en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭磊,男,1986年出生,博士,副教授,硕士研究生导师。主要研究方向为精密与智能制造技术。E-mail:lguo@chd.edu.cn;

郭鹏举,男,1999年出生,硕士研究生。主要研究方向为精密与智能制造技术。E-mail:1615224077@qq.com

中图分类号:TG580

DOI:10.11933/j.issn.1007-9289.20230315001

参考文献 1
GE M R,ZHU H T,HUANG C Z,et al.Investigation on critical 0 crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments[J].Materials Science in Semiconductor Processing,2018,74:261-266.
参考文献 2
SAGA T.Advances in crystalline silicon solar cell technology for industrial mass production[J].NPG Asia Materials,2010,2(3):96-102.
参考文献 3
马世泽.基于LAMMPS的单晶硅纳米切削过程模拟分析研究[D].武汉:武汉科技大学,2022.MA Shize.Research on simulation and analysis of monocrystalline silicon nano-cutting process based on LAMPS[D].Wuhan:Wuhan University of Science and Technology,2022.(in Chinese)
参考文献 4
LIN Y H,JIAN S R,LAI Y S,et al.Molecular dynamics simulation of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon[J].Nanoscale Research Letters,2008,3:71-75.
参考文献 5
黄水泉,高尚,黄传真,等.脆性材料磨粒加工的纳米尺度去除机理[J].金刚石与磨料磨具工程,2022,42(3):257-267,384.HUANG Shuiquan,GAO Shang,HUANG Chuanzhen,et al.Nanoscale removal mechanisms in abrasive machining of brittle solids[J].Diamond & Abrasives Engineering,2022,42(3):257-267,384.
参考文献 6
冯启高,甘梓辰,孟凡净.研磨抛光颗粒流剪切膨胀及力链演变的力学机制[J/OL].机械科学与技术,2023:1-9 [2023-02-12].https://doi.org/10.13433/j.cnki.1003-8728.20230047.FENG Qigao,GAN Zichen,MENG Fanjing.Mechanical mechanism of shear expansion and force chain evolution of abrasive polishing particle flow[J/OL].Mechanical Science and Technology,2023:1-9 [2023-02-12].https://doi.org/10.13433/j.cnki.1003-8728.20230047.(in Chinese)
参考文献 7
谢冰芳.超大规模集成电路制造中硅片平坦化技术的研究[J].电子测试,2021,471(18):126-127,97.XIE Bingfang.Research on wafer flattening technology in VLSI manufacturing[J].Electronic Testing,2021,471(18):126-127,97.(in Chinese)
参考文献 8
石兴泰,郭磊,刘晓辉,等.随机网格结构固结磨料磨盘平面磨削性能研究[J].金刚石与磨料磨具工程,2022,42(3):275-282.SHI Xingtai,GUO Lei,LIU Xiaohui,et al.Study on machining performance of fixed-abrasive lap-grinding plate with random grid structure[J].Diamond & Abrasives Engineering,2022,42(3):275-282.(in Chinese)
参考文献 9
KRYUKOV S,BAIDAKOVE N V,BOCHKAREV P Y.State of problem of technological support of workpiece surface quality during grinding[C]//Proceedings of the 4th International Conference on Industrial Engineering,2018-10-07,Moscow,Russia.Switerland:Springer,Cham,2018.
参考文献 10
LI J,TANG Y K,ZHU Y W,et al.Free and fixed abrasive lapping of BK7 glass[J].Key Engineering Materials,2016,693:780-787.
参考文献 11
PYUN H,MUTHUKRISHNAN P,CHO B,et al.Fabrication of high performance copper-resin lapping plate for sapphire:A combined 2-body and 3-body diamond abrasive wear on sapphire[J].Tribology International,2018,120:203-209.
参考文献 12
KIM H,PARK G,SEO Y,et al.Comparison between sapphire lapping processes using 2-body and 3-body modes as a function of diamond abrasive size[J].Wear,2015,332-333:794-799.
参考文献 13
ZHANG B,HOWES T D.Material-removal mechanisms in grinding ceramics[J].CIRP Ann,1994,43(1):305-308.
参考文献 14
ZHANG Q L,FU Y C,SU H H,et al.Surface damage mechanism of monocrystalline silicon during single point diamond grinding[J].Wear,2018,396:48-55.
参考文献 15
ZHANG P,ZHAO H W,SHI C L,et al.Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation[J].Applied Surface Science,2013,280(1):751-756.
参考文献 16
BIAN Z T,GAO T H,GAO Y,et al.Effects of three-body diamond abrasive polishing on silicon carbide surface based on molecular dynamics simulations[J].Diamond and Related Materials,2022,129:109368.
参考文献 17
于思远,林滨,韩雪松,等.分子动力学仿真技术在超精密加工领域中的应用[J].中国机械工程,2002,1:28-31.YU Siyuan,LIN Bin,HAN Xuesong,et al.Application of molecular dynamics simulation technology in the field of ultra-precision machining[J].China Mechanical Engineering,2002,1:28-31.(in Chinese)
参考文献 18
WANG W,HUA D P,LUO D W,et al.Exploring the nano-polishing mechanisms of Invar[J].Tribology International,2022,175:107840.
参考文献 19
LI P H,GUO X G,YUAN S,et al.Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations[J].Applied Surface Science,2021,554:149668.
参考文献 20
NGUYEN V,FANG T.Molecular dynamics simulation of abrasive characteristics and interfaces in chemical mechanical polishing[J].Applied Surface Science,2020,509:144676.
参考文献 21
PEI Q X,LU C,LEE H P,et al.Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations[J].Nanoscale Research Letters,2009,4:444-451.
参考文献 22
DAI H F,LI S B,CHEN G Y.Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon[J].Journal of Engineering Tribology,2019,233(1):61-73.
参考文献 23
YE Y Y,BISWAS R,MOMS J R,et al.Molecular dynamics simulation of nanoscale machining of copper[J].Nanotechnology,2003,14:390-396.
参考文献 24
PLIMPTON S J.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117:1-19.
参考文献 25
STUKOWAKI A.Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J].Modelling and Simulation in Materials Science and Engineering,2010,18:15012.
参考文献 26
KIM D E,OH S I.Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation[J].Nanotechnology,2006,17(9):2259.
参考文献 27
庞飞,雷大江,王伟.基于控制磨削前角的金刚石研磨损伤分析[J].制造技术与机床,2022,722(8):104-108.PANG Fei,LEI Dajiang,WANG Wei.Analysis of diamond grinding damage based on control of grinding front angle[J].Manufacturing Technology and Machine Tool,2022,722(8):104-108.(in chinese)
参考文献 28
SPREITR Q,WALTER M.Classical molecular dynamics simulation with the velocity verlet algorithm at strong external magnetic fields[J].Journal of Computational Physics,1999,152(1):102-119.
目录contents

