en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

范鑫丽,女,1998年出生,硕士。主要研究方向为口腔颌面外科及种植体表面改性。E-mail:fxl9885@163.com

通讯作者:

段可,男,1973年出生,博士,教授,硕士研究生导师。主要研究方向为生物医学材料与工程。E-mail:keduan@swmuedu.cn;

刘刚利,男,1981年出生,博士,副教授,硕士研究生导师。主要研究方向为口腔颌面外科及生物医学材料表面改性。E-mail:liugangli@sde.edu.cn

中图分类号:R318

DOI:10.11933/j.issn.1007-9289.20230425001

参考文献 1
ZITZMANN N U,BERGLUNDH T.Definition and prevalence of peri-implant diseases[J].Journal of Clinical Periodontology,2008,35:286-291.
参考文献 2
DE AVILA E D,DE MOLON R S,LIMA B P,et al.Impact of physical chemical characteristics of abutment implant surfaces on bacteria adhesion[J].Journal of Oral Implantology,2016,42(2):153-158.
参考文献 3
SIMCHEN F,SIEBER M,KOPP A,et al.Introduction to plasma electrolytic oxidation—An overview of the process and applications[J].Coatings,2020,10(7):628.
参考文献 4
LI L H,KONG Y M,KIM H W,et al.Improved biological performance of Ti implants due to surface modification by micro-arc oxidation[J].Biomaterials,2004,25(14):2867-2875.
参考文献 5
LI X,XU H,ZHAO B,et al.Accelerated and enhanced osteointegration of MAO-treated implants:histological and histomorphometric evaluation in a rabbit model[J].International Journal of Oral Science,2018,10(2):11.
参考文献 6
AL-AHMAD A,WIEDMANN-AL-AHMAD M,FACKLER A,et al.Biofilm formation and composition on different implant materials in vivo[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2010,95(1):101-109.
参考文献 7
JIA Z J,XIU P X,LI M,et al.Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings:Trap-killing of bacteria,surface-regulated osteoblast functions and host responses[J].Biomaterials,2016,75:203-222.
参考文献 8
VESTER H,WILDEMANN B,SCHMIDMAIER G,et al.Gentamycin delivered from a PDLLA coating of metallic implants:In vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis[J].Injury,2010,41(10):1053–1059.
参考文献 9
MCSHAN D,RAY P C,YU H T,Molecular toxicity mechanism of nanosilver[J].Journal of Food and Drug Analysis,2014,22(1):116-127.
参考文献 10
CHAIRUANGKITTI P,LAWANPRASERT S,ROYTRAKUL S,et al.Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways[J].Toxicology in Vitro,2013,27(1):330-338.
参考文献 11
DODDS D R.Antibiotic resistance:A current epilogue[J].Biochemical Pharmacology,2017,134:139-146.
参考文献 12
BEYTH N,HOOURI-HADDAD Y,DOMB A,et al.Alternative antimicrobial approach:nano-antimicrobial materials[J].Evidence-based Complementary and Alternative Medicine,2015,2015:16.
参考文献 13
EL-SHAER A,ABDELFATAH M,MAHMOUD K R,et al.Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity[J].Journal of Alloys and Compounds,2020,817:152799.
参考文献 14
LEUNG Y H,NG A M,XU X Y,et al.Mechanisms of antibacterial activity of MgO:non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli[J].Small,2014,10(6):1171-1183.
参考文献 15
林豪,韩蕊,黄萍萍,等.纯钛表面制备纳米氧化镁薄膜的抗菌性能研究[J].口腔颌面修复学杂志,2022,23(2):86-93.LIN Hao,HAN Rui,HUANG Pingping,et al.Study on the antibacterial properties of nano-magnesium oxide films prepared on the surface of pure titanium[J].Chinese Journal of Prosthodontics,2022,23(2):86-93.(in Chinese)
参考文献 16
COELHO C C,PADRAO T,COSTA L,et al.The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute[J].Scientific Reports,2020,10(1):19098.
参考文献 17
BOCCACCINI A R,KEIM S,MA R,et al.Electrophoretic deposition of biomaterials[J].Journal of the Royal Society Interface,2010,7(5):S581-613.
参考文献 18
SUNTHARAVEL MUTHAIAH V M,RAJPUT M,TRIPATHI A,et al.Electrophoretic deposition of nanocrystalline calcium phosphate coating for augmenting bioactivity of additively manufactured Ti-6Al-4V[J].ACS Applied Materials & Interfaces,2022,2(2):132-142.
参考文献 19
HICKEY D J,MUTHUSAMY D,WEBSTER T J.Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications[J].J Biomed Mater Res A,2017,105(11):3136-3147.
参考文献 20
HOSSEINBABAEI F,RAISSIDEHKORDI B.Electrophoretic deposition of MgO thick films from an acetone suspension[J].Journal of the European Ceramic Society,2000,20(12):2165-2168.
参考文献 21
SOARES A,SCELZA M Z,SPOLADORE J,et al.Comparison of primary human gingival fibroblasts from an older and a young donor on the evaluation of cytotoxicity of denture adhesives[J].Journal of Applied Oral Science,2018,26:e20160594.
参考文献 22
LI X,QI M,SUN X,et al.Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities[J].Acta Biomaterialia,2019,94:627-643.
参考文献 23
HU S,LI W,FINKLEA H,et al.A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells[J].Advances in Colloid and Interface Science,2020,276:102102.
参考文献 24
PARK J E,PARK I S,RAE T S,et al.Electrophoretic deposition of carbon nanotubes over TiO2 nanotubes:evaluation of surface properties and biocompatibility[J].Bioinorganic Chemistry and Applications,2014,2014:7.
参考文献 25
HAJISHENGALLIS G.Periodontitis:from microbial immune subversion to systemic inflammation[J].Nature Reviews Immunology,2015,15(1):30-44.
参考文献 26
MAKHLUF S,DROR R,NITZAN Y,et al.Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide[J].Advanced Functional Materials,2005,15(10):1708-1715.
参考文献 27
BLECHER K,NASIR A,FRIEDMAN A.The growing role of nanotechnology in combating infectious disease[J].Virulence,2011,2(5):395-401.
参考文献 28
TAN J,LIU Z,WANG D,et al.A facile and universal strategy to endow implant materials with antibacterial ability via alkalinity disturbing bacterial respiration[J].Biomaterials Science,2020,8(7):1815-1829.
参考文献 29
DONG C X,CAINEY J,SUN Q H,et al.Investigation of Mg(OH)2 nanoparticles as an antibacterial agent[J].Journal of Nanoparticle Research,2009,12(6):2101-2109.
参考文献 30
HUANG L,LI D Q,LIN Y J,et al.Controllable preparation of Nano-MgO and investigation of its bactericidal properties[J].Journal of Inorganic Biochemistry,2005,99(5):986-993.
参考文献 31
LI C,SUN J,SHI K,et al.Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect[J].Journal of Materials Chemistry B,2020,8(21):4575-4586.
参考文献 32
YU S Z,LI Z H,HAN L W,et al.Biocompatible MgO film on titanium substrate prepared by sol-gel method[J].Rare Metal Materials and Engineering,2018,47(9):2663-2667.
参考文献 33
NI R,JING Z,XIONG C,et al.Effect of micro-arc oxidation surface modification of 3D-printed porous titanium alloys on biological properties[J].Annals of Translational Medicine,2022,10(12):710.
参考文献 34
RIBEIRO A R,OLIVEIRA F,BOLDRINI L C,et al.Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications[J].Materials Science & Engineering C-Materials for Biological Applications,2015,54:196-206.
目录contents

