en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

肖子玥,女,1997年出生,硕士研究生。主要研究方向为材料服役行为。E-mail:ziyuexiao19@163.com

通讯作者:

徐小军,男,1986年出生,博士,副教授,博士研究生导师。主要研究方向为摩擦学及表面工程。E-mail:xiaojunxu0617@126.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007-9289.20230329002

参考文献 1
ZHENG J F,LUO J,MO J L,et al.Fretting wear behaviors of a railway axle steel[J].Tribology International,2010,43(5):906-911.
参考文献 2
SHU Y L,YANG G X,LIU Z M.Experimental study on fretting damage in the interference fit area of high-speed train wheels and axles based on specimen[J].Engineering Failure Analysis,2022,141:106619.
参考文献 3
WANG D G,ZHANG D K,ZHAO W J,et al.Quantitative analyses of fretting fatigue damages of mine rope wires in different corrosive media[J].Materials Science and Engineering:A,2014,596:80-88.
参考文献 4
PECINKA L,SVOBODA J,ZEMAN V.Fretting wear of the Zr fuel rod cladding[C]//Proceedings of the 22nd International Conference on Nuclear Engineering,July 7–11,2014,Prague,Czech Republic,2014,V001T03A027.New York:The American Society of Mechanical Engineers,2014.
参考文献 5
LEE Y H,KIM I H,KIM H K,et al.Role of ZrO2 oxide layer on the fretting wear resistance of a nuclear fuel rod[J].Tribology International,2020,145:106146.
参考文献 6
JONES D H,NEHRU A Y,SKINNER J.The impact fretting wear of a nuclear reactor component[J].Wear,1985,106(1):139-162.
参考文献 7
TIMSIT R S.Wear mechanisms in electrical contacts:fretting wear[M]//WANG Q J,CHUNG Y W,eds.Encyclopedia of tribology.Boston,MA:Springer US,2013.
参考文献 8
FARRIS T N,SZOLWINSKI M P,HARISH G.Fretting in aerospace structures and materials[J].ASTM Special Technical Publication,2000,1367:523-537.
参考文献 9
LEEN S B,HYDE T H,RATSIMBA C H H,et al.An investigation of the fatigue and fretting performance of a representative aero-engine spline coupling[J].The Journal of Strain Analysis for Engineering Design,2002,37(6):565-583.
参考文献 10
LIU X L,CAI Z B,LIU S B,et al.Influence of wear test parameters on the electrical contact performance of brass alloy/copper contactors under fretting wear[J].Journal of Materials Engineering and Performance,2019,28(2):817-827.
参考文献 11
JEONG S H,CHO C W,LEE Y Z.Friction and wear of Inconel 690 for steam generator tube in elevated temperature water under fretting condition[J].Tribology International,2005,38(3):283-288.
参考文献 12
KOENEN A,VIRMOUX Ph,GRAS R,et al.A machine for fretting fatigue and fretting wear testing in cryotechnical and normal environment[J].Wear,1996,197(1):192-196.
参考文献 13
WEI X J,SHENG L L,LI H,et al.The effect of oxygen pressure on the fretting wear of titanium alloys[J].International Journal of Modern Physics B,2020,34:2050128.
参考文献 14
ZHANG Q Y,ZHOU Y,WANG L,et al.Investigation on tribo-layers and their function of a titanium alloy during dry sliding[J].Tribology International,2016,94:541-549.
参考文献 15
薛群基,刘维民.摩擦化学的主要研究领域及其发展趋势[J].化学进展,1997,9(3):311-318.XUE Qunji,LIU Weimin.The research progress in tribochemistry[J].Progress in Chemistry,1997,9(3):311-318.(in Chinese)
参考文献 16
BOUCHOUCHA A,CHEKROUD S,PAULMIER D.The influence of oxygen on the friction and wear behaviour of a copper-steel couple under electric current[J].Tribotest,2004,11:11-27.
参考文献 17
PAULMIER D,BOUCHOUCHA A,ZAIDI H.Wear mode of a copper wire during a sliding contact with copper/chrome steel:influence of oxygen[J].Vacuum,1990,41(7):2230-2232.
参考文献 18
XIN L,LU Y H,SHOJI T.The comparative study on nanostructured tribolayers of Alloy 690TT subjected to fretting wear under different oxygen contents[J].Materials Characterization,2017,131:157-167.
参考文献 19
MARY C,LE MOGNE T,BEAUGIRAUD B,et al.Tribochemistry of a Ti alloy under fretting in air:evidence of titanium nitride formation[J].Tribology Letters,2009,34(3):211-222.
参考文献 20
DE WIT E,BLANPAIN B,FROYEN L,et al.The tribochemical behaviour of TiN-coatings during fretting wear[J].Wear,1998,217(2):215-224.
参考文献 21
XIN L,YANG B B,WANG Z H,et al.Microstructural evolution of subsurface on Inconel 690TT alloy subjected to fretting wear at elevated temperature[J].Materials & Design,2016,104:152-161.
参考文献 22
冯英,辛超,叶祖标,等.高可靠性永磁机构真空断路器研究[J].高压电器,2015,51(12):109-113.FENG Ying,XIN Chao,YE Zubiao,et al.Vacuum breaker with permanent magnetic actuator and high reliability[J].High Voltage Apparatus,2015,51(12):109-113.(in Chinese)
参考文献 23
FAN K,JIN Z,GUO J,et al.Investigation on the surface layer formed during electrochemical modification of pure iron[J].Applied Surface Science,2019,466:466-471.
参考文献 24
何仁,王亮,王晶.双磁系永磁磁轨制动器的设计分析[J].重庆交通大学学报(自然科学版),2015,34(6):181-185.HE Ren,WANG Liang,WANG Jing.Design and analysis of double permanent magnet systems track brake[J].Journal of Chongqing Jiaotong University(Natural Science),2015(6):181-185.(in Chinese)
参考文献 25
周仲荣.微动图在抗微动失效中的应用[J].中国表面工程,1998,11(1):41-45.ZHOU Zhongrong.An application of freting maps to palliative treatments for fretting failure[J].China Surface Engineering,1998,11(1):41-45.(in Chinese)
参考文献 26
ZHU M H,ZHOU Z R.On the mechanisms of various fretting wear modes[J].Tribology International,2011,44(11):1378-1388.
参考文献 27
佘丁顺,岳文,付志强,等.工业纯钛TA2离子渗氮后的组织结构与真空摩擦磨损性能研究[J].稀有金属材料与工程,2015,44(1):133-139.SHE Dingshun,YUE Wen,FU Zhiqiang,et al.Microstructure and vacuum tribological properties of commercial titanium TA2 treated by plasma nitriding[J].Rare Metal Materials and Engineering,2015,44(1):133-139.(in Chinese)
参考文献 28
XU G Z,LIU J J,ZHOU Z R.Prediction of the fretting fatigue resistance of various surface-modification layers on 1045 steel:the role of fretting maps[J].Tribology International,2001,34(8):569-575.
参考文献 29
周仲荣,LEO V.微动磨损[M].北京:科学出版社,2002.ZHOU Zhongrong,LEO V.Fretting wear[M].Beijing:Science Press,2002.(in Chinese)
参考文献 30
CHENG X X,WEI X J,LI H,et al.Investigation on the fretting wear behavior of titanium alloy under different atmospheres by an in situ XPS spectrometry[J].International Journal of Modern Physics B,2022,36(19):2250109.
参考文献 31
BIESINGER M,PAYNE B,GROSVENOR A,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J].Applied Surface Science,2011,257:2717-2730.
参考文献 32
MINDLIN R D.Compliance of elastic bodies in contact[J].Journal of Applied Mechanics,2021,16(3):259-268.
参考文献 33
MERSTALLINGER A,SALES M,SEMERAD E,et al.Cold welding in hold down points of space mechanisms due to impact and fretting[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology,2008,222(8):1005-1014.
目录contents

