en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

田初春,男,1999年出生,硕士研究生。主要研究方向为难加工材料切削刀具设计与失效分析、表面质量评价。E-mail:18285668504@163.com

通讯作者:

蒋宏婉,女,1988年出生,博士,教授,硕士研究生导师。主要研究方向为难加工材料切削刀具设计与失效分析、表面质量评价。E-mail:jhw.969@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007-9289.20230412001

参考文献 1
季思源,万维财,彭卓豪,等.切削高温合金用涂层的研究进展[J].工具技术,2022,56(2):3-10.JI Siyuan,WAN Weicai,PENG Zhuohao,et al.Research progress of coating for cutting superalloy[J].Tool Technology,2022,56(2):3-10.(in Chinese)
参考文献 2
CELIK A,ALAGAC M S,TURAN S,et al.Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718[J].Wear,2017,378-379:58-67.
参考文献 3
WANG F,JI K,GUO Z.Microstructural analysis of failure progression for coated carbide tools during high-speed milling of Ti-6Al-4V[J].Wear,2020,456-457.
参考文献 4
ROY S,KUMAR R,ANURAG,et al.A brief review on machining of Inconel 718[J].Materials Today:Proceedings,2018,5(9):18664-18673.
参考文献 5
孙加林,周咏辉,邓建新.织构化涂层刀具研究进展[J].工具技术,2015,49(7):3-7.SUN Jialin,ZHOU Yonghui,DENG Jianxin.Research progress of textured coating tools[J].Tool Technology,2015,49(7):3-7.(in Chinese)
参考文献 6
唐联耀,唐玲艳,李鹏南,等.微织构刀具切削钛合金的研究进展[J].宇航材料工艺,2020,50(4):8-12.TANG Lianyao,TANG Lingyan,LI Pengnan,et al.Research progress of micro texture tool cutting titanium alloy[J].Aerospace Materials Technology,2020,50(4):8-12.(in Chinese)
参考文献 7
LIAN Y,LONG Y,ZHAO G,et al.Performance of CrCN-WS2 hard/soft composite coated tools in dry cutting of titanium alloys[J].Journal of Manufacturing Processes,2020,54:201-209.
参考文献 8
王启民,黄健,王成勇,等.高速切削刀具物理气相沉积涂层研究进展[J].航空制造技术,2013(14):78-83.WANG Qimin,HUANG Jian,WANG Chengyong,et al.Physical vapor deposition coating research progress on high speed cutting tool[J].Aviation Manufacturing Technology,2013(14):78-83.(in Chinese)
参考文献 9
范其香,林静,王铁钢.刀具涂层材料的最新研究进展[J].表面技术,2022,51(2):1-19,28.FAN Qixiang,LIN Jing,WANG Tiegang.Recent research progress of tool coating materials[J].Surface Technology,2022,51(2):1-19,28.(in Chinese)
参考文献 10
DENG Y,CHEN W,LI B,et al.Physical vapor deposition technology for coated cutting tools:A review[J].Ceramics International,2020,46(11):18373-18390.
参考文献 11
邵泽宽.涂层刀具的现状研究[J].有色金属科学与工程,2017,8(6):57-64.SHAO Zekuan.Study on the status of coated tools[J].Nonferrous Metal Science and Engineering,2017,8(6):57-64.(in Chinese)
参考文献 12
SUGIHARA T,KOBAYASHI R,ENOMOTO T.Direct observations of tribological behavior in cutting with textured cutting tools[J].International Journal of Machine Tools & Manufacture,2021,168:103726.
参考文献 13
KUMAR C S,PATEL S K.Effect of WEDM surface texturing on Al2O3/TiCN composite ceramic tools in dry cutting of hardened steel[J].Ceramics International,2018,44(2):2510-2523.
参考文献 14
ZHOU C,GUO X,ZHANG K,et al.The coupling effect of micro-groove textures and nanofluids on cutting performance of uncoated cemented carbide tools in milling Ti-6Al-4V[J].Journal of Materials Processing Technology,2019,271:36-45.
参考文献 15
刘伟,刘顺,梁桂强,等.微织构刀具切削性能及减摩效果的仿真分析[J].表面技术,2022,51(2):338-346.LIU Wei,LIU Shun,LIANG Guiqiang,et al.Simulation analysis of cutting performance and anti-friction effect of micro-texture tool[J].Surface Technology,2022,51(2):338-346.(in Chinese)
参考文献 16
PANG M,LIU X,LIU K.Effect of conical micro-grooved texture on tool-chip friction property and cutting performance of WC-TiC/Co cemented carbide tools[J].Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology,2019,233(5):791-804.
参考文献 17
张克栋,邓建新,姜超,等.微纳织构涂层刀具研究进展[J].航空制造技术,2015(6):38-42.ZHANG Kedong,DENG Jianxin,JIANG Chao,et al.Micro-nano texture coating tool research progress[J].Aviation Manufacturing Technology,2015(6):38-42.(in Chinese)
参考文献 18
郭杰,徐看,刘利国,等.刀具涂层技术现状与发展趋势[J].工具技术,2014,48(3):3-7.GUO Jie,XU Jian,LIU Liguo,et al.Cutting tool coating technology present situation and development trend of[J].Tool Technology,2014,48(3):3-7.(in Chinese)
参考文献 19
SCHINTLMEISTER W,WALLGRAM W,KANZ J,et al.Cutting tool materials coated by chemical vapour deposition[J].Wear,1984,100(13):153-169.
参考文献 20
YI J,LI M L,ZHOU H X,et al.Enhanced tribological properties of Y/MoS2 composite coatings prepared by chemical vapor deposition[J].Ceramics International,2020,46(15):23813-23819.
参考文献 21
KATAMUNE Y,IZUMI A,ICHIKAWA K,et al.Heavy phosphorus doping of diamond by hot-filament chemical vapor deposition[J].Diamond and Related Materials,2023,134:109789.
参考文献 22
张韬,沈彬,孙方宏,等.热丝化学气相沉积法制备优质微米亚微米级单晶金刚石的研究[J].金刚石与磨料磨具工程,2011,31(6):7-11.ZHANG Tao,SHEN Bin,SUN Fanghong,et al.Preparation of high-quality micron-submicron single crystal diamond by hot wire chemical vapor deposition[J].Diamond and Abrasives Engineering,2011,31(6):7-11.(in Chinese)
