-
0 前言
-
变速、重载、冲击等恶劣工况下,机械设备容易出现由润滑不足而导致的设备故障甚至安全生产事故[1-3]。改善机械设备润滑条件是降低摩擦磨损、减少腐蚀、延长设备使用寿命的有效手段。润滑油作为抗磨减摩的重要手段广泛运用于机械设备。
-
在现有润滑油添加剂中,抗氧化剂和极压抗磨剂因其优异的润滑性能得到了广泛应用,将抗氧化剂的稳定润滑性能与极压耐磨剂的优异润滑特性相结合[4-6],可以在恶劣工况下最大程度地改善润滑效果[7-9]。研究表明,复合型润滑油添加剂可以综合多种添加剂的功能,能够显著提升润滑油的性能[10-12]。
-
随着纳米技术的飞速发展,纳米粒子作为润滑油添加剂已凸显出优越的综合性能。纳米粒子尺寸小,扩散能力强,比表面积大,经过修饰后具有良好的稳定性且易分散在有机溶剂,同时纳米粒子具有高表面活性,容易沉积于磨损表面形成剪切层,可以对摩擦磨损表面进行修复[13-15]。相关研究表明纳米硼酸盐具有良好的抗磨减摩和极压性能及良好的生物降解性[16-17]。纳米硼酸钙(CaB)具有承载能力强、抗氧化温度范围高及抗磨减摩性能好的优异特性[18],常被用作极压抗磨添加剂,已有学者开展了纳米 CaB 与其他添加剂复合的研究,证明其具有良好的协同抗磨作用。例如:张汪阳等[19]以硼砂、硝酸钙和氧化石墨烯为原料制备硼酸钙 / 氧化石墨烯复合微粒,并发现复合微粒添加剂具有良好的减摩抗磨性能。YANG 等[20]采用非均相沉积法制备 BN / 硼酸钙纳米复合颗粒(BCBNs),研究发现,相比未添加之前,BCBNs 可分别降低 23.6% 和 25.2%的平均摩擦因数和磨损面积。因此,本文选用纳米 CaB 作为复合润滑油添加剂中的极压抗磨剂。
-
有机钼类润滑油添加剂具有优异的抗氧化性,在条件达到要求时可以发生分解,分解产物会发生化学反应,生成含钼元素的保护膜,防止表面发生氧化反应提高润滑油的摩擦学性能[21-23],钼型润滑材料作为抗氧化剂使用可减少因润滑油氧化而产生油泥、不溶性极性胶质及沉淀物的现象发生,也可增大润滑油膜的强度,在高冲击和高扭矩工况下表现出优异的摩擦学性能。目前常见的钼型润滑剂有二烷基二硫代磷酸钼(MoDDP,C28H60O4P2S4Mo) 和二烷基二硫代氨基甲酸钼( MoDTC, C34H72Mo2N2O2S6),这种润滑剂能够均匀地溶于油中,并稳定分散,解决了在油中的溶解性问题,成为理想的润滑油添加剂,目前还出现了新型的钼胺络合物(RS-568),不含有 S 和 P,更适应环保政策对润滑油提出的要求。这三种有机钼均具有良好的减缓氧化性能,且都具有较高的钼含量,能降低摩擦副表面摩擦磨损,与常规的极压抗磨剂具有良好的协同作用[24],可以应用于发动机和工业用油。谢凤[25]研究发现 MoDDP、MoDTC、非硫磷有机钼等 3 种有机钼化合物在润滑脂中具有良好的抗磨性能,其中高浓度的 MoDDP 在高负荷下的抗磨性能比较显著,非硫磷有机钼在低负荷下的抗磨性能比较突出。DU 等[24]也提出 MoDDP 与 ZDDP 对矿物油的抗氧化作用有协同增效作用,且添加剂具有降解作用。
-
本文拟将有机钼和纳米硼酸钙结合,选用应用领域广泛的液体石蜡作为基础油用于制备复合润滑油添加剂,综合利用其抗氧化性能以及极压抗磨性能。首先开展添加不同质量分数的三种有机钼添加剂的四球机润滑试验,确定复合润滑油添加剂中有机钼的种类及最佳配比。然后,将有机钼与纳米 CaB 复合,制备复合润滑油添加剂,针对变速重载的恶劣工况,开展复合润滑油添加剂的环块试验,研究复合添加剂的润滑效果及减摩抗磨机理,以期获得具备优异润滑性能的复合添加剂,从而进一步提升机械设备在恶劣工况下的运行稳定性和安全性。
-
1 试验部分
-
1.1 有机钼的选择及性能参数
-
本文采用 SGW-10A 四球机(济南恒旭试验机技术有限公司,济南)对 MoDDP、MoDTC(润英联添加剂有限公司,上海)以及 RS-568(锐圣研化工科技有限公司,广州)三种钼型润滑剂的润滑性能进行评价分析,确定复合润滑油添加剂中有机钼的种类及最佳配比。基础油选用液体石蜡油(阿拉丁生化科技股份有限公司,上海),三种有机钼添加剂的性能参数如表1 所示。
-
具体试验流程如下:用烧杯量取 10 mL 基础油,在电子天平上滴定有机钼,超声波分散 10 min,分别制备质量分数为 0.5、1.0、1.5、2.0、3.0 wt.%的三种系列的有机钼润滑油试样,开展不同浓度的三种钼型添加剂润滑油的摩擦磨损试验。依据国家标准 GB / T3142—2019 和 NB / SH / T 0189—2017,利用 SGW-10A 四球机在载荷 147 N、转速 1 200 r / min、温度 75℃的工况下开展试验,试验时间 60 min,采用直径 12.7 mm 的 GCr15 钢球。每组试验重复 5 次,处理数据时去掉一个最大值和一个最小值,保留中间三组数据求均值,并计算标准差。
-
1.2 纳米 CaB 的制备与改性
-
利用分析纯氢氧化钙和硼酸(购于 Sigma-Aldrich 公司)制备纳米 CaB,将两种试剂分别溶于去离子水制得 0.04 mol / L 的氢氧化钙乳浊液和 0.2 mol / L 的硼酸溶液。然后,用硼酸缓慢滴定氢氧化钙乳浊液,将反应后的浊液进行真空抽滤,获得白色粉末状 CaB 并干燥,干燥完毕后对其进行球磨,最终完成纳米 CaB 的制备。此外,为了提高纳米 CaB 在基础油中的分散稳定性,在制备纳米 CaB 润滑油时,添加油酸作为改性剂,在 60℃下加热搅拌、超声震荡 1 h,并静置一个月,实现对纳米 CaB 油样进行改性。