    摘要

    摩擦化学是微动磨损过程中不可避免产生的一种复杂的摩擦学行为,对材料的磨损性能及磨损机理具有重要的影响。基于原位 XPS 高精度切向微动磨损试验平台,系统性研究工业纯铁在真空(p=4 mPa)和大气环境下不同微动运行区域接触界面摩擦化学状态及其微动磨损行为。试验结果表明,工业纯铁在大气环境下未观察到微动混合区,然而真空环境下因接触界面发生了严重粘着效应,使得微动运行难以进入滑移区而具有较宽的混合区。随着位移幅值的增加,工业纯铁在真空环境下的微动磨斑具有更多的 Fe 基体暴露,并伴有以 FeO 为主的氧化物,整体表现出较高的磨损量;相对比,在大气环境下其磨斑表面产物为以 FeO 和 Fe2O3为主的氧化物,特别在滑移区几乎没有 Fe 单质暴露,且磨斑表面主要以 Fe2O3氧化物为主,表现出较真空环境下更轻微的磨损。磨损结果表明,FeO 和 Fe2O3 具有较好的润滑保护作用,特别是 Fe2O3 氧化物能显著提高材料表面抗微动磨损性能。利用原位 XPS 技术可以实现表征材料接触表面真实的摩擦化学状态,且更加准确地揭示摩擦氧化反应对微动磨损行为的影响作用机理,对丰富和发展微动磨损基础理论具有科学意义。

    Abstract

    Fretting causes severe damage to the material surfaces which leads to the failure of the mechanical components in the fields of railways, mining, and aerospace industries. Many researches have shown that in addition to the fretting parameters such as load, frequency and displacement amplitude, the service environment also has an important impact on fretting. Pure iron has the advantage of high magnetic permeability, high saturated magnetization, low coercivity, low hardness, and high plasticity. It is widely used for manufacturing highly precise electronic devices. Especially in the aerospace industry, fretting damage is more severe under certain conditions such as a vacuum environment and high temperature. The tribochemical reaction occurring on the contact surface during the fretting wear process has a significant influence on determining the associated wear mechanism and fretting wear resistance. To study the tribochemical state and its effect on the fretting wear behavior of pure iron, systematical fretting wear experiments at different displacement amplitudes have been conducted under the vacuum (p=4 mPa) and air atmosphere (p=100 kPa) by using an in-situ XPS analysis test combined with a self-designed high precision fretting wear device. 3D white light interferometer and scanning electron microscope were utilized for quantitative characterization of wear volume and morphological observations of the worn surface, respectively. The results show that pure iron presents significantly different fretting wear characteristics between the vacuum and air atmosphere. With the increase of displacement in the air atmosphere, the fretting regime enters into slip regime (SR) directly from partial slip regime (PSR) without mixed fretting regime (MFR). Under vacuum, it is relatively hard to enter into SR due to the strong interface adhesion, hence resulting in a relatively wide mixed fretting region. Furthermore, in general the contact interface displays a higher friction factor in vacuum than that in air atmosphere at the same displacements. XPS results show that with the increase of the displacement, in vacuum atmosphere there is more exposure of Fe on the worn scar, and the formation of FeO is dominant while no Fe2O3 is produced. In contrast, for the air atmosphere, the tribochemical production of worn scars mainly consists of FeO and Fe2O3, and in SR the formation of Fe2O3 is dominant. The fretting wear volume increases with the increase of displacement amplitude for both vacuum and air atmosphere, but the magnitude of the increase is significantly different. In PSR (D=1 μm), the initial oxide (FeO and Fe2O3) is still observed on the worn surface, thus representing a very slight amount of wear. When the displacement increases to 5μm, in vacuum, the disappearance of Fe2O3 and the exposure of Fe enhance the interface adhesion, which leads to a significant increase in wear volume. In contrast, for the air atmosphere, the production of Fe2O3 and FeO on the worn surface has better lubrication protection, resulting in relatively low wear volume. In SR (D=20 μm), the wear volume in vacuum rises rapidly and the worn surface consists of more Fe and less FeO, which makes the interface adhesion even stronger and hence leads to more serious wear. However, in the air atmosphere the worn surface is almost covered by Fe2O3 and FeO, and lower wear volume can be observed than that in vacuum, which indicates that the FeO and Fe2O3 have good protection with a lubricant role against fretting wear, especially for the Fe2O3. The in-situ XPS technique can characterize the real tribochemical state of the contact surface and reveal more accurately the effect of the tribochemical reaction on the fretting wear behavior, which is of great scientific significance to enrich and develop the basic theory of fretting wear.