参考文献 23
HU X,LI M,WANG Y,et al.Growth of 2-inch diamond films on 4H-SiC substrate by microwave plasma CVD for enhanced thermal performance[J].Vacuum,2023,211:111895.
参考文献 24
SHI J,FENG X,HUANG Y,et al.Growth of carbon nanotubes on diamond with a robust structural connection via microwave plasma chemical vapor deposition[J].Coatings,2022,12(12):12121838.
参考文献 25
NICLAS S.MUELLER,ANTHONY J,et al.Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition[J].Carbon,2014,78:347-355.
参考文献 26
凌国伟,沈辉宇,周福堂.阴极电弧沉积技术及其发展[J].真空,1996(1):1-12.LING Guowei,SHEN Huiyu,ZHOU Futang.Cathode arc deposition technology and its development[J].Vacuum,1996(1):1-12.(in Chinese)
参考文献 27
余东海,王成勇,成晓玲,等.磁控溅射镀膜技术的发展[J].真空,2009,46(2):19-25.YU Donghai,WANG Chengyong,CHENG Xiaoling,et al.Development of magnetron sputtering coating technology[J].Vacuum,2009,46(2):19-25.(in Chinese)
参考文献 28
张权,耿东森,许雨翔,等.电弧/溅射复合沉积技术的发展及其在刀具涂层中的应用[J].表面技术,2021,50(5):20-35,101.ZHANG Quan,GENG Dongsen,XU Yuxiang,et al.Arc/sputtering deposition technology and its application in coating[J].Surface Technology,2021,50(5):20-35,101.(in Chinese)
参考文献 29
李春伟,苗红涛,徐淑艳,等.复合高功率脉冲磁控溅射技术的研究进展[J].表面技术,2016,45(6):82-90.LI Chunwei,MIAO Hongtao,XU Shuyan,et al.Research progress of composite high-power pulsed magnetron sputtering[J].Surface Technology,2016,45(6):82-90.(in Chinese)
参考文献 30
朱祥瑞,韩明月,冯蓬勃,等.双极高功率脉冲磁控溅射技术薄膜制备研究进展[J].中国表面工程,2022,35(5):10-22 ZHU Xiangrui,HAN Mingyue,FENG Fuxing,et al.Research progress of thin films prepared by double ultra-high power pulsed magnetron sputtering[J].China Surface Engineering,2022,35(5):10-22.(in Chinese)
参考文献 31
傅永庆,朱晓东,徐可为,等.离子束辅助沉积技术及其进展[J].材料科学与工程,1996(3):23-33.FU Yongqing,ZHU Xiaodong,XU Kewei,et al.Advances in ion beam assisted deposition[J].Materials Science and Engineering,1996(3):23-33.(in Chinese)
参考文献 32
郭江,王兴宇,赵勇,等.微织构刀具制备技术及加工性能研究新进展[J].机械工程学报,2021,57(13):172-200.GUO Jiang,WANG Xingyu,ZHAO Yong,et al.New progress in preparation technology and machining performance of micro-texture tools[J].Journal of Mechanical Engineering,2021,57(13):172-200.
参考文献 33
ZHOU X,HE L,ZHOU T,et al.A comprehensive review of tool surface texturing in the cutting process[J].International Journal of Advanced Manufacturing Technology,2022,123(7-8):2427-2467.
参考文献 34
ARSLAN A,MASJUKI H H,KALAM M A,et al.Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance:A review[J].Critical Reviews in Solid State and Materials Sciences,2016,41(6):447-481.
参考文献 35
邓建新,孟莹,张志慧,等.织构化表面涂层的研究进展[J].航空制造技术,2022,65(7):22-35.DENG Jianxin,MENG Ying,ZHANG Zhihui,et al.Advances in textured surface coatings[J].Aeronautical Manufacturing Technology,2022,65(7):22-35.(in Chinese)
参考文献 36
CHEN Y,XIANG D,FENG H,et al.Fabrication and performance of boron doped textured diamond coated tool[J].Surface Engineering,2020,36(4):371-378.
参考文献 37
LIU F,HAN Y,GUO X,et al.Adhesion and machining performance of PVD AlCrN coatings with an ion beam/laser textured substrate[J].Surface & Coatings Technology,2021,423:127607.
参考文献 38
MENG R,DENG J,LIU Y,et al.Improving tribological performance of cemented carbides by combining laser surface texturing and W-S-C solid lubricant coating[J].International Journal of Refractory Metals & Hard Materials,2018,72:163-171.
参考文献 39
邢佑强,邓建新,岳鸿志,等.WS2/Zr 软涂层微纳织构陶瓷刀具的制备及其切削性能[J].航空制造技术,2014(12):48-53.XING Youqiang,DENG Jianxin,YUE Hongzhi,et al.Fabrication and machinability of micro-nano textured ceramic tool with WS2/Zr soft coating[J].Aeronautical Manufacturing Technology,2014(12):48-53.(in Chinese)
参考文献 40
DENG J,LIAN Y,WU Z,et al.Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings[J].Surface & Coatings Technology,2013,222:135-143.
参考文献 41
ZHANG K,DENG J,SUN J,et al.Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting[J].Applied Surface Science,2015,355:602-614.
参考文献 42
张克栋.基体表面织构化TiAlN涂层刀具的制备与应用的基础研究[D].济南:山东大学,2017.ZHANG Kedong.Preparation and application of textured TiAlN coating tool on substrate surface[D].Jinan:Shandong University,2014.(in Chinese)
参考文献 43
张翔,邓建新,张贵梁,等.基体表面纳织构化对AlCrN涂层刀具界面结合强度影响的研究[J].工具技术,2017,51(9):17-21.ZHANG Xiang,DENG Jianxin,ZHANG Guiliang,et al.Study on the effect of nano-texture on the interfacial bonding strength of AlCrN coating[J].Tool Technology,2017,51(9):17-21.(in Chinese)
参考文献 44
