en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王波,男,1972年出生,正高级工程师。主要研究方向为防腐涂料。E-mail:lywangb@hotmail.com

通讯作者:

李好,女,1989年出生,主要研究方向为仿生表面。

吴连锋,男,1986年出生,高级工程师。主要研究方向为功能涂料。E-mail:wulianfeng126@126.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007-9289.20230310002

参考文献 1
李好,辛蕾,冯晓磊,等.铝合金基底热辅助自修复仿生超滑表面制备及润滑油对其性能影响[J].中国表面工程,2022,35(2):45-54.LI H,XIN L FENG X,et al.Preparation of the thermal-assisted self-healing bionic super slippery surface on aluminum alloy substrate and the effect of lubricant on its performancet[J].China Surafce Engineering,2022,35(2):45-54.(in Chinese)
参考文献 2
LI H,XIN L,ZHANG K,et al.Fluorine-free fabrication of robust self-cleaning and anti-corrosion superhydrophobic coating with photocatalytic function for enhanced anti-biofouling property[J].Surface and Coatings Technology,2022,438:128406.
参考文献 3
XIE Z T,WANG H,GENG Y,et al.Carbon-based photothermal superhydrophobic materials with hierarchical structure enhances the anti-icing and photothermal deicing properties[J].ACS Applied Materials & Interfaces,2021,13:48308-48321.
参考文献 4
XIANG T F,REN H W,ZHANG Y L,et al.Rational design of PDMS/paraffin infused surface with enhanced corrosion resistance and interface erosion mechanism[J].Materials & Design,2022,215:110450.
参考文献 5
CAO X,PAN J,CAI G,et al.A chemically robust and self-healing superhydrophobic polybenzoxazine coating without fluorocarbon resin modification:Fabrication and failure mechanism[J].Progress in Organic Coatings,2022,163:106630.
参考文献 6
WANG X,DING H,SUN S,et al.Preparation of a temperature-sensitive superhydrophobic self-cleaning SiO2-TiO2@PDMS coating with photocatalytic activity[J].Surface and Coatings Technology,2021,408:126853.
参考文献 7
薛鑫宇,尹正生,蒋永锋,等.碳钢表面防腐超疏水 TiO2/PDMS 涂层的制备及性能[J].中国表面工程,2021,34(4):53-59.XUE Xinyu,YIN Zhengsheng,JIANG Yongfeng,et al.Preparation and properties of TiO2/PDMS anticorrosion superhydrophobic coating on carbon steel[J].China Surafce Engineering,2021,34(4):53-59.(in Chinese)
参考文献 8
QI Y L,YANG Z B,HUANG W X,et al.Robust superhydrophobic surface for anti-icing and cooling performance:Application of fluorine-modified TiO2 and fumed SiO2[J].Applied Surface Science,2021,538:148131.
参考文献 9
ZHANG J X,ZHANG L J,GONG X.Large-scale spraying fabrication of robust fluorine-free superhydrophobic coatings based on dual-sized silica particles for efective antipollution and strong buoyancy[J].Langmuir,2021,37:6042-6051.
参考文献 10
LI H,YU S R,HU J R,et al.Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning,anti-corrosion and anti-scaling properties[J].Applied Surface Science,2019,481:872-882.
参考文献 11
LI H,FENG X,PENG Y,et al.Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability[J].Nanoscale,2020,12:7700-7711.
参考文献 12
WANG H J,ZHANG Z H,ZHENG J,et al.Multifunctional superhydrophobic surface with dynamically controllable micro/nanostructures for droplet manipulation and friction control[J].Chemical Engineering Journal,2020,417:127944.
参考文献 13
WANG D H,SUN Q Q,HOKKANEN M J,et al.Design of robust superhydrophobic surfaces[J].Nature,2020,582:55-59.
参考文献 14
SUN J,WANG W,LIU Z,et al.Study on selective laser melting 316L stainless steel parts with superhydrophobic surface[J].Applied Surface Science,2020,533:14744.
参考文献 15
QING Y,YANG C,YU N,et al.Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance[J].Chemical Engineering Journal,2016,290:37-44.
参考文献 16
LI D W,WANG H Y,LIU Y,et al.Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J].Chemical Engineering Journal,2019,367:169-179.
参考文献 17
LU J,LIU X,ZHANG T C,et al.Magnetic superhydrophobic polyurethane sponge modified with bioinspired stearic acid@Fe3O4@PDA nanocomposites for oil/water separation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,624:126794.
参考文献 18
QU M,MA X,HE J,et al.Facile selective and diverse fabrication of superhydrophobic,superoleophobic-superhydrophilic and superamphiphobic materials from kaolin[J].ACS Applied Materials & Interfaces,2016,9:1011-1020.
参考文献 19
WANG N,TANG L,TONG W,et al.Fabrication of robust and scalable superhydrophobic surfaces and investigation of their anti-icing properties[J].Materials & Design,2018,156:320-328.
参考文献 20
CHANG X,LI M,TANG S,et al.Superhydrophobic micro-nano structured PTFE/WO3 coating on low-temperature steel with outstanding anti-pollution,anti-icing,and anti-fouling performance[J].Surface and Coatings Technology,2022,434:128214.
参考文献 21
ZHANG X,JIANG F,CHEN R,et al.Robust superhydrophobic coatings prepared by cathodic electrophoresis of hydrophobic silica nanoparticles with the cationic resin as the adhesive for corrosion protection[J].Corrosion Science,2020,73:108797.
参考文献 22
LI F,KONG W,ZHAO X,et al.Multifunctional TiO2-based superoleophobic/superhydrophilic coating for oil-water separation and oil purification[J].ACS Applied Materials & Interfaces,2020,12:18074-18083.
参考文献 23
ISLAM M T,DOMINGUEZ A,TURLEY R S,et al.Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water[J].Science of the Total Environment,2020,704:135406.
目录contents