    摘要

    口腔种植修复术失败的主要原因是术后细菌在种植体表面黏附形成生物膜并导致周围炎症,主要致病菌为牙龈卟啉单胞菌(P. gingivalisP.g),植入物相关感染严重影响手术效果及增加患者痛苦与费用,因此须赋予植体表面抗菌能力以降低感染发生率。微弧氧化(Micro-arc oxidation, MAO)技术是通过高电压形成牢固结合且具备良好骨整合性能的氧化涂层,同时已有研究发现镁及其化合物(氧化镁)具有良好抗菌性和生物相容性。将 MAO 与电泳沉积(Electrophoretic deposition, EPD) 技术结合,在多微孔的二氧化钛表面沉积纳米氧化镁(nano-MgO)涂层,并评价其体外抗菌性能及生物相容性。通过 SEM、 XRD、EDS 观察样品表面形貌结构、测定元素组成。通过稀释涂板计数法、细菌活死染色及 SEM 观察评价 nano-MgO 涂层对 P.g 的体外抗菌性能。通过将人牙龈成纤维细胞(HGF)与 nano-MgO 涂层共培养后 CCK-8 法、细胞活死染色及骨架染色观察评价 nano-MgO 涂层体外生物相容性。研究结果发现,nano-MgO 颗粒在二氧化钛多微孔表面均匀-团聚沉积且覆盖率随沉积时间增加。各组样品对 P.g 的体外抗菌性能在 24 h 为 6%~54%,在 72 h 为 39%~79%。显微观察(活死及 SEM)样品表面活菌比例随沉积时间而减少。各组样品与 HGF 共培养 1 d 后细胞相对存活率为 79%–67%,5 d 后为 93–85%。荧光显微观察发现 MAO 钛样品表面几乎无死细胞,其余 4 组表面死细胞比例随沉积时间增加,各组样品表面细胞形态完整且各组间无明显差异。MAO 钛表面 EPD nano-MgO 涂层具备良好体外抗菌性能及生物相容性,研究成果可为降低口腔种植修复术的感染发生率、减少患者痛苦及手术费用提供一种新方法。

    Abstract

    Owing to their mechanical properties and biosafety, titanium (Ti) implants are widely used to replace missing teeth; however, their non-antimicrobial properties can lead to infection. The main reasons underlying the failure of oral implant repair are the biofilms and surrounding inflammation caused by bacterial adhesion to the surface of the implants. Implant-related infections considerably influence the effect of surgery and increase the pain and cost incurred by patients; the main pathogen is Porphyromonas gingivalis (P.g). Therefore, endowing the surface of implants with antibacterial ability to reduce the adhesion and colonization of bacteria on the surface of implants, thus reducing the incidence of infection, is necessary. Microarc oxidation (MAO) is currently one of the primary technologies used for implant surface modification. It can form porous titanium dioxide coatings on Ti with strong adhesion under high voltages. Moreover, the introduction of elements (such as calcium and phosphorus.) can promote bone healing and improve the osseointegration properties of the implant. However, owing to the rough and porous surface of micro-arc oxidation Ti (MAO-Ti), bacteria can easily attach and reproduce; therefore, infection will still occur. Magnesium and its compound [magnesium oxide (MgO)] have been found to have excellent antibacterial ability and biocompatibility. Therefore, in this study, MAO and electrophoretic deposition (EPD) were combined to deposit nano-magnesium oxide (nano-MgO) coatings on MAO-Ti for 0, 15, 30, 45, or 60 s, while maintaining its biosafety. The MAO-Ti surface was endowed with antibacterial properties to reduce the incidence of infection. In this study, the in vitro antibacterial properties and biocompatibility of the samples were evaluated, the surface morphology and element composition of the samples were observed by scanning electron microscope (SEM), X-ray diffractometer (XRD), and energy dispersive spectrometer (EDS), the in vitro antibacterial properties of the samples against P.g were evaluated by dilution plate counting, bacterial live / dead staining, and SEM observation, and the in vitro biocompatibilities of human gingival fibroblasts (HGF) were evaluated using the CCK-8 method, cell live / dead staining, and cytoskeleton staining after co-culture with the samples. The results showed that the nano-MgO particles were uniformly agglomerated on the MAO-Ti porous surface, and the coverage rates increased with EPD time. The in vitro antibacterial activity of each sample against P.g was 5%, 26%, 31%, and 54% at 24 h, 39%, 69%, 72%, and 79% at 72 h, and microscopic observation (live / dead staining and SEM) showed that the proportion of live bacterial cells on the surface of the samples decreased with increasing deposition time. After co-culture with HGF cells for 1 d, the relative survival rate of cells was 79%, 76%, 72%, 70%,and 67%, 93%, 92%, 90%, 87%, and 85% after co-culture with HGF cells for 5 d. Only the samples deposited for 60 s had low cytotoxicity on the day 1 (relative cell survival rate = 67%), while, on days 3 and 5, no samples had cell cytotoxicity (all cell relative survival rates ≥70%). Fluorescence microscopy showed that there were almost no dead cells on the surface of MAO-Ti samples, and the proportion of dead cells on the surface of the other four groups increased with EPD time. The morphology of cells on the surface of each group was intact and there was no significant difference among the groups. Therefore, the EPD nano-MgO coatings on the surface of MAO-Ti have excellent in vitro antibacterial properties and biocompatibility, providing a new method for reducing the incidence of infection and pain suffered by patients as well as the cost of operation.

