层,海水环境下磨蚀行为研究表明,随着 Ag 元素含量增加,涂层磨蚀损伤行为依次由磨粒磨损耦合腐蚀加速转化为摩擦化学磨损、磨粒磨损、摩擦化学和腐蚀加速磨损。
-
除了元素掺杂,多层结构设计可以抑制氮基涂层的择优取向和晶粒粗化[48-49],同时还可阻碍裂纹扩展和腐蚀介质渗透,显著提升涂层性能[50]。 WANG 等[51]使用电弧离子镀技术制备了多层 Cr / CrCN 纳米涂层,并对比了多层 Cr / CrCN、单层 CrN 和 CrCN 的力学和耐磨蚀性能。结果表明,Cr / CrCN 涂层具有最高的韧性和结合强度,腐蚀电流密度最小,为 1.75×10−5 A / cm2,分别比 CrN 和 CrCN 降低 79%和 65%。涂层中 Cr-C 相和摩擦过程中形成的石墨润滑相能有效协同,因此提高了涂层的抗磨蚀性能和润滑性能。
-
相比传统多层涂层,纳米多层涂层具有更多的调制周期,能显著提升涂层硬度及结合力[52]。此外,各层之间能起到“封孔”效果,提高涂层致密度,阻止腐蚀介质的快速渗透和贯穿[53]。MA 等[54]使用磁控溅射技术制备了 CrN / AlN 纳米多层涂层,并对比了多层和单层 CrN 的耐磨蚀性能。在磨蚀阶段,多层CrN开路电位最高为-0.19 V,且由于CrN / AlN 具有较高的硬度和较好的耐腐蚀性,在外加-0.19 V (相对于 OCP)电压条件下,涂层总损耗量比单层 CrN 降低了 30%,如图3 所示。类似地,CABRERA 等[55]设计制备了 CrN / AlN 纳米多层超晶格涂层,多层涂层是由面心立方CrN相和六方结构AlN相组成。相较于 CrN 和 AlN 涂层,多层涂层结构阻碍了柱状晶生长,结构更为致密。得益于界面含量和数量增加,晶格参数和残余应力随着调制周期中 CrN 层厚度减小而减小,涂层硬度显著增加,最高达 42 GPa,涂层磨损率和摩擦因数分别降低至 7× 10−7 mm 3 /(N·m)和 0.35。
-
图3 纳米多层氮基涂层结构及磨蚀防护性能[54]
-
Fig.3 Structure and tribocorrosion performance of nano-multilayer nitride coatings[54]
-
氮基涂层的耐蚀性及耐磨性均很大程度上取决于沉积过程中出现的气孔、裂缝等结构缺陷。通过组分和结构调控,提高涂层结构致密度、减少腐蚀介质渗透是改善其抗磨蚀性能的有效方法。而多层 / 纳米多层结构的设计可以形成多界面阻断柱状晶生长,保持结构致密性的同时提高涂层硬度和膜基结合力,是实现耐腐蚀耐磨损优化的方向之一。
-
1.3 高熵合金涂层
-
近期,高熵合金(High-entropy alloys,HEAs) 由于综合性能优异,如高强韧性、耐腐蚀性能和耐磨损性能[56-58],在抗磨蚀领域逐渐得到关注。其中,应用于海洋环境腐蚀-磨损交互作用的 PVD 高熵合金涂层主要包括高熵合金金属涂层、高熵非晶合金涂层及高熵合金碳 / 氮化合物涂层等。
-
在高熵合金金属涂层方面,CHEN 等[59]采用 DCMS 技术在 304 不锈钢表面制备了 VAlTiCrCu 涂层。在磨蚀过程中,由于 Cl− 侵蚀,涂层发生点蚀。随后,该团队制备的不同调制周期的 VAlTiCrCu / WC 多层涂层[60],其大量界面有效抑制了腐蚀介质渗透,提高了耐磨蚀性能。与 VAlTiCrCu 相比, VAlTiCrCu / WC 耐磨蚀性能提高了近五倍,如图4 所示。ZENG 等[61]设计并制备了单相体心立方 (BCC)结构的 AlFeCrNiMo 高熵合金涂层,显著提高了 304 不锈钢硬度、耐腐蚀性能和耐磨蚀性能,这主要归因于其 BCC 结构、固溶强化作用以及表面氧化膜形成的综合效应。
-
在高熵非晶合金涂层方面,CHEN 等[62]采用自主研制的 45°单弯曲磁过滤阴极电弧沉积系统制备了 AlCrNiTiV 涂层,并研究了不同温度氧化处理后涂层的磨蚀行为。结果表明,经 600℃氧化后,涂层具有最佳的耐磨蚀性能。这主要归因于其稳定的非晶结构阻止了腐蚀介质的侵蚀,氧化膜在 3.5wt.% NaCl 溶液中磨蚀不被破坏,同时该涂层具有较高的硬度和硬度 / 模量比值(H / E),实现了低磨损率,约 2.36×10−6 mm 3 /(N·m)。随后,该团队制备了 AlCrTiZrMo 涂层[63],在 800℃空气中退火 1 h 后表面形成了致密的 ZrTiO4 复合氧化物层,有效阻止了氧化继续进行,在磨蚀测试中涂层仍具有稳定的致密组织结构和优异的力学性能,磨损率低至 1.34×10−6 mm 3 /(N·m)。
-
采用掺杂 B、C、N、O 等非金属元素的方式可进一步提升高熵合金耐磨防腐蚀性能,其中,高熵合金碳 / 氮化合物涂层获得了较多关注。WANG等[64]采用溅射沉积技术在工业纯钛基体上制备了(TiZrNbTaMo)C 高熵合金碳化物涂层,该涂层具有单相面心立方结构,由直径 9 nm 等轴晶粒组成。该涂层在 3.5wt.% NaCl 溶液中磨损率均低于纯钛两个数量级。Mott-Schottky 和零电荷点测量表明,该涂层上钝化膜比 Ti 基体钝化膜具有更小的施主密度以及更高的阻止 Cl− 吸附能力。刘鑫宇等[65]研究了(CrNbTiMoZr)C 在人工海水环境、不同载荷(1、2、 4 N)下的磨蚀行为。结果表明,涂层在较高载荷下 (4 N),总腐蚀磨损率仅为 304L 不锈钢的三分之一。交互作用分析表明,涂层腐蚀加速磨损速率所占总腐蚀磨损率的比值最大,约 80%。
-
图4 多层结构高熵合金涂层结构及磨蚀防护性能[60] (a)VAlTiCrCu 涂层的 TEM 图 (b)VAlTiCrCu / WC 涂层的 TEM 图(调制周期 17 nm) (c)VAlTiCrCu / WC 涂层的 TEM 图(调制周期 90 nm) (d)三种涂层在不同条件下的摩擦性能: (d1~d2)VAlTiCrCu 和 VAlTiCrCu / WC 多涂层的干摩擦因数和磨损率 (d3)调制周期 90 nm 的 VAlTiCrCu / WC 磨痕深度(d4~d6)VAlTiCrCu 和 VAlTiCrCu / WC 多层涂层在 3.5wt.% NaCl 溶液中的摩擦因数、磨损率和 OCP
-
Fig.4 Structure and tribocorrosion performance of multilayer high-entropy alloy coatings [60] (a) TEM images of VAlTiCrCu coating (b) TEM images of VAlTiCrCu / WC coatings (modulation periods of 17 nm) (c) TEM images of VAlTiCrCu / WC coatings (modulation periods of 90 nm) (d) Tribological performance of the three coatings under different conditions: (d1-d2) Dry friction factor and wear rate of VAlTiCrCu coating and VAlTiCrCu/WC multilayer coatings (d3) Wear depth of the VAlTiCrCu / WC with modulation period of 90 nm (d4-d6) Friction factor, wear rate and OCP of VAlTiCrCu coating and VAlTiCrCu / WC multilayer coatings in 3.5wt.% NaCl solution
-
SI 等[66]采用反应磁控溅射法制备了 TiVCrZrWNx 涂层。在海水磨蚀过程中,由于 V2O5的形成,涂层摩擦因数和磨损率显著降低。ZHANG 等[67]采用磁控溅射法在 440C 马氏体不锈钢基体上制备了(CrNbTiAlV)Nx涂层。在人工海水中,优化涂层最低摩擦因数约 0.162,磨损率约 7.48×10−7 mm 3 /(N·m)。该团队进一步通过增加沉积偏压[68],使涂层微观结构由疏松柱状向致密柱状转变,并出现(111)择优生长。在磨蚀测试中,优化涂层最低摩擦因数约 0.2,磨损率约 4.4×10−7 mm 3 /(N·m),这主要归因于涂层较高的光滑致密性及硬度。