-
1.3 复合润滑油添加剂的制备
-
基于本文前期的研究成果,发现 CaB 作为单一添加剂,添加质量分数为 2 wt.%的 CaB 时,润滑性能最优,与减摩抗磨性能最优的 1.5 wt.% MoDDP 复合,纳米 CaB 的最优添加质量分数为 3 wt.% [26]。因此参照该比例,制备出 1.5 wt.%MoDDP / 3.0 wt.%CaB 复合润滑油添加剂。此外,作为对比试验,设计了四种润滑油样参与试验,分别为基础油、1.5 wt.% MoDDP 油样、2 wt.% CaB 油样以及 1.5 wt.% MoDDP / 3.0 wt.% CaB 的复合润滑油。制备流程如下:将 MoDDP 和自制的经油酸改性的纳米 CaB 分别与基础油混合,制备出 1.5 wt.% MoDDP 油样以及 2 wt.% CaB 油样,将 1.5 wt.%的 MoDDP 滴定于 3.0 wt.%的 CaB 润滑油样中[27],在 40℃温度下超声波分散 20 min,分散后制得 1.5 wt.% MoDDP / 3.0 wt.% CaB 的复合润滑油。
-
1.4 复合润滑油添加剂的摩擦磨损试验
-
针对机械设备在变速重载的恶劣工况,为了探讨 MoDDP 与 CaB 润滑油添加剂在工程实际应用中的可靠性,本文在 YMJS-30G 冲击重载环块摩擦磨损试验机上设计并开展重载、变速、冲击试验,研究恶劣工况下纳米 CaB / MoDDP 复合添加剂的抗磨减摩性能。本试验所用摩擦副为环和块,环为 45 钢,标准试样环外径尺寸为φ49.22 mm,高度为 13.08 mm。试验采用的块为高碳铬轴承钢,标准试样块的长和宽均为 12.32 mm,高为 18.05 mm。试样环采用渗碳、调质处理:首先,950℃下渗碳 5 h,炉冷至 850℃后空冷 2 h;其次,850℃淬火 1 h,空冷 2 h 后 200℃回火,然后水冷、空冷。试样块热处理方式为:首先,850℃淬火,油冷;其次,回火 220℃,油冷。环和块试样的表面和力学性能参数如表2 所示。
-
环块试验机的摩擦副符合 Hertz 线接触理论,依据 Hertz 接触模型确定试验载荷。根据下式计算:
-
式中,Fn 为施加的试验力(N),L 为环块线接触的长度(mm),E1、E2 为环和块的弹性模量(GPa), ν1、ν2 为环块的泊松比,ρ1 和 ρ2 分别为环和块的曲率半径(mm)。重载下齿轮的接触应力范围为 400~800 MPa,均小于试样环块的屈服极限,因此环块摩擦副的接触应力范围设计为 400~800 MPa,代入式(1)计算获得重载对应的试验力范围为 580.2~1 078.3 N,因此确定重载载荷为 1 kN。具体试验设计及参数如下:将试验力设置为 1 kN,设置初始温度为 40℃,未加冲击载荷,试验时间 t=120 min,探究四种润滑油在 100、200、300 r / min 三种不同转速下摩擦因数的变化;设置温度 T=40℃,试验时间 t=120 min,转速 n=300 r / min,开展四种润滑油在有冲击下的摩擦试验,首先将冲击调压阀调到最低,试验力设置为 1 kN 后通气,冲击载荷设定为 50 N,冲击启停时间分别设置为 T0=1 s,T1=1 s,冲击载荷加载曲线如方波,波动幅度为 50 N,周期为 2 s,设置完毕后打开冲击启动选项,通过调压阀缓慢加大进气量,观察试验力变化达到要求后锁定调压阀,开始试验。试验结束后将冲击停止并且调低调压阀,冲击下的摩擦试验结束后,与相同工况下未加冲击的摩擦试验进行对比分析。以上每组试验均重复三次。
-
2 结果与讨论
-
2.1 不同有机钼添加剂的摩擦学性能
-
MoDDP、MoDTC 和 RS-568 三种有机钼在不同质量分数时的摩擦因数与磨斑直径的变化如图1所示。图中横坐标的 0 点代表基础油的摩擦因数和磨损量。结果显示,三种有机钼中,RS-568 的减摩性能最差,除了 1.0 wt.% RS-568,其他成分的摩擦因数比基础油都高,其原因是 RS-568 的黏度相对偏高,添加量过大会导致摩擦力矩增大进而摩擦因数增加。1.5 wt.% MoDDP 的减摩效果最好,与基础油相比可降低 41.0%的摩擦因数。从图1b 可以看出,相对于基础油,三种有机钼都能够有效降低磨斑直径,其中 MoDDP 的抗磨效果最好,相对于基础油 MoDDP 降低了 48.9%的磨斑直径。
-
图1 MoDDP、MoDTC 和 RS-568 在质量分数为 0、0.5、1.0、1.5、2.0、3.0 wt.%的摩擦因数与磨斑直径的变化规律
-
Fig.1 Variation of friction factor and wear spot diameter of MoDDP, MoDTC and RS-568 with mass fractions of 0, 0.5, 1.0, 1.5, 2.0 and 3.0 wt.%
-