  • 0 前言

  • 微动损伤是机械工业中紧固件材料失效的重要原因之一,广泛存在于铁路[12]、矿山[3]、核工业[4-6]、电连接器[7]及航空[8-9]等领域。大量研究表明,除了材料自身特性、微动运行工况如载荷、频率和位移幅值外[10],外界服役环境对微动损伤亦有着重要的影响[11–13]。随着工业技术的发展,材料服役环境愈发苛刻,如腐蚀、真空、辐射、高低温等极端环境,对机械零部件表面损伤问题造成的影响越来越突出。

  • 其中,摩擦化学是微动磨损过程中不可避免的现象,接触表面所产生的化学产物类型、分布以及形态等将会显著影响微动磨损性能及磨损机理,在微动损伤过程中扮演了重要的角色[14-15]。研究发现氧气在铜 / 钢对磨副磨损行为中起着重要作用,所产生的氧化物能有效减少两金属表面直接接触,并起到类似于固体润滑剂的作用[16]。但是,在铜铬磨损中,铜在氧气环境中易形成脆性氧化层,从而导致其在磨损过程中容易破裂剥落加速损伤[17]。此外,690TT 合金在含氧量高的气氛环境下发生了严重的氧化反应,从而导致它比在含氧量低的气氛环境下具有更大的磨损量[18]。MARY 等[19]在大气环境下对 Ti17 钛合金进行不同温度微动磨损试验,发现在接触表面中心位置因氧含量较少,易导致严重的粘着磨损和塑性变形。目前,关于微动摩擦氧化已有诸多研究,但主要是基于间接 XPS 分析方式[20-21],而关于微动磨损 XPS 原位分析鲜有报道。XPS 间接方式是在完成微动试验后将样品从当前微动磨损环境中取出再转移至 XPS 分析腔中,这将不可避免地使样品暴露在空气中进一步发生氧化,不利于准确分析其微动氧化行为。因此,对微动磨损表面进行 XPS 原位分析十分必要,尤其是对于真空环境下微动磨损行为的研究。

  • 工业纯铁作为较广泛应用的金属材料之一,具有高磁导率和磁感应强度、低矫顽力、低硬度和高塑性等优点,因而在电力电子、核电、能源、航空航天等重要领域有良好的应用前景[22–24]。尤其是对于航天器及其精密仪器关键紧固件,需要长时间服役于真空环境下,且因受外界振动易导致微动损伤。因此,本文以工业纯铁为研究对象,基于原位 XPS 分析微动磨损试验平台,系统性开展真空 (p=4 mPa)和大气(p=100 kPa)下不同位移幅值微动磨损试验,针对不同微动运行区域,对比研究真空和大气气氛环境下微动磨损行为,重点分析接触界面摩擦化学状态及其变化,探讨其对微动磨损行为的影响机理。

  • 1 试验准备

  • 1.1 样品制备

  • 本试验采用 DT4 纯铁为研究对象,试验样品尺寸为 10 mm×15 mm×3 mm,如图1 所示。试验过程中将样品表面打磨抛光至表面粗糙度为 0.02 μm; 对磨副材料选用直径为 10 mm 的 GCr15 钢球。在试验之前,将样品和钢球置于丙酮中超声清洗 15 min,然后干燥以确保其表面清洁。为了避免样品磁性对后续 XPS 测试的影响,包括夹具在内的所有样品在每次试验前均进行消磁处理;同时为了减少铁磁性物质在测试过程中被磁化的影响,试验过程中采用静电模式用于元素的分析和测试。

  • 图1 DT4 纯铁试样示意图

  • Fig.1 Diagram of specimen

  • 1.2 微动磨损试验

  • 本试验在自主研发的原位 XPS 高精度切向微动磨损试验机上完成,如图2 所示。该试验机主要由 XPS 试验装置和密封腔微动磨损试验机组成,两者之间通过内设有闸阀的波纹管相连接,其微动磨损试验装置部分如图2b 所示,试验装置详细信息见文献[13]。微动磨损试验采用球-平面接触模式,试验分别在真空环境(p=4 mPa)和大气环境 (p=100 kPa)下进行,整个试验均在封闭环境中进行,试验结束后试样直接通过波纹管闸阀送入 XPS 分析腔内。每个工况下微动磨损试验均重复 3 次,以确保数据准确性和可重复性。具体试验参数如表1 所示。

  • 图2 XPS 原位分析微动磨损试验平台

  • Fig.2 In-situ XPS coupled fretting wear device

  • 表1 微动磨损试验参数

  • Table1 Test parameters of the fretting wear test

  • 1.3 微观表征与分析手段

  • 采用与微动试验设备相连的 X 射线光电子能谱仪(XPS,ESCALAB250Xi)对磨损后试样表面进行化学状态的分析,激光源为 Al Kα,分析室真空度小于 0.1 μPa,且 XPS 微区分析光斑尺寸范围在 15~650 μm,可根据磨斑大小进行调节,保证 XPS 光斑尺寸基本与磨斑尺寸相当或在磨斑区域以内;采用白光干涉仪(Bruker GTK-16-0295)对磨斑轮廓及磨损体积进行定量表征;采用扫描电子显微镜(SEM,JSM-6610)对试样微动磨斑表面进行形貌观察。