    摘要

    超疏水涂层在防结冰、防腐蚀等领域具有广阔的应用前景,然而目前仍无法大规模制备稳定的超疏水表面。提出一种操作简单、成本低廉的方法,在铝合金基材上通过一步喷涂法制备出耐磨超疏水涂层。首先在铝合金基体表面涂覆环氧树脂粘结层,待其达到半固化状态时,喷涂硬脂酸修饰的微米 SiO2 和纳米 TiO2 粒子混合悬浮液,固化后该涂层与水的接触角为~ 155.4°,滚动角为~3°,实现了超疏水性。试验结果表明,该超疏水涂层具有较好的耐磨耐久性,在胶带剥离、砂纸摩擦、紫外光长时间照射以及不同 pH 液滴等多种测试条件下仍具有良好的超疏水性。此外,此超疏水涂层在极端寒冷的天气下可以显著延缓水的冻结时间。环氧树脂和疏水颗粒的协同防腐作用使超疏水涂层在海水中表现出良好的防腐蚀性能。所制备的超疏水涂层还具有优异的自清洁特性,且因 TiO2 粒子本身的光降解性能,该涂层还可用于光降解污染物和净化水质。这种简单、环保的超疏水涂层在防结冰、防腐蚀等方面具有潜在的应用前景,可为克服传统超疏水表面使用耐久性差的问题提供解决思路。

    Abstract

    Aluminum alloys are widely used in ships and offshore platforms owing to their high fatigue strength, excellent corrosion resistance, welding performance and cold workability. Although the surface of the aluminum alloy usually forms an oxide film in natural environments, the film is thin and can easily be damaged during application, resulting in damaging the substrate. Therefore, preparing anti-icing, anti-corrosion and self-cleaning superhydrophobic coatings on aluminum alloy substrates is important for improving their performance and expanding their application fields. Superhydrophobic surfaces are with a water contact angle exceeding 150° and a roll-off angle below 10°. Inspired by superhydrophobic surfaces of nature, researchers have successfully prepared and developed various artificial superhydrophobic coatings that can be applied in various fields, such as self-cleaning, anti-corrosion, and anti-icing. To date, many methods for preparing superhydrophobic coatings with micro-nano structures and low-surface-energy, such as spraying and electrodeposition, have been proposed. However, currently prepared superhydrophobic coatings are highly susceptible to damage because their rough surface morphology is easily damaged by mechanical wear, weak adhesion to the substrate, and poor resistance to harsh conditions, which seriously affects their large-scale application. Therefore, improving the wear resistance of superhydrophobic coatings is an urgent issue. For the micro-nanocomposite structures on superhydrophobic surfaces, the single micron-scale structure protects fragile and functional nanoscale structures because of its ability to withstand more frictional loads than nanoscale structures. Epoxy is a thermosetting resin, and its highly cross-linked three-dimensional network structure endows it with excellent bonding and adhesion performance. The use of sturdy adhesives, such as epoxy resin, to improve the adhesion between the coating and substrate. Moreover, spraying modified micro-nanocomposite particles to create micro-nanostructures is an effective strategy for the large-scale preparation of wear-resistant superhydrophobic coatings. Therefore, in this study, a simple and cost-effective method to prepare a dual-scale durable superhydrophobic coating on an aluminum alloy substrate by one-step spraying of micro / nano mixed particles is proposed. First, an epoxy resin adhesive layer was applied to the surface of the aluminum alloy substrate, after it reached a semi-cured state, a mixed suspension of stearic acid-modified micro SiO2 and nano TiO2 particles was sprayed. After curing, the contact angle between the coating and water was ~155.4° and the roll-off angle was ~3°, indicating excellent superhydrophobicity. The prepared coating surface shows an obvious micro-nanostructures, also modified by low-energy substances, which indicates microstructure and composition conditions for constructing superhydrophobic surfaces. The prepared superhydrophobic coating exhibited strong adhesion on substrate, excellent wear resistance and durability, also with good superhydrophobicity under various tests, including 19 times of tape peeling, 20 cm of sandpaper wear, long-term exposure to ultraviolet light, and droplet testing at different pH. The prepared superhydrophobic coating significantly delayed the freezing time of water in extremely cold weather by approximately eight times that of the substrate. Simultaneously, the synergistic anti-corrosion effect of the epoxy resin and superhydrophobic property caused the prepared coating to exhibit excellent anti-corrosion performance in seawater. In addition, the prepared superhydrophobic coating shows excellent self-cleaning performance, and can be used for the photodegradation of pollutants and purification of water because of the photodegradation performance of TiO2 particles. This simple and environmentally friendly superhydrophobic coating is promised to apply in anti-icing, anti-corrosion and other aspects, and provides a solution for improving the durability of traditional superhydrophobic surfaces.