为了对不同有机钼润滑油添加剂的抗磨效果进一步分析,采用 OLYMPUS 超景深数码显微镜观测磨斑形貌并且采集表面轮廓曲线数据,分别对添加质量分数为 1.5 wt.%的 MoDTC、RS-568、 MoDDP 的润滑条件下的钢球表面磨损形貌进行拍摄和测量,放大倍数为 300 倍,如图2 所示。结果显示,MoDTC 的磨斑直径相对较大,磨斑与未摩擦区域分界线清晰,其表面沟痕较深,最深处大于 5 μm,因此 MoDTC 抗磨性最差。MoDDP 的磨斑直径最小为 0.3 mm,摩擦区域与未摩擦区域分界处模糊,且表面轮廓曲线波动幅值小,磨痕较浅。因此选择质量分数为 1.5 wt.%的 MoDDP 作为钼型润滑油添加剂,以及与纳米 CaB 复合的有机钼润滑油添加剂。
-
图2 添加 1.5 wt.%的 MoDTC、RS-568 和 MoDDP 的磨斑形貌和轮廓曲线
-
Fig.2 Morphology and contour curves of 1.5 wt.% MoDTC, RS-568 and MoDDP added
-
2.2 不同转速下润滑油添加剂的摩擦学性能
-
在 1 kN 载荷下,转速对四种润滑油添加剂的平均摩擦因数的影响结果如图3a 所示。结果显示,随着转速的增大,基础油、 2.0 wt.% CaB 和 1.5 wt.% MoDDP 油样的摩擦因数均呈增大趋势,而转速对 1.5 wt.% MoDDP / 3.0 wt.% CaB 摩擦因数的影响不大。不同转速下,相对于基础油,所有添加剂油样的摩擦因数有显著降低,其中 1.5 wt.%MoDDP / 3.0 wt.% CaB 的减摩效果最好,在不同转速下相比基础油可分别降低 55.0%、62.7%、65.1% 的摩擦因数。图3b~3d 为四种油样在不同转速下的典型摩擦因数曲线,从图中可以看出在 100 r / min 时,四种润滑油的摩擦曲线都相对平稳,随着速度的增大,基础油、2.0 wt.% CaB、1.5 wt.% MoDDP 摩擦因数曲线波动增大,而 1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油的摩擦因数曲线始终最为稳定,说明重载下转速对 1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油的润滑性能影响很小,复合润滑油添加剂在重载变速工况下始终具有稳定且优异的减摩性能。
-
图3 不同转速下四种油样平均摩擦因数和不同转速下四种油样典型摩擦因数曲线
-
Fig.3 Average friction factor and typical friction factor curves of oil samples under different rotation rates
-
不同转速下试样块表面的最大磨痕深度如表3 所示。变速工况下经四种油样润滑的试样块表面磨痕形貌及轮廓曲线如图4 所示。研究发现,基础油润滑的试样块表面有大块的摩擦剥落区域,相对于基础油,不同速度下所有添加剂油样的磨痕深度有显著降低,其中 1.5 wt.% MoDDP / 3.0 wt.% CaB 的最大磨痕深度最小,在不同转速下相比基础油可分别降低 75.8%、78.8%、80.0% 的磨痕深度。随着转速的增大,基础油、2.0 wt.% CaB、1.5 wt.% MoDDP 最大磨痕深度均呈增大趋势,不同转速下 1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油润滑的试样表面磨痕均匀,磨痕深度无明显变化,表明重载下转速对 1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油的抗磨性能影响很小,复合润滑油添加剂在重载、变速工况下具有稳定且优异的抗磨性能。
-
图4 100 r / min 下四种油样的磨斑形貌和表面磨痕深度曲线
-
Fig.4 Surface morphology and depth curves of four oil samples at 100 r / min
-
2.3 冲击下润滑油的摩擦学性能
-
在施加冲击下,四种油样的平均摩擦因数和典型摩擦曲线如图5 所示。结果显示,施加冲击后四种油样的平均摩擦因数都有一定程度的上升,相对于基础油,所有添加剂油样的摩擦因数有显著降低,其中 1.5 wt.% MoDDP / 3.0 wt.% CaB 的减摩效果最好,施加冲击载荷后,可降低 66.7%的摩擦因数。由摩擦因数典型曲线可以看出,1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油的典型摩擦因数曲线波动幅度最小、最稳定。
-
图5 冲击载荷下四种油样平均摩擦因数和低速、重载、冲击下四种油样典型摩擦因数曲线
-
Fig.5 Average friction factor curves of four oil samples under impact load and typical friction factor curves of oil samples under low-speed heavy load impact
-