  • 0 前言

  • 钛种植体广泛用于修复牙缺失,但周边早期感染是种植失败的主要因素之一,其主要致病微生物为牙龈卟啉单胞菌(P. gingivalisP.g)等[1-2]。因此,赋予种植体表面抗菌能力具有临床意义。

  • 微弧氧化(Micro-arc oxidation,MAO)通过施加高电压引起表面氧化、局部击穿,形成牢固结合的二氧化钛涂层[3]。MAO 钛具有良好的骨整合性能,是目前主要应用的种植体表面改性技术之一[4]。 LI 等[5]将 32 颗 MAO 钛种植体与 32 颗纯钛种植体植入 16 只实验兔胫骨,分别于 2、4、8 或 12 周处死后评估其组织形态及成骨能力,发现 MAO 钛具有更强成骨性能。但因 MAO 钛粗糙表面易于细菌附着与增殖的缺点,导致感染率上升及手术失败。 AL-AHMAD 等[6]将 MAO 钛和机械加工钛夹板系统植入 12 名健康志愿者上颌牙列 3~5 d 后检测表面生物膜形成,发现前者表面生物膜厚度高于后者,提示粗糙表面利于感染发生。已有许多研究报道于 MAO 钛表面改性赋予其抗菌性能。JIA 等[7]在 MAO 钛表面制备纳米银涂层,与金黄色葡萄球菌共培养 24 h 后发现其抗菌率为 99.85%。VESTER 等[8]在钛种植体表面制备聚乳酸 / 庆大霉素复合涂层,与金黄色葡萄球菌共培养 1~10 min 后,发现该复合涂层样品抑菌率达 87.1% 且有效抑制细菌黏附。但银涂层具有细胞毒性[9-10],而抗生素涂层大量使用则易产生耐药性[11]。因此,须研究具有良好抗菌性能、生物活性但不具上述毒副作用的涂层。

  • 镁是人体必需的宏量元素,成年人含 20~30 g 镁,且建议每日摄入量约 330 mg。已有大量研究发现[12-14],镁及其化合物具有良好抗菌性和生物相容性。林豪等[15]通过磁控溅射技术在钛表面制备 MgO 涂层,与P.g共培养24 h后发现其抗菌率为78.14%~99.86%。COELHO 等[16]制备了 nano-MgO / 羟基磷灰石复合材料,并分别与 3 种细菌共培养 24 h,发现三种细菌黏附及增殖均被显著抑制。电泳沉积 (Electrophoretic deposition,EPD)是一种简单快速的涂层方法,可用于复杂形状表面制备抗菌和成骨涂层[17]。SUNTHARAVEL 等[18]在钛合金表面 EPD 纳米羟基磷灰石涂层,与 MC3T3-E1 细胞共培养 1~7 d 后发现该涂层可促进成骨细胞黏附和增殖。 HICKEY 等[19]在聚乳酸表面 EPD nano-MgO 涂层,与 3 种细菌共培养 4 h 后,发现其抗菌率分别为 64%~90%。至今,尚无研究报道在 MAO 钛表面电泳沉积 MgO 并评价其体外抗菌能力及生物相容性。本文将 MAO 与 EPD 技术结合,制备同时具备良好抗菌及生物相容性的复合涂层,以探究一种降低口腔中 MAO 钛种植体周围感染发生率的方法。

  • 1 材料与方法

  • 1.1 涂层制备

  • (1)微弧氧化

  • 将钛板(TA2,厚度 1 mm,陕西宝钛集团)切割成 30 mm×10 mm,碳化硅砂纸打磨至 1200 目,用含 3%氢氟酸、5%硝酸(广东光华)的酸洗液酸蚀 1 min 后去离子水超声清洗 30 min。将清洗后的钛条浸入电解液[0.8% β-甘油磷酸钠,5.9%乙酸钙, 93.3%去离子水]中为正极,以 316 不锈钢板 (100 mm×20 mm)为负极,施加 350 V 直流电压(顺德三阳 STP-400V / 200A.D.R)并保持 30 s。

  • (2)氧化镁电泳沉积

  • 将 0.5 g MgO 粉(30 nm,鑫康新材料)悬浮于 150 mL 丙酮(川东化工)中并超声分散 60 min。将 MAO 处理后的钛条浸入该悬液中做为正极,以铂片 (20 mm×20 mm,Ledonlab)为负极,施加 40 V 直流电压(Keithley)并保持 0、15、30、45 或 60 s[20]。样品分别标记为 MAO、15 s nano-MgO / MAO、30 s nano-MgO / MAO、 45 s nano-MgO / MAO、 60 s nano-MgO / MAO。