  • 2 结果与讨论

  • 2.1 微动运行特性

  • 微动摩擦接触表面间摩擦力与位移(Ft-D)变化曲线是微动磨损行为最基本、最重要的信息,直接反映了接触界面间的摩擦动态特性,通常表现有直线状、椭圆状和平行四边形状 3 种基本类型,分别对应部分滑移区(Partial slip regime,PSR)、混合区(Mixed fretting regime,MFR)及滑移区(Slip regime,SR)[25]。图3 给出工业纯铁在大气和真空环境不同位移幅值下的摩擦稳定阶段 Ft-D 曲线,由图可明显观察到工业纯铁在大气和真空环境下的 Ft-D 曲线随位移幅值增加表现出不同的演变规律。在大气环境(p=100 kPa)下,当位移幅值为 1 μm时,Ft-D 曲线呈近似直线状,相对位移完全通过接触表面间的弹性变形来调节,表明微动处于典型的部分滑移区;当位移幅值为 5 μm 时,微动 Ft-D 曲线图直接转变为平行四边形,说明此时微动摩擦接触界面进入滑移区,此时相对滑移容易发生,接触界面主要通过塑性变形来调节;同时,在当前观察的位移幅值范围内,未观察到混合区的出现,微动磨损状态直接由部分滑移区过渡到滑移区。相对比而言,在真空环境(p=4 mPa)下,当位移幅值为 1 μm 时,微动磨损处于部分滑移区;而当位移幅值在 5、10 μm 范围内,Ft-D 曲线呈现椭圆状,说明微动磨损状态处于混合区,此时接触界面主要由弹塑性变形协调[26];当位移幅值增加至 20 μm 时,Ft-D 曲线呈平行四边形,微动已进入滑移区。由此可知,两种环境下最主要差别为,真空环境下微动磨损出现了位移幅值范围较宽的混合区,这可能是真空环境下接触界面具有较强的粘着力,从而使得相对滑移更为困难[27-29]

  • 图3 真空和大气环境下不同位移幅值下的 Ft-D 曲线

  • Fig.3 Fretting loops with different displacements under vacuum and atmosphere

  • 2.2 磨痕表面原位 XPS 化学分析

  • 纯铁中主要元素为 Fe,因此在进行 XPS 分析时仅以 Fe 元素为研究对象。图4 给出大气和真空环境下位移幅值分别为 1、5 和 40 μm 时 Fe 峰的原位 XPS 光谱图。所有元素图谱均以标准 C 1s 峰进行校准。值得指出的是,本文为了保证大气环境和真空环境下各位移幅值下(部分滑移区,混合区,滑移区)的试样样品的试验结果具有可对比性,所有样品的初始表面状态均保持一致,即为抛光后的样品表面。由结果可知,真空及大气环境下各微动运行区的摩擦氧化行为表现出显著的不同。

  • 当微动运行于部分滑移区时,如图4a 所示,可以发现真空和大气环境下其 XPS 结果类似,即 Fe2p3 / 2 精细谱均可分为三个峰,其结合能分别为 706.7、710 和 712 eV 左右,分别对应于单质 Fe、 Fe2+(FeO)和 Fe3+(Fe2O3),三者峰面积约占 Fe 峰总面积的 20%、40%和 40%。基于前期研究结果 [30],当前表面产生的 FeO 和 Fe2O3 应由来自于样品抛光过程中不可避免带来的氧化所致,间接表明部分滑移区损伤非常轻微。随着位移幅值增加至 5 μm,真空环境下微动磨损处于混合区,其 XPS 结果显著不同于部分滑移区。如图4b 所示,在真空条件下 XPS 峰主要由 Fe 及其劈裂峰、Fe2+(FeO)峰组成,表面产物主要由 Fe 单质和 FeO 组成,其中 Fe 单质和 FeO 分别占 Fe 峰面积的 52%和 48%左右,且未出现 Fe3+(Fe2O3)峰。其中,劈裂峰主要是因 Fe2p3 / 2 不是对称峰,故而一般将 Fe 峰分成多个峰进行拟合得到[31]。结果表明,混合区下材料初始表面(抛光)产生的氧化膜已被去除,从而暴露更多的 Fe 基体,且真空环境下混合区微动磨损过程中相对容易产生 FeO,却难以产生 Fe2O3。再者,虽然大气环境位移幅值为 5 μm 时微动处于滑移区,但为了与相同位移幅值(5 μm)下真空环境磨损表面摩擦氧化产物相对比,图4b 亦给出大气环境下磨斑表面 XPS 图谱,结果表明大气环境下其表面产物主要由 Fe 单质、Fe2+(FeO)和 Fe3+(Fe2O3)组成,其中以 FeO 含量占主导,约占 Fe 峰面积的 49%,而 Fe 单质和 Fe2O3 分别占 9%和 42%左右。在滑移区,两种环境下的 XPS 图谱峰显著不同于其他微动运行区域。由图4c 可知,在真空环境下微动磨斑表面主要为 Fe 单质,约占 Fe 峰面积的 73%,并伴有一定量 Fe2+(FeO),这主要是因为在滑移区材料表面发生了严重的塑性变形,而在真空环境下难以发生氧化反应,从而导致更多的 Fe 基体暴露,并伴随有一定量的 FeO 氧化物生成。然而,相对比而言,在大气环境下,表面几乎观察不到 Fe 单质峰,主要由 Fe2+(FeO)和 Fe3+(Fe2O3)组成,并以 Fe2O3 为主导,约占 Fe 峰面积的 52%,表明磨斑表面完全由氧化物覆盖。