    关键词

    超疏水喷涂法防结冰防腐蚀光降解

  • 0 前言

  • 铝合金因其具有抗疲劳强度高、耐蚀性好、焊接性能优良、冷加工性较好等优点广泛应用于船舶、海洋平台等领域[1]。铝合金表面虽然在自然环境中可以形成氧化膜,但氧化膜很薄,在应用过程中易受到损伤,进而对基材造成损伤[2]。此外,铝合金在海洋领域的实际应用过程中亦存在一系列问题,如在低温天气下,雨滴在铝合金器件表面会发生覆冰现象[3];易被海水腐蚀,大大缩短其服役年限[4]。因此,在铝合金基体上制备防冰、防腐、自清洁的超疏水涂层,是改善其性能和扩展其应用领域的关键技术。

  • 超疏水表面指的是水接触角超过150°且滚动角低于 10°的表面[5]。受自然界动植物超疏水表面的启发,研究人员成功地制备和开发出可应用于自清洁[6]、防腐[7]、防结冰[8]等领域的各种人工超疏水涂层。截至目前,人们已经提出了许多制备超疏水涂层的方法,如喷涂法[9]、电沉积法[10]等,将粗糙的微纳米结构与低表面能材料相结合,得到超疏水表面[11]。然而,目前所制备的超疏水涂层极易受到损坏,主要因为其粗糙的表面形态容易被机械磨损破坏,与基材的附着力弱以及对恶劣条件的抵抗力差等[10],严重影响了超疏水涂层的大面积应用。因此,提高超疏水涂层的耐磨性是亟须解决的问题。

  • 在超疏水表面的微纳米复合结构中,因单个微米级结构比纳米级结构能够承受更多的摩擦载荷[12],微米级结构通常为脆弱的和功能性的纳米级结构提供保护。基于此,WANG 等[13]提出使用互连的微结构作为“盔甲”来保护疏水性纳米结构免受大于框架尺寸的机械损伤。SUN 等[14]设计了倒梯形结构来提高表面的耐磨性,其中微米级结构保护脆弱的纳米级结构不被磨损。值得注意的是,以上研究多采用激光刻蚀等方法进行超疏水表面的制备,方法复杂且不适用于大规模生产。喷涂法具有大规模生产、操作过程简单且不受基体形状限制的优点。因此,使用坚固的粘合剂,如环氧树脂(EP)等,来改善涂层和基材之间的附着力,同时喷涂改性微纳米复合颗粒来创建微纳米结构是大规模制备耐磨超疏水涂层的有效策略。

  • 本文在铝合金基材上通过一步喷涂法制备出耐磨超疏水涂层。将环氧树脂涂覆到基体上,待半固化状态后喷涂上硬脂酸修饰的混合微米 SiO2 和纳米 TiO2 颗粒得到具有明显双尺度结构的超疏水涂层——接触角为~155.4°、滚动角为~3°。通过胶带剥离、砂纸摩擦、紫外光长时间照射,以及不同 pH 液滴等多种条件下测试该涂层的耐磨耐久性,且通过结冰试验测试了涂层的抗结冰性能。通过电化学测试和长期浸泡测试了涂层的耐腐蚀性能。因 TiO2 粒子本身具有光降解性能,还进行了涂层的紫外光降解测试以及自清洁、防污测试。

  • 1 试验准备

  • 1.1 超疏水涂层的制备

  • 5052 铝合金(30 mm×30 mm×5 mm)作为基体材料;环氧树脂和固化剂由上海纳勒新材料有限公司(中国)提供;SiO2微米颗粒(10 µm,99.0%)、 TiO2 纳米颗粒(20 nm,99.0%)购自阿拉丁;硬脂酸、甘油、氯化钠(NaCl)和无水乙醇均为 AR 级; 海水取自中国青岛的黄海海域。

  • 将铝合金依次使用 400 #、800 #、1500 #和 2000 #的砂纸打磨,然后依次用蒸馏水与无水乙醇冲洗,吹风机冷风吹干后密封备用。将 2 g 环氧树脂和 1 g 固化剂放入 10 mL 无水乙醇中稀释,用小刷子涂覆在打磨好的铝合金基体上,放入烘箱 60℃保温约 20 min,环氧树脂粘结层达到半固化状态。向 100 mL的乙醇溶液加入 0.8 g硬脂酸,4 g微米 SiO2 颗粒和 2 g 纳米 TiO2 颗粒,磁力搅拌 2 h,超声 30 min 后得到低表面能修饰后的微纳米粒子混合悬浮液。用空气喷枪以 0.4 MPa 的压力,在离样品 30~40 cm 的距离下向半固化的环氧树脂粘结层上喷涂微纳米粒子混合悬浮液。将喷涂好的涂层放入烘箱 60℃固化后得到超疏水涂层。铝合金基体上超疏水涂层制备过程如图1 所示。