  • 1.2 涂层表征

  • 用 X 射线衍射(XRD,CuKα,40 kV,20 mA; 丹东通达 TD-3500)分析物相;扫描电子显微镜(SEM; 中科科仪 KYKY-EM6900)及其所配能谱仪(EDS; Bruker 1048)、场发射扫描电子显微镜(JEOL JSM-7500F)观察表面形貌和元素分布;场发射扫描电子显微镜(Hitachi,SU8020)观察截面形貌。

  • 1.3 生物相容性

  • (1)细胞制备

  • 牙龈组织取材自山东大学口腔医院口腔颌面外科因阻生齿拔牙、牙龈健康无炎症的患者。所有取材经山东大学伦理机构审查委员会批准及患者的同意。采用组织块贴壁法提取原代人牙龈成纤维细胞 (HGF)[21]。HGF 细胞培养[(5% CO2、95%湿度, 37℃);培养基:89%DMEM,10%南美胎牛血清 (均 Gibico)和 1%青霉素-链霉素(100 U / mL 青霉素,0.1 mg / mL 链霉素;碧云天)的培养基],并传代至第三代后使用。

  • (2)细胞毒性

  • 各组样品干热灭菌(250℃,1 h)后放入 24 孔板中,加入 1 mL HGF 细胞悬液(1×105 cell / mL)。培养箱(Thermo Fisher 3111GP)孵育 1、3 或 5 d 后,每孔加入 200 μL CCK-8 试剂(重庆葆光生物) 后再次孵育 2 h。每孔吸取 100 μL 混悬液于 96 孔板中,酶标仪(infinite M Nano,Tecan)测量其 450 nm 处吸光值(无样品细胞孔板为对照组,完全培养基孔板为空白组),并将测得吸光度换算为细胞相对存活率。细胞相对存活率=[(实验组吸光度−空白组吸光度) / (对照组吸光度-空白组吸光度)]× 100%。每组 3 个平行样。

  • (3)细胞活 / 死染色

  • 上述共培养钛片(同细胞毒性培养步骤)去除培养基后 PBS 冲洗,行活死染色(Live / Dead cell imaging kit,Thermo Fisher)后倒置荧光显微镜 (Zeiss Axio Vert.A1)观察。若无特殊说明本文中PBS 冲洗均为 2 mL×3。

  • (4)细胞形态

  • 上述共培养钛片(同细胞毒性培养步骤)去除培养基后 PBS 冲洗,加入 0.1%TritonX-100(碧云天)破膜 15 min 后冲洗。加入鬼笔环肽染液(Thermo Fisher)避光孵育 30 min 后冲洗。加入 DAPI 染液 (碧云天)避光孵育 30 s 后冲洗。用激光共聚焦显微镜(LSM980,Zeiss)观察并拍照。

  • 1.4 体外抗菌

  • (1)细菌制备

  • 将牙龈卟啉单胞菌(ATCC33277,HS1825,上海继和生物)制成单菌落,挑取至含维生素 K (HB0310b)、氯化血红素(HB0310a)的 10 mL 脑心浸出液肉汤(HB8478,上述均青岛海博生物)中,培养 24 h(37℃、150 r / min)。根据 OD600nm vs.CFU / mL 指定标准曲线将细菌浓度调整至约1× 105 CFU / mL[22]

  • (2)细菌计数

  • 按 ISO 22196—2011 标准评价样品体外抗菌率。将样品与牙龈卟啉单胞菌共培养 24、48 或 72 h 后用 10 mL PBS 冲洗,将冲洗液梯度稀释 105 倍。吸取 100 μL 稀释液(105 倍)滴至 BHI 固体培养基 (Thermo Fisher)表面,37℃培养 24 h 后拍照并统计菌落数。抗菌率=[(对照组回收菌落数−实验组回收菌落数) / 对照组回收菌落数]×100%。

  • (3)细菌黏附

  • 以上共培养 72 h,钛片(同细菌计数培养步骤) PBS 冲洗后 4%多聚甲醛(BL539A,Biosharp)固定 1 h,乙醇脱水(30%、50%、70%、80%、90%各一次,100%两次,每次 15 min)后临界点干燥并 SEM 观察。

  • (4)活 / 死染色

  • 以上共培养 72 h,钛片(同细菌计数培养步骤) PBS 冲洗后行 Live / Dead BacLight 细菌活力检测试剂盒(Invitrogen)染色,倒置荧光显微镜观察活、死细菌比例并拍照。

  • 1.5 统计学分析

  • 数据用平均值±标准偏差表示。数据用单因素方差分析(one-way ANOVA,SPSS 16.0)和 Tukey 多重比较;p<0.05 视为差异具有统计学意义。

  • 2 结果与讨论

  • 2.1 材料表征

  • SEM 观察 MAO 钛表面大量火山坑状微孔,直径为 2~6 μm(图1a)。电泳沉积 15~60 s 后 MAO 钛表面形成均匀的 nano-MgO 涂层(图1b–1e),涂层覆盖率随沉积时间而增加,部分微孔内嵌入 nano-MgO 颗粒(图1 白圈处),其中沉积≥30 s 的样品表面(图1d)nano-MgO 颗粒将 MAO 微孔完全覆盖。

  • 图1 样品 SEM 表面形貌

  • Fig.1 SEM images of each samples

  • EDS 分析(图2)在各组样品表面检测出 Ti、Mg、Ca、O 元素,其中部分样品 Ti 及 Ca 特征峰消失(沉积>15 s 的样品),且 Mg 峰相对强度增高,提示涂层厚度随沉积时间增加。

  • 图2 样品 EDS 谱

  • Fig.2 EDS spectra of each samples

  • XRD 检测各组样品表面,均检测出二氧化钛和 MgO 的衍射峰(图3),且 MgO 峰的相对强度随电泳沉积时间增强,提示 nano-MgO 涂层厚度随沉积时间增加。SEM 截面观察发现(图4a~4e),样品与树脂交界处出现一明显过渡区(白色斜线)

  • 图3 各组样品 XRD 谱

  • Fig.3 XRD spectra of each samples

  • 图4 样品 SEM 截面形貌(白色斜线为涂层截面)