孟祥峰,张克栋,郭旭红,等.等离子体辅助激光织构化预处理增强TiAlN刀具涂层膜基结合强度的机理研究[J].工具技术,2020,54(9):7-13.MENG Xiangfeng,ZHANG Kedong,GUO Xuhong,et al.Study on the mechanism of plasma-assisted laser texture pretreatment to enhance the bonding strength of TiAlN tool coatings[J].Tool Technology,2020,54(9):7-13.(in Chinese)
参考文献 45
LIU Y,DENG J,LIU L,et al.Effect of nano-scale texture pretreatment on wear resistance of WC/Co tools with/without TiAlN coated flank-face in dry turning of green Al2O3 ceramics[J].Ceramics International,2018,44(17):21176-21187.
参考文献 46
LI X,DENG J,LIU L,et al.Tribological properties of WS2 coatings deposited on textured surfaces by electrohydrodynamic atomization[J].Surface & Coatings Technology,2018,352:128-143.
参考文献 47
ENOMOTO T,SUGIHARA T.Improving anti-adhesive properties of cutting tool surfaces by nano-micro-textures[J].Cirp Annals-Manufacturing Technology,2010,59(1):597-600.
参考文献 48
张克栋,邓建新,邢佑强,等.涂层刀具表面织构化及切削性能研究[J].润滑与密封,2015,40(2):8-16,22.ZHANG Kedong,DENG Jianxin,XING Youqiang,et al.Study on surface texture and machinability of coated tool[J].Lubrication Engineering,2015,40(2):8-16,22.(in Chinese)
参考文献 49
WU Z,DENG J,SU C,et al.Performance of the micro-texture self-lubricating and pulsating heat pipe self-cooling tools in dry cutting process[J].International Journal of Refractory Metals and Hard Materials,2014,45:238-248.
参考文献 50
DENG J,WU Z,LIAN Y,et al.Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes[J].International Journal of Refractory Metals and Hard Materials,2011,30(1):164-172.
参考文献 51
LIAN Y,CHEN H,MU C,et al.Experimental investigation and mechanism analysis of tungsten disulfide soft coated micro-nano textured self-lubricating dry cutting tools[J].International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(2):219-230.
参考文献 52
AHMED Y S,PAIVA J M,ARIF A F M,et al.The effect of laser micro-scale textured tools on the tool-chip interface performance and surface integrity during austenitic stainless-steel turning[J].Applied Surface Science,2020,510:145455-145455.
参考文献 53
CHANG K,DONG Y,ZHENG G,et al.Friction and wear properties of TiAlN coated tools with different levels of surface integrity[J].Ceramics International,2022,48(4):4433-4443.
参考文献 54
LIU C,LIU Z,WANG B.Modification of surface morphology to enhance tribological properties for CVD coated cutting tools through wet micro-blasting post-process[J].Ceramics International,2018,44(3):3430-3439.
参考文献 55
ZHANG G,CHEN B,WU G,et al.Experimental assessment of textured tools with nano-lubricants in orthogonal cutting of titanium alloy[J].Journal of Mechanical Science and Technology,2022,36(5):2489-2497.
参考文献 56
吴雪峰,梅三林.飞秒激光对TiAIN涂层刀具微织构加工参数的优化 [J].激光与光电子学进展:1-19 [2023-02-13].http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1232.168.WU Xuefeng,MEI Sanlin.Optimization of micro texture processing parameters of TiAIN coating tool by femtosecond laser[J].Advances in Laser and Optoelectronics:1-19[2023-02-13].http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1232.168.(in Chinese)
参考文献 57
WU Z,DENG J,CHEN Y,et al.Performance of the self-lubricating textured tools in dry cutting of Ti6Al4V[J].The International Journal of Advanced Manufacturing Technology,2012,62:943-951.
参考文献 58
WU Z,XING Y,CHEN J.Improving the performance of micro-textured cutting tools in dry milling of Ti6Al4V alloys[J].Micromachines,2021,12(8):12080945.
参考文献 59
RONADSON B J,VIJAYAN K,SANMUGAM S,et al.Improving dry machining performance of surface modified cutting tools through combined effect of texture and TiN-WS2 coating[J].Journal of Manufacturing Processes,2023,85:101-108.
参考文献 60
LIU Y,LI J,YI S,et al.Enhancement of friction performance of fluorinated graphene and molybdenum disulfide coating by micro dimple arrays[J].Carbon,2020,167:122-131.
参考文献 61
房磊琦,张家敏,蔡飞,等.不同基体前处理对AlCrN涂层结构和性能的影响[J].表面技术,2022,51(2):66-76.FANG Leiqi,ZHANG Jiamin,CAI Fei,et al.Effect of different matrix pretreatment on structure and properties of AlCrN coating[J].Surface Technology,2022,51(2):66-76.(in Chinese)
参考文献 62
吴振宇,郑光明,颜培,等.表面处理对TiAlSiN涂层刀具表面完整性及切削性能的影响研究[J].中国机械工程,2023,34(1):75-83.WU Zhenyu,ZHENG Guangming,YAN Pei,et al.Effect of surface treatment on surface integrity and machining performance of TiAlSiN coated tool[J].China Mechanical Engineering,2023,34(1):75-83.(in Chinese)
参考文献 63
MISHRA S K,GHOSH S,ARAVINDAN S.Characterization and machining performance of laser-textured chevron shaped tools coated with AlTiN and AlCrN coatings[J].Surface & Coatings Technology,2018,334:344-356.
参考文献 64