  • 图1 铝合金基体上超疏水涂层制备过程

  • Fig.1 Schematic diagram of preparation process of superhydrophobic coating on aluminum alloy substrate

  • 1.2 测试与表征

  • 使用场发射扫描电子显微镜(FE-SEM、FEI、 Nova Nano450)观察 Pt 溅射预处理样品的表面形貌;使用三维表面形貌仪(Zeta-20,美国)获取样品表面的三维形貌和粗糙度;使用能量色散 X 射线光谱仪(EDS,与 FE-SEM 匹配)研究表面化学成分;X 射线衍射仪(D / Max2500PC,日本)用于获得样品表面的 X 射线衍射(XRD)图;傅里叶变换红外(FT-IR)光谱(NICOLET-SDXFl-IR,USA)用于确定样品表面修饰了硬脂酸;采用 CHI660E 电化学工作站测得样品的极化曲线(Tafel),评价涂层耐蚀性;通过紫外可见分光光度计(EU-2600D)评估溶液的吸光度;使用接触角仪(JC2000C1,中国) 在室温空气中测量样品表面水滴(~4 μL)的接触角,每个样品测四个不同位置获得平均值。

  • 1.3 耐磨性测试

  • 为了研究超疏水涂层的附着力,进行了胶带(绝缘胶带,3M610)剥离试验,每一次剥离使用一段新胶带,测量剥离不同次数后涂层的接触角和滚动角。为了研究超疏水涂层的耐磨性,进行了砂纸磨损测试,在涂层上放置 200 g 的砝码,推动其在 400 #的砂纸上移动,移动 2 cm 为一次摩擦循环,测量摩擦不同循环后涂层的接触角和滚动角。此外,将样品放在紫外光下长时间照射,并使用不同 pH 测试液滴,测量样品的接触角和滚动角,以测试其化学耐久性。

  • 1.4 防冰性测试

  • 测量水平放置在室外−15℃下样品上水滴(亚甲基蓝染色)结冰延迟时间来测试超疏水涂层的防结冰性能。将体积为 12 μL 的液滴置于测试表面,开启相机记录结冰过程。随着时间的推移,液滴从蓝色状态变为白色不透明状态。使用推拉力计在水平方向上推动样品上凝结的冰滴,记录可推动冰滴所需的力,看做样品表面对冰的粘附力。

  • 1.5 防腐性测试

  • 使用 CHI660E 电化学工作站对试样进行电化学测试。采用三电极体系,对电极为铂电极,参比电极为饱和甘汞电极,腐蚀介质为 3.5 wt.%的 NaCl 溶液,扫描电位区间为−1.2 V 至−0.2 V,扫描速率 1 mV / s。此外,将试样放入 3.5 wt.%的 NaCl 溶液以及海水中浸泡数 10 d,观察浸泡后试样的宏观形貌及接触角、滚动角,验证超疏水涂层的长时间耐蚀性。

  • 1.6 自清洁测试

  • 采用直径 50 和 200 μm 的粉煤灰对试样进行自清洁测试。首先在倾斜的样品表面分布粉煤灰,然后将水滴(~6 μL)轻轻地放在污染表面,水滴滚动离开试样表面,并带走表面的污染物。亚甲基蓝(MB)粉末作为有机污染物用于测试试样的光降解性能。首先,将试样浸入 0.001 5 mM 的亚甲基蓝溶液中,并在紫外光(功率 200 W)下照射 24 h,测试溶液的吸光度及试样的接触角。

  • 2 试验结果

  • 2.1 表面形貌及化学成分分析

  • 在铝合金基体上涂覆一层环氧树脂粘结层后,基体表面并无粗糙结构(图2a)。喷涂硬脂酸修饰后的微米 SiO2 和纳米 TiO2 混合颗粒后,从低倍的 SEM(图2b)可以看出涂层表面存在微纳米的凸起;从图2c 的高倍扫描可以观察到,微球表面被纳米粒子包裹,微球间隙也存在密集的纳米粒子。这些微球就如同“盔甲”一样保卫着纳米粒子,使得构建的超疏水涂层拥有良好的耐磨性。图2d 表明,所制备表面主要含有 C、O、Si 和 Ti 元素,且分散均匀。用 XRD 对所制备涂层的组成进行了表征,证实超疏水涂层的微纳米颗粒确实为 SiO2 和 TiO2(图2e)。此外,用 FT-IR 对改性后的微纳米粒子进行了表征,如图2f 所示。在 3 423 cm−1 处的吸收峰对应于吸附 H2O 羟基(-OH)的伸缩振动[15]。2 880 和 2 925 cm−1 附近的峰分别对应于甲基(-CH3)和亚甲基 (-CH2)中 C-H 的伸缩振动[16],这是由于硬脂酸的引入,表明 SiO2 和 TiO2 粒子表面的羟基成功地被烷基取代。1 635、1 472 cm−1 处出现了新的较强吸收峰,是羧酸根(COO)的不对称伸缩振动和对称伸缩振动吸收峰[17]。这些观察表明,超疏水涂层的微纳米 SiO2 和 TiO2 粒子被硬脂酸成功地修饰。以上结果表明,所制备的涂层表面具有明显的微纳米结构,并且其表面被低能物质改性,具备构建超疏水表面的微结构和成分条件。