对载荷 1 kN、转速 300 r / min、冲击载荷 50 N 工况下,对试样块表面的最大磨痕深度进行了测量,结果如表3 所示(300 r / min 和 50 N 冲击载荷磨痕深度对比),经四种油样润滑的块试样表面磨痕形貌及轮廓曲线如图6 所示。研究发现,基础油润滑的块表面有大块的摩擦剥落区域,相对于基础油,所有添加剂油样的磨痕深度有显著降低,其中 1.5 wt.% MoDDP / 3.0 wt.% CaB 的最大磨痕深度最小,施加冲击载荷后磨痕增加幅度最小,相比基础油可分别降低 76.5%的磨痕深度。通过最大磨痕深度和形貌对比发现,1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油在低速、重载、冲击下能发挥优良的抗磨效果。
-
图6 低速、重载、冲击工况下四种油样的磨斑形貌和表面磨痕深度曲线
-
Fig.6 Surface morphology and depth curves of four oil samples under low speed heavy load impact
-
2.4 润滑油抗磨减摩机理分析
-
为了定性分析不同润滑油添加剂的抗磨减摩机理,对在变速、重载、冲击工况下,经基础油、2.0 wt.% CaB、 1.5 wt.% MoDDP 和 1.5 wt.% MoDDP / 3.0 wt.% CaB 四种润滑油润滑的试样块磨损表面进行 Raman 光谱分析(LabRam HR Evolution)分析,对 1.5 wt.% MoDDP / 3.0 wt.% CaB 润滑油润滑的试样块磨损表面进行 XPS 分析。
-
Raman 光谱测试的光谱范围为 200~1 800 cm−1,分辨率小于 0.35 cm−1。试验结果如图7 所示,基础油润滑的试样磨损表面在 510 cm−1 处出现了拉曼强度为高的非弹性散射波特征峰, 2.0 wt.%CaB、1.5 wt.% MoDDP 和 1.5wt.% MoDDP / 3.0wt.% CaB 也均在 510 cm−1 处出现了特征峰,此峰归属为 ν(Fe-O)的伸缩振动,说明四种润滑油皆在摩擦副表面反应生成铁的氧化物。在振动频率为 1 600 cm−1 处,四种试样块表面出现吸收峰,此峰归属于 ν(C-C)的伸缩振动,证明四种润滑油在摩擦副表面均能生成含有 C-C 键的化合物。因为在上述四种润滑油摩擦过的试样块中均出现 C-C 键和 Fe-O 键,而四种润滑油在变速、重载、冲击下表现出的抗磨减摩性能却不同,可以认为铁的氧化物和碳化物两种摩擦表面吸附膜并非起到关键性的润滑作用。
-
在振动频率约为 830 cm−1 处,经纳米 CaB 和 MoDDP / CaB 两种润滑油摩擦过的试样块表面出现主峰,此峰为 ν(Fe-B)的伸缩振动,表明摩擦副表面发生化学反应,生成了 FeB 吸附膜;在振动频率约为 1 250 cm−1 处,经 MoDDP 和 MoDDP / CaB 两种润滑油摩擦过的试样块表面也出现主峰,归属于 ν(Mo-S)的伸缩振动,证明经 MoDDP 和 MoDDP / CaB 复合润滑油添加剂润滑的试样块表面生成了 MoS2。经 1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油润滑过的试样块在 830 cm−1 和 1 250 cm−1 处的特征峰强度,较 2.0 wt.% CaB 和 1.5 wt.% MoDDP 在 830 cm−1 和 1 250 cm−1 处的特征峰有明显的提升,表明复合润滑油添加剂中 CaB 和 MoDDP 能够相互促进彼此反应,增加 FeB / MoS2润滑膜的生成量,实现协同抗磨减摩。
-
图7 四种润滑油润滑块表面磨损区域的 Raman 光谱
-
Fig.7 Raman spectra of block surfaces lubricated with four oil samples
-
为了进一步验证磨损表面吸附膜的组成成分并揭示 1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油添加剂的减摩抗磨机理,通过 Thermo Scientific K-Alpha 对磨痕表面元素进行 XPS 检测,根据结合能判断其化合状态,结果如图8 所示。根据 XPS 能谱对磨斑表面进行分析,磨斑表面在结合能为 725.28、711.11 eV 处出现 Fe2p 的特征峰,分别与 Fe3+2p3 和 Fe3+2p1 相对应,Fe3+2p3 的结合能为 725.28 eV,结合 O1s 在 531.84 eV 处出现的吸收峰,证明存在 Fe-O 吸收峰,因此磨斑表面生成铁的氧化物 Fe2O3。根据 Fe3+2p1 在 711.11 eV 处的吸收峰与 B1s 在 198.42 eV 处出现的特征峰可以推断出表面存在硼铁化合物,表明纳米层片状的 CaB 中的硼原子在摩擦副表面与 Fe 发生反应生成 FeB。Mo3d 出现特征峰时的结合能为 232.41 eV,S2p 在 168.64 eV 处出现最大吸收峰,根据二者的结合能判断磨斑表面生成了 MoS2,而 S2p 在 161.58 eV 处出现第二吸收峰,此结合能处的峰证明 S2p 为 S4+,因此在磨擦过程中也伴随 S 的被氧化,生成了 FeSO3。C1s 出现特征峰值时的结合能为 285.25 eV,查阅结合能为 C-C / C-H,表明磨斑表面出现了碳化物。通过 XPS 定量分析可以得出:1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油在摩擦过程中发生了化学反应,生成了含有钼的硫化物(MoS2)、铁的硫化物(FeSO3)、含碳(C-C / C-H)的润滑油膜和硼铁化合物(FeB)。