-
最近,NIU 等[69]在 316L 不锈钢基体上制备了一系列(CrNbTiAlV)CxNy 涂层。结果表明,碳掺杂使涂层结构致密,提高了涂层抗断裂和抗塑性变形能力。碳氮化物相使涂层耐腐蚀性能优于 316L,摩擦对腐蚀效应的敏感性低于 316L。此外,通过建立函数形式的磨损腐蚀机理图,如图5 所示(ΔW 是由于摩擦造成的材料损失,ΔC 是由于腐蚀造成的材料体积损失,W 是无腐蚀情况下由于纯摩擦而产生的材料体积损失,WC是纯摩擦磨损导致的材料体积损失与磨蚀产生的体积损失之间的体积变化,CW是磨蚀过程中腐蚀引起的材料体积损失和材料纯腐蚀体积损失之间的变化),解释了摩擦和腐蚀在摩擦腐蚀试验中的主导作用。
-
高熵合金及氮化物陶瓷作为一个新兴的研究热点,在各种结构和功能领域具有良好的应用前景和发展潜力,但在磨蚀防护领域还处于起步阶段。高熵合金体系众多,带来了成分设计上的困难、制备工艺与涂层结构的关联性以及复杂严苛环境下多因素损伤机制等科学问题,是未来高熵涂层磨蚀防护研究领域的一大热点。
-
图5 316L 和四种(CrNbTiAlV)CxNy涂层在 3.5wt.% NaCl 溶液中的磨蚀性能及不同因素导致的材料损失比例[69] (S1~S4 均为(CrNbTiAlV)CxNy涂层,涂层 C 元素含量依次 22%、30%、35%、40%增大)
-
Fig.5 Tribocorrosion performance of 316L and four (CrNbTiAlV) CxNy coatings in 3.5wt.% NaCl solution and proportion of material loss caused by different factors[69] ( (CrNbTiAlV) CxNy coatings are named S1-S4, from small to large according to the C content in the coatings)
-
1.4 过渡金属二硫属化物涂层
-
过渡金属二硫属化物( Transition metal dichalcogenide,TMD)涂层,如 MoS2,由夹层层状结构组成,具有较高的机械强度、良好的耐磨性、环保性和低污染性,在海洋环境中具备一定的应用前景。由于 TMD 化学稳定性不足,在含水、氧环境下易于形成氧化物,因此采用元素掺杂以及多层结构是调节其微观结构和摩擦学性能最常用和最有效的方法。
-
ZENG 等[70]通过磁控溅射技术制备了 MoS2 / WS2 复合涂层和多层涂层。多层涂层(002)择优晶面沿平行衬底方向生长,并且通过打断单一层连续性实现紧凑结构,不仅可以阻碍位错运动,还阻碍 H2O、O2、Cl− 和 Na+ 等介质的扩散,提高耐腐蚀性。相比 MoS2 / WS2 复合涂层,多层涂层力学性能、摩擦学性能和腐蚀性能均明显提高。
-
SHI 等[71]通过利用闭场非平衡磁控溅射系统在 304 不锈钢上沉积了 Ti-MoS2 复合和 Ti / MoS2 多层涂层,探索了其在海洋环境中的应用潜力。相比 MoS2 涂层,Ti-MoS2 复合涂层和 Ti / MoS2 多层涂层在模拟海水中具有较好的耐磨蚀性能。SHI 等[71]认为 Ti 元素的加入使 MoS2涂层由柱状晶转变为非晶态,因此 Ti-MoS2 复合涂层和 Ti / MoS2 多层涂层的缺陷和微孔减少,抗磨蚀性能提升(图6)。此外, Ti 元素掺杂 MoS2 具有更高的密度和更低的表面粗糙度,导致力学性能提高和疏水性减弱,这也是其摩擦因数和磨损率较低的原因之一。
-
JIANG 等[72]通过采用双靶共溅射技术制备了 MoS2 / DLC 复合涂层。结果表明,引入的类石墨结构影响了 MoS2 晶体生长特性。相比 MoS2 (0.215 9) 和 DLC 涂层(0.067 1),MoS2 / DLC 涂层摩擦因数最低约 0.056 6,且室温下经饱和 NaCl 溶液腐蚀测试 120 h 后,MoS2 / DLC 涂层失重最低,为 1.9× 10−3 mg / cm2,显示出优异的耐腐蚀性。
-
图6 Ti-MoS2复合涂层和 Ti / MoS2多层涂层结构及在 NaCl 溶液中磨蚀性能[71]
-
Fig.6 Structure of Ti-MoS2 composite and Ti / MoS2 multilayer coatings and their tribocorrosion performance in NaCl solution [71]
-
以上研究工作对于未来将二硫化钼基涂层技术拓展应用至海上运输和发射航天器关键部件等工程领域具有重要意义。由于研究目标差异,涂层磨蚀评价的方法及条件显著不同,各类涂层的抗磨蚀性能难以直接对比,但仍然可为近似工况下的部件防护提供相关依据。整体上,几类涂层的磨损率大致相当,均可达 10−6~10−7 mm 3 /(N·m)量级,其中碳基涂层表现出相对更低的摩擦因数及磨损率水平。表1 列出了典型海洋环境 PVD 抗磨蚀防护涂层摩擦因数、磨损率特性,以及对应的具体测试条件。
-
Where FCVA is filtered cathodic vacuum arc, ALIS is linear anode-layer ion source, DCMS is direct current magnetron sputter, HiPIMS is high power impulse magnetron sputtering, FCVAD is filter cathode vacuum arc deposition, CFUMS is closed field unbalanced magnetron sputtering, PIIID is plasma immersion ion implantation and deposition, r.f. is radio frequency.
-
2 涂层磨蚀评价常用方法
-
在海水环境中下,摩擦运动对海工装备部件的腐蚀具有不可忽视的加速作用,而腐蚀增速反过来又能导致材料的磨损增大,因此形成了在腐蚀介质中特有的材料磨损与腐蚀交互耦合损伤现象。涂层在海水环境下的磨蚀性能评价早期主要分别表征材料的摩擦磨损性能以及耐腐蚀性,目前大部分研究则主要是开展在外加电位-磨蚀测试性能测试,即在测试磨损性能的同时检测腐蚀性能。另外,部分团队还引入理论计算理解涂层的磨蚀性能及相关失效机理。
-
2.1 涂层宏观磨蚀性能研究
-
对于早期 PVD 涂层磨蚀防护相关研究,研究人员通常分别采用摩擦磨损试验机测试样品在空气或模拟海水环境中的摩擦磨损性能,对比基体和涂层的摩擦因数与磨损率,并基于电化学工作站测量样品腐蚀电位和极化曲线等,确定涂层耐腐蚀特性。
-
为了研究涂层的腐蚀和摩擦磨损相互耦合损伤,目前研究人员采用配备有电化学工作站的摩擦腐蚀试验机原位实时监测涂层在人工海水环境下的开路电位和摩擦因数等腐蚀-磨损特性,并可采用动电位扫描法测试涂层在腐蚀和摩擦-腐蚀过程中的电化学行为。例如,LIU 等[73]、高溥等[74]都通过在配备有电化学工作站的摩擦-腐蚀试验机上原位实时监测涂层的腐蚀和摩擦学行为(图7),测试了金属及涂层 / 陶瓷摩擦副在人工海水环境下的开路电位和摩擦因数等腐蚀-磨损特性,并通过测定涂层磨痕轮廓,计算出涂层磨损率。
-
图7 摩擦-腐蚀试验机[73](RE、WE、CE 分别为参比电极、 工作电极、对电极)
-
Fig.7 Apparatus for tribocorrosion experiment [73] (RE、WE、 CE are reference electrode, working electrode and counter electrode, respectively)
-
此外,部分研究组也开始结合实际工况或者模拟工况开展涂层磨蚀性能评价。例如,HOCHE 等[75] 评价低碳钢表面 PVD 涂层在 NaCl 盐雾中的抗腐蚀性能,并表征了涂层摩擦学性能及磨损情况。商克栋等[76]将 MoS2 基涂层在中国南海海洋大气试验基地挂片 6 个月,随后测试了该涂层的摩擦磨损性能。