  • 图2 超疏水涂层的表面形貌及化学成分分析

  • Fig.2 Surface morphology and chemical composition analysis of superhydrophobic coating

  • 2.2 超疏水涂层的润湿性

  • 微纳米结构和低表面能决定了超疏水表面的成功构建。所制备超疏水涂层与水的接触角达 155.4°,滚动角约 3°(图3a);与甘油的接触角为 150.5°,滚动角约 5°(图3b),显示出一定的疏油特性。此外,将超疏水样品浸入水中后(图3c),由于空气-水界面反射,可以观察到均匀明亮的 “银镜层”,这归因于微纳米结构中截留的空气[16]。总之,所制备的涂层均匀且具有较好的超疏水性。

  • 图3 超疏水涂层的润湿性分析

  • Fig.3 Wettability analysis of superhydrophobic coating

  • 2.3 超疏水涂层的稳定性

  • 耐磨耐久性是影响超疏水材料实际应用中的一个重要因素,物理和化学损伤会导致表面微纳米结构和化学成分的破坏,从而降低其超疏水性能[18]。如图4a 所示,使用胶带剥离和剥离循环来评估超疏水表面的稳定性,并在一定次数的循环后测量水接触角和滚动角。经过 19 次胶带剥离循环后,该超疏水涂层的接触角仍保持在 150°以上,且滚动角在 5°以下,这表明该涂层具有较强的基体附着力。原因在于涂层底部的粘结层——环氧树脂是一种热固性树脂,其高度交联的三维网状结构赋予环氧树脂优异的粘结性能,呈现较好的附着力[16]。使用砂纸磨损试验表征涂层的耐磨性(图4b),发现即使在 400 #砂纸上磨损 20 cm 后,涂层仍能保持其超疏水性。这是因为表面的微纳米粒子牢牢嵌入粘结层内,在被砂纸反复摩擦后,微米级结构表现出优异的抗垂直压力和剪切力,而微结构框架之间的纳米结构仍能保持完整[13]。此外,还通过紫外光长时间照射以及不同 pH 液滴测试研究了样品的化学稳定性,如图4c和4d所示,在紫外光长时间照射以及不同 pH 液滴测试后,涂层的接触角均在 150°以上,呈现超疏水性。从以上试验结果来看,所制备的超疏水涂层具有较好的机械稳定性和化学耐久性。

  • 图4 涂层在不同测试条件下的接触角与滚动角变化

  • Fig.4 Changes of contact angle and roll-off angle of coating under different test conditions

  • 2.4 超疏水涂层的防结冰行为

  • 为了评估超疏水样品的抗结冰性能,在寒冷的室外(−15℃)测量水滴在有涂层表面和无涂层表面上的结冰过程和冰附着力。由图5a 可知,无涂层表面在 81 s 完成冻结;相较于基体表面,超疏水表面结冰时间延长了 8 倍左右,在 705 s 时才完成冻结。这是由于超疏水表面的微纳结构间隙中存在空气层,水滴与固体表面接触面积显著减小,从而降低两者间的传热效率,延缓了结冰时间,使其具有延缓结冰的性能(图5c)[19]。另外,通过数字推拉力计测量冷冻水滴与试样表面之间的粘附力,图5b 显示了使用数字推拉力计测量粘附力的方法。冷冻水滴与铝基体表面在平行方向上的附着力接近 10 N。而冷冻水滴与超疏水涂层表面的粘附力降低到 1.147 N。超疏水涂层较低的冰粘附力因于过冷的水润滑膜,它可以提供润滑作用,从而有效地降低冰附着力[20]。因此,所制备超疏水涂层在极端寒冷的天气下拥有良好的抗结冰性能。

  • 图5 超疏水涂层的抗结冰性能

  • Fig.5 Anti-icing performance of superhydrophobic coating

  • 2.5 超疏水涂层的防腐蚀行为

  • 图6a 显示了铝合金、EP 涂层和超疏水涂层的极化曲线,其中电化学参数通过 Tafel 线性外推法从极化曲线得到,腐蚀电位(Ecorr)、腐蚀电流密度(Icorr) 和缓蚀效率(η)列于表1。缓蚀效率(η)计算公式如下:

  • η(%)=Icorr0-IcorrIcorr 0×100
    (1)
  • 式中,Icorr0Icorr分别是基体表面和涂层表面的腐蚀电流密度。从图6a 和表1 可以看出,与铝基体 (−0.890 V)相比,EP 涂层和超疏水涂层的 Ecorr 值均向正方向偏移,分别为−0.787、−0.696 V。EP 涂层的 Icorr 为 1.542×10−5 A·cm 2,超疏水涂层的 Icorr 为 3.467×10−6 A·cm 2。超疏水涂层与铝基板的 Icorr(2.677×10−4 A·cm 2)相比较下降了两个数量级。此外,超疏水涂层的抑制效率达到 98.70%。上述结果表明,超疏水涂层的耐腐蚀性能是环氧树脂涂层和微纳米超疏水结构协同作用的。图6b 揭示了超疏水涂层的腐蚀机理:超疏水表面微纳米结构间隙中存在空气穴,气穴可以隔离腐蚀性物质以及阻止电子在腐蚀性环境和铝基体之间的转移[21],从而实现涂层的耐腐蚀性。此外,在 3.5 wt.% NaCl 溶液中进行浸泡试验以研究样品的长期耐腐蚀行为。在浸泡期间对试样表面的接触角和滚动角进行测试(图6c),浸泡 60 d 后,超疏水涂层的接触角仍在 150°以上,滚动角小于 10°;图6d 的宏观照片显示,铝基体表面有明显的腐蚀痕迹,而超疏水涂层在经过溶液的长时间浸泡后表面并无明显变化。以上试验结果表明,该超疏水涂层具有理想的防腐蚀性能。

  • 图6 超疏水涂层的防腐性能

  • Fig.6 Anti-corrosion performance of superhydrophobic coating

  • 表1 图 6a 中关于铝合金基体、EP 涂层和超疏水涂层的参数

  • Table1 Parameters of aluminum alloy substrate, EP coating and superhydrophobic coating in Fig.6 a

  • 2.6 超疏水涂层的自清洁行为

  • 用不同粒径的粉煤灰颗粒(50、200 μm)作为模拟污染物,研究了超疏水表面的自清洁性能。如图7a 和 7b 所示,不同粒径的粉煤灰颗粒均匀地铺撒在略微倾斜的试样表面上,将水滴轻轻地放在试样表面顶部,可以发现粉煤灰颗粒立即被水带走,留下清晰的清洁轨迹,其自清洁机理如图7c 所示。因此,该超疏水涂层具有较好的自清洁能力。

  • TiO2 由于具有优异的光催化性能和化学稳定性,成为一种理想的光催化剂[22-23],被广泛应用于液体净化。本文中,选择亚甲基蓝粉末作为有机污染物来研究超疏水涂层的光催化降解性能。将超疏水样品浸入 0.001 5 mM 亚甲基蓝溶液中,图8a 和 8b 表明,664 nm 处的吸光度随着紫外光照射时间的增加而降低。图8d 可以观察到亚甲基蓝溶液的颜色逐渐变浅。图8c 显示了该超疏水涂层在亚甲基蓝溶液中浸泡 6 h,其接触角仍高于 150°。因此,由于 TiO2 纳米颗粒的存在,制备的超疏水涂层表现出出色的光催化降解污染物的能力,从而提高了其自清洁性能。

  • 图7 超疏水涂层的自清洁性能

  • Fig.7 Self-cleaning performance of superhydrophobic coating

  • 图8 超疏水涂层的光降解性能

  • Fig.8 Photodegradation performance of superhydrophobic coating

  • 3 结论

  • 在铝合金基底上制备出超疏水涂层,并对其稳定、防冰性及防腐性进行了研究,主要得到以下结论:

  • (1)采用简单的喷涂法在铝合金基底上喷涂微纳米混合颗粒,得到了双尺度耐磨超疏水涂层。待其达到半固化状态时,再进一步喷涂硬脂酸修饰的微米 SiO2 和纳米 TiO2 粒子混合悬浮液,该涂层与水的接触角为~155.4°,滚动角为~3°,具有优异的拒水性。

  • (2)所制备的超疏水涂层具有较好的耐磨耐久性,在各种测试条件下仍具有较好的超疏水性能,包括胶带剥离 19 次、砂纸磨损 20 cm,以及紫外光长时间照射、不同 pH 液滴测试等。

  • (3)所制备的超疏水涂层在极端寒冷的天气下可以显著延缓水的冻结时间,约为基体冻结时间的 8 倍。同时,环氧树脂和疏水颗粒的协同防腐作用,使得超疏水涂层在海水中表现出良好的防腐蚀性能。此外,所制备的超疏水涂层还具有优异的自清洁性,且由于 TiO2 粒子本身的光降解性能,该涂层还可以用于光降解污染物,净化水质。

  • 参考文献

    • [1] 李好,辛蕾,冯晓磊,等.铝合金基底热辅助自修复仿生超滑表面制备及润滑油对其性能影响[J].中国表面工程,2022,35(2):45-54.LI H,XIN L FENG X,et al.Preparation of the thermal-assisted self-healing bionic super slippery surface on aluminum alloy substrate and the effect of lubricant on its performancet[J].China Surafce Engineering,2022,35(2):45-54.(in Chinese)

    • [2] LI H,XIN L,ZHANG K,et al.Fluorine-free fabrication of robust self-cleaning and anti-corrosion superhydrophobic coating with photocatalytic function for enhanced anti-biofouling property[J].Surface and Coatings Technology,2022,438:128406.