    摘要

    磨削与抛光是实现单晶硅材料超精密表面加工的重要工艺方法,磨抛协同加工过程中由磨粒运动状态主导的二体与三体磨损机制对材料去除效率以及表面加工质量具有重要影响。采用分子动力学方法,建立固结与游离运动状态双磨粒协同作用下的单晶硅表面超精密磨抛加工过程仿真模型,分析磨粒切入深度、横向与纵向间距干涉等因素对磨削力、材料相变、表面损伤及材料去除行为的影响规律,阐释单晶硅磨抛协同超精密加工表面形貌演化规律。研究表明:受磨粒运动状态驱动的单晶硅材料表层损伤原子数量随固结及游离磨粒切入深度增大而增加,磨粒切入深度对工件的材料去除、裂纹生长及损伤行为影响显著;法向和切向磨削力随磨粒切入深度增加而增大,且在同等切入深度变化时法向磨削力增加幅度大于切向磨削力; 通过单晶硅金刚石结构分析磨粒间干涉区域的损伤情况可知,随着磨粒间纵向间距增加时,工件所受干涉作用减小,六角金刚石晶体结构减少;相比较固结磨粒,游离磨粒对工件的损伤区域更深,产生瞬态缺陷原子更多。研究结果可为实现超精密磨抛协同加工工艺高材料去除效率和高表面质量提供理论基础。

    Abstract

    Monocrystalline silicon, a crystalline material widely employed in semiconductor chips, optical components, photovoltaic devices, and other high-end manufacturing applications, possesses exceptional attributes, such as high hardness, strength, thermal stability, and corrosion resistance. Nevertheless, the remarkable mechanical properties and chemical stability of monocrystalline silicon pose significant challenges in machining. Rigid contact between machining tools and materials frequently causes structural and surface quality defects, including cracks and pits, significantly impairing product performance. Currently, the primary method for achieving ultraprecision surface manufacturing of monocrystalline silicon materials is grinding and polishing. The dynamics of abrasive movements during these processes, governing the two-body and three-body wear mechanisms, have a profound impact on the material removal efficiency and surface finish quality. Despite their critical importance, there is a notable research gap in understanding the material-removal mechanisms and surface-morphology evolution during grinding and polishing. To address this gap, our study introduces a molecular dynamics simulation model for the ultraprecision grinding and polishing of single-crystal silicon surfaces, encompassing both fixed and loose abrasives. Our model scrutinizes several pivotal parameters: the depth of cut of the abrasives, the lateral and longitudinal spacing, and their respective effects on the grinding force, material phase transformation, temperature, surface damage, and material removal behavior. The aim was to unveil the underlying principles governing the evolution of surface morphology during the ultra-precision grinding and polishing of single-crystal silicon. Our findings indicate that an increase in the depth of cut for both fixed and loose abrasives results in a higher number of damaged surface atoms in single-crystal silicon materials. The depth of cut significantly influences material removal, crack propagation, and workpiece damage. Notably, both the normal and tangential grinding forces increased with the depth of cut, with the normal grinding force displaying a more pronounced increment for equivalent changes in the depth of cut. Conversely, the tangential force exhibited greater sensitivity to alterations in lateral and longitudinal spacing. However, the tangential grinding force decreased with increasing lateral spacing, followed by an initial decline and then an increase with increasing longitudinal spacing. Our study indicates that the temperature of the workpiece is primarily affected by the depth of cut of the abrasives, whereas the influence of the lateral and longitudinal spacing on the temperature is negligible. An analysis of the diamond structure of single-crystal silicon revealed that a greater longitudinal spacing between abrasives resulted in reduced interference on the workpiece, a decrease in the hexagonal diamond crystal structure, deeper workpiece damage caused by loose abrasives, and an increase in transient defect atoms. A deeper cut depth led to a broader damaged area on the workpiece, a more frequent appearance of the hexagonal diamond crystal structure, and an increased depth of the damaged layer. Regarding the surface morphology, an increasing depth of cut causes a substantial accumulation of atoms from both fixed and loose abrasives during grinding and polishing, resulting in enhanced material removal. A larger lateral spacing enables loose abrasives to polish a larger area, remove more atoms, and consequently increase the atom accumulation. The Wigner-Seitz defect analysis revealed that during the fixed and free abrasive grinding and polishing processes, the grain gap area on the surface of the interference region increased with an increase in lateral spacing. As the cutting depth increases, more atoms are removed from the interference region after grinding and polishing. In the cross-section of the interference region, material removal decreased with an increase in lateral spacing, whereas longitudinal spacing had no significant effect on material removal. However, increasing the cutting depth of the abrasives led to a notable increase in material removal, resulting in larger gap areas and smaller gap sizes, indicating more pronounced atom extrusion. Therefore, this study establishes a robust theoretical foundation for achieving high material removal efficiency and superior surface quality during ultraprecision grinding and polishing processes.