-
2.2 涂层微纳尺度下磨蚀性能研究
-
目前,金属基材在微纳尺度的磨蚀行为研究已有开展,这为海洋环境中 PVD 涂层微纳磨蚀性能研究提供了新的研究思路。例如,LIU 等[77]采用基于原子力显微镜(Atomic force microscopy,AFM)的摩擦测试方法,研究了近原子尺度下 Ti 合金磨蚀特性。研究表明,在空气环境下,表面氧化物厚度约为 3.8 nm。随合金磨损深度增大,磨损由原子水平磨损(接触应力低于 2.4 GPa)转变为弹塑性驱动(接触应力高于 3.6 GPa)。而在磷酸盐缓冲液(Phosphate buffered saline,PBS)环境中,产生类似的磨损穿透过程需要更高的接触应力。随后,LIU 等[78]实现了大气以及 PBS 溶液中,低碳 CoCrMo 合金在亚纳米尺度上的磨蚀行为表征分析。基于 AFM “Image-wear-image(磨损图像)”研究了 CoCrMo 和 CoCrMoW 在摩擦前后的形貌,通过图像提取计算出微纳尺度区域磨损体积,并指出纳米磨损和磨蚀行为均与接触应力有关,名义阈值应力接近硬度值。当摩擦接触应力低于阈值应力时,不会观察到材料磨损或磨蚀,如图8 所示。
-
图8 在接触应力 9.5 GPa 条件下,材料表面单次划痕测试后 AFM“磨损图像”[78]
-
Fig.8 Under contact stress of 9.5 GPa, AFM “image-wear-image” result of material’s surface after single-scratch test [78]
-
2.3 涂层磨蚀理论计算研究
-
ZWIERZYCKI 等[79]归纳了在腐蚀和机械相互作用下金属材料的磨损解析模型,并提出相关计算算法。作者指出对摩副表面存在氧化物层,摩擦时在滑动作用下表面氧化层及腐蚀产物被去除,内部金属暴露。实际接触区域变形会导致基体破碎损失,新暴露基体表面发生电化学损伤,出现阳极氧化及再钝化,基体氧化导致出现新钝化层。在这个算法中,ZWIERZYCKI 等[79]假定机械和腐蚀相互作用具有循环特性;每个基本相互作用都会改变材料表面状况以及后续磨损过程;单个损伤过程引起的材料减少都基于大量实际测试结果,并用于每次交互作用的分析模块。基于销盘式试验测试与计算算法对比,模拟结果和试验数据最大偏差不超过平均值的 13%,并且在测试程序范围内可以分析应力以及外加电势对于腐蚀及机械磨损的影响。
-
NAZIR 等[80]对镍-石墨烯(Ni / GPL)纳米复合涂层的磨蚀行为进行了分析和建模,该模型适用于任何类型的纳米复合涂层和基体。对于纳米复合涂层,该模型中需要输入的参数包括泊松比、弹性模量、硬度、热弹性失配系数和固有晶粒尺寸。与 Ni / GPL 相比,1020 钢协同磨损腐蚀明显。这主要是由于 Ni / GPL 结构致密、晶粒细小,在磨损循环中仅仅小尺寸晶粒被拽出,受到的微犁削作用不严重。
-
WANG 等[81]基于材料变形的多物理场有限元模型,分析了磨损、腐蚀及其协同作用下 Al / Cu 纳米多层的磨蚀损伤过程。该模型考虑了磨损过程中的弹塑性机械变形,以及磨损后暴露内层间的电偶腐蚀作用。研究表明,单层厚度(10~100 nm)和取向(水平和垂直排列)会影响下表面应力、塑性应变分布以及局部表面腐蚀动力学,因此会影响涂层整体磨蚀损伤速率。进一步,WANG 等[82]开展了 Al 单晶磨蚀试验和计算结合研究,分析了 Al(100)、(110)和(111)单晶的力学、腐蚀和磨蚀性能,并通过电子背散射(Electron back scatter diffraction,EBSD) 表征了晶格旋转和位错密度变化。研究表明,Al 单晶磨蚀损伤速率对晶体取向不敏感。基于试验结果,作者提出了多物理场有限元模型,并通过绘制局部腐蚀动力学随钝化、结晶取向和位错密度的变化规律,成功预测了磨蚀过程中的去钝化及再钝化电流,证实了晶格转动主导了 Al 单晶的磨蚀行为 (图9)。
-
目前 PVD 抗磨蚀涂层的试验研究主要围绕具有较高耐腐蚀性的材料体系展开,并取得了积极进展。而在微纳尺度磨蚀以及理论计算研究方面,研究更多关注易腐蚀金属块体,对涂层材料关注较少。由于金属块体与涂层两者耐磨性及耐蚀性等差异大,特备是膜基界面对于材料磨蚀性能的影响规律难以明确,PVD 抗磨蚀涂层的失效机理尚不明确。
-
图9 Al 单晶磨蚀行为的多物理场有限元(FE)模型研究[82]
-
Fig.9 A multiphysics finite element (FE) model developed for tribocorrosion investigation of Al single crystals [82]
-
3 PVD 复合其他表面防护技术
-
通常 PVD 抗磨蚀涂层厚度较薄,且具有高内应力和高硬度的特点。因此,在某些疲劳 / 重载条件下,单一 PVD 涂层技术仍难以满足高硬度介质、高冲刷介质、高频率活动、长寿命和高可靠性部件的服役要求,磨蚀过程中的基体变形而导致涂层快速剥落及失效。目前,国内外已经尝试采用多种表面改性复合 PVD 涂层技术,研制开发出兼具高承载、长寿命的复合强化抗磨蚀防护涂层材料。
-
3.1 PVD 复合喷涂技术
-
POUGOUM 等[83]采用超音速火焰喷涂(High velocity oxygen fuel spraying,HOVF)和 PVD 技术在 304 不锈钢表面制备了 HOVF-Fe3Al / PVD-CrN 及 DLC 复合涂层。结果表明,在 3.5wt.% NaCl 溶液环境中,复合涂层将 HOVF-Fe3Al 腐蚀电流密度降低 1~3 个数量级,顶层 PVD-CrN 及 DLC 涂层显著降低了材料磨损。然而,一旦顶层 PVD 涂层剥落,CrN-Fe3Al 与 DLC-Fe3Al 电偶腐蚀反而加剧磨蚀损失。
-
ZHANG 等[84]采用 HOVF 和 PVD 技术在 Ti 合金表面制备了 HOVF-WC / PVD-DLC 复合涂层,如图10 所示,并对比研究了含氢 DLC 与无氢 DLC 涂层在不同载荷下的磨蚀行为。结果表明,在 3.5wt.% NaCl 溶液环境中,含氢 DLC 涂层在载荷小于 5 N 时具有较好的抗摩擦腐蚀性能。这主要是由于其较高的耐磨性和耐腐蚀性,但同时涂层具有高脆性和内应力,导致其在 10 N 高载荷下出现灾难性分层和失效。在 10 N 载荷下,无氢 DLC 涂层由于在磨蚀过程中表现出逐层剪切去除的特性,因此表现出更为优异的 12 h 长抗磨蚀特性,摩擦因数维持在 0.06。
-
图10 热喷涂及热喷涂复合 DLC 涂层结构及在 3.5wt.% NaCl 溶液中的磨蚀性能[84] (H、HD、HG 分别表示 HOVF-WC 涂层、HOVF-WC / 含氢 DLC 复合涂层、HOVF-WC / 无氢 DLC 复合涂层)
-
Fig.10 Tribocorrosion behavior of hydrogenated / hydrogen-free amorphous carbon coated WC-based cermet in 3.5wt.% NaCl solution [84] (H, HD and HG stands for WC-based cermet, hydrogenated amorphous carbon coated WC-based cermet and hydrogen-free amorphous carbon coated WC-based cermet)
-
3.2 PVD 复合微弧氧化技术
-
ZHANG 等[85]采用微弧氧化(Microarc oxidation,MAO)和 HiPIMS 技术在 TC17 合金表面先后制备了 MAO 层及 PVD-TiN 层。结果表明,在 3.5wt.% NaCl 溶液环境中,钛合金基体及 MAO 层由于摩擦与腐蚀协同作用出现了严重磨损,而采用复合涂层可实现低摩擦因数 0.17 和低磨损率 6.21×10−5 mm 3 /(N·m)。
-