FANG S,KLEIN S,BAEHRE D,et al.Performance of laser surface textured cemented carbide tools during abrasive machining:Coating effects,surface integrity assessment and wear characterization[J].Cirp Journal of Manufacturing Science and Technology,2020,31:130-139.
参考文献 65
ZHANG K,DENG J,XING Y,et al.Effect of microscale texture on cutting performance of WC/Co-based TiAlN coated tools under different lubrication conditions[J].Applied Surface Science,2015,326:107-118.
参考文献 66
ARULKIRUBAKARAN D,SENTHILKUMAR V.Performance of TiN and TiAlN coated micro-grooved tools during machining of Ti6Al4V alloy[J].International Journal of Refractory Metals and Hard Materials,2017,62:47-57.
参考文献 67
ZHOU Y,FU Y,YANG J.Effect of volcano-like textured coated tools on machining of Ti6Al4V:An experimental and simulative investigation[J].International Journal of Advanced Manufacturing Technology,2022,120(11-12):7785-7802.
参考文献 68
XING Y,DENG J,LI S,et al.Cutting performance and wear characteristics of Al2O3/TiC ceramic cutting tools with WS2/Zr soft-coatings and nano-textures in dry cutting[J].Wear,2014,318(1-2):12-26.
参考文献 69
GAJRANI K K,PAVAN Kumar Reddy R,RAVI Sankar M.Tribo-mechanical and surface morphological comparison of untextured,mechanical micro-textured(MμT),and coated-MμT cutting tools during machining[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2018,233(1):95-111.
参考文献 70
LIAN Y,DENG J,YAN G,et al.Preparation of tungsten disulfide(WS2)soft-coated nano-textured self-lubricating tool and its cutting performance[J].International Journal of Advanced Manufacturing Technology,2013,68(9-12):2033-2042.
参考文献 71
李佩真,唐思文,孙林,等.基于原子沉积法的纳米 Al2O3 涂层微织构刀具刀-屑界面间摩擦因数研究[J].现代制造工程,2020(10):26-32.LI Peizhen,TANG Siwen,SUN Lin,et al.Study on friction coefficient between cutter and chip interface of nano-Al2O3 coating micro-texture tool based on atomic deposition method[J].Modern Manufacturing Engineering,2020(10):26-32.(in Chinese)
参考文献 72
MISHRA S K,GHOSH S,ARAVINDAN S.Investigations into friction and wear behavior of AlTiN and AlCrN coatings deposited on laser textured WC/Co using novel open tribometer tests[J].Surface & Coatings Technology,2020,387:125513.
参考文献 73
张志强,向道辉,胡永伟,等.织构对硼掺杂金刚石涂层刀具摩擦学性能的影响[J].中国表面工程,2021,34(1):50-59.ZHANG Zhiqiang,XIANG Daohui,HU Yongwei,et al.Influence of texture on tribological properties of boron-doped diamond coated tool[J].China Surface Engineering,2021,34(1):50-59.(in Chinese)
参考文献 74
连云崧.软涂层微纳织构自润滑刀具的制备及其切削性能研究[D].济南:山东大学,2014.LIAN Yunsong.Study on preparation and machinability of micro-nano texture self-lubricating tool with soft coating[D].Jinan:Shandong University,2014.(in Chinese)
参考文献 75
ZHANG K,DENG J,DING Z,et al.Improving dry machining performance of TiAlN hard-coated tools through combined technology of femtosecond laser-textures and WS2 soft-coatings[J].Journal of Manufacturing Processes,2017,30:492-501.
参考文献 76
姜超,邓建新,张翔,等.织构化AlCrN涂层刀具车削加工奥氏体沉淀硬化不锈钢的切削性能研究[J].工具技术,2016,50(12):13-19.JIANG Chao,DENG Jianxin,ZHANG Xiang,et al.Research on machinability of austenitic precipitation-hardened stainless steel by turning textured AlCrN coating tool[J].Tool Technology,2016,50(12):13-19.(in Chinese)
参考文献 77
孙华亮,涂杰松,商宏飞,等.织构对涂层刀具切削性能影响的有限元分析及实验研究[J].现代制造工程,2013(9):1-6.SUN Hualiang,TU Jiesong,SHANG Hongfei,et al.Finite element analysis and experimental study on effect of texture on cutting performance of coating tool[J].Modern Manufacturing Engineering,2013(9):1-6.(in Chinese)
参考文献 78
GAJRANI K K,SURESH S,SANKAR M R.Environmental friendly hard machining performance of uncoated and MoS2 coated mechanical micro-textured tungsten carbide cutting tools[J].Tribology International,2018,125:141-155.
参考文献 79
AHMED Y S,VELDHUIS S C.Enhancement of carbide tool performance during dry machining through a combination of laser surface texturing and tungsten disulfide soft coatings[J].Surface & Coatings Technology,2021,428.
参考文献 80
ARULKIRUBAKARAN D,SENTHILKUMAR V,DINESH S.Effect of textures on machining of Ti-6Al-4V alloy for coated and uncoated tools:A numerical comparison[J].International Journal of Advanced Manufacturing Technology,2017,93(1-4):347-360.
参考文献 81
XIANG D,FENG H,GUO Z,et al.Preparation technology and properties of micro-texture diamond-coated tools[J].International Journal of Refractory Metals & Hard Materials,2018,76:16-24.
参考文献 82
常垲硕,郑光明,李阳,等.湿式微喷砂处理对切削TC4的涂层刀具表面完整性及切削性能影响[J].材料导报,2021,35(16):16086-16092.CHANG Kaishuo,ZHENG Guangming,LI Yang,et al.Effect of wet microblast treatment on surface integrity and machinability of TC4 coating tool[J].Materials Review,2021,35(16):160866-16092.
目录contents