  • 0 前言

  • 单晶硅作为一种在半导体芯片、光学元件、光伏器件等高端制造领域广泛应用的晶体材料[1-2],具有硬度高、强度高、耐高温、抗磨损等优异性能[3]。然而,单晶硅加工过程中在工具与工件间接触及受力作用下因材料脆性较大而极易产生裂纹、凹坑等结构与表面质量缺陷,严重影响产品性能[4]

  • 磨粒加工作为硬脆难加工材料高效与精密加工的重要工艺方法之一[5],有着优异的加工精度、表面粗糙度、表面完整性和加工效率等,因此广泛应用于硅片切割、磨削光整、研磨抛光[6]及表面平坦化制造过程[7]。磨削与抛光是磨粒加工的代表性工艺方法。通常认为,磨削是由涂覆或烧结在磨具基体的固结磨料主导二体磨损材料去除行为,而抛光是由通过磨削液输送到加工区域的游离磨粒作用下的三体磨损材料去除行为。二体磨损磨削加工具有表面精度保持性好、加工效率高等特点[8],然而由于其磨具与工件间硬接触导致磨削力较大、易造成工件表面及亚表面损伤[9]。相比而言,三体磨损抛光加工具有加工表面粗糙度小、加工变质层及损伤轻微等特点[10],但不易保持平面度。因此,国内外学者近年来开展了基于固结磨料与游离磨料共同作用下的磨抛协同加工方法研究。

  • PYUN 等[11]使用铜金属磨料和树脂结合剂制备了蓝宝石研磨 / 抛光磨具,试验分析中提出了二体磨料与三体磨料协同加工磨损机制的新概念,结果表明,二体磨料与三体磨料协同加工提高了研磨时的材料去除率。KIM 等[12]根据材料去除方法评估了二体与三体磨料相结合的蓝宝石研磨工艺,进行了由金属(Cu、Al、Sn)、树脂结合剂和金刚石浆料组成的三体去除以及固结金刚石研磨垫与低浓度氧化铝浆料混合的二体去除的对比试验。相比较下,使用固结金刚石研磨垫的材料去除率并没有显著提高,表面质量反而更差。可见,适当的磨料浓度下,二体与三体磨料协同加工工艺对工件的材料去除和表面质量更优。然而,类似研究多侧重于磨抛工具制备与工艺方法实现,对于磨抛协同加工过程中的材料去除机理[13-14]与表面形貌演化规律涉及较少。

  • 在磨抛机理研究方面,张鹏等[15]采用分子动力学的方法模拟两颗磨粒的刻划过程,明确了速度、切深以及材料晶相对工件表面形貌形成的影响。 BIAN 等[16]对三体金刚石磨料在经过团簇沉积和退火工艺的工件上的纳米抛光进行了分子动力学模拟,确定了不同抛光深度和抛光速度对工件物理性能的影响。然而,现有研究多基于固结磨粒间或游离磨粒间的耦合作用,对于固结与游离磨粒协同作用的材料磨损去除机制研究尚处于起步阶段。

  • 本文采用分子动力学方法(Molecular dynamics, MD)[17],分析固结与游离金刚石磨粒协同作用下的单晶硅材料磨抛加工过程,研究磨粒切入深度、横向 / 纵向间距等因素对材料受力、相变、损伤的影响,讨论单晶硅磨抛协同加工过程的材料去除机理,为单晶硅磨粒加工技术的发展提供参考。