    • [3] XIE Z T,WANG H,GENG Y,et al.Carbon-based photothermal superhydrophobic materials with hierarchical structure enhances the anti-icing and photothermal deicing properties[J].ACS Applied Materials & Interfaces,2021,13:48308-48321.

    • [4] XIANG T F,REN H W,ZHANG Y L,et al.Rational design of PDMS/paraffin infused surface with enhanced corrosion resistance and interface erosion mechanism[J].Materials & Design,2022,215:110450.

    • [5] CAO X,PAN J,CAI G,et al.A chemically robust and self-healing superhydrophobic polybenzoxazine coating without fluorocarbon resin modification:Fabrication and failure mechanism[J].Progress in Organic Coatings,2022,163:106630.

    • [6] WANG X,DING H,SUN S,et al.Preparation of a temperature-sensitive superhydrophobic self-cleaning SiO2-TiO2@PDMS coating with photocatalytic activity[J].Surface and Coatings Technology,2021,408:126853.

    • [7] 薛鑫宇,尹正生,蒋永锋,等.碳钢表面防腐超疏水 TiO2/PDMS 涂层的制备及性能[J].中国表面工程,2021,34(4):53-59.XUE Xinyu,YIN Zhengsheng,JIANG Yongfeng,et al.Preparation and properties of TiO2/PDMS anticorrosion superhydrophobic coating on carbon steel[J].China Surafce Engineering,2021,34(4):53-59.(in Chinese)

    • [8] QI Y L,YANG Z B,HUANG W X,et al.Robust superhydrophobic surface for anti-icing and cooling performance:Application of fluorine-modified TiO2 and fumed SiO2[J].Applied Surface Science,2021,538:148131.

    • [9] ZHANG J X,ZHANG L J,GONG X.Large-scale spraying fabrication of robust fluorine-free superhydrophobic coatings based on dual-sized silica particles for efective antipollution and strong buoyancy[J].Langmuir,2021,37:6042-6051.

    • [10] LI H,YU S R,HU J R,et al.Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning,anti-corrosion and anti-scaling properties[J].Applied Surface Science,2019,481:872-882.

    • [11] LI H,FENG X,PENG Y,et al.Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability[J].Nanoscale,2020,12:7700-7711.

    • [12] WANG H J,ZHANG Z H,ZHENG J,et al.Multifunctional superhydrophobic surface with dynamically controllable micro/nanostructures for droplet manipulation and friction control[J].Chemical Engineering Journal,2020,417:127944.

    • [13] WANG D H,SUN Q Q,HOKKANEN M J,et al.Design of robust superhydrophobic surfaces[J].Nature,2020,582:55-59.

    • [14] SUN J,WANG W,LIU Z,et al.Study on selective laser melting 316L stainless steel parts with superhydrophobic surface[J].Applied Surface Science,2020,533:14744.

    • [15] QING Y,YANG C,YU N,et al.Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance[J].Chemical Engineering Journal,2016,290:37-44.

    • [16] LI D W,WANG H Y,LIU Y,et al.Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J].Chemical Engineering Journal,2019,367:169-179.

    • [17] LU J,LIU X,ZHANG T C,et al.Magnetic superhydrophobic polyurethane sponge modified with bioinspired stearic acid@Fe3O4@PDA nanocomposites for oil/water separation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,624:126794.

    • [18] QU M,MA X,HE J,et al.Facile selective and diverse fabrication of superhydrophobic,superoleophobic-superhydrophilic and superamphiphobic materials from kaolin[J].ACS Applied Materials & Interfaces,2016,9:1011-1020.

    • [19] WANG N,TANG L,TONG W,et al.Fabrication of robust and scalable superhydrophobic surfaces and investigation of their anti-icing properties[J].Materials & Design,2018,156:320-328.

    • [20] CHANG X,LI M,TANG S,et al.Superhydrophobic micro-nano structured PTFE/WO3 coating on low-temperature steel with outstanding anti-pollution,anti-icing,and anti-fouling performance[J].Surface and Coatings Technology,2022,434:128214.

    • [21] ZHANG X,JIANG F,CHEN R,et al.Robust superhydrophobic coatings prepared by cathodic electrophoresis of hydrophobic silica nanoparticles with the cationic resin as the adhesive for corrosion protection[J].Corrosion Science,2020,73:108797.

    • [22] LI F,KONG W,ZHAO X,et al.Multifunctional TiO2-based superoleophobic/superhydrophilic coating for oil-water separation and oil purification[J].ACS Applied Materials & Interfaces,2020,12:18074-18083.

    • [23] ISLAM M T,DOMINGUEZ A,TURLEY R S,et al.Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water[J].Science of the Total Environment,2020,704:135406.

  • 参考文献

    • [1] 李好,辛蕾,冯晓磊,等.铝合金基底热辅助自修复仿生超滑表面制备及润滑油对其性能影响[J].中国表面工程,2022,35(2):45-54.LI H,XIN L FENG X,et al.Preparation of the thermal-assisted self-healing bionic super slippery surface on aluminum alloy substrate and the effect of lubricant on its performancet[J].China Surafce Engineering,2022,35(2):45-54.(in Chinese)

    • [2] LI H,XIN L,ZHANG K,et al.Fluorine-free fabrication of robust self-cleaning and anti-corrosion superhydrophobic coating with photocatalytic function for enhanced anti-biofouling property[J].Surface and Coatings Technology,2022,438:128406.