    摘要

    刀具磨损严重、服役寿命短仍然是切削加工所面临的难题。随着现代制造业的发展,钛合金、高温合金等难加工材料在工业中广泛运用。但由于这些材料具有低导热系数、变形系数小等特点,在机械加工中存在切削力和切削温度高、刀具磨损严重等问题,严重缩短了刀具的服役寿命。通过表面织构技术和表面涂层技术在刀具切削表面置入微纳织构和涂层可以显著改善切削性能;特别是在减小刀具磨损、降低切削力、切削温度以及刀-屑接触界面摩擦因数等方面具有显著效果。系统概述微纳织构涂层刀具的作用机理、切削性能以及应用领域,对微纳织构涂层刀具后续发展有重要推动意义。首先,介绍微纳织构涂层刀具的制备方式。其次,分析总结微纳织构涂层刀具的作用机理,并从抗磨损性、抗粘结性和刀具寿命三个方面总结微纳织构涂层刀具的自身性能。随后,从切削力、切削温度、刀-屑接触处的摩擦因数三个方面总结微纳织构涂层刀具的切削性能。最后对微纳织构涂层刀具在现代制造业中的应用进行阐述。提出在刀具切削表面同时置入微纳织构和涂层的当前研究现状以及未来发展方向,可为进一步研究微纳织构涂层刀具在切削加工中改善切削性能以及加工表面质量与性能提供参考。