  • 1 分子动力学模型

  • 图1a 为固结与游离磨粒磨抛协同加工示意图,弹性基体固着磨料磨具在混有游离磨料的研磨液下对复杂型面进行仿形加工。磨抛 MD 模型由两部分组成,单晶硅工件的晶格常数为 a=5.43 Ǻ,单晶金刚石磨粒的晶格常数为 a=3.57 Ǻ。其中金刚石磨粒采用半径为 3 nm 的球体,共由 39 796 个碳原子组成,工件沿 xyz 方向上的尺寸为 35a×45a× 15a,由 194 646 个硅原子组成,如图1b 所示。该模型工件分为三个区域,即边界层、恒温层和牛顿层[18]。其中为确保模型稳定,则固定边界层原子(绿色),恒温层原子(粉色)的温度保持在 298 K,确保在磨抛过程中合理向外热传导[19]。牛顿层原子 (黄色)运动遵循牛顿第二定律[20]。为减少模型规模对磨抛过程的影响,对工件 x 方向设置周期性边界条件[21]。由于金刚石的硬度远比单晶硅的大,所以把金刚石磨粒设置为刚体来进行模拟[22]。此外,将具有平移速度和自旋转速度的金刚石磨粒定义为三体磨粒抛光,只具有平移速度的金刚石磨粒定义为二体磨粒磨削。固结磨粒的平移速度设置为 200 m / s,游离磨粒有 200 m / s 的平移速度和 100 m / s 的自旋转速度,在不影响模拟精度的前提下,尽可能减少计算时间[23]和内存需求。对磨粒的间距及切入深度进行设置,以不同组别进行模拟分析,MD 模型的参数设置见表1,固结与游离磨粒见图2。

  • 图1 分子动力学模型

  • Fig.1 Molecular dynamics model

  • 表1 分子动力学模拟参数

  • Table1 Molecular dynamics simulation parameters

  • 本文中,使用 LAMMPS 软件[24]对磨抛过程进行仿真,使用 OVITO 软件[25]进行数据分析和可视化。

  • 图2 固结与游离磨粒示意图

  • Fig.2 Schematic diagram of fixed and loose abrasives

  • 2 分析与讨论

  • 2.1 相变

  • 在磨抛过程中,工件随着磨抛距离的增加,出现各种相变。在本文仿真过程中,工件出现了 Si-II、 Si-XI、Si-V 等其他相[26]。选择截断半径为 0.26 nm,通过配位数的数目来表征相变的变化。单晶硅工件是金刚石型结构,原子配位数为 4。随着磨抛距离的变化,配位数会减少或增加,即认为相变发生了变化。通过配位数 CN=3、Bct5-Si(CN=5)、 Si-II(CN=6)和 CN>4 的原子数曲线变化,可分析出固结与游离磨粒切入深度及横向 / 纵向间距对相变的影响。

  • 图3a 表示不同切入深度(横向间距为 4.5 nm,纵向间距为 6.0 nm)时固结磨粒横截面相变剖视图,图3b 表示游离磨粒横截面相变剖视图。结果表明,磨抛加工过程中,磨粒切入深度越大,发生相变的原子数越多,磨粒切入深度对工件原子相变起着决定性作用。在磨抛加工过程中,配位数为 4 的原子数会逐渐下降,CN=3、CN=5、CN=6 及 CN>4 的原子数随着切入深度的增大而增加,且 CN=6 的原子数上升时波动相比其他配位数较大,这是由 Si-II 本身的性质不稳定导致,如图4 所示。

  • 图3 磨粒不同深度时的相变剖视图

  • Fig.3 Sectional view of phase transformation at different depths of abrasives

  • 图4 磨粒不同深度的相变曲线图

  • Fig.4 Phase transformation curve at different depths of abrasives

  • 图5 表示不同横向间距(纵向间距为 6.0 nm,深度为 1.5 nm)时固结及游离磨粒横截面相变剖视图,图5b 表示游离磨粒横截面相变剖视图。结果表明,磨抛加工过程中,随着固结与游离磨粒的横向间距的增大,磨粒磨抛产生的相变原子数越多,而横向间距对原子数的影响比较小,如图6 所示。这可能是因为随着横向间距的增加,磨抛面积增大,游离磨粒在工件上去除的原子数增加,所以产生了更多的相变原子。而且游离磨粒在固结磨粒磨削 6 nm 后才开始接触工件,所以在曲线图中展现出前 6 nm 的磨抛距离中发生相变的原子数大致相同,而磨抛距离超过 6 nm 后,相变原子数才开始呈现不同的增加趋势。

  • 图5 磨粒不同横向间距时的相变剖视图

  • Fig.5 Sectional view of phase transition at different X distance of abrasives

  • 如图7 所示,相变原子数随着纵向间距的增大而减小。图8a 表示不同纵向间距(横向间距为 4.5 nm,深度为 1.5 nm)时固结磨粒横截面相变剖视图,图8b 表示游离磨粒横截面相变剖视图。由图7 可见,CN=3、 CN=5、CN=6 和 CN>4 的总原子数随着纵向间距的增大会有所降低,但纵向间距对固结与游离磨粒的磨抛加工过程中的相变的影响不大。而且在磨抛距离达到 14 nm 后,增加趋势整体降低,这是由于固结磨粒与游离磨粒存在纵向间距,14 nm 后只有固结磨粒在继续磨抛工件,从而导致上述趋势的变化。