YANG 等[86]采用微弧氧化和 PVD 技术在 AZ80 镁合金表面先后制备了 MAO 层及 Ti、N 共掺杂碳基涂层((Ti:N)-DLC),指出由于 MAO /(Ti:N)-DLC 强结合力、顶层 DLC 涂层润滑特性以及高化学稳定性,显著提升了镁合金耐磨性以及耐腐蚀特性。类似地,NING 等[87]采用微弧氧化和 PVD 技术在 AZ31B 镁合金表面先后制备了 MAO 层及碳基涂层。结果表明,在干摩擦条件下 MAO / Si / Si-DLC 可实现低摩擦因数 0.17 和低磨损率 3.18×10−6 mm 3 /(N·m)。而 MAO / Si / H-DLC 具有最低的腐蚀电流密度,为 3.26×10−7 A / cm2。
-
3.3 PVD 复合热扩散、双辉光等离子表面合金化、离子注入和表面氮化等技术
-
罗银等[88]采用热扩散渗(Thermal diffusion, TD)金属和 PVD 技术在 45 钢表面制备了 TD-Cr、 PVD-CrN 及 TD-Cr / PVD-CrN(Cr / CrN 复合涂层) 三种涂层。结果表明,TD-Cr / PVD-CrN 可有效提升 45 钢的表面抗磨蚀能力,延长其使用寿命。
-
闫江山等[89]采用双辉等离子表面冶金技术在 316L不锈钢表面制备了Cr中间层,随后采用DCMS 技术制备碳基涂层。研究结果表明,双辉 Cr 涂层与 316L 基体实现了涂层强结合,从而避免摩擦过程中涂层脆性剥落。该复合涂层结合力超过 50 N,在 3.5wt.% NaCl 溶液中具有低摩擦因数 0.055 和磨损率 3.22×10−7 mm 3 /(N·m),相较于 316L 和单层碳基涂层磨损率分别降低了 98.27%和 46.86%。
-
XIE 等[90]在 AM60 镁合金表面采用离子注入结合磁控溅射制备的 Al / AlN / CrAlN / CrN / MoS2涂层。相比镁合金基体,复合涂层磨损率降低了两个数量级,达 2.31×10−6 mm 3 /(N·m)。同时在 3.5wt.% NaCl 溶液环境中,腐蚀电流密度降低两个数量级,达 0.619 μA / cm2。
-
ALKAN等[91]在4140钢基体采用离子氮化结合磁控溅射制备的 CrN、TiN 及 AlTiN 涂层,相比单一 PVD 涂层改性金属基体,复合涂层的氮化层厚度在 25~50 μm,其在天然海水中的耐蚀性及抗磨蚀性能均显著提高。
-
综上,采用多种表面改性复合 PVD 涂层技术,可在保留 PVD 防护涂层优异性能的基础上,进一步提高界面结合力和涂层承载能力,为典型部件长寿命抗磨蚀防护技术提供了新优化思路。
-
4 PVD 抗磨蚀涂层典型应用
-
海水传动技术指以海水作为工作介质来实现能量传递的液压技术。以液压马达、液压泵等核心部件为例,其柱塞 / 缸孔、缸体 / 配流盘、滑靴 / 斜盘及轴承等均面临磨蚀损伤。围绕上述需求,中国科学院海洋关键材料重点实验室已实现了 PVD 抗磨蚀涂层在海水液压马达领域的应用,如图11 所示[92],合作企业产品已进入国外高端市场。同时,该实验室“揭榜”的中国科学院重要课题“深海装备关键部件表面润滑防护涂层关键技术”也深入开展了 PVD 抗磨蚀涂层在深海部件的高效防护基础研究与装机评价测试[93-95]。
-
图11 抗磨蚀涂层在海水液压马达领域的应用[92]
-
Fig.11 Application of anti-tribocorrosion coatings in seawater hydraulic motor [92]
-
低速柴油机作为船舶动力装置已广泛应用,但海洋大气可进入柴油机扫气箱和气缸,加重气缸和活塞环等腐蚀、磨损,影响柴油机性能和寿命。船舶与海洋工程动力系统国家工程实验室[96-97]在柱塞上涂覆了 TiN 涂层和 DLC 涂层后,通过 700 h 台架测试后发现,柱塞耐磨性和柱塞偶件使用寿命显著提高,目前已实现了公司柱塞批量化涂层加工,并有望在柴油机其他运动偶件上推广应用,如图12 所示。
-
图12 柱塞部件台架试验前后的磨损形貌[97]
-
Fig.12 Wear morphologies of the plunger before and after bench testing [97]
-
水下安全阀是水下生产系统的关键部件,在油气开采过程中发挥着重要作用,设计寿命为 15~20 年[98]。但是阀门长期处于内部高温、高压、高腐蚀性介质及海水环境中,因此对阀门密封性能提出了极高的要求。兰州理工大学温州泵阀研究院开发的球阀硬密封构件[99-100]在模拟高压工况下的开关试验表明,经 PVD 处理的硬密封球阀球体寿命为表面喷涂 Ni60 球体的 30 倍,为喷涂 CrC 和 WC 球体的 2.5 倍。
-
钻井泵阀体阀座在工作过程中要承受钻井液磨蚀及磨损,使用寿命短,直接影响钻井速度和生产效益。西南石油学院在阀体阀座原表面渗碳处理的基础上,采用 PVD 技术沉积 TiN 层[101]。现场试验结果表明,两种型号的钻井泵泵阀的使用寿命显著提高将近三倍。
-
随着直升机在恶劣海洋环境下及沿海一带服役时间增加,驾驶舱内零部件的磨损及锈蚀问题时有发生。哈尔滨飞机工业集团有限责任公司在操纵杆及螺钉等零件上制备了厚度 2~3 μm 的 AlTiN(C)梯度纳米涂层[102],表现出耐磨损性好、膜层薄、厚度尺寸公差小等优势。
-
5 结论与展望
-
目前在 PVD 防护涂层结构设计以及磨蚀失效机理探究等方面已取得一定的成果。
-
(1)碳基、氮基涂层是较常见的海洋抗磨蚀涂层体系,改善膜基界面结合强度、涂层致密性等是提升其抗磨蚀性能的关键因素。此外,以高熵涂层、 TMD 涂层等为代表的抗磨蚀涂层材料体系也获得关注。
-
(2)涂层海水磨蚀性能评价大部分基于在外加电位-磨蚀测试中的性能测试,引入理论计算揭示涂层磨蚀性能及相关失效机理已逐步展开。
-
(3)围绕高硬度介质、高冲刷介质、高频率活动、长寿命和高可靠性部件的服役要求,PVD 复合喷涂、微弧氧化等技术得到关注,为部件长寿命抗磨蚀防护提供了新思路。
-
(4)PVD 抗磨蚀涂层已在海水传动液压马达和液压泵、船舶低速柴油机柱塞、水下安全阀、钻井泵阀体阀座以及涉海直升机操纵杆等核心部件实现了典型应用,明显提升部件性能。
-
然而,在实际海洋环境下,存在高盐雾、高湿、温度交变、载荷压力等多场耦合作用,材料表 / 界面的摩擦、腐蚀等服役性能动态复杂,PVD 防护涂层仍然存在抗磨蚀性能不足及相关失效机制尚不清晰等问题,开发高性能 PVD 抗磨蚀防护涂层材料还面对诸多挑战。
-
(1)开展宏观及微观磨蚀试验,并结合理论计算,有利于深入揭示金属部件及 PVD 涂层在腐蚀及摩擦耦合工况下的损伤机理,指导涂层组分及多层 / 梯度界面结构优化设计。此外,将机器学习和大数据共享服务等用于涂层设计优化,可提高涂层研发效率。
-
(2)基于深海、近海、浅海等不同工况,开展涂层在多场耦合环境下(高盐雾、高湿、温度交变、载荷压力、高静水压、微生物污损)的磨蚀试验,研究金属部件及 PVD 涂层在腐蚀及摩擦耦合工况下的损伤机理,优化设计涂层组分及多层 / 梯度界面结构,制备符合实际应用需求的功能化抗磨蚀涂层。
-
(3)建立涉海管道内壁强结合抗磨蚀涂层制备方法。对于涉海管道等部件,其内壁同时承受腐蚀与摩擦耦合工况,须要系统研究 PVD 制备工艺(气体种类、刻蚀能量、刻蚀时间等参数),优化原位涂层制备方案,以进一步实现管内壁强结合与厚膜牢靠制备。
-
(4)目前相关材料研究仍以试验室评价为主,结合原位检测系统以及台架试验对金属及涂层材料服役安全性及服役寿命评价,提出相关失效机制和延寿方法,将有利于推动金属及涂层材料的实际应用。
-
参考文献
-
[1] 李小平.我国海洋工程装备产业发展回顾及展望[J].船舶,2023,5:1-11.LI Xiaoping.Review and prospect of offshore engineering equipment industry development in China[J].Ship & Boat,2023,5:1-11.(in Chinese)
-
[2] WANG Q,ZHANG H,HUANG J.China’s law and policy for the marine engineering equipment industry:A critical review[J].Regional Studies in Marine Science,2023,61:102902.