-
根据 Raman 光谱和 XPS 测试结果,MoDDP 添加剂的减摩抗磨机理可概括为:在摩擦过程中,接触区发生化学反应生成含层片状结构的 MoS2 化学反应膜,MoS2 层与层之间的结合力为范德华力,容易发生相对滑动,因此具有很好的减摩效果[27-28]。纳米 CaB 添加剂的减摩抗磨作用机理如下:首先,摩擦过程中 CaB 产生的活性 B 原子渗入摩擦副表面,在摩擦热促进下生成的硼铁化合物(FeB),该化学反应层具有高的耐磨性和硬度、高温抗氧化性[30-31];其次,纳米薄片状的 CaB 可在摩擦力的剪切作用下铺展成膜,覆盖到摩擦副表面,防止金属直接接触,降低粘着摩擦分量,改善润滑油的极压性能;纳米 CaB 粒子也可直接吸附到摩擦表面的划痕或凹坑处,起到填补修复磨损表面的作用[31-34]。
-
图8 磨痕表面的 XPS 全谱和元素精细谱
-
Fig.8 Full specture of XPS and fine spectrum of elements of grinding cracks
-
1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油添加剂在变速、重载、冲击条件下抗磨减摩机理意图如图 9 所示。单一的纳米 CaB 添加剂在摩擦过程生成硼铁化合物的润滑膜,单一的 MoDDP 发生化学反应生成的 MoS2 化学反应膜,单一添加剂生成的润滑膜的承载能力不高,持续时间短。MoDDP / CaB 复合添加剂的减摩抗磨效果显著,且具备较高的承载能力。一方面是由于 B 原子在摩擦过程中发生化学反应形成的硼铁化合物化学反应层,由于 FeB 的表面能较高,可以率先吸附在摩擦副表面,形成表面吸附膜,增大润滑膜的强度和稳定性,并且层片状的纳米 CaB 在剪切应力作用下能迅速铺展,大幅增加 CaB 与摩擦副的接触面积,提高 FeB 的生成效率,增大润滑油膜中 FeB 的生成量,大量的 FeB 在摩损表面不仅能填补磨损区域,起到自修复作用,同时还作为润滑油膜的一部分,提高油膜的承载能力。MoDDP发生化学反应生成的MoS2化学反应膜,这些具有低剪切强度、高熔点的金属化合物层,可以有效的防止金属因表面的直接接触而引起的粘着磨损。另一方面,MoDDP 和纳米 CaB 在摩擦过程中具有很好的协同作用,在摩擦时能生成复杂的金属化合物层,这层膜不仅包括碳化物和铁的氧化物,还相互促进生成了极压抗磨性的 FeB / MoS2复合沉积膜,在高接触应力和剪切应力下能够持续并有效地减少疲劳磨损和黏着磨损。在变速、重载、冲击试验中也进一步验证了 MoDDP 和纳米 CaB 在摩擦过程中具有很好的协同作用。对比单一的添加剂和基础油,复合添加剂有很好的自修复性能和协同作用,可以减少试样表面材料的脱落,形成高承载力的润滑油膜,进而提高了复合润滑油的抗磨减摩性能。
-
图9 变速重载冲击下 MoDDP / CaB 复合润滑油抗磨减摩机理图
-
Fig.9 Anti-wear and friction reduction mechanism diagram of MoDDP / CaB composite lubricating oil under low speed and heavy load impact
-
3 结论
-
创新性地将有机钼和纳米CaB润滑油添加剂复合,研究其减摩抗磨效果和机理。
-
(1)在重载、变速和冲击载荷作用下,相较于基础油和单一添加剂润滑油,1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油添加剂的减磨抗摩效果最好。
-
(2)MoDDP / CaB 复合润滑油添加剂在润滑过程中能生成包含 C-C、Fe2O3、FeB 和 MoS2的金属化合物层。复合润滑油添加剂中 CaB 和 MoDDP 能够相互促进彼此反应,增加 FeB / MoS2 润滑膜的生成量,对比单一的添加剂和基础油,复合添加剂具有更好的自修复性能和协同功效,形成具有高承载力的润滑油膜,提高了复合润滑油的抗磨减摩性能。
-
参考文献
-
[1] 付建林.浅谈机械设备的润滑技术应用与管理[J].内燃机与配件,2022(4):203-205.FU Jianlin.A tentative analysis on the application and management of lubrication technology of mechanical equipment[J].Internal Combustion Engine & Parts,2022(4):203-205.(in Chinese)
-
[2] LIU L,YANG C,ZHOU J Z,et al.Study on wear model and adhesive wear mechanism of brass under boundary lubrication[J].Protection of Metals and Physical Chemistry of Surfaces,2021,57(2):367-373.