  • 图6 磨粒不同横向间距时的相变曲线图

  • Fig.6 Phase transition curves at different X distance of abrasives

  • 图7 磨粒不同纵向间距时的相变曲线图

  • Fig.7 Phase transition curves at different Y distance of abrasives

  • 图8 磨粒不同纵向间距时的相变剖视图

  • Fig.8 Sectional view of phase transformation at different Y distance of abrasives

  • 2.2 磨削力分析

  • 磨粒在磨抛单晶硅工件过程中,磨粒接触工件时,原子之间存在相互作用力[27],MD 模型根据这一作用力来对磨削力进行分析计算,通过数据拟合后得到法向磨削力(FZ)与切向磨削力(FY)的曲线。

  • 图9a~9c 显示了固结与游离磨粒在不同横向 / 纵向及切入深度下的法向摩削力 FZ曲线,固结磨粒在磨抛到 6 nm 后开始趋于平稳,这是由磨粒完全接触工件所导致。由图可见,FZ随着磨粒切入深度的增加而加大,这是由于磨粒深度越大,磨抛原子越多,磨削力也越大。磨粒横向间距对游离磨粒 FZ 的变化较为明显,FZ 随着横向间距的增加而增大,这可能由于磨粒间距增加,导致所需磨抛的原子数增多,FZ越大。

  • 图9 单一变量影响下的法向磨削力 FZ 曲线图

  • Fig.9 Curve of normal grinding force under the influence of single variable

  • 图10a~10c 显示了固结与游离磨粒在不同横向 / 纵向及切入深度下的切向摩削力 FY 曲线,可见 FY 的整体趋势为先增大后减小,这是由于磨粒刚接触工件时所需力较大,当磨粒完全接触工件后,FY 会有所下降。磨粒不同横向 / 纵向间距下,磨抛距离为 6 nm 时,固结磨粒的 FY 开始呈现不同趋势,游离磨粒开始接触工件进行磨抛。而且游离磨粒的切向磨削力随着横向间距的增加而增大,而随着纵向间距的增加呈现先减小后增大的趋势,这是由磨抛过程中固结磨粒与游离磨粒的不同位置产生的干涉作用导致的。

  • 图10 单一变量影响下的切向磨削力 FY 曲线图

  • Fig.10 Curve of tangential grinding force under the influence of single variable

  • 2.3 温度分析

  • 磨抛温度是磨抛协同加工机理研究中一个重要的物理表征,金刚石磨粒和单晶硅工件之间的相互摩擦和受力挤压是温度变化的主要原因,工件温度的变化直接影响到工件的加工质量。因此,研究温度的变化是研究去除机理和表面形成机理的一个重要方面。

  • 磨抛过程中温度变化如图11 所示,在刚开始时,温度瞬时增大,工件开始弛豫。通过图11a 分析,可知温度随着深度的增加而增大。而横向间距和纵向间距对温度影响不显著,如图11b 和图11c。分析表明,磨粒切入深度对工件温度起决定性的作用。

  • 图11 单一变量影响下的温度分析

  • Fig.11 Temperature analysis under the influence of single variable

  • 2.4 单晶硅金刚石结构分析

  • 金刚石磨粒磨抛单晶硅时原子会因作用力而产生不同的结构,一般用 neighbor 粒子结构辨认法[28] 来分析工件的金刚石结构原子瞬时形貌。其中,Si-I 表示为深灰色的原子,Si-II 位错原子和表面原子的缺陷原子表示为浅灰色。通过分析不同金刚石结构原子的瞬时形貌以观察工件损伤。图12 为磨抛加工瞬态缺陷结构的横向截面图,随着横向间距的增加,受损区域变宽,六角金刚石晶体结构(hexagonal diamond)增多。纵向间距增加时,干涉区域六角金刚石晶体结构减少。增加磨粒切入深度,受损区域宽度增加,六角金刚石晶体结构出现较多,工件损伤深度增加。

  • 2.5 表面形貌分析

  • 在磨粒磨抛单晶硅工件后,工件的表面形貌如图13 所示。图13a 表示在横向间距为 4.5 nm、纵向间距为6.0 nm时的不同切入深度(cutting depth=1.0、 1.5、2.0 nm)的工件表面形貌图。可以看到,随着磨粒切入深度的增加,固结与游离磨粒磨抛工件产生的原子堆积会明显增加,材料去除也随之提高。可得到结论,加大切入深度会得到较高的材料去除率。图13b 表示在纵向间距为 6.0 nm、切入深度为 1.5 nm 时的不同横向间距(X distance=2.5、3.5、 4.5 nm)的工件表面形貌图。可知,随着横向间距的增加,游离磨粒前的原子堆积增多。这可能是因为磨粒横向间距变大,游离磨粒有更大的磨抛面积,更多的原子被磨抛去除,导致此表面形貌。图13c 表示在横向间距为 4.5 nm、切入深度为 1.5 nm 时的不同纵向间距(Y distance=5.0、6.0、7.0 nm)的工件表面形貌图。可观察到,游离磨粒前的原子堆积随着纵向间距的增大而减少,这是由磨抛距离的不同导致。

  • 图12 固结与游离磨粒磨抛加工瞬态缺陷结构的横向截面图

  • Fig.12 Transverse section of transient defect structure formed by fixed and loose abrasive grinding and polishing