  • 图4 工业纯铁微动磨痕 XPS Fe2p3 / 2 图谱

  • Fig.4 XPS spectra of Fe2p3 / 2

  • 总体而言,基于 XPS 结果可知,真空环境下 (贫氧)其磨斑表面氧化产物主要以 FeO 为主,没有 Fe2O3 氧化物产生;然而大气环境下其磨斑表面氧化膜主要由 FeO 和 Fe2O3 组成,并在滑移区以 Fe2O3 氧化产物占主导。

  • 2.3 微动摩擦因数

  • 图5 给出了真空与大气环境下摩擦因数随位移幅值增加而变化曲线图。由图可知,无论是真空还是大气环境下,随着位移幅值的增大,摩擦因数均呈现先增大后保持稳定的趋势,且在真空条件下其摩擦因数随位移幅值的增加而显著增加。相对比发现,相同位移幅值时真空环境下的磨斑表面摩擦因数显著高于大气环境下的微动摩擦因数。

  • 图5 真空和大气环境下不同微动位移幅值的摩擦因数

  • Fig.5 Variation of friction factor with different displacements under vacuum and atmosphere

  • 当位移幅值为 1 μm 时,真空和大气中的摩擦因数值均在 0.1 左右。这是因为微动在部分滑移区 (PSR)中运行,接触表面主要为初始表面的氧化膜,且接触表面之间几乎没有相对滑动,因此在真空和大气中摩擦因数值相当且较低;而当位移幅值增加到 5 μm 时,材料表面发生弹塑性变形,原始表面上的氧化膜破坏后开始暴露出基体,从而导致粘着效应增强,尤其是真空环境下,其磨斑表面主要以 Fe 基体为主导(图4b),继而表现出摩擦因数显著增加,同时微动由部分滑移区(PSR)进入混合区 (MFR)。然而,大气环境下当初始氧化膜破坏后,暴露出的基体可以继续被氧化,结合图4 可知其磨斑表面主要以 Fe 的氧化物为主,接触表面所产生的氧化物在一定程度上起到了减摩润滑作用,并显著减轻了接触表面的粘着效应,从而表现出比真空下更低的摩擦因数,继而使得大气环境下两接触表面更容易发生相对滑移而进入滑移区,因此未观察到混合区的出现。此外,位移幅值的增加导致接触面积增加,使得摩擦力逐渐增加,从而表现出高于部分滑移区(PSR)的摩擦因数。当位移幅值增加至滑移区(SR)时,真空环境下磨斑表面几乎全为 Fe 基体,此时摩擦因数不再随着位移幅度的增加而表现出显著增加,大约维持在 1.6 左右;对比而言,大气环境下其磨斑表面几乎全为 Fe 的氧化物,因此其摩擦因数值维持在较低的水平(0.4 左右)

  • 2.4 磨痕损伤形貌及机理分析

  • 图6 展示了工业纯铁在真空和大气环境下部分滑移区磨痕表面形貌。在部分滑移区,因所施加位移极小,接触界面间难以发生相对滑动,基于MINDLIN 弹性接触理论[32],接触区域一般呈现两个区域,即发生在接触边缘的圆环状微滑区和接触中心粘着区,并表现出较光滑且轻微的磨斑。研究发现对于工业纯铁,在真空环境(p=4 mPa)下其磨痕表面未展示有明显损伤痕迹,这可能与真空环境下接触界面间粘着增强难以发生相对滑移,从而使得小位移的实现主要依靠摩擦系统的刚度有关;而在大气环境(p=100 kPa)下,磨痕表面边缘出现了清晰的微滑环且磨斑中心区域较光滑,表现出典型的部分滑移区磨斑特征。相对比而言,部分滑移区真空环境下纯铁的微动损伤较大气环境下稍轻微。

  • 图7 为纯铁在真空环境下混合区(D=5 μm)时的磨痕形貌及其局部放大图,给出大气环境下相同位移幅值(滑移区)时的磨斑形貌。由图7a、7c 可以看出,与部分滑移区(D=1 μm)相比,真空环境下混合区沿微动方向磨斑两端出现了明显的塑性流变,材料在往复滑移的过程中被挤压排除至磨痕两端,这可能与真空下接触界面间较强粘着效应有关 (接触界面间具有较高的摩擦因数,如图5 所示); 同时,磨痕中心区域犁沟可能是由真空环境下接触表面材料因粘着脱落后形成的磨屑颗粒所致,磨损机理主要以粘着磨损为主[33]。而在大气环境下,如图7b、7d 所示,磨痕周围未观察到明显的磨屑堆积,但磨痕中心区域有大量的犁沟和一定量的氧化磨屑。

  • 图6 部分滑移区微动磨痕表面形貌 SEM

  • Fig.6 SEM of worn scars in PSR

  • 图7 混合区微动磨痕表面形貌 SEM(位移幅值为 5 μm 时大气环境下其微动处于滑移区)

  • Fig.7 SEM of fretting worn scars in MFR (under vacuum) / SR (under atmosphere)

  • 图8 为纯铁在真空环境和大气环境下滑移区时的磨斑形貌,由图可知滑移区磨斑具有显著不同的损伤形貌。真空环境下,结合图5 所示接触界面具有相当高的摩擦因数,表明接触界面间产生了严重的粘着,从而使得材料发生严重的塑性变形。正如图8a 所示,磨斑表现出较大的磨斑面积,且磨斑周围覆盖了较多的成片磨屑,同时磨斑中心伴随有一定量的剥落,表现出严重的损伤。相对比而言,大气环境下,磨斑面积明显较小,但磨斑两端展示有不连续片状磨屑,根据图4 可知磨屑主要为 FeO 和 Fe2O3;同时,磨痕中心表现出较光滑形貌。因表面主要为 Fe 的氧化物,因此其摩擦因数维持在较低的水平(图5)。磨损机理主要表现为氧化磨损与磨粒磨损。