-
[3] WOOD R.Marine wear and tribocorrosion[J].Wear,2017,376-377:893-910.
-
[4] LIANG Y,WANG W,ZHANG Z,et al.Effect of material selection and surface texture on tribological properties of key friction pairs in water hydraulic axial piston pumps:A review[J].Lubricants,2023,11(8):324.
-
[5] 李太江,李巍,刘立营,等.风电机组关键部件磨蚀现状及防治研究进展[J].中国表面工程,2023,36(1):30-41.LI Taijing,LI Wei,LIU Liying,et al.Research progress on the current situation and prevention of erosion of key components of wind turbines[J].China Surface Engineering,2023,36(1):30-41.(in Chinese)
-
[6] 李川,罗茜,张薇.典型舰船用金属材料腐蚀与防护研究进展[J].装备环境工程,2023,20(8):80-89.LI Chuan,LUO Xi,ZHANG Wei.Research progress on corrosion and protection of typical warship metal materials[J].Equipment Environmental Engineering,2023,20(8):80-89.(in Chinese)
-
[7] 刘继锋.表面工程技术在海洋工程装备中的应用解析[J].中国资源综合利用,2018,36(11):179-181.LIU Jifeng.Application analysis of surface engineering technology in marine engineering equipment[J].China Resources Comprehensive Utilization,2018,36(11):179-181.(in Chinese)
-
[8] 陆军,吴平平.表面工程技术在海洋工程装备中的应用[J].机电工程技术,2019,48(8):160-161.LU Jun,WU Pingping.Application of surface engineering technology in marine engineering equipment[J].Mechanical & Electrical Engineering Technology,2019,48(8):160-161.(in Chinese)
-
[9] 徐雪莲,周名耀.沿海核电厂海水管道腐蚀与防护研究[J].核电工程与技术,2006,2:34-39.XU Xuelian,ZHOU Mingyao.Research on corrosion and protection of seawater pipe for nuclear power plant[J].Nuclear Power Engineering and Technology,2006,2:34-39.(in Chinese)
-
[10] 马永明,金焘,滕伯荣,等.船用离合器摩擦靴腐蚀故障分析与防护对策[J].船舶工程,2006,28(1):28-31.MA Yongming,JIN Tao,TENG Borong,et al.Corrosion fault and protection method of marine clutch friction-shoes[J].Ship Engineering,2006,28(1):28-31.(in Chinese)
-
[11] 黄科峰,许彪,吴树辉,等.抗磨蚀金属涂层在核电海水泵叶轮的应用[J].热喷涂技术,2012,4(1):53-58.HUANG Kefeng,XU Biao,WU Shuhui,et al.The anti-cavitation and abrasion resistant spray coating application of sea water pump impellers in the nuclear power[J].Thermal Spray Technology,2012,4(1):53-58.(in Chinese)
-
[12] 何磊,赵满,乔贝贝.美军航母腐蚀防控技术研制与应用进展[J].舰船科学技术,2017,39(8):189-193.HE Lei,ZHAO Man,QIAO Beibei.Progress in development and application of aircraft carrier corrosion prevention and control technology in U.S.Navy[J].Ship Science and Technology,2017,39(8):189-193.(in Chinese)
-
[13] 胡明,唐月阳,赵云,等.舰炮身管海洋服役环境与腐蚀机理分析[J].材料保护,2022,55(6):164-172.HU Ming,TANG Yueyang,ZHAO Yun,et al.Analysis of marine service environment and corrosion mechanism of naval gun barrel[J].Materials Protection,2022,55(6):164-172.(in Chinese)
-
[14] 崔洪芝,练晓娟.海洋耐蚀耐磨涂层研究进展[J].中国有色金属学报,2023,33(4):1179-1208.CUI Hongzhi,LIAN Xiaojuan.Research progress of corrosion and wear resistance coatings in marine engineering environment[J].The Chinese Journal of Nonferrous Metals,2023,33(4):1179-1208.(in Chinese)
-
[15] 何光进,丛大龙,王旋,等.物理气相沉积硬质耐腐蚀磨损防护涂层研究进展[J].装备环境工程,2022,19(8):120-134.HE Guangjin,CONG Dalong,WANG Xuan,et al.Hard corrosion-wear resistant protection coatings deposited by physical vapor phase[J].Equipment Environmental Engineering,2022,19(8):120-134.(in Chinese)
-
[16] 薛群基,王立平.类金刚石碳基薄膜材料[M].北京:科学出版社,2012.XUE Qunji,WANG Liping.Diamond like carbon films[M].Beijing:Science Press,2012.(in Chinese)
-
[17] WANG.H Q,ZHOU Q,OU Y X,et al.Tribocorrosion behaviors of nc-TiC/a-C:H nanocomposite coatings:in-situ electrochemical response[J].Thin Solid Films,2021,730:138719.
-
[18] 刘健,曹磊,万勇,等.硼掺杂DLC薄膜在海水环境中的腐蚀磨损性能[J].表面技术,2019,48(8):247-256.LIU Jian,CAO Lei,WAN Yong,et al.Corrosive wear properties of boron-doped diamond-like carbon films in sea-water environment[J].Surface Technology,2019,48(8):247-256.(in Chinese)
-
[19] SHEN Y,LUO J,LIAO X,et al.Tribocorrosion and tribological behavior of Ti-DLC coatings deposited by filtered cathodic vacuum arc[J].Diamond & Related Materials,2022,125:108985.
-
[20] KHODAYARI A,ELMKHAH H,ALIZADEH M,et al.Modified diamond-like carbon(Cr-DLC)coating applied by PACVD-CAPVD hybrid method:characterization and evaluation of tribological and corrosion behavior[J].Diamond & Related Materials,2023,136:109968.
-
[21] DONG C Y,DAI X,LV T S,et al.Dual-phase nanostructure of amorphous carbon and TaCB solid solution:robust high-performance protective coating for marine equipment[J].Ceramics International,2023,49:23153-23164.
-
[22] 刘孟奇,王建强,王宇.不同掺杂设计对类金刚石涂层海水环境摩擦学性能的影响[J].金属热处理,2020,45(3):186-190.LIU Mengqi,WANG Jianqiang,WANG Yu.Effect of doping design on tribological performances of DLC coating in seawater[J].Heat Treatment of Metals,2020,45(3):186-190.(in Chinese)
-
[23] XU X,ZHOU Y,LIU L,et al.Corrosion behavior of diamond-like carbon film induced by Al/Ti co-doping[J].Applied Surface Science,2020,509:144877.
-
[24] XU X,GUO P,ZUO X,et al.Understanding the effect of Al/Ti ratio on the tribocorrosion performance of Al/Ti co-doped diamond-like carbon films for marine applications[J].Surface and Coatings Technology,2020,402:126347.
-
[25] SUI X,XU R,LIU J,et al.Tailoring the tribocorrosion and antifouling performance of(Cr,Cu)-GLC coatings for marine application[J].ACS Applied Materials & Interfaces,2018,10:36531-36539.
-
[26] ZHANG J,WANG Y,ZHOU S,et al.Tailoring self-lubricating,wear-resistance,anticorrosion and antifouling properties of Ti/(Cu,MoS2)-DLC coating in marine environment by controlling the content of Cu dopant[J].Tribology International,2020,143:106029.
-
[27] SHI X,SHI Y,CHEN J,et al.Influence of gradient interlayer thickness on corrosion and tribological behavior of Ti-containing multilayer graphite-like carbon films[J].Wear,2022,488:204177.
-
[28] ZHAO Y,XU F,XU J,et al.Effect of the bias-graded increment on the tribological and electrochemical corrosion properties of DLC films[J].Diamond & Related Materials,2022,130:109421.
-
[29] ZHAO Y,XU F,ZHANG D,et al.Enhanced tribological and corrosion properties of DLC/CrN multilayer films deposited by HPPMS[J].Ceramics International,2022,48:25569-25577.