  • Fig.4 SEM images of each samples (the white diagonal is the coating section)

  • 2.2 生物相容性

  • 各组样品表面细胞相对存活率随培养时间上升 (图5);在同一时间点,细胞相对存活率随沉积时间下降。如共培养 1 d 后,与 MAO 组比较,实验组存活率分别下降 3%、7%、9%、12%。共培养 5 d后,与 MAO 组比较,实验组存活率分别下降 1%、 3%、6%、8%。在整个实验周期中,各组间细胞相对存活率差异均无统计学意义。根据(ISO 10993.5)标准规定细胞相对存活率≥70%则无细胞毒性,在第1 d 时仅 60 s nano-MgO / MAO 有低细胞毒性(67%),在第 3、5 d 时各组样品细胞均无细胞毒性(均≥70%)。

  • 图5 细胞与样品共培养 1~5 d 后的相对存活率

  • Fig.5 Viability of HGF cells after co-culture with each samples from 1 to 5 d.

  • 活死染色发现(图6a),共培养 5 d 后赋予 nano-MgO 的样品表面活细胞比例随沉积时间下降,死细胞比例随沉积时间上升;MAO 钛表面未发现死细胞,而其余 4 组表面死细胞占比均<7%。形态染色发现(图6b),各组样品表面细胞黏附铺展良好,纤维骨架结构清晰,各组间未见细胞形态存在明显差异。

  • 图6 细胞与各组样品共培养 5 d 后的荧光显微照片

  • Fig.6 Fluorescence micrographs of each samples after co-cultured with HGF cells for 5 d: (a) Red pixels: dead cells; Green pixels: alive cells. All scale bars: 100 μm; (b) Cytoskeleton fiber: green pixels; Nucleus: blue pixels. All scale bars: 50 μm.

  • 2.3 体外抗菌

  • 图7a 为各组表面接种细菌共培养 72 h 后,表面冲洗液稀释涂板形成的菌落典型照片(图7a),其中 MAO 钛样品形成菌落数显著多余其余 4 组。

  • 图7 样品与细菌共培养 24~72 h 后涂板计数图

  • Fig.7 Figures of plate counting after co-culture with P.g for 24~72 h (Numbers 2-5 indicating MAO vs.15 s nano-MgO / MAO, 30 s nano-MgO / MAO, 45 s nano-MgO / MAO, and 60 s nano-MgO / MAO respectively (p<0.05)

  • 各组表面接种细菌共培养 24~72 h 后,表面冲洗液形成菌落计数发现(图7b),MAO 钛表面菌落数随培养时间增多,其余 4 组表面菌落数随培养时间减少。

  • 在同一时间点,样品表面菌落数随沉积时间减少,样品抗菌率随沉积时间和培养时间增强。共培养 24 h 后,4 组样品的抗菌率分别为 5%、26%、31%、 54%;共培养 72 h 后,4 组样品抗菌率分别为 39%、 69%、72%、79%。

  • SEM 观察(图8)发现共培养 72 h 后,MAO 钛表面及微孔内黏附大量细菌,其余 4 组表面细菌黏附比例随沉积时间显著减少,如 15 s nano-MgO / MAO 表面的细菌约占视野面积的 15%; 60 s nano-MgO / MAO 表面的则约占 3%。活死染色(图9)发现共培养 72 h 后,MAO 钛样品表面几乎无死细菌(红色荧光),而其余 4 组表面活细菌(绿色荧光)占比随沉积时间减少,死细菌占比随沉积时间增加(60 s nano-MgO / MAO 组约占 90%)。

  • 图8 各组样品接种细菌培养 72 h 后表面形貌

  • Fig.8 SEM micrographs of each samples after co-culture with P.g for 72 h (white arrows pointing to P.g cells)

  • 图9 各组样品与细菌共培养 72 h 并活死染色后的荧光显微照片

  • Fig.9 Micrographs of each samples after co-cultured with P.g for 72 h and live / dead staining (Red pixels: dead P.g cells; Green pixels: alive P.g cells. All scale bars: 100 μm)

  • 3 讨论

  • 本文将微弧氧化与电泳沉积技术结合,以钛为基体行 MAO 处理后浸入 MgO-丙酮悬液中电泳沉积制备 nano-MgO 涂层。SEM 观察发现,nano-MgO 颗粒均匀沉积于 MAO 钛表面(图1),沉积时间较长组 nano-MgO 颗粒可覆盖 MAO 微孔。MgO 易于分散在丙酮溶液中且可均匀沉积在钛表面[23]。 PARK等[24]在MAO钛植体表面电泳沉积nano管涂层,发现涂层厚度均匀且制备快速。SUNTHARAVEL等[18] 在钛合金表面电泳沉积羟基磷灰石涂层,发现涂层均匀性较好且提高钛合金生物活性。Nano-MgO 颗粒带正电,通过 EPD 的电场作用及颗粒间的范德华力,使其向负极移动并与基体结合。虽其缺乏化学结合导致涂层与基体的结合力欠佳,但 MAO 钛粗糙多孔表面有利于 nano-MgO 颗粒机械结合,可提升涂层结合力。本文通过原子吸收广谱检测样品 (60 s nano-MgO / MAO),浸泡于 PBS 中 72 h 后 Mg2+累计释放量约为 823.2 μg,可知 nano-MgO 颗粒溶液中会溶解,释放 Mg2+。综上所述,有望通过 EPD 技术在钛种植体表面制备 MgO 或其他材料的复合涂层。