  • 图13 表面形貌图

  • Fig.13 Surface topography

  • 2.6 Wigner-seitz 缺陷分析

  • 磨粒磨抛工件会对工件原子产生位移,位移的大小代表不同的原子状态。图14a~14c 显示的是不同横向 / 纵向间距及切入深度下的 wigner-seitz 缺陷分析工件俯视图。其中,深蓝色代表已磨抛去除的原子,黄红色代表间隙变小的原子。可见,随着横向间距的增加,固结与游离磨粒磨抛过程中对干涉区域表面的粒子缝隙区域增大。纵向间距越小,游离磨粒前发生间隙变化的原子越多。随着切入深度的增加,干涉区域的磨抛加工后的原子去除更多。

  • 图14 单一变量影响下的 wigner-seitz 缺陷分析工件俯视图

  • Fig.14 Top view of wigner-seitz defect analysis workpiece under the influence of single variable

  • 图15a~15c 显示的是不同横向 / 纵向间距及切入深度下的工件干涉区域纵向截面图。随着横向间距的增加,干涉区域的材料去除量减少,但磨抛加工下方粒子缝隙区域扩大;随着纵向间距的增加,磨抛加工完成后的轨迹下,工件材料去除不显著,磨抛加工下方粒子缝隙区域扩大;随着磨粒切入深度的增加,材料去除量明显增多,下方的粒子缝隙区域变大,间隙也越小,则原子挤压越明显。

  • 图15 单一变量影响下的工件干涉区域纵向截面图

  • Fig.15 Longitudinal section of workpiece interference area under the influence of single variable

  • 3 结论

  • 采用分子动力学方法,分析磨抛协同加工过程中磨粒切入深度、横向与纵向间距等因素对工件表面损伤行为与材料去除机理,阐释单晶硅磨抛协同超精密加工表面形貌演化规律,为超精密磨抛协同加工机理提供理论基础。得出以下主要结论:

  • (1)受磨粒运动状态驱动的单晶硅材料表层损伤原子数量随固结及游离磨粒横向间距的增大而呈增长趋势,随着纵向间距的增大而呈减少趋势,且随着磨粒切入深度增大而显著增加,磨粒切入深度对工件的材料去除、裂纹生长及损伤行为影响显著。

  • (2)相比较于法向磨削力,切向磨削力受横向及纵向间距的影响较大,且游离磨粒的切向磨削力随着横向间距的增加而减小,随着纵向间距的增加呈现先减小后增大的趋势。

  • (3)通过单晶硅金刚石结构分析磨粒间干涉区域的损伤情况可知,随着磨粒间纵向间距增加时,工件所受干涉作用减小,六角金刚石晶体结构减少,且相比较固结磨粒,游离磨粒对工件的损伤区域更深,产生瞬态缺陷原子更多。

  • 参考文献

    • [1] GE M R,ZHU H T,HUANG C Z,et al.Investigation on critical 0 crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments[J].Materials Science in Semiconductor Processing,2018,74:261-266.

    • [2] SAGA T.Advances in crystalline silicon solar cell technology for industrial mass production[J].NPG Asia Materials,2010,2(3):96-102.

    • [3] 马世泽.基于LAMMPS的单晶硅纳米切削过程模拟分析研究[D].武汉:武汉科技大学,2022.MA Shize.Research on simulation and analysis of monocrystalline silicon nano-cutting process based on LAMPS[D].Wuhan:Wuhan University of Science and Technology,2022.(in Chinese)

    • [4] LIN Y H,JIAN S R,LAI Y S,et al.Molecular dynamics simulation of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon[J].Nanoscale Research Letters,2008,3:71-75.

    • [5] 黄水泉,高尚,黄传真,等.脆性材料磨粒加工的纳米尺度去除机理[J].金刚石与磨料磨具工程,2022,42(3):257-267,384.HUANG Shuiquan,GAO Shang,HUANG Chuanzhen,et al.Nanoscale removal mechanisms in abrasive machining of brittle solids[J].Diamond & Abrasives Engineering,2022,42(3):257-267,384.

    • [6] 冯启高,甘梓辰,孟凡净.研磨抛光颗粒流剪切膨胀及力链演变的力学机制[J/OL].机械科学与技术,2023:1-9 [2023-02-12].https://doi.org/10.13433/j.cnki.1003-8728.20230047.FENG Qigao,GAN Zichen,MENG Fanjing.Mechanical mechanism of shear expansion and force chain evolution of abrasive polishing particle flow[J/OL].Mechanical Science and Technology,2023:1-9 [2023-02-12].https://doi.org/10.13433/j.cnki.1003-8728.20230047.(in Chinese)

    • [7] 谢冰芳.超大规模集成电路制造中硅片平坦化技术的研究[J].电子测试,2021,471(18):126-127,97.XIE Bingfang.Research on wafer flattening technology in VLSI manufacturing[J].Electronic Testing,2021,471(18):126-127,97.(in Chinese)

    • [8] 石兴泰,郭磊,刘晓辉,等.随机网格结构固结磨料磨盘平面磨削性能研究[J].金刚石与磨料磨具工程,2022,42(3):275-282.SHI Xingtai,GUO Lei,LIU Xiaohui,et al.Study on machining performance of fixed-abrasive lap-grinding plate with random grid structure[J].Diamond & Abrasives Engineering,2022,42(3):275-282.(in Chinese)

    • [9] KRYUKOV S,BAIDAKOVE N V,BOCHKAREV P Y.State of problem of technological support of workpiece surface quality during grinding[C]//Proceedings of the 4th International Conference on Industrial Engineering,2018-10-07,Moscow,Russia.Switerland:Springer,Cham,2018.