  • 图8 滑移区微动磨痕表面形貌 SEM

  • Fig.8 SEM of worn scars in SR

  • 2.5 摩擦氧化行为对微动磨损性能的影响

  • 基于上述讨论可知,工业纯铁磨损机理不仅与微动运行区域有关,而且显著地受不同服役环境下接触表面所产生的摩擦氧化产物的影响。图9 给出工业纯铁在真空和大气环境不同位移幅值下的磨损体积。由图可以看出,真空和大气中的磨损量均随位移幅值的增加而增加,但两种环境下磨损量随位移幅值增加幅度显著不同。当微动在部分滑移区中运行时,由图4 可知,磨斑表面主要为初始表面氧化物(FeO 和 Fe2O3),从而表明磨损量非常轻微(图9)。当微动运行至混合区时,如 XPS 结果所示,真空环境下 Fe3+(Fe2O3)消失,且更多 Fe 单质暴露,表明磨斑表面氧化物尤其是 Fe2O3 减少,且 Fe 基体暴露均增强粘着效应,从而导致磨损量明显增加;而对于大气环境,磨斑表面主要以 Fe2O3和 FeO 氧化物为主,具有较好的润滑保护,从而表现为磨损量增加不显著。当进入滑移区时(D=20 μm),真空环境下其磨损量快速显著上升,基于 XPS 结果分析可知,真空环境下磨斑表面主要为 Fe 单质,氧化物主要为 FeO 且含量较少,使得接触界面粘着进一步增强(如图5 所示),从而导致更严重的磨损;相对而言,滑移区大气环境下其表面几乎为 Fe2O3 和 FeO 氧化物,表明磨斑表面几乎由氧化物覆盖,其对材料表面具有较好的润滑保护作用,从而表现出比真空环境下更低的磨损量。

  • 图9 真空和大气环境下不同微动位移幅值的磨损体积

  • Fig.9 Wear volume with different displacement under vacuum and atmosphere

  • 3 结论

  • (1)系统性研究真空和大气环境下工业纯铁(DT4)不同微动运行区域其微动磨损行为,并基于原位 XPS 分析技术探究微动磨斑摩擦化学状态,探讨其对磨损机理及磨损性能的影响。

  • (2)纯铁在真空和大气环境下具有显著不同的微动运行特性,大气环境下未出现有混合区,真空环境下粘着效应较显著,微动进入滑移区需要较大的位移幅值,并且接触界面表现出较高的摩擦因数。

  • (3)在大气环境下,磨损表面产生的 FeO 和 Fe2O3 氧化物,对接触界面具有很好的润滑保护作用,从而表现出较低的磨损量;而真空环境下随位移幅值的增加,因 Fe2O3消失,FeO 含量逐渐减少,更多单质 Fe 暴露,导致磨损量快速增加。

  • 参考文献

    • [1] ZHENG J F,LUO J,MO J L,et al.Fretting wear behaviors of a railway axle steel[J].Tribology International,2010,43(5):906-911.

    • [2] SHU Y L,YANG G X,LIU Z M.Experimental study on fretting damage in the interference fit area of high-speed train wheels and axles based on specimen[J].Engineering Failure Analysis,2022,141:106619.

    • [3] WANG D G,ZHANG D K,ZHAO W J,et al.Quantitative analyses of fretting fatigue damages of mine rope wires in different corrosive media[J].Materials Science and Engineering:A,2014,596:80-88.

    • [4] PECINKA L,SVOBODA J,ZEMAN V.Fretting wear of the Zr fuel rod cladding[C]//Proceedings of the 22nd International Conference on Nuclear Engineering,July 7–11,2014,Prague,Czech Republic,2014,V001T03A027.New York:The American Society of Mechanical Engineers,2014.

    • [5] LEE Y H,KIM I H,KIM H K,et al.Role of ZrO2 oxide layer on the fretting wear resistance of a nuclear fuel rod[J].Tribology International,2020,145:106146.

    • [6] JONES D H,NEHRU A Y,SKINNER J.The impact fretting wear of a nuclear reactor component[J].Wear,1985,106(1):139-162.

    • [7] TIMSIT R S.Wear mechanisms in electrical contacts:fretting wear[M]//WANG Q J,CHUNG Y W,eds.Encyclopedia of tribology.Boston,MA:Springer US,2013.

    • [8] FARRIS T N,SZOLWINSKI M P,HARISH G.Fretting in aerospace structures and materials[J].ASTM Special Technical Publication,2000,1367:523-537.

    • [9] LEEN S B,HYDE T H,RATSIMBA C H H,et al.An investigation of the fatigue and fretting performance of a representative aero-engine spline coupling[J].The Journal of Strain Analysis for Engineering Design,2002,37(6):565-583.

    • [10] LIU X L,CAI Z B,LIU S B,et al.Influence of wear test parameters on the electrical contact performance of brass alloy/copper contactors under fretting wear[J].Journal of Materials Engineering and Performance,2019,28(2):817-827.

    • [11] JEONG S H,CHO C W,LEE Y Z.Friction and wear of Inconel 690 for steam generator tube in elevated temperature water under fretting condition[J].Tribology International,2005,38(3):283-288.

    • [12] KOENEN A,VIRMOUX Ph,GRAS R,et al.A machine for fretting fatigue and fretting wear testing in cryotechnical and normal environment[J].Wear,1996,197(1):192-196.

    • [13] WEI X J,SHENG L L,LI H,et al.The effect of oxygen pressure on the fretting wear of titanium alloys[J].International Journal of Modern Physics B,2020,34:2050128.

    • [14] ZHANG Q Y,ZHOU Y,WANG L,et al.Investigation on tribo-layers and their function of a titanium alloy during dry sliding[J].Tribology International,2016,94:541-549.