    Abstract

    Tool wear is a serious problem, and a short service life is a challenge in cutting-processing. Following the development of the modern manufacturing industry, titanium alloys, high-temperature alloys, and other difficult-to-machine materials have been adopted widely. However, these materials exhibit low thermal conductivity and small deformation coefficients among other characteristics, resulting in a high cutting force and cutting temperature, tool wear, and serious problems in cutting, thus considerably shortening the service life of the tool and affecting the machining surface quality. Following the advancement of science and technology, green cutting technology is widely used in the modern manufacturing industry, thereby increasing demand in the cutting tools field. Therefore, the use of cutting fluid in the cutting process, which not only improves the lubrication effect of the cutting process, but also reduces tool wear and improves the machining surface quality and performance has been considered. However, the large amount of cutting waste fluids causes environmental pollution and has a serious impact on the operator's health. Therefore, to better respond to green manufacturing and achieve sustainable development, surface coating technology is applied to tool surface coatings with high hardness, high abrasion resistance, and other properties of hard coating materials and solid lubricating materials with a low coefficient of friction (soft coatings). These act as a chemical and thermal barrier to avoid direct contact between the tool and workpiece, reducing the friction and interaction between the tool and workpiece to enhance the tool's oxidation resistance, anti-adhesion properties, and resistance to abrasive wear, thereby extending the tool life and improving the cutting tool performance. In addition, through the principle of friction biomimicry, surface texturing technology is used to place micro-textures on the rake or flank face of the tool, similar to the surface texture of certain natural living creatures, which can improve the friction behavior of the tool-chip contact surface and the tool-workpiece contact surface, enhance the cutting ability of the tool, and improve the suitability of the tool for green cutting. Therefore, this review summarizes research related to the simultaneous placement of micro–nanotextures and coatings on tool surfaces during cutting operations. First, the preparation technology related to the simultaneous placement of the texture and coating on the tool surface is introduced. Second, the mechanism underlying tool action after the simultaneous placement of the texture and coating on the tool surface is analyzed and summarized, which primarily encompasses three aspects in the current study: (1) the texture on the tool surface can improve the adhesion performance of the coating on the tool substrate surface, (2) the texture and coating influence lubrication performance, and (3) the placement of the texture reduces the length of the tool-chip contact. The review focuses on summarizing the wear resistance, bond resistance, and service life of the tool in the cutting process, as well as the changes in cutting force, cutting temperature, and friction coefficient of the tool-chip contact interface in the cutting process after texture and coating are simultaneously performed on the tool surface, and assessing the related influencing mechanisms. The simultaneous placement of textures and coatings on tool surfaces was found to be widely used in green cutting technology, machining of difficult-to-machine materials, and high-speed cutting technology. Based on this, the direction of future development and application prospects of micro-nano texture coated tools are discussed. This review can be used as a basis for more in-depth research on the mechanism underlying micro-nano texture coated tools and their properties, as well as to inspire subsequent research on the simultaneous placement of other shapes of micro-nano textures on the tool surface and the superior performance of multi-composite coatings, gradient coatings, multi-composite nano-coatings, super-hard coatings, and soft-hard composite coatings.

  • 0 前言

  • 随着制造业的快速发展,高速切削和干式切削技术也得到了快速提升,对刀具的性能提出了更高的要求[1]。同时,具有微观强化硬度高,较高的剪切强度、较低的导热系数的高温合金,以及具有低导热系数、高强度、与刀具材料化学反应性高的钛合金在现代制造业中广泛应用[2-3],使得刀具在加工过程中易产生连续加工硬化等问题;并且刀具的前刀面和切屑、后刀面和工件不断接触,刀具发生恶劣摩擦,产生大量的切削热和较高的切削力,造成刀具磨损和钝化失效,并严重影响工件表面加工精度,造成工件表面质量恶化,使得传统刀具很难满足现代制造业的加工要求[4-5]。为了更好地解决难加工材料难加工的问题,研究人员采用不同的可行方法。例如:在切削过程中使用切削液,切削液的使用可以起到润滑的作用,减小刀具-切屑界面的摩擦[6];同时,切削液还可以起到冷却作用[7],带走切削过程中所产生的切削热,从而降低切削温度;此外,还可以带走切削过程中所产生的碎屑,减少刀具磨损,延长刀具服役寿命。通过表面涂层技术在刀具表面涂覆具有高硬度、高耐磨性等性能更优异的难熔金属或非金属化合物硬涂层材料(如 TiAlN、TiAlSiN、AlCrN 等)。涂层材料作为化学屏障和热屏障,避免了刀具与工件之间的直接接触,减少了刀具和工件之间的摩擦和相互作用,提升刀具的抗氧化性能、抗粘结性能和抗磨粒磨损性能,从而延长刀具服役寿命、改善刀具切削性能[8-10]。此外,通过表面涂层技术在刀具表面涂覆具有较低摩擦因数的(软涂层)固体润滑材料(如 C、MoS2、WS2、CaF2 等)。在切削过程中,固体润滑膜会从刀具表面转移到工件表面并形成转移膜,使摩擦发生在转移膜与润滑膜之间,从而有效减小摩擦、阻止粘接、降低切削温度和切削力,最终达到减轻刀具磨损和防止积屑瘤产生的目的[911]。通过表面织构技术在刀具表面制备不同类型的微纳织构,可以改善刀具-切屑接触面和刀具-工件接触面的摩擦学行为[12],提升刀具的抗粘附磨损性能[13],降低刀具的切削力[14]、切削温度[15]及刀具-切屑接触界面的摩擦因数[16],从而增强刀具的切削能力,延长刀具服役寿命。

  • 基于上述解决方式,为使切削刀具获得更好的切削性能,研究人员结合表面涂层技术与表面织构技术提出微纳织构涂层刀具的新概念。有研究表明:微纳织构涂层刀具相较于常规刀具有更优异的切削性能,但由于制备技术等诸多因素尚未形成完整的理论体系,关于微纳织构涂层刀具的作用机理、切削性能等方面有待进一步研究。本文分析总结了微纳织构涂层刀具的相关内容,包括微纳织构涂层刀具的作用机理、微纳织构涂层刀具的自身性能以及切削性能,并分析影响机制;总结微纳织构涂层刀具目前应用领域,并对微纳织构涂层刀具现阶段研究进行总结、对未来发展方向进行展望,为微纳织构涂层刀具后续研究提供参考价值。图1 所示为本文框架。