-
[30] LI L,GUO P,LIU L,et al.Structural design of Cr/GLC films for high tribological performance in artificial seawater:Cr/GLC ratio and multilayer structure[J].Journal of Materials Science & Technology,2018,34:1273-1280.
-
[31] LI L,LIU L L,LI X W,et al.Enhanced tribocorrosion performance of Cr/GLC multilayered films for marine protective application[J].ACS Applied materials & Interfaces,2018,10(15):13187-13198.
-
[32] LI H,LIU L L,GUO P,et al.Long-term tribocorrosion resistance and failure tolerance of multilayer carbon-based coatings[J].Friction,2022,10(10):1707-1721.
-
[33] LIU Y,LI S,ZHOU X,et al.Enhanced tribocorrosion property of a-C film under high hydrostatic pressure by high power pulsed magnetron sputter(HiPIMS)[J].Journal of Materials Research and Technology,2024,28:3052-3067.
-
[34] CHEN Q,CAO Y,XIE Z,et al.Tribocorrosion behaviors of CrN coating in 3.5wt.% NaCl solution[J].Thin Solid Films,2017,622:41-47.
-
[35] SHAN L,WANG Y,LI J,et al.Effect of N2 flow rate on microstructure and mechanical properties of PVD CrNx coatings for tribological application in seawater[J].Surface and Coatings Technology,2014,242:74-82.
-
[36] WO P C,MUNROE P R,JIANG Z T,et al.Enhancing toughness of CrN coatings by Ni addition for safety-critical applications[J].Materials Science and Engineering:A,2014,596:264-274.
-
[37] SHAN L,WANG Y,LI J,et al.Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater[J].Surface and Coatings Technology,2013,226:40-50.
-
[38] ZHANG J,SU X,SHAN L,et al.Preparation and tribocorrosion performance of CrCN coatings in artificial seawater on different substrates with different bias voltages[J].Ceramics International,2019,45(8):9901-9911.
-
[39] WANG Q,ZHOU F,DING X,et al.Microstructure and water-lubricated friction and wear properties of CrN(C)coatings with different carbon contents[J].Applied Surface Science,2013,268:579-587.
-
[40] BENKAHOUL M,ROBIN P,MARTINU L,et al.Tribological properties of duplex Cr-Si-N coatings on SS410 steel[J].Surface and Coatings Technology,2009,203(8):934-940.
-
[41] WANG Q,WU Z,ZHOU F,et al.Evaluation of crack resistance of CrSiCN coatings as a function of Si concentration via nanoindentation[J].Surface and Coatings Technology,2015,272:239-245.
-
[42] LEE J W,CHANG Y C.A study on the microstructures and mechanical properties of pulsed DC reactive magnetron sputtered Cr-Si-N nanocomposite coatings[J].Surface and Coatings Technology,2007,202:831-836.
-
[43] BOBZIN K,LUGSCHEIDER E,NICKEL R,et al.Wear behavior of Cr1−xAlxN PVD-coatings in dry running conditions[J].Wear,2007,263:1274-1280.
-
[44] CHIM Y C,DING X Z,ZENG X T,et al.Oxidation resistance of TiN,CrN,TiAlN and CrAlN coatings deposited by lateral rotating cathode arc[J].Thin Solid Films,2009,517:4845-4849.
-
[45] 单磊,王永欣,李金龙,等.CrN 和CrAlN涂层海水环境摩擦学性能研究[J].摩擦学学报,2014,34(4):469-475.SHAN Lei,WANG Yongxin,LI Jinlong,et al.Tribological behaviors of CrN and CrAlN coatings in seawater[J].Tribology,2014,24(4):469-475.(in Chinese)
-
[46] WANG H,WANG H,OU Y,et al.Structure,mechanical properties and tribocorrosion behaviours of superhard TiSiCN nanocomposite coatings[J].Surface & Coatings Technology,2023,470:129857.
-
[47] ZHOU F,QIAN J,ZHANG M,et al.Tribocorrosion properties of CrMoN/Ag coatings with various Ag contents in seawater[J].Surface & Coatings Technology,2023,473:129993.
-
[48] NORDIN M,LARSSON M,HOGMARK S.Mechanical and tribological properties of multilayered PVD TiN/CrN,TiN/MoN,TiN/NbN and TiN/TaN coatings on cemented carbide[J].Surface and Technology,1998,106:234-241.
-
[49] LI J,ZHENG H,SINKOVITS T,et al.Mono-and multiple TiN(Ti)coating adhesion mechanism on a Ti-13Nb-13Zr alloy[J].Applied Surface Science,2015,355:502-508.
-
[50] BONU V,JEEVITHA M,KUMAR V P,et al.Ultra-thin multilayered erosion resistant Ti/TiN coatings with stress absorbing layers[J].Applied Surface Science,2019,478:872-881.
-
[51] WANG Y,ZHANG J,ZHOU S,et al.Improvement in the tribocorrosion performance of CrCN coating by multilayered design for marine protective application[J].Applied Surface Science,2020,528:147061.
-
[52] WANG L P,QI J L,ZHANG K,et al.N-rich Zr3N4 nanolayers-dependent superhard effect and fracture behavior in TiAlN/Zr3N4 nanomultilayer films[J].Ceramics International,2020,46:19111-19120.
-
[53] LI H,MA D,WANG H,et al.Microstructure and oxidation behavior of CrCN/TiSiCN nano-multilayer coatings on zircaloy in high-temperature steam[J].Corrosion Science,2023,211:110883.
-
[54] MA F,LI J,ZENG Z,et al.Structural,mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates[J].Applied Surface Science,2018,428:404-414.
-
[55] GABRERA G,CAICEDO J C,AMAYA C,et al.Enhancement of mechanical and tribological properties in AISI D3 steel substrates by using a non-isostructural CrN/AlN multilayer coating[J].Materials Chemistry and Physics,2011,125:576-586.
-
[56] SHITTU J,SADEGHILARIDJANI M,POLE M,et al.Tribo-corrosion response of additively manufactured high-entropy alloy[J].npj Materials Degradation,2021,5(1):1-8.
-
[57] 李星,王亚强,张金钰,等.高熵合金涂层的研究进展[J].表面技术,2023,52(1):1-20.LI Xing,WANG Yaqiang,ZHANG Jinyu,et al.Research progress of high-entropy alloy coatings[J].Surface Technology,2023,52(1):1-20.(in Chinese)
-
[58] WANG Z,ZHANG S.Research and application progress of high-entropy alloys[J].Coatings,2023,13(11):1916.
-
[59] CHEN S,CAI Z,LU Z,et al.Tribo-corrosion behavior of ValTiCrCu high-entropy alloy film[J].Materials Characterization,2019,157:109887.
-
[60] LU Z,MAO Y,REN S,et al.A novel design of VAlTiCrCu/WC alternate multilayer structure to enhance the mechanical and tribo-corrosion properties of the high-entropy alloy coating[J].Materials Characterization,2021,176:111115.
-
[61] ZENG Q,XU Y.A comparative study on the tribocorrosion behaviors of AlFeCrNiMo high entropy alloy coatings and 304 stainless steel[J].Materials Today Communications,2020,24:101261.
-
[62] CHEN S,YAN W,LIAO B,et al.Effect of temperature on the tribocorrosion and high-temperature tribological behaviour of strong amorphization AlCrNiTiV high entropy alloy film in a multifactor environment[J].Ceramics International,2023,49(4):6880-6890.
-
[63] CHEN S,YAN W,ZHANG Y,et al.Effect of thermal shock on properties of a strongly amorphous AlCrTiZrMo high-entropy alloy film[J].Materials,2023,16(16):5629.
-
[64] WANG G,XU J,CHEN Y,et al.Assessment of the tribocorrosion performance of a(TiZrNbTaMo)C refractory high entropy alloy carbide coating in a marine environment[J].Journal of Alloys and Compounds,2023,965:171342.
-
[65] 刘鑫宇,张艳,蔡吴敏,等.(CrNbTiMoZr)C 薄膜在人工海水环境中的摩擦腐蚀性能[J].中国表面工程,2022,35(2):35-44.(in Chinese)LIU Xinyu,ZHANG Yan,CAI Wumin,et al.Friction and corrosion properties of(CrNbTiMoZr)C coating in artificial seawater[J].China Surface Engineering,2022,35(2):35-44.(in Chinese)
-
[66] SI Y,WANG G,WEN M,et al.Corrosion and friction resistance of TiVCrZrWNx high entropy ceramics coatings prepared by magnetron sputtering[J].Ceramics International,2022,48(7):9342-9352.