    • [15] 薛群基,刘维民.摩擦化学的主要研究领域及其发展趋势[J].化学进展,1997,9(3):311-318.XUE Qunji,LIU Weimin.The research progress in tribochemistry[J].Progress in Chemistry,1997,9(3):311-318.(in Chinese)

    • [16] BOUCHOUCHA A,CHEKROUD S,PAULMIER D.The influence of oxygen on the friction and wear behaviour of a copper-steel couple under electric current[J].Tribotest,2004,11:11-27.

    • [17] PAULMIER D,BOUCHOUCHA A,ZAIDI H.Wear mode of a copper wire during a sliding contact with copper/chrome steel:influence of oxygen[J].Vacuum,1990,41(7):2230-2232.

    • [18] XIN L,LU Y H,SHOJI T.The comparative study on nanostructured tribolayers of Alloy 690TT subjected to fretting wear under different oxygen contents[J].Materials Characterization,2017,131:157-167.

    • [19] MARY C,LE MOGNE T,BEAUGIRAUD B,et al.Tribochemistry of a Ti alloy under fretting in air:evidence of titanium nitride formation[J].Tribology Letters,2009,34(3):211-222.

    • [20] DE WIT E,BLANPAIN B,FROYEN L,et al.The tribochemical behaviour of TiN-coatings during fretting wear[J].Wear,1998,217(2):215-224.

    • [21] XIN L,YANG B B,WANG Z H,et al.Microstructural evolution of subsurface on Inconel 690TT alloy subjected to fretting wear at elevated temperature[J].Materials & Design,2016,104:152-161.

    • [22] 冯英,辛超,叶祖标,等.高可靠性永磁机构真空断路器研究[J].高压电器,2015,51(12):109-113.FENG Ying,XIN Chao,YE Zubiao,et al.Vacuum breaker with permanent magnetic actuator and high reliability[J].High Voltage Apparatus,2015,51(12):109-113.(in Chinese)

    • [23] FAN K,JIN Z,GUO J,et al.Investigation on the surface layer formed during electrochemical modification of pure iron[J].Applied Surface Science,2019,466:466-471.

    • [24] 何仁,王亮,王晶.双磁系永磁磁轨制动器的设计分析[J].重庆交通大学学报(自然科学版),2015,34(6):181-185.HE Ren,WANG Liang,WANG Jing.Design and analysis of double permanent magnet systems track brake[J].Journal of Chongqing Jiaotong University(Natural Science),2015(6):181-185.(in Chinese)

    • [25] 周仲荣.微动图在抗微动失效中的应用[J].中国表面工程,1998,11(1):41-45.ZHOU Zhongrong.An application of freting maps to palliative treatments for fretting failure[J].China Surface Engineering,1998,11(1):41-45.(in Chinese)

    • [26] ZHU M H,ZHOU Z R.On the mechanisms of various fretting wear modes[J].Tribology International,2011,44(11):1378-1388.

    • [27] 佘丁顺,岳文,付志强,等.工业纯钛TA2离子渗氮后的组织结构与真空摩擦磨损性能研究[J].稀有金属材料与工程,2015,44(1):133-139.SHE Dingshun,YUE Wen,FU Zhiqiang,et al.Microstructure and vacuum tribological properties of commercial titanium TA2 treated by plasma nitriding[J].Rare Metal Materials and Engineering,2015,44(1):133-139.(in Chinese)

    • [28] XU G Z,LIU J J,ZHOU Z R.Prediction of the fretting fatigue resistance of various surface-modification layers on 1045 steel:the role of fretting maps[J].Tribology International,2001,34(8):569-575.

    • [29] 周仲荣,LEO V.微动磨损[M].北京:科学出版社,2002.ZHOU Zhongrong,LEO V.Fretting wear[M].Beijing:Science Press,2002.(in Chinese)

    • [30] CHENG X X,WEI X J,LI H,et al.Investigation on the fretting wear behavior of titanium alloy under different atmospheres by an in situ XPS spectrometry[J].International Journal of Modern Physics B,2022,36(19):2250109.

    • [31] BIESINGER M,PAYNE B,GROSVENOR A,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J].Applied Surface Science,2011,257:2717-2730.

    • [32] MINDLIN R D.Compliance of elastic bodies in contact[J].Journal of Applied Mechanics,2021,16(3):259-268.

    • [33] MERSTALLINGER A,SALES M,SEMERAD E,et al.Cold welding in hold down points of space mechanisms due to impact and fretting[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology,2008,222(8):1005-1014.

  • 参考文献

    • [1] ZHENG J F,LUO J,MO J L,et al.Fretting wear behaviors of a railway axle steel[J].Tribology International,2010,43(5):906-911.

    • [2] SHU Y L,YANG G X,LIU Z M.Experimental study on fretting damage in the interference fit area of high-speed train wheels and axles based on specimen[J].Engineering Failure Analysis,2022,141:106619.

    • [3] WANG D G,ZHANG D K,ZHAO W J,et al.Quantitative analyses of fretting fatigue damages of mine rope wires in different corrosive media[J].Materials Science and Engineering:A,2014,596:80-88.

    • [4] PECINKA L,SVOBODA J,ZEMAN V.Fretting wear of the Zr fuel rod cladding[C]//Proceedings of the 22nd International Conference on Nuclear Engineering,July 7–11,2014,Prague,Czech Republic,2014,V001T03A027.New York:The American Society of Mechanical Engineers,2014.

    • [5] LEE Y H,KIM I H,KIM H K,et al.Role of ZrO2 oxide layer on the fretting wear resistance of a nuclear fuel rod[J].Tribology International,2020,145:106146.

    • [6] JONES D H,NEHRU A Y,SKINNER J.The impact fretting wear of a nuclear reactor component[J].Wear,1985,106(1):139-162.

    • [7] TIMSIT R S.Wear mechanisms in electrical contacts:fretting wear[M]//WANG Q J,CHUNG Y W,eds.Encyclopedia of tribology.Boston,MA:Springer US,2013.

    • [8] FARRIS T N,SZOLWINSKI M P,HARISH G.Fretting in aerospace structures and materials[J].ASTM Special Technical Publication,2000,1367:523-537.