  • 各组电泳沉积 MgO 的样品对 P.g 具有一定抗菌性且随沉积时间增加,其中 60 s nano-MgO / MAO 在 72 h 时抗菌率达 79%。虽然 nano-MgO 的抗菌性略低于其他金属和抗生素涂层,但它具备良好生物相容性及不易耐药等优点。种植体周围炎是一种多菌性的厌氧病变,细菌黏附并破坏组织,导致种植失败[25]。虽 MAO 钛微孔结构利于细菌黏附,但它可与表面制备的抗菌涂层相互协调,形成一种“诱捕杀灭”模式。JIA 等[7]赋予 MAO 钛表面银涂层, MAO 钛微孔结构对细菌物理捕获与涂层释放 Ag+相互协调,从而杀灭细菌。已有一些研究报道 MgO 具有良好的抗菌性能。MAKHULF 等[26]采用微波法合成了不同粒径的 nano-MgO(8~23 nm),发现它对大肠杆菌和金黄色葡萄球菌均展现出较好抗菌性能。目前关于 MgO 的抗菌机制报道尚不清晰,部分研究报道其抗菌机制可能与活性氧(ROS)损伤、 pH 值上升、粒子吸附等有关。一方面 MgO 能与 O2 发生催化反应,产生 ROS[27];另一方面,MgO 与水反应生成 Mg(OH)2,pH 值上升,导致细菌死亡[28]。 DONG 等[29]将 Mg(OH)2 与大肠杆菌共培养后,发现其与细菌接触时产生高浓度 OH 离子,破坏细胞膜从而导致细菌死亡。HUANG 等[30]制备不同粒径的 MgO 与两种细菌共培养,发现其抑菌效果随 MgO 颗粒粒径减小而增强,推测其抑菌机制为,MgO 表面产生高浓度 ROS,与细胞壁发生肽键反应从而杀死细菌。本文涂层的抗菌机制仍在研究中,结果将后续报道。

  • 各组样品与细胞共培养后发现初期基本无细胞毒性(仅 60 s nano-MgO / MAO 样品在 1 d 时细胞相对存活率为 67%);但随培养时间延长,5 组样品均无细胞毒性(细胞相对存活率均≥70%)。已有许多研究报道 nano-MgO 具有良好生物相容性。LI 等 [31] 制备了含 MgO 的骨水泥,将浸提液与 MC3T3-E1细胞培养1~7 d后发现掺入MgO粉后细胞增殖率显著高于对照组。YU 等[32]用溶胶–凝胶法在钛基体上制备 MgO 涂层,与成骨细胞培养 5 d 后发现其具有更好的生物相容性和碱性磷酸酶活性。同时,MAO 处理后的金属植入物也具备良好的生物活性。NI 等[33]通过 MAO 技术对多孔支架表面改性,将人骨髓干细胞接种于 MAO 与未处理支架上,共培养 24 h 后发现虽两组均无细胞毒性,但 MAO 处理的支架细胞粘附状态较好且细胞增殖和 ALP 水平高于未处理的支架。RIBEIRO 等[34]发现 MAO 处理后的 Ti 表面形成较厚的氧化层,有助于成骨细胞黏附及诱导 IFN-γ 细胞因子分泌,提示 MAO 处理后的钛种植体可促进骨结合。上述关于 MgO 涂层与 MAO 钛生物相容性的报道与本研究结果一致,提示本研究中两者技术的结合可更好地提高种植体的骨整合性能。同时基于氧化镁涂层,植入物也具备了良好的抗菌性能。

  • 4 结论

  • (1)将微弧氧化与电泳沉积技术相结合,在 MAO 钛表面电泳沉积 nano-MgO 涂层。抗菌及细胞毒性实验结果表明,MAO 钛良好的生物活性,而 nano-MgO 涂层较强的抗菌性为 MAO 钛发挥了表面防御作用。上述体外抗菌及生物相容性结果与先前文献报道基本一致。但尚未评价该涂层的抗菌机制以及在动物模型中的体内抗菌、成骨性能,须开展进一步研究弥补这些局限并深入探究该涂层的性能。

  • (2)先前研究中镁及氧化镁的形式主要为固态金属颗粒(颗粒尺寸主要为微米级),而本研究将两种表面处理技术共同应用,将 nano-MgO 以涂层形式(颗粒尺寸主要为纳米级)沉积在钛表面,使种植体表面同时具有成骨性和抗菌性成为了可能,且对牙龈卟啉单胞菌的抗菌作用为降低口腔植入术后感染发生率提供了新方法。

  • 参考文献

    • [1] ZITZMANN N U,BERGLUNDH T.Definition and prevalence of peri-implant diseases[J].Journal of Clinical Periodontology,2008,35:286-291.

    • [2] DE AVILA E D,DE MOLON R S,LIMA B P,et al.Impact of physical chemical characteristics of abutment implant surfaces on bacteria adhesion[J].Journal of Oral Implantology,2016,42(2):153-158.

    • [3] SIMCHEN F,SIEBER M,KOPP A,et al.Introduction to plasma electrolytic oxidation—An overview of the process and applications[J].Coatings,2020,10(7):628.

    • [4] LI L H,KONG Y M,KIM H W,et al.Improved biological performance of Ti implants due to surface modification by micro-arc oxidation[J].Biomaterials,2004,25(14):2867-2875.

    • [5] LI X,XU H,ZHAO B,et al.Accelerated and enhanced osteointegration of MAO-treated implants:histological and histomorphometric evaluation in a rabbit model[J].International Journal of Oral Science,2018,10(2):11.

    • [6] AL-AHMAD A,WIEDMANN-AL-AHMAD M,FACKLER A,et al.Biofilm formation and composition on different implant materials in vivo[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2010,95(1):101-109.

    • [7] JIA Z J,XIU P X,LI M,et al.Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings:Trap-killing of bacteria,surface-regulated osteoblast functions and host responses[J].Biomaterials,2016,75:203-222.

    • [8] VESTER H,WILDEMANN B,SCHMIDMAIER G,et al.Gentamycin delivered from a PDLLA coating of metallic implants:In vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis[J].Injury,2010,41(10):1053–1059.

    • [9] MCSHAN D,RAY P C,YU H T,Molecular toxicity mechanism of nanosilver[J].Journal of Food and Drug Analysis,2014,22(1):116-127.