-
[67] ZHANG C,LU X,WANG C,et al.Tailoring the microstructure,mechanical and tribocorrosion performance of(CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow[J].Journal of Materials Science & Technology,2022,107:172-182.
-
[68] ZHANG C,LU X,ZHOU H,et al.Construction of a compact nanocrystal structure for(CrNbTiAlV)Nx high-entropy nitride films to improve the tribo-corrosion performance[J].Surface and Coatings Technology,2022,429:127921.
-
[69] NIU D,ZHANG X,SUI X,et al.Tailoring the tribo-corrosion response of(CrNbTiAlV)CxNy coatings by controlling carbon content[J].Tribology International,2023,179:108179.
-
[70] ZENG C,PU J,WANG H,et al.Influence of microstructure on tribological properties and corrosion resistance of MoS2/WS2 films[J].Ceramics International,2020,46(9):13774-13783.
-
[71] SHI X,HE P,SUN S,et al.Tailoring the corrosion and tribological performance of Ti-modified MoS2-based films in simulated seawater[J].Journal of Materials Research and Technology,2022,21:576-589.
-
[72] JIANG A,CAO X,WANG Z,et al.Friction performance and corrosion resistance of MoS2/DLC composite films deposited by magnetron sputtering[J].Results in Physics,2021,25:104278.
-
[73] LIU Y,LIU L,LI S,et al.Accelerated deterioration mechanism of 316L stainless steel in NaCl solution under the intermittent tribocorrosion process[J].Journal of Materials Science & Technology,2022,121:67-79.
-
[74] 高溥,何东青,郑韶先,等.碳基和氮化物基涂层的摩擦-腐蚀交互行为的原位研究[J].摩擦学学报,2015,35(2):138-146.GAO Pu,HE Dongqing,ZHENG Shaoxian,et al.In-situ study of tribocorrosion behavior of carbon-based and nitride-based coatings[J].Tribology,2015,35(2):138-146.
-
[75] HOCHE H,PUSCH C,OECHSNER M.Corrosion and wear protection of mild steel substrates by innovative PVD coatings[J].Surface & Coatings Technology,2020,391:125659.
-
[76] 商克栋,郑韶先,鞠鹏飞,等.南海海洋大气环境二硫化钼纳米多层薄膜摩擦学行为研究[J].摩擦学学报,2018,38(4):417-429.SHANG Kedong,ZHENG Shaoxian,JU Pengfei,et al.Tribological performance of MoS2/Pb-Ti nano-multilayer coating applied in marine atmospheric environment of south China sea[J].Tribology,2018,38(4):417-429.(in Chinese)
-
[77] LIU Y,ZHU D,L.GILBERT J.Sub-nano to nanometer wear and tribocorrosion of titanium oxide-metal surfaces by in situ atomic force microscopy[J].Acta Biomaterialia,2021,126:477-484.
-
[78] LIU Y,MACE A,LEE H,et al.Single asperity sub-nano to nanoscale wear and tribocorrosion of wrought CoCrMo and additively manufactured CoCrMoW alloys[J].Tribology International,2022,174:107770.
-
[79] ZWIERZYCKI W,STACHOWIAK A.Corrosive and mechanical wear in sliding pairs calculation[J].Solid State Phenomena,2006,113:359-362.
-
[80] NAZIR M,KHAN Z,SAEED A,et al.Synergistic wear-corrosion analysis and modelling of nanocomposite coatings[J].Tribology International,2018,121:30-44.
-
[81] WANG K,CAI W.Modeling the effects of individual layer thickness and orientation on the tribocorrosion behavior of Al/Cu nanostructured metallic multilayers[J].Wear,2021,477:203849.
-
[82] WANG K,ZHANG Z,DANDU R,et al.Understanding tribocorrosion of aluminum at the crystal level[J].Acta Materialia,2023,245:118639.
-
[83] POUGOUM F,QIAN J,MARTINU L,et al.Study of corrosion and tribocorrosion of Fe3Al based duplex PVD HVOF coatings against alumina in NaCl solution[J].Surface & Coatings Technology,2019,357:774-783.
-
[84] ZHANG Y,LI H,CUI L,et al.Comparative study on tribocorrosion behavior of hydrogenated/hydrogen-free amorphous carbon coated WC-based cermet in 3.5wt.% NaCl solution[J].Corrosion Science,2024,227:111738.
-
[85] ZHANG Y,CHEN F,ZHANG Y,et al.Enhanced corrosion and tribocorrosion properties of duplex TiN-MAO coating prepared on TC17 alloys[J].Surface & Coatings Technology,2022,444:128662.
-
[86] YANG W,KE P,FANG Y,et al.Microstructure and properties of duplex(Ti:N)-DLC/MAO coating on magnesium alloy[J].Applied Surface Science,2013,270:519-525.
-
[87] NING C,CUI X,SHANG L,et al.Structure and properties of different elements doped diamond-like carbon on micro-arc oxidation coated AZ31B Mg alloy[J].Diamond & Related Materials,2020,106:107832.
-
[88] 罗银,万强,曹道成,等.45 钢表面 TD-Cr/PVD-CrN 复合涂层磨蚀性能[J].表面技术,2023,52(7):455-463.LUO Yin,WAN Qiang,CAO Daocheng,et al.Abrasive properties of TD-Cr/PVD-CrN composite coatings on 45 steel surfaces[J].Surface Technology,2023,52(7):455-463.(in Chinese)
-
[89] 闫江山,郭鹏,林乃明,等.双辉等离子渗铬界面层对类石墨碳基涂层力学及磨蚀性能的影响[J].表面技术,2024,53(1):169-181.YAN Jiangshan,GUO Peng,LIN Naiming,et al.Effect of double glow plasma surface alloying Cr buffer layer on mechanical and tribocorrosion properties of graphite-like carbon composite coating[J].Surface Technology,2024,53(1):169-181.(in Chinese)
-
[90] XIE Z,LUO Z,YANG Q,et al.Improving anti-wear and anti-corrosion properties of AM60 magnesium alloy by ion implantation and Al/AlN/CrAlN/CrN/MoS2 gradient duplex coating[J].Vacuum,2014,101:171-176.
-
[91] ALKAN S,GÖK,M.Influence of plasma nitriding pre-treatment on the corrosion and tribocorrosion behaviours of PVD CrN,TiN and AlTiN coated AISI 4140 steel in seawater[J].Lubrication Science,2022,34(2):67-83.
-
[92] 刘二勇,曾志翔,赵文杰.海水环境中金属材料腐蚀磨损及耐磨防腐一体化技术的研究进展[J].表面技术,2017,46(11):149-157.LIU Eryong,ZENG Zhixiang,ZHAO Wenjie.Corrosive wear and integrated anti-wear & anti-corrosion technology metallic materials in seawater[J].Surface Technology,2017,46(11):149-157.(in Chinese)
-
[93] ZHOU X,ZHANG Y,GUO P,et al.Tribological behavior of Cr/a-C multilayered coating against PEEK under dry sliding condition[J].Wear,2023,518-519:204625
-
[94] LI S,LI H,MA G,et al.Dense Cr/GLC multilayer coating by HiPIMS technique in high hydrostatic pressure:microstructural evolution and galvanic corrosion failure[J].Corrosion Science,2023,225:111618.
-
[95] LIU Y,LIU L,LI S,et al.Accelerated deterioration mechanism of 316L stainless steel in NaCl solution under the intermittent tribocorrosion process[J].Journal of Materials Science & Technology,2022,121:67-79.