    • [10] LI J,TANG Y K,ZHU Y W,et al.Free and fixed abrasive lapping of BK7 glass[J].Key Engineering Materials,2016,693:780-787.

    • [11] PYUN H,MUTHUKRISHNAN P,CHO B,et al.Fabrication of high performance copper-resin lapping plate for sapphire:A combined 2-body and 3-body diamond abrasive wear on sapphire[J].Tribology International,2018,120:203-209.

    • [12] KIM H,PARK G,SEO Y,et al.Comparison between sapphire lapping processes using 2-body and 3-body modes as a function of diamond abrasive size[J].Wear,2015,332-333:794-799.

    • [13] ZHANG B,HOWES T D.Material-removal mechanisms in grinding ceramics[J].CIRP Ann,1994,43(1):305-308.

    • [14] ZHANG Q L,FU Y C,SU H H,et al.Surface damage mechanism of monocrystalline silicon during single point diamond grinding[J].Wear,2018,396:48-55.

    • [15] ZHANG P,ZHAO H W,SHI C L,et al.Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation[J].Applied Surface Science,2013,280(1):751-756.

    • [16] BIAN Z T,GAO T H,GAO Y,et al.Effects of three-body diamond abrasive polishing on silicon carbide surface based on molecular dynamics simulations[J].Diamond and Related Materials,2022,129:109368.

    • [17] 于思远,林滨,韩雪松,等.分子动力学仿真技术在超精密加工领域中的应用[J].中国机械工程,2002,1:28-31.YU Siyuan,LIN Bin,HAN Xuesong,et al.Application of molecular dynamics simulation technology in the field of ultra-precision machining[J].China Mechanical Engineering,2002,1:28-31.(in Chinese)

    • [18] WANG W,HUA D P,LUO D W,et al.Exploring the nano-polishing mechanisms of Invar[J].Tribology International,2022,175:107840.

    • [19] LI P H,GUO X G,YUAN S,et al.Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations[J].Applied Surface Science,2021,554:149668.

    • [20] NGUYEN V,FANG T.Molecular dynamics simulation of abrasive characteristics and interfaces in chemical mechanical polishing[J].Applied Surface Science,2020,509:144676.

    • [21] PEI Q X,LU C,LEE H P,et al.Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations[J].Nanoscale Research Letters,2009,4:444-451.

    • [22] DAI H F,LI S B,CHEN G Y.Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon[J].Journal of Engineering Tribology,2019,233(1):61-73.

    • [23] YE Y Y,BISWAS R,MOMS J R,et al.Molecular dynamics simulation of nanoscale machining of copper[J].Nanotechnology,2003,14:390-396.

    • [24] PLIMPTON S J.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117:1-19.

    • [25] STUKOWAKI A.Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J].Modelling and Simulation in Materials Science and Engineering,2010,18:15012.

    • [26] KIM D E,OH S I.Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation[J].Nanotechnology,2006,17(9):2259.

    • [27] 庞飞,雷大江,王伟.基于控制磨削前角的金刚石研磨损伤分析[J].制造技术与机床,2022,722(8):104-108.PANG Fei,LEI Dajiang,WANG Wei.Analysis of diamond grinding damage based on control of grinding front angle[J].Manufacturing Technology and Machine Tool,2022,722(8):104-108.(in chinese)

    • [28] SPREITR Q,WALTER M.Classical molecular dynamics simulation with the velocity verlet algorithm at strong external magnetic fields[J].Journal of Computational Physics,1999,152(1):102-119.

  • 参考文献

    • [1] GE M R,ZHU H T,HUANG C Z,et al.Investigation on critical 0 crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments[J].Materials Science in Semiconductor Processing,2018,74:261-266.

    • [2] SAGA T.Advances in crystalline silicon solar cell technology for industrial mass production[J].NPG Asia Materials,2010,2(3):96-102.

    • [3] 马世泽.基于LAMMPS的单晶硅纳米切削过程模拟分析研究[D].武汉:武汉科技大学,2022.MA Shize.Research on simulation and analysis of monocrystalline silicon nano-cutting process based on LAMPS[D].Wuhan:Wuhan University of Science and Technology,2022.(in Chinese)

    • [4] LIN Y H,JIAN S R,LAI Y S,et al.Molecular dynamics simulation of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon[J].Nanoscale Research Letters,2008,3:71-75.

    • [5] 黄水泉,高尚,黄传真,等.脆性材料磨粒加工的纳米尺度去除机理[J].金刚石与磨料磨具工程,2022,42(3):257-267,384.HUANG Shuiquan,GAO Shang,HUANG Chuanzhen,et al.Nanoscale removal mechanisms in abrasive machining of brittle solids[J].Diamond & Abrasives Engineering,2022,42(3):257-267,384.