    • [10] CHAIRUANGKITTI P,LAWANPRASERT S,ROYTRAKUL S,et al.Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways[J].Toxicology in Vitro,2013,27(1):330-338.

    • [11] DODDS D R.Antibiotic resistance:A current epilogue[J].Biochemical Pharmacology,2017,134:139-146.

    • [12] BEYTH N,HOOURI-HADDAD Y,DOMB A,et al.Alternative antimicrobial approach:nano-antimicrobial materials[J].Evidence-based Complementary and Alternative Medicine,2015,2015:16.

    • [13] EL-SHAER A,ABDELFATAH M,MAHMOUD K R,et al.Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity[J].Journal of Alloys and Compounds,2020,817:152799.

    • [14] LEUNG Y H,NG A M,XU X Y,et al.Mechanisms of antibacterial activity of MgO:non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli[J].Small,2014,10(6):1171-1183.

    • [15] 林豪,韩蕊,黄萍萍,等.纯钛表面制备纳米氧化镁薄膜的抗菌性能研究[J].口腔颌面修复学杂志,2022,23(2):86-93.LIN Hao,HAN Rui,HUANG Pingping,et al.Study on the antibacterial properties of nano-magnesium oxide films prepared on the surface of pure titanium[J].Chinese Journal of Prosthodontics,2022,23(2):86-93.(in Chinese)

    • [16] COELHO C C,PADRAO T,COSTA L,et al.The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute[J].Scientific Reports,2020,10(1):19098.

    • [17] BOCCACCINI A R,KEIM S,MA R,et al.Electrophoretic deposition of biomaterials[J].Journal of the Royal Society Interface,2010,7(5):S581-613.

    • [18] SUNTHARAVEL MUTHAIAH V M,RAJPUT M,TRIPATHI A,et al.Electrophoretic deposition of nanocrystalline calcium phosphate coating for augmenting bioactivity of additively manufactured Ti-6Al-4V[J].ACS Applied Materials & Interfaces,2022,2(2):132-142.

    • [19] HICKEY D J,MUTHUSAMY D,WEBSTER T J.Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications[J].J Biomed Mater Res A,2017,105(11):3136-3147.

    • [20] HOSSEINBABAEI F,RAISSIDEHKORDI B.Electrophoretic deposition of MgO thick films from an acetone suspension[J].Journal of the European Ceramic Society,2000,20(12):2165-2168.

    • [21] SOARES A,SCELZA M Z,SPOLADORE J,et al.Comparison of primary human gingival fibroblasts from an older and a young donor on the evaluation of cytotoxicity of denture adhesives[J].Journal of Applied Oral Science,2018,26:e20160594.

    • [22] LI X,QI M,SUN X,et al.Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities[J].Acta Biomaterialia,2019,94:627-643.

    • [23] HU S,LI W,FINKLEA H,et al.A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells[J].Advances in Colloid and Interface Science,2020,276:102102.

    • [24] PARK J E,PARK I S,RAE T S,et al.Electrophoretic deposition of carbon nanotubes over TiO2 nanotubes:evaluation of surface properties and biocompatibility[J].Bioinorganic Chemistry and Applications,2014,2014:7.

    • [25] HAJISHENGALLIS G.Periodontitis:from microbial immune subversion to systemic inflammation[J].Nature Reviews Immunology,2015,15(1):30-44.

    • [26] MAKHLUF S,DROR R,NITZAN Y,et al.Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide[J].Advanced Functional Materials,2005,15(10):1708-1715.

    • [27] BLECHER K,NASIR A,FRIEDMAN A.The growing role of nanotechnology in combating infectious disease[J].Virulence,2011,2(5):395-401.

    • [28] TAN J,LIU Z,WANG D,et al.A facile and universal strategy to endow implant materials with antibacterial ability via alkalinity disturbing bacterial respiration[J].Biomaterials Science,2020,8(7):1815-1829.

    • [29] DONG C X,CAINEY J,SUN Q H,et al.Investigation of Mg(OH)2 nanoparticles as an antibacterial agent[J].Journal of Nanoparticle Research,2009,12(6):2101-2109.

    • [30] HUANG L,LI D Q,LIN Y J,et al.Controllable preparation of Nano-MgO and investigation of its bactericidal properties[J].Journal of Inorganic Biochemistry,2005,99(5):986-993.

    • [31] LI C,SUN J,SHI K,et al.Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect[J].Journal of Materials Chemistry B,2020,8(21):4575-4586.

    • [32] YU S Z,LI Z H,HAN L W,et al.Biocompatible MgO film on titanium substrate prepared by sol-gel method[J].Rare Metal Materials and Engineering,2018,47(9):2663-2667.

    • [33] NI R,JING Z,XIONG C,et al.Effect of micro-arc oxidation surface modification of 3D-printed porous titanium alloys on biological properties[J].Annals of Translational Medicine,2022,10(12):710.

    • [34] RIBEIRO A R,OLIVEIRA F,BOLDRINI L C,et al.Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications[J].Materials Science & Engineering C-Materials for Biological Applications,2015,54:196-206.

  • 参考文献

    • [1] ZITZMANN N U,BERGLUNDH T.Definition and prevalence of peri-implant diseases[J].Journal of Clinical Periodontology,2008,35:286-291.

    • [2] DE AVILA E D,DE MOLON R S,LIMA B P,et al.Impact of physical chemical characteristics of abutment implant surfaces on bacteria adhesion[J].Journal of Oral Implantology,2016,42(2):153-158.

    • [3] SIMCHEN F,SIEBER M,KOPP A,et al.Introduction to plasma electrolytic oxidation—An overview of the process and applications[J].Coatings,2020,10(7):628.

    • [4] LI L H,KONG Y M,KIM H W,et al.Improved biological performance of Ti implants due to surface modification by micro-arc oxidation[J].Biomaterials,2004,25(14):2867-2875.

    • [5] LI X,XU H,ZHAO B,et al.Accelerated and enhanced osteointegration of MAO-treated implants:histological and histomorphometric evaluation in a rabbit model[J].International Journal of Oral Science,2018,10(2):11.