  • 图1 本文框架

  • Fig.1 Framework of this paper

  • 1 微纳织构涂层刀具的制备

  • 微纳织构涂层刀具的制备总体分为两个部分:涂层的制备和微纳织构的制备,涂层与微纳织构的制备先后顺序如图2 所示[17]。制备技术包括表面涂层技术和表面织构技术,通过两种刀具表面改性技术均可改善刀具表面的热、力学性能,进而强化切削效果。其中切削刀具表面涂层技术是近几十年应市场需求发展起来的材料表面改性技术。采用涂层技术可有效提高刀具服役寿命,获得优异的力学性能,从而提高机械加工效率[18]。目前,表面涂层技术包括化学气相沉积法(CVD)[19-20]和物理气相沉积法(PVD)[10]。化学气相沉积法包含热丝化学气相沉积法(HFCVD)[21-22]、微波等离子体化学气相沉积法(MPCVD)[23-24]、超高真空化学气相沉积法 (UHCVD)[25]等;物理气相沉积法包含阴极电弧蒸发[26]、磁控溅射[27]及其混合技术[28];其中最新的物理气相沉积技术包含高功率脉冲磁控溅射技术 (HIPIMS)[29]、双极高功率脉冲磁控溅射技术 (BP-HiPIMS)[30]、离子束辅助沉积技术等[31]。表面织构技术有激光加工、电火花加工、光刻加工、聚焦离子束加工(FIB)、微磨削加工、微喷砂加工、等离子体蚀刻等加工技术[32-35]。其中激光加工是目前国内外使用最为广泛的刀具表面微结构制备技术。

  • 图2 微纳织构涂层刀具制备过程示意图 (a)基体试样 (b)仅涂层试样 (c)仅织构试样 (d)先涂层后织构试样 (e)先织构后涂层试样 [17]

  • Fig.2 Schematic diagram of the preparation process of micro-nano texture coated tools: (a) Substrate specimen; (b) Coated specimen only; (c) Textured specimen only; (d) Coated and then textured specimens; (e) Textured and then coated specimens.[17]

  • 研究人员通过结合表面涂层技术和表面织构技术制备了减磨润滑特性更加优异的微纳织构涂层刀具。CHEN 等[36]采用热丝气相沉积法(HFCVD)在两种织构硬质合金刀具表面沉积硼掺杂金刚石薄膜,得到两种不同织构硼掺杂金刚石薄膜铣刀。LIU 等[37]首先利用离子束(IBE) / 激光技术在 WC / Co基体上制备了微凹坑阵列织构,然后利用阴极电弧蒸发技术在织构表面上沉积了 AlCrN 涂层,并在 v=200 m / min 的高速条件下进行了干切削试验,结果表明 IBE / 激光织构涂层刀具的切削力 FxFyFz 和摩擦因数相较常规涂层刀具分别降低了 18.7%、20.6%、10.2%和 16.7%。MENG 等[38]利用激光加工在硬质合金刀具表面加工了凹槽微织构,并成功在凹槽微织构表面沉积 W-S-C 固体润滑涂层。邢佑强等[39]利用飞秒激光加工和多弧离子镀、中频磁控溅射技术制备了 WS2 / Zr 软涂层微纳织构陶瓷刀具。DENG 等[40]还利用飞秒激光加工在硬质合金刀具前刀面上制备了椭圆形织构,然后使用多弧离子镀在其表面沉积了 WS2 固体润滑剂涂层。ZHANG 等[41]利用飞秒激光加工在硬质合金刀具前刀面上制备了微织构和微 / 纳织构,然后使用阴极电弧蒸发技术在织构表面沉积了耐磨 TiAlN 涂层。图3 所示为不同微纳织构涂层刀具表面形貌。

  • 图3 不同微纳织构涂层刀具表面形貌 (a)沉积 W-S-C 涂层的微尺度沟槽的扫描电镜照片[38] (b)WS2 / Zr 涂层微纳织构陶瓷刀具 SEM 形貌[39] (c)沉积有 WS2 固体润滑剂涂层的飞秒激光纹理化前刀面的 SEM 显微照片[40] (d)具有微尺度织构 TiAlN 刀具前刀面的二维 SEM 图像、一个凹槽的高倍 SEM 图像和微尺度凹槽的三维光学图像[41]

  • Fig.3 Different micro-nano texture coated tools surface morphology: (a) SEM images of micro-scale grooves deposited with W-S-C coatings[38]; (b) SEM morphology of micro-nano textured ceramic tool with WS2 / Zr coating[39]; (c) SEM micrograph before femtosecond laser texturing of the tool surface with WS2 solid lubricant coating deposited[40]; (d) Two-dimensional SEM images of micro-scale textured TiAlN tool rake face, high-power SEM images with one notch, and three-dimensional optical images with and micro-scale notch. [41]