    • [3] XIE Z T,WANG H,GENG Y,et al.Carbon-based photothermal superhydrophobic materials with hierarchical structure enhances the anti-icing and photothermal deicing properties[J].ACS Applied Materials & Interfaces,2021,13:48308-48321.

    • [4] XIANG T F,REN H W,ZHANG Y L,et al.Rational design of PDMS/paraffin infused surface with enhanced corrosion resistance and interface erosion mechanism[J].Materials & Design,2022,215:110450.

    • [5] CAO X,PAN J,CAI G,et al.A chemically robust and self-healing superhydrophobic polybenzoxazine coating without fluorocarbon resin modification:Fabrication and failure mechanism[J].Progress in Organic Coatings,2022,163:106630.

    • [6] WANG X,DING H,SUN S,et al.Preparation of a temperature-sensitive superhydrophobic self-cleaning SiO2-TiO2@PDMS coating with photocatalytic activity[J].Surface and Coatings Technology,2021,408:126853.

    • [7] 薛鑫宇,尹正生,蒋永锋,等.碳钢表面防腐超疏水 TiO2/PDMS 涂层的制备及性能[J].中国表面工程,2021,34(4):53-59.XUE Xinyu,YIN Zhengsheng,JIANG Yongfeng,et al.Preparation and properties of TiO2/PDMS anticorrosion superhydrophobic coating on carbon steel[J].China Surafce Engineering,2021,34(4):53-59.(in Chinese)

    • [8] QI Y L,YANG Z B,HUANG W X,et al.Robust superhydrophobic surface for anti-icing and cooling performance:Application of fluorine-modified TiO2 and fumed SiO2[J].Applied Surface Science,2021,538:148131.

    • [9] ZHANG J X,ZHANG L J,GONG X.Large-scale spraying fabrication of robust fluorine-free superhydrophobic coatings based on dual-sized silica particles for efective antipollution and strong buoyancy[J].Langmuir,2021,37:6042-6051.

    • [10] LI H,YU S R,HU J R,et al.Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning,anti-corrosion and anti-scaling properties[J].Applied Surface Science,2019,481:872-882.

    • [11] LI H,FENG X,PENG Y,et al.Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability[J].Nanoscale,2020,12:7700-7711.

    • [12] WANG H J,ZHANG Z H,ZHENG J,et al.Multifunctional superhydrophobic surface with dynamically controllable micro/nanostructures for droplet manipulation and friction control[J].Chemical Engineering Journal,2020,417:127944.

    • [13] WANG D H,SUN Q Q,HOKKANEN M J,et al.Design of robust superhydrophobic surfaces[J].Nature,2020,582:55-59.

    • [14] SUN J,WANG W,LIU Z,et al.Study on selective laser melting 316L stainless steel parts with superhydrophobic surface[J].Applied Surface Science,2020,533:14744.

    • [15] QING Y,YANG C,YU N,et al.Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance[J].Chemical Engineering Journal,2016,290:37-44.

    • [16] LI D W,WANG H Y,LIU Y,et al.Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J].Chemical Engineering Journal,2019,367:169-179.

    • [17] LU J,LIU X,ZHANG T C,et al.Magnetic superhydrophobic polyurethane sponge modified with bioinspired stearic acid@Fe3O4@PDA nanocomposites for oil/water separation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,624:126794.

    • [18] QU M,MA X,HE J,et al.Facile selective and diverse fabrication of superhydrophobic,superoleophobic-superhydrophilic and superamphiphobic materials from kaolin[J].ACS Applied Materials & Interfaces,2016,9:1011-1020.

    • [19] WANG N,TANG L,TONG W,et al.Fabrication of robust and scalable superhydrophobic surfaces and investigation of their anti-icing properties[J].Materials & Design,2018,156:320-328.

    • [20] CHANG X,LI M,TANG S,et al.Superhydrophobic micro-nano structured PTFE/WO3 coating on low-temperature steel with outstanding anti-pollution,anti-icing,and anti-fouling performance[J].Surface and Coatings Technology,2022,434:128214.

    • [21] ZHANG X,JIANG F,CHEN R,et al.Robust superhydrophobic coatings prepared by cathodic electrophoresis of hydrophobic silica nanoparticles with the cationic resin as the adhesive for corrosion protection[J].Corrosion Science,2020,73:108797.

    • [22] LI F,KONG W,ZHAO X,et al.Multifunctional TiO2-based superoleophobic/superhydrophilic coating for oil-water separation and oil purification[J].ACS Applied Materials & Interfaces,2020,12:18074-18083.

    • [23] ISLAM M T,DOMINGUEZ A,TURLEY R S,et al.Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water[J].Science of the Total Environment,2020,704:135406.

  • 手机扫一扫看