-
[3] COLAS G,SAULOT A,MICHEL Y,et al.Experimental analysis of friction and wear of self-lubricating composites used for dry lubrication of ball bearing for space applications[J].Lubricants,2021,9(4):38.
-
[4] 叶芸星.国内常用润滑油抗氧剂性能对比评测[J].石油商技,2021,39(3):76-79.YE Yunxing.Domestic common lubricant antioxidant performance comparison review[J].Petroleum Products Application Research,2021,39(3):76-79.(in Chinese)
-
[5] HU C L,YOU G,LIU J Y,et al.Study on the mechanisms of the lubricating oil antioxidants:Experimental and molecular simulation[J].Journal of Molecular Liquids,2021,324:1-6.
-
[6] TOM T,GERTRUDE J.设计酚类抗氧剂保护润滑油的技术[J].润滑油,2020,35(4):33-39.TOM T,GERTRUDE J.The art of lubricant protection by designed phenolic antioxidants[J].Lubricating Oil,2020,35(4):33-39.
-
[7] YUAN G Z,SUN J L,SHU J Z,et al.Tribochemical behavior of ashless dialkyl dithiophosphate ester as an EP/AW additive in mineral oil for steel-aluminum contact[J].Tribology Transactions,2018,61(4):604-611.
-
[8] DU S,YUE W,WANG Y Y,et al.Synergistic effects between sulfurized-nanocrystallized 316L steel and MoDTC lubricating oil additive for improvement of tribological performances[J].Tribology International,2016,94:530-540.
-
[9] 曾厚旭,陈晓伟,魏克成.新型绿色极压抗磨剂的合成与性能评定[J].石油炼制与化工,2021,52(5):76-79.ZENG Houxu,CHEN Xiaowei,WEI Kecheng.Synthesis and performance evaluation of a new green extreme pressure antiwear additive[J].Petroleum Processing and Petrochemicals,2021,52(5):76-79.(in Chinese)
-
[10] 李双明,顾彩香.复合纳米润滑油添加剂的研究现状与展望[J].中国水运,2012,12(1):120-121.LI Shuangming,GU Caixiang.Research status and prospects of composite nanolube additives[J].China Water Transport,2012,12(1):120-121.(in Chinese)
-
[11] 杨简彰,王成勇,袁尧辉,等.微量润滑复合增效技术及其应用研究进展[J].中国机械工程,2022,33(5):506-528.YANG Jianzhang,WANG Chengyong,YUAN Yaohui,et al.State-of-the-art on MQL synergistic technologies and their applications[J].China Mechanical Engineering,2022,33(5):506-528.(in Chinese)
-
[12] 李剑锋,朱真才,彭玉兴,等.NbSe2/Ag 纳米复合材料的制备及其作为煤矿机械机用润滑油添加剂摩擦学行为的研究[J].摩擦学学报,2021,41(2):230-242.LI Jianfeng,ZHU Zhencai,PENG Yuxing,et al.Preparation of NbSe2/Ag nanocomposite and its tribological behavior as lubricant oil additives for mining machinery[J].Tribology,2021,41(2):230-242.(in Chinese)
-
[13] 阮亭纲,周桂源,谢先东,等.钛基纳米润滑添加剂的减摩抗磨及自修复特性对比[J].中国表面工程,2015,28(4):47-53.RUAN Tinggang,ZHOU Guiyuan,XIE Xiandong,et al.Comparison of friction reducing anti-wear and self-repairing properties of different Ti-base nanometer lubricating oil additives[J].China Surface Engineering,2015,28(4):47-53.(in Chinese)
-
[14] GUAN Z,ZHANG P,FLORIAN V,et al.Preparation and tribological behaviors of magnesium silicate hydroxide-MoS2 nanoparticles as lubricant additive[J].Wear,2022,15(3):492-493.
-
[15] WU L,XUE L,ZHANG Y,et al.The tribological mechanism of cerium oxide nanoparticles as lubricant additive of poly-alpha olefin[J].Tribology Letters,2020,68(4):492-493.
-
[16] 李久盛,许健.纳米硼酸盐作为润滑油添加剂的现状及趋势[J].润滑油,2015,30(1):37-41.LI Jiusheng,XU Jian.Research situation and development trends of nanosized borates used as lubricating additives[J].Lubricating Oil,2015,30(1):37-41.(in Chinese)
-
[17] TALUKDAR S,GHOSH P.Biodegradable vegetable oil polymer as a multifunctional lubricating oil additive[J].Journal of Macromolecular Science,2020,57(4):244-249.