    • [9] LEEN S B,HYDE T H,RATSIMBA C H H,et al.An investigation of the fatigue and fretting performance of a representative aero-engine spline coupling[J].The Journal of Strain Analysis for Engineering Design,2002,37(6):565-583.

    • [10] LIU X L,CAI Z B,LIU S B,et al.Influence of wear test parameters on the electrical contact performance of brass alloy/copper contactors under fretting wear[J].Journal of Materials Engineering and Performance,2019,28(2):817-827.

    • [11] JEONG S H,CHO C W,LEE Y Z.Friction and wear of Inconel 690 for steam generator tube in elevated temperature water under fretting condition[J].Tribology International,2005,38(3):283-288.

    • [12] KOENEN A,VIRMOUX Ph,GRAS R,et al.A machine for fretting fatigue and fretting wear testing in cryotechnical and normal environment[J].Wear,1996,197(1):192-196.

    • [13] WEI X J,SHENG L L,LI H,et al.The effect of oxygen pressure on the fretting wear of titanium alloys[J].International Journal of Modern Physics B,2020,34:2050128.

    • [14] ZHANG Q Y,ZHOU Y,WANG L,et al.Investigation on tribo-layers and their function of a titanium alloy during dry sliding[J].Tribology International,2016,94:541-549.

    • [15] 薛群基,刘维民.摩擦化学的主要研究领域及其发展趋势[J].化学进展,1997,9(3):311-318.XUE Qunji,LIU Weimin.The research progress in tribochemistry[J].Progress in Chemistry,1997,9(3):311-318.(in Chinese)

    • [16] BOUCHOUCHA A,CHEKROUD S,PAULMIER D.The influence of oxygen on the friction and wear behaviour of a copper-steel couple under electric current[J].Tribotest,2004,11:11-27.

    • [17] PAULMIER D,BOUCHOUCHA A,ZAIDI H.Wear mode of a copper wire during a sliding contact with copper/chrome steel:influence of oxygen[J].Vacuum,1990,41(7):2230-2232.

    • [18] XIN L,LU Y H,SHOJI T.The comparative study on nanostructured tribolayers of Alloy 690TT subjected to fretting wear under different oxygen contents[J].Materials Characterization,2017,131:157-167.

    • [19] MARY C,LE MOGNE T,BEAUGIRAUD B,et al.Tribochemistry of a Ti alloy under fretting in air:evidence of titanium nitride formation[J].Tribology Letters,2009,34(3):211-222.

    • [20] DE WIT E,BLANPAIN B,FROYEN L,et al.The tribochemical behaviour of TiN-coatings during fretting wear[J].Wear,1998,217(2):215-224.

    • [21] XIN L,YANG B B,WANG Z H,et al.Microstructural evolution of subsurface on Inconel 690TT alloy subjected to fretting wear at elevated temperature[J].Materials & Design,2016,104:152-161.

    • [22] 冯英,辛超,叶祖标,等.高可靠性永磁机构真空断路器研究[J].高压电器,2015,51(12):109-113.FENG Ying,XIN Chao,YE Zubiao,et al.Vacuum breaker with permanent magnetic actuator and high reliability[J].High Voltage Apparatus,2015,51(12):109-113.(in Chinese)

    • [23] FAN K,JIN Z,GUO J,et al.Investigation on the surface layer formed during electrochemical modification of pure iron[J].Applied Surface Science,2019,466:466-471.

    • [24] 何仁,王亮,王晶.双磁系永磁磁轨制动器的设计分析[J].重庆交通大学学报(自然科学版),2015,34(6):181-185.HE Ren,WANG Liang,WANG Jing.Design and analysis of double permanent magnet systems track brake[J].Journal of Chongqing Jiaotong University(Natural Science),2015(6):181-185.(in Chinese)

    • [25] 周仲荣.微动图在抗微动失效中的应用[J].中国表面工程,1998,11(1):41-45.ZHOU Zhongrong.An application of freting maps to palliative treatments for fretting failure[J].China Surface Engineering,1998,11(1):41-45.(in Chinese)

    • [26] ZHU M H,ZHOU Z R.On the mechanisms of various fretting wear modes[J].Tribology International,2011,44(11):1378-1388.

    • [27] 佘丁顺,岳文,付志强,等.工业纯钛TA2离子渗氮后的组织结构与真空摩擦磨损性能研究[J].稀有金属材料与工程,2015,44(1):133-139.SHE Dingshun,YUE Wen,FU Zhiqiang,et al.Microstructure and vacuum tribological properties of commercial titanium TA2 treated by plasma nitriding[J].Rare Metal Materials and Engineering,2015,44(1):133-139.(in Chinese)

    • [28] XU G Z,LIU J J,ZHOU Z R.Prediction of the fretting fatigue resistance of various surface-modification layers on 1045 steel:the role of fretting maps[J].Tribology International,2001,34(8):569-575.

    • [29] 周仲荣,LEO V.微动磨损[M].北京:科学出版社,2002.ZHOU Zhongrong,LEO V.Fretting wear[M].Beijing:Science Press,2002.(in Chinese)

    • [30] CHENG X X,WEI X J,LI H,et al.Investigation on the fretting wear behavior of titanium alloy under different atmospheres by an in situ XPS spectrometry[J].International Journal of Modern Physics B,2022,36(19):2250109.

    • [31] BIESINGER M,PAYNE B,GROSVENOR A,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J].Applied Surface Science,2011,257:2717-2730.

    • [32] MINDLIN R D.Compliance of elastic bodies in contact[J].Journal of Applied Mechanics,2021,16(3):259-268.

    • [33] MERSTALLINGER A,SALES M,SEMERAD E,et al.Cold welding in hold down points of space mechanisms due to impact and fretting[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology,2008,222(8):1005-1014.

  • 手机扫一扫看