-
[96] 钟航,王永坤,秦洪,等.TiN 与DLC涂层在船用低速柴油机柱塞上的应用研究[J].材料保护,2022,55(5):29-34.ZHONG Hang,WANG Yongkun,QIN Hong,et al.Corrosive wear and integrated anti-wear & anti-corrosion technology metallic materials in seawater[J].Materials Protection,2022,55(5):29-34.(in Chinese)
-
[97] 王永坤,秦洪,杨静,等.含氢类金刚石涂层在船用柴油机柱塞上的应用[J].金属热处理,2020,45(11):226-231.WANG Yongkun,QIN Hong,YANG Jing,et al.Applicant of hydrogenated diamond like coating on plunger for marine diesel engine[J].Heat Treatment of Metals,2020,45(11):226-231.(in Chinese)
-
[98] 李力,董桃云.水下安全阀关键技术研究[J].船舶标准化与质量,2019,3:12-15.LI Li,DONG Taoyun.Research on key technologies of underwater safety valve[J].Shipbuilding Standardization & Quality,2019,3:12-15.(in Chinese)
-
[99] 黄盛东.硬密封球阀密封件PVD硬化处理与寿命试验研究[D].兰州:兰州理工大学,2020.HUANG Shengdong.Study on PVD coating strengthening and life test of metal sealed ball valve seals[D].Lanzhou:Lanzhou University of Technology,2020.(in Chinese)
-
[100] 杨鼎瑞.硬密封固定球球阀密封性能研究及结构优化[D].兰州:兰州理工大学,2021.YANG Dingrui.Research and optimization on sealing performance of hard seal fixed ball valve[D].Lanzhou:Lanzhou University of Technology,2021.(in Chinese)
-
[101] 汤富荣,吕生仁,马德岩,等.钻井泵阀体阀座的物理气相沉积处理[J].石油机械,1995,11:43-46.TANG Furong,LÜ Shengren,MA Deyan,et al.Physical vapor deposition treatment of drill pump valve body and seat[J].China Petroleum Machinery,1995,11:43-46.(in Chinese)
-
[102] 王朝琳,刘瑞良,米南,等.直升机驾驶舱内零部件黑色无机膜层适用性研究[J].电镀与精饰,2023,45(12):103-109.WANG Zhaolin,LIU Ruiliang,MI Nan,et al.Study on the applicability of black inorganic films for the components in the cockpit of a helicopter[J].Plating & Finishing,2023,45(12):103-109.(in Chinese)
-
摘要
先进表面涂层防护技术是海工装备关键金属运动系统磨损与腐蚀防护、保障海工装备高性能长寿命可靠服役的关键途径。其中,物理气相沉积(PVD)抗磨蚀防护涂层材料兼具耐老化、耐磨性、耐腐蚀等优势,特别是可满足深海或远海机械系统相关精密运动部件的高可靠性与稳定性要求,是抗磨蚀防护的有效技术手段之一。围绕海洋环境 PVD 抗磨蚀防护涂层材料及应用技术发展现状,重点介绍现有防护涂层材料体系,碳基、氮基涂层因优异耐磨及耐腐蚀性能而获得较多关注,改善膜基界面结合强度及涂层致密性等是提升其抗磨蚀性能的关键因素,而高熵涂层及过渡金属二硫属化物(TMD)涂层磨蚀防护性能也成为基础及应用研究的热点。总结主要的涂层磨蚀评价方法,目前在外加电位下开展涂层磨蚀测试性能评价的应用较多,引入理论计算研究涂层磨蚀性能及相关失效机理已逐渐开展。围绕疲劳 / 重载下磨蚀防护需求,介绍 PVD 复合喷涂、微弧氧化、热处理等兼具高承载、长寿命的复合强化抗磨蚀防护涂层材料技术的新进展。列举 PVD 抗磨蚀涂层在海水传动液压马达和液压泵、船舶低速柴油机柱塞、水下安全阀、钻井泵阀体阀座以及涉海直升机操纵杆等核心涉海装备部件上的典型应用,并对海洋环境 PVD 抗磨蚀防护涂层的未来发展方向进行思考与展望,为进一步发展高性能海洋抗磨蚀涂层材料技术提供参考。
Abstract
Tribocorrosion is a material-degradation phenomenon resulting from interactive effects between wear and corrosion. For various marine equipment, their key metal motion systems are typically affected by the combined effect of mechanical wear and chemical corrosion under the harsh marine environment, which can directly limit their stability and safety. Thus, comprehensive investigations into tribocorrosion behavior is critical for the design of appropriate engineering materials under the marine environment. Advancing marine exploration and deep-sea development necessitates surface and coating techniques to ensure favorable anti-corrosion and anti-wear performances for moving mechanical components. Many conventional techniques have been used to prepare protective coatings, such as spraying, high-energy beam surface modification, and physical vapor deposition (PVD). Among the diverse developed protective coatings, those realized via PVD exhibit favorable properties, including high corrosion resistance and excellent mechanical performance, which can effectively protect precision moving components used in deep-sea or offshore mechanical systems; thus, they are one of the most effective strategies in this field. This article focuses primarily on the development of anti-tribocorrosion coatings achieved via PVD and technologies used in the marine environment, in addition to the main scientific and technical issues encountered in the field. First, the tribocorrosion performance of carbon-based, nitride-based, high-entropy alloy, and transition metal dichalcogenide coatings are introduced, and the role of components and multilayer / nano-multilayer / nanocomposite / gradient structures on their tribocorrosion performance and related failure mechanism are summarized. The multilayer interface in coatings achieved via PVD not only significantly improves their hardness by hindering dislocation movement but also improves their corrosion resistance by hindering the diffusion of H2O, O2, Cl− , and Na+ corrosives. To evaluate the tribocorrosion performance of coatings, electrochemical and tribological tests are primarily conducted in early research; currently, tribocorrosion tests are performed using a tribometer equipped with a three-electrode electrochemical system. By adopting in-situ atomic force microscopy (AFM) and an AFM-based “image-wear-image” tribology method, researchers are currently investigating subnanoscale and nanoscale wear, the tribocorrosion phenomenon, as well as the oxide growth mechanism of metallic materials. For advanced synergistic wear-corrosion models, a novel two-dimensional predictive model has been developed for predicting the synergetic wear-corrosion reliability of Ni / GPL and steel. Additionally, a combined experimental and computational investigation has been performed using Al single crystals to develop a crystal-based tribocorrosion modeling framework that considers the effects of lattice reorientation and dislocations on surface corrosion. Additionally, new strategies that combine PVD with other surface-protection technologies have been developed, for example, duplex coating systems formed via the PVD of CrN or carbon-based coatings and thermal layer spraying using a high-velocity oxyfuel. Using these methods, material losses due to the synergistic effects of wear and corrosion can be reduced. In particular, hydrogenated carbon-based coatings present high tribocorrosion resistances under low loads due to their high hardness and excellent corrosion resistance; however, they exhibit catastrophic delamination under heavy loads, whereas hydrogen-free carbon-based coatings exhibit better tribocorrosion performance owing to their gradual shearing characteristic. Additionally, carbon-based coatings can enhance the anti-corrosion properties of microarc oxidation (MAO) coatings on magnesium alloys. The superior low-friction and anti-corrosion properties of carbon-based coatings / MAO render them preferable as protective coatings on magnesium alloys. Cr layers achieved via thermal diffusion metallization and CrN coatings deposited via PVD are used to strengthen the surface of 45 steel, thus improving its surface hardness and abrasion resistance. By implementing ion implantation and Al / AlN / CrAlN / CrN / MoS2 gradient duplex coatings, both the anti-wear and anti-corrosion properties of AM60 magnesium alloy are improved. For AISI 4140 steel, plasma nitriding applied before the coating significantly improves the corrosion and tribocorrosion resistances of PVD CrN, TiN, and AlTiN coatings. Typical applications of anti-tribocorrosion coatings achieved via PVD include seawater-pump plungers, hydrostatic slipper bearings, ball valves, and components of a helicopter-cockpit instrument panel. Hydrogenated diamonds coated with Cr and WC as transition layers are prepared on the plunger of marine diesel engines. These coatings can significantly improve the hardness and elastic modulus while decreasing the friction factor under heavy-diesel-oil environments. After a bench test is performed, the wear marks on the surface of the plunger with coating are extremely narrow and shallow. For drill pump valves, implementing TiN coatings can increase their service life by three times. In the cockpit of a helicopter, multigradient nano-black coatings achieved via PVD are thin and the thickness tolerance is low; additionally, these coatings satisfy the requirements of the salt spray test. Finally, the development and application of anti-tribocorrosion coatings achieved via PVD under the marine environment are proposed. Machine-learning and big-data sharing services should be used to comprehensively understand the damage mechanism; the optimization and design of the suitable coating should account for the actual operating conditions, such as deep sea, nearshore, and shallow sea; advanced coating equipment should be developed for the inner wall of certain pipelines; and in-situ evaluations and bench experiments should be performed to evaluate the service life of metal mechanical components and coating materials. This review presents a comprehensive and systematic report pertaining to anti-tribocorrosion coatings achieved via PVD for marine applications.
关键词
海洋环境 ; 物理气相沉积(PVD)涂层 ; 磨蚀性能 ; 评价方法 ; 典型应用