-
[18] HUANG Y,HAN S,LIU S Z,et al.Preparation and tribological properties of surface-modified calcium borate nanoparticles as additive in lubricating oil[J].Industrial Lubrication and Tribology,2014,66(1):143-150.
-
[19] 张汪阳,王正奇,黄晨,等.硼酸钙/氧化石墨烯复合微粒的制备及摩擦学性能研究[J].聊城大学学报,2015,28(1):37-39.ZHANG Wangyang,WANG Zhengqi,HUANG Chen,et al.The preparation and tribological properties of calcium borate/graphene oxide composites[J].Journal of Liaocheng University(Natural Science Edition),2015,28(1):37-39.(in Chinese)
-
[20] YANG Y F,WANG X B,MEI S,et al.Preparation and tribological properties of BN/calcium borate nanocomposites as additive in lubricating oil[J].Industrial Lubrication and Tribology,2018,70(1):1-4.
-
[21] NEIL C.The origins of ZDDP[J].Tribology & Lubrication Technology,2019,75(12):1-8.
-
[22] 付小静,李瑞川,李阳,等.有机钼添加剂作用下CrN和 CrAlN 涂层的摩擦学性能[J].中国表面工程,2021,34(6):181-187.FU Xiaojing,LI Ruichuan,LI Yang,et al.Tribological properties of CrN and CrAlN coatings in the presence of organic molybdenum additives[J].China Surface Engineering,2021,34(6):181-187.(in Chinese)
-
[23] BAI L,MENG Y,ZULFIQAR A K,et al.The synergetic effects of surface texturing and MoDDP additive applied to ball-on-disk friction subject to both flooded and starved lubrication conditions[J].Tribology Letters,2017,65(4):163.
-
[24] DU D,KIM S,SUN C,et al.Effect of MoDDP on the antioxidative properties of ZnDDP in mineral oil[J].Lubrication Science,2004,16(2):183-193.
-
[25] 谢凤.有机钼化合物在润滑脂中的抗磨性能研究[J].润滑油与燃料,2009,19(1):28-30.XIE Feng.Study on antiwear properties of compounds containing molybdenum in lubricating grease[J].Lubes & Fuels,2009,19(1):28-30.(in Chinese)
-
[26] 姜雨辰,唐玮,彭玉兴.纳米 CaB/MoDDP 复合润滑油添加剂的摩擦学性能[J].哈尔滨工业大学学报,2022,54(7):111-119.JIANG Yuchen,TANG Wei,PENG Yuxing.Tribological performance of nano CaB/MoDDP compound lubricant additive[J].Journal of Harbin Institute of Technology,2022,54(7):111-119.(in Chinese)
-
[27] 栾俊吉,高建国,曹磊,等.油溶性有机钼添加剂作用下微弧氧化改性TC4钛合金的摩擦学性能[J].摩擦学学报,2021,17(3):1-17.LUAN Junji,GAO Jianguo,CAO Lei,et al.Tribological properties of micro-arc oxidized TC4 titanium alloy under the action of oil-soluble organic molybdenum additives[J].Tribology,2021,17(3):1-17.(in Chinese)
-
[28] 巴召文,黄国威,乔旦,等.石墨烯/二硫化钼复合纳米添加剂的制备及摩擦学性能研究[J].摩擦学学报,2019,39(2):140-149.BA Zhaowen,HUANG Guowei,QIAO Dan,et al.Preparation and tribological performance of RGO/MoS2 as composite nano-Additives[J].Tribology,2019,39(2):140-149.(in Chinese)
-
[29] 杨浩鹏.H13 热作模具钢低温固体渗硼层形成机理的研究[D].上海:上海大学,2015.YANG Haopeng.The study on formation mechanism of borided layer of H13Hot work die steel with pack boriding treatment at low temperature[D].Shanghai:Shanghai University,2015.