    • [6] AL-AHMAD A,WIEDMANN-AL-AHMAD M,FACKLER A,et al.Biofilm formation and composition on different implant materials in vivo[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2010,95(1):101-109.

    • [7] JIA Z J,XIU P X,LI M,et al.Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings:Trap-killing of bacteria,surface-regulated osteoblast functions and host responses[J].Biomaterials,2016,75:203-222.

    • [8] VESTER H,WILDEMANN B,SCHMIDMAIER G,et al.Gentamycin delivered from a PDLLA coating of metallic implants:In vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis[J].Injury,2010,41(10):1053–1059.

    • [9] MCSHAN D,RAY P C,YU H T,Molecular toxicity mechanism of nanosilver[J].Journal of Food and Drug Analysis,2014,22(1):116-127.

    • [10] CHAIRUANGKITTI P,LAWANPRASERT S,ROYTRAKUL S,et al.Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways[J].Toxicology in Vitro,2013,27(1):330-338.

    • [11] DODDS D R.Antibiotic resistance:A current epilogue[J].Biochemical Pharmacology,2017,134:139-146.

    • [12] BEYTH N,HOOURI-HADDAD Y,DOMB A,et al.Alternative antimicrobial approach:nano-antimicrobial materials[J].Evidence-based Complementary and Alternative Medicine,2015,2015:16.

    • [13] EL-SHAER A,ABDELFATAH M,MAHMOUD K R,et al.Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity[J].Journal of Alloys and Compounds,2020,817:152799.

    • [14] LEUNG Y H,NG A M,XU X Y,et al.Mechanisms of antibacterial activity of MgO:non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli[J].Small,2014,10(6):1171-1183.

    • [15] 林豪,韩蕊,黄萍萍,等.纯钛表面制备纳米氧化镁薄膜的抗菌性能研究[J].口腔颌面修复学杂志,2022,23(2):86-93.LIN Hao,HAN Rui,HUANG Pingping,et al.Study on the antibacterial properties of nano-magnesium oxide films prepared on the surface of pure titanium[J].Chinese Journal of Prosthodontics,2022,23(2):86-93.(in Chinese)

    • [16] COELHO C C,PADRAO T,COSTA L,et al.The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute[J].Scientific Reports,2020,10(1):19098.

    • [17] BOCCACCINI A R,KEIM S,MA R,et al.Electrophoretic deposition of biomaterials[J].Journal of the Royal Society Interface,2010,7(5):S581-613.

    • [18] SUNTHARAVEL MUTHAIAH V M,RAJPUT M,TRIPATHI A,et al.Electrophoretic deposition of nanocrystalline calcium phosphate coating for augmenting bioactivity of additively manufactured Ti-6Al-4V[J].ACS Applied Materials & Interfaces,2022,2(2):132-142.

    • [19] HICKEY D J,MUTHUSAMY D,WEBSTER T J.Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications[J].J Biomed Mater Res A,2017,105(11):3136-3147.

    • [20] HOSSEINBABAEI F,RAISSIDEHKORDI B.Electrophoretic deposition of MgO thick films from an acetone suspension[J].Journal of the European Ceramic Society,2000,20(12):2165-2168.

    • [21] SOARES A,SCELZA M Z,SPOLADORE J,et al.Comparison of primary human gingival fibroblasts from an older and a young donor on the evaluation of cytotoxicity of denture adhesives[J].Journal of Applied Oral Science,2018,26:e20160594.

    • [22] LI X,QI M,SUN X,et al.Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities[J].Acta Biomaterialia,2019,94:627-643.

    • [23] HU S,LI W,FINKLEA H,et al.A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells[J].Advances in Colloid and Interface Science,2020,276:102102.

    • [24] PARK J E,PARK I S,RAE T S,et al.Electrophoretic deposition of carbon nanotubes over TiO2 nanotubes:evaluation of surface properties and biocompatibility[J].Bioinorganic Chemistry and Applications,2014,2014:7.

    • [25] HAJISHENGALLIS G.Periodontitis:from microbial immune subversion to systemic inflammation[J].Nature Reviews Immunology,2015,15(1):30-44.

    • [26] MAKHLUF S,DROR R,NITZAN Y,et al.Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide[J].Advanced Functional Materials,2005,15(10):1708-1715.

    • [27] BLECHER K,NASIR A,FRIEDMAN A.The growing role of nanotechnology in combating infectious disease[J].Virulence,2011,2(5):395-401.

    • [28] TAN J,LIU Z,WANG D,et al.A facile and universal strategy to endow implant materials with antibacterial ability via alkalinity disturbing bacterial respiration[J].Biomaterials Science,2020,8(7):1815-1829.

    • [29] DONG C X,CAINEY J,SUN Q H,et al.Investigation of Mg(OH)2 nanoparticles as an antibacterial agent[J].Journal of Nanoparticle Research,2009,12(6):2101-2109.

    • [30] HUANG L,LI D Q,LIN Y J,et al.Controllable preparation of Nano-MgO and investigation of its bactericidal properties[J].Journal of Inorganic Biochemistry,2005,99(5):986-993.

    • [31] LI C,SUN J,SHI K,et al.Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect[J].Journal of Materials Chemistry B,2020,8(21):4575-4586.

    • [32] YU S Z,LI Z H,HAN L W,et al.Biocompatible MgO film on titanium substrate prepared by sol-gel method[J].Rare Metal Materials and Engineering,2018,47(9):2663-2667.

    • [33] NI R,JING Z,XIONG C,et al.Effect of micro-arc oxidation surface modification of 3D-printed porous titanium alloys on biological properties[J].Annals of Translational Medicine,2022,10(12):710.

    • [34] RIBEIRO A R,OLIVEIRA F,BOLDRINI L C,et al.Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications[J].Materials Science & Engineering C-Materials for Biological Applications,2015,54:196-206.

  • 手机扫一扫看