    • [6] 冯启高,甘梓辰,孟凡净.研磨抛光颗粒流剪切膨胀及力链演变的力学机制[J/OL].机械科学与技术,2023:1-9 [2023-02-12].https://doi.org/10.13433/j.cnki.1003-8728.20230047.FENG Qigao,GAN Zichen,MENG Fanjing.Mechanical mechanism of shear expansion and force chain evolution of abrasive polishing particle flow[J/OL].Mechanical Science and Technology,2023:1-9 [2023-02-12].https://doi.org/10.13433/j.cnki.1003-8728.20230047.(in Chinese)

    • [7] 谢冰芳.超大规模集成电路制造中硅片平坦化技术的研究[J].电子测试,2021,471(18):126-127,97.XIE Bingfang.Research on wafer flattening technology in VLSI manufacturing[J].Electronic Testing,2021,471(18):126-127,97.(in Chinese)

    • [8] 石兴泰,郭磊,刘晓辉,等.随机网格结构固结磨料磨盘平面磨削性能研究[J].金刚石与磨料磨具工程,2022,42(3):275-282.SHI Xingtai,GUO Lei,LIU Xiaohui,et al.Study on machining performance of fixed-abrasive lap-grinding plate with random grid structure[J].Diamond & Abrasives Engineering,2022,42(3):275-282.(in Chinese)

    • [9] KRYUKOV S,BAIDAKOVE N V,BOCHKAREV P Y.State of problem of technological support of workpiece surface quality during grinding[C]//Proceedings of the 4th International Conference on Industrial Engineering,2018-10-07,Moscow,Russia.Switerland:Springer,Cham,2018.

    • [10] LI J,TANG Y K,ZHU Y W,et al.Free and fixed abrasive lapping of BK7 glass[J].Key Engineering Materials,2016,693:780-787.

    • [11] PYUN H,MUTHUKRISHNAN P,CHO B,et al.Fabrication of high performance copper-resin lapping plate for sapphire:A combined 2-body and 3-body diamond abrasive wear on sapphire[J].Tribology International,2018,120:203-209.

    • [12] KIM H,PARK G,SEO Y,et al.Comparison between sapphire lapping processes using 2-body and 3-body modes as a function of diamond abrasive size[J].Wear,2015,332-333:794-799.

    • [13] ZHANG B,HOWES T D.Material-removal mechanisms in grinding ceramics[J].CIRP Ann,1994,43(1):305-308.

    • [14] ZHANG Q L,FU Y C,SU H H,et al.Surface damage mechanism of monocrystalline silicon during single point diamond grinding[J].Wear,2018,396:48-55.

    • [15] ZHANG P,ZHAO H W,SHI C L,et al.Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation[J].Applied Surface Science,2013,280(1):751-756.

    • [16] BIAN Z T,GAO T H,GAO Y,et al.Effects of three-body diamond abrasive polishing on silicon carbide surface based on molecular dynamics simulations[J].Diamond and Related Materials,2022,129:109368.

    • [17] 于思远,林滨,韩雪松,等.分子动力学仿真技术在超精密加工领域中的应用[J].中国机械工程,2002,1:28-31.YU Siyuan,LIN Bin,HAN Xuesong,et al.Application of molecular dynamics simulation technology in the field of ultra-precision machining[J].China Mechanical Engineering,2002,1:28-31.(in Chinese)

    • [18] WANG W,HUA D P,LUO D W,et al.Exploring the nano-polishing mechanisms of Invar[J].Tribology International,2022,175:107840.

    • [19] LI P H,GUO X G,YUAN S,et al.Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations[J].Applied Surface Science,2021,554:149668.

    • [20] NGUYEN V,FANG T.Molecular dynamics simulation of abrasive characteristics and interfaces in chemical mechanical polishing[J].Applied Surface Science,2020,509:144676.

    • [21] PEI Q X,LU C,LEE H P,et al.Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations[J].Nanoscale Research Letters,2009,4:444-451.

    • [22] DAI H F,LI S B,CHEN G Y.Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon[J].Journal of Engineering Tribology,2019,233(1):61-73.

    • [23] YE Y Y,BISWAS R,MOMS J R,et al.Molecular dynamics simulation of nanoscale machining of copper[J].Nanotechnology,2003,14:390-396.

    • [24] PLIMPTON S J.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117:1-19.

    • [25] STUKOWAKI A.Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J].Modelling and Simulation in Materials Science and Engineering,2010,18:15012.

    • [26] KIM D E,OH S I.Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation[J].Nanotechnology,2006,17(9):2259.

    • [27] 庞飞,雷大江,王伟.基于控制磨削前角的金刚石研磨损伤分析[J].制造技术与机床,2022,722(8):104-108.PANG Fei,LEI Dajiang,WANG Wei.Analysis of diamond grinding damage based on control of grinding front angle[J].Manufacturing Technology and Machine Tool,2022,722(8):104-108.(in chinese)

    • [28] SPREITR Q,WALTER M.Classical molecular dynamics simulation with the velocity verlet algorithm at strong external magnetic fields[J].Journal of Computational Physics,1999,152(1):102-119.

  • 手机扫一扫看