-
[30] 姜信昌,曹晓明,韩文祥,等.渗硼层形成机理的探讨 [J].金属科学与工艺,1991,10(2):79-83.JIANG Xinchang,CAO Xiaoming,HAN Wenxiang,et al.An investigation of the mechanism of the boronized layer formation[J].Metal Science and Technology,1991,10(2):79-83.(in Chinese)
-
[31] 丁士文,李岩.水热法制备纳米 CaB6O10 润滑油添加剂[J].河北大学学报,2014,34(2):154-159.DING Shiwen,LI Yan.Hydrothermal synthesis of nano-CaB6O10 used as lubricant additives[J].Journal of Hebei University(Natural Science Edition),2014,34(2):154-159.(in Chinese)
-
[32] 丁士文,徐向伟,丁宇,等.超声辅助制备表面修饰纳米 Ca2B6O11 及表征[J].无机化学学报,2012,28(8):1575-1579.DING Shiwen,XU Xiangwei,DING Yu,et al.Ultrasound-assisted preparation and characterization surface modified nano-Ca2B6O11[J].Chinese Journal of Inorganic Chemistry,2012,28(8):1575-1579.(in Chinese)
-
[33] 纪献兵,陈银霞.纳米硼酸钙的水热法制备及摩擦学性能研究[J].润滑7与密封,2015,40(7):75-77.JI Xianbing,CHEN Yinxia.Hydrothermal synthesis and tribological properties study of nano-Calcium borate[J].Lubrication Engineering,2015,40(7):75-77.(in Chinese)
-
[34] 纪献兵,陈银霞,杜庆丽.核壳型硼酸钙/SiO2复合微球的制备及摩擦学性能研究[J].润滑与密封,2015,40(4):58-60.JI Xianbing,CHEN Yinxia,DU Qinli.Synthesis and tribological properties of core-shell calcium borate/SiO2 composites[J].Lubrication Engineering,2015,40(4):58-60.(in Chinese)
-
摘要
为解决机械设备在恶劣工况下由润滑失效而导致的设备故障甚至安全生产事故问题,进一步提升机械设备的运行稳定性和安全性,研究纳米硼酸钙(CaB)和二烷基二硫代磷酸钼(MoDDP)单一润滑油添加剂和复合润滑油添加剂的减摩抗磨效果,并探究其润滑作用机制。研究结果表明,重载、变速、冲击工况条件下 1.5 wt.% MoDDP / 3.0 wt.% CaB 复合润滑油添加剂具有良好的减摩抗磨效果,与基础油相比,在不同转速下可最大降低 65.1%的摩擦因数和 80%的磨痕深度,施加 50 N 冲击载荷时,可分别降低66.7%的摩擦因数和76.5%的磨痕深度。MoDDP / CaB复合润滑油添加剂在润滑过程中能生成包含C-C、 Fe2O3、FeB 和 MoS2的金属化合物层,添加剂中的 CaB 和 MoDDP 能够相互促进彼此反应,增加 FeB / MoS2润滑膜的生成量,对比单一的添加剂和基础油,复合添加剂具有更好的自修复性能和协同功效,形成具有高承载力的润滑油膜,提高了复合润滑油的抗磨减摩性能。MoDDP / CaB 复合润滑油添加剂的制备可以充分综合利用抗氧化剂与极压耐磨剂的稳定、优异润滑特性,研究结果可为复合添加剂的广泛应用提供数据支持和理论支撑。
Abstract
To solve the problem of equipment failure and even safety production accidents caused by lubrication failure under adverse working conditions, and to further enhance the stability and safety of mechanical equipment operation, the anti-wear and friction reduction effect of single and composite lubricant additives of calcium borate (CaB) and molybdenum dialkyl dithiophosphate (MoDDP) under heavy load, variable speed, and impact conditions were investigated. The results show that the organic molybdenum additives can effectively reduce the friction factor and wear spot diameter compared with the base oil. The 1.5 wt.% MoDDP additive exhibited the best friction reduction and anti-wear performance, reducing the friction factor by 41.0% and the wear spot diameter by 48.9% compared to the base oil. Among the four oil samples, the 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant additive showed the best friction and anti-wear effects, reducing the friction factor by 55.0%, 62.7%, and 65.1% and the wear spot depth by 75.8%, 78.8%, and 80.0%, respectively, compared with the base oil at different rotation speeds. With the increase of rotation speed, the friction factor curves of base oil, 2.0 wt.% CaB, and 1.5 wt.% MoDDP fluctuated and the maximum wear spot depth of base oil, 2.0 wt.% CaB, and 1.5 wt.% MoDDP also tended to increase with the rotation speed, while the friction factor curves of 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant were always the most stable. The surface wear spots of the specimens lubricated by 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant at different rotation speeds were uniform, and no significant changes in the wear spot depth were observed, indicating that the rotation speed under heavy load has a slight effect on the friction reduction performance of 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant. The composite lubricant additives exhibited stable and excellent friction reduction and anti-wear performance under heavy loads and variable-speed operating conditions. Under a 50 N impact load, the 1.5 wt.% MoDDP / 3.0 wt.% CaB additive showed the best friction reduction effect, reducing the friction factor by 66.7%. The typical friction factor curves of 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant exhibited the least fluctuation. The 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant additive exhibited the smallest wear spot depth and the smallest increase in depth of wear spot under a 50 N impact load, which can reduce the wear spot depth by 76.5% compared to the base oil. The comparisons of wear spot depth and morphology show that the 1.5 wt.% MoDDP / 3.0 wt.% CaB composite lubricant can play an excellent anti-wear effect under low speed, heavy load, and impact conditions. The MoDDP / CaB composite lubricant additives can generate a metal composite layer containing C-C, Fe2O3, FeB, and MoS2 during the lubrication process. The CaB and MoDDP in the composite lubricant additive can promote each other's reactions and increase the generation of FeB / MoS2 lubricating films. Compared to a single additive and base oil, the composite lubricant additives showed better self-healing performance and synergistic efficacy, forming a lubricating film with a high load-bearing capacity and improving the anti-wear and friction reduction performance of the composite lubricant. The preparation of MoDDP / CaB composite lubricant additives can fully synthesize the stable and excellent lubricating properties of antioxidants, extreme pressure, and wear agents, and the results can provide data and theoretical support for the wide application of composite lubricant additives.
关键词
MoDDP / CaB 复合润滑油添加剂 ; 减摩抗磨 ; 变速 ; 重载 ; 冲击