  • 2 微纳织构涂层刀具的作用机理

  • 2.1 微纳织构对涂层附着性能的影响

  • 刀具基体与涂层间界面的力学性能决定了刀具的切削性能及其服役寿命。因此,研究如何提高刀具基体与涂层之间的结合力,提升刀具的综合切削性能有重要意义。有研究表明微纳织构可以提高涂层与刀具基体的界面结合力,增强涂层的附着性能;同时,微纳织构可以捕捉和储存切削中的磨损颗粒,减少涂层磨损,提高涂层在切削加工中的性能。例如,张克栋等[42]利用激光加工和真空阴极电弧离子镀技术制备了三种织构化 TiAlN 涂层刀具,通过切削试验表明:微纳织构可以捕捉并储存磨损颗粒,从而有效减缓 TiAlN 涂层的磨损;同时,刀具表面微纳织构可显著增加 TiAlN 涂层与基体界面结合力,降低由工件材料粘结造成的粘着磨损。张翔等[43]对微纳织构涂层刀具的膜基结合强度机理展开了研究,首先在基体表面通过不同工艺预处理得到表面粗糙度、表面积不同的基体表面,如图4 所示。其中三种工艺处理的基体表面的表面粗糙度和表面积大小依次为纳织构化表面 >喷砂表面>抛光表面,并通过划痕试验得出:基体表面具有规则、连续的织构,可以使基体表面粗糙化,增加涂层与基体间的接触面积,有利于增加涂层与基体间的界面结合强度。

  • 图4 不同预处理工艺下的基体表面 SEM 形貌[43]

  • Fig.4 SEM morphologies of matrix surface under different pretreatment processes[43]

  • 孟祥峰等[44]对膜基结合强度进行了更深入的研究,采用不同表面处理工艺对硬质合金刀具基体表面进行预处理,然后在刀具预处理表面沉积 TiAlN 涂层。通过试验表明:激光织构化与等离子体刻蚀可提高 WC / Co 基体表面硬度,增加表面粗糙度和比表面积,分散涂层残余应力,使膜基之间物理结合明显改善;研究还指出,提升基体表面润湿性使基体表面自由能增大和新生成的 CoO 相明显改善了膜基之间的化学匹配性,并且膜基间物理结合和化学键合的共同改善也提高了膜基结合强度。LIU 等[45]利用飞秒激光加工技术在后刀面制备了纳米织构,随后利用物理气相沉积法在织构表面沉积了 TiAlN 涂层,并通过划痕试验发现,在刀具后刀面上制备的纳米织构可以增强涂层与基体之间的结合强度。LI 等[46]采用激光技术在硬质合金刀具表面上成功制备了凹坑阵列、线阵列和四叶草阵列三种阵列织构,如图5 所示,然后使用电流体动力学雾化技术(Electro-hydrodynamic atomization technology,EHDA)在织构表面沉积了厚度约为 20 µm 的均匀致密 WS2涂层。通过试验表明:刀具表面微织构化可以提高涂层与基体的结合强度,从而延长 WS2涂层的磨损寿命。

  • 图5 凹坑阵列、线阵列和四叶草阵列织构的扫描电子显微镜显微照片显示表面形态和 3D 光学显微照片[46]

  • Fig.5 Scanning electron microscope micrographs of dimple array, line array, and four-leaf clover array textures showing surface morphology and 3D optical micrographs[46]

  • 2.2 微纳织构复合涂层对刀具润滑效果的影响机制

  • 在切削加工中,对刀具润滑效果的研究直接影响其切削性能,并且在降低能耗和成本、优化加工环境、探索新型润滑材料与技术以及提高制造质量和产品性能具有重要意义。通过表面改性技术在刀具表面制备微纳织构并复合相应涂层对改善刀具润滑效果有显著影响。由于微纳织构自身存在润滑效果,同时微纳织构在湿切削加工中可以起到储存润滑液的作用;特别地,软涂层与微纳织构的协同作用,利用微纳织构复合软涂层的增益润滑效果可以改善刀具的摩擦学性能,提高切削刀具的切削性能,延长刀具的服役寿命。在微纳织构自润滑方面, ENOMOTO 等[47]使用飞秒激光加工技术开发了微纳织构刀具,并对铝合金进行端面铣削试验,结果表明表面织构显著提高了刀具-切屑界面处的润滑效果,改善了切削性能。张克栋等[48]研究了在湿切削加工中织构涂层刀具的润滑效果,采用激光加工在 TiAlN 涂层刀具前刀面加工了线性凹槽织构,并在在液体润滑条件下进行切削试验。结果表明:在液体润滑时,由于织构的存在,润滑液能够渗入到涂层织构化刀具刀-屑接触面,从而实现二次润滑,如图6 所示;而传统刀具前刀面为光滑面,切削过程中与切屑底面为紧密的固体接触,产生很大的接触压力,致使切削液无法渗入到刀-屑接触面内。

  • 图6 织构化刀具液体润滑条件下液体从刀屑接触区外渗入刀屑接触区内的示意图[48]

  • Fig.6 Diagram of the liquid flowing into the tool-chip interface on the rake face of textured tools[48]

  • 与湿切削加工相较而言,干切削加工改善润滑效果,主要是因为微纳织构自润滑性以及微纳织构与软涂层的协同作用。例如,WU 等[49]利用激光加工技术在刀具表面制备了椭圆凹槽微织构,然后在织构槽中填充了二硫化钼(MoS2)固体润滑剂,并在切削速度 v=60~180 m / min、进给深度 ap=0.5 mm、进给率 f=0.3 mm / r 的切削条件下进行干切削试验。研究得出:在切削过程中,填充在织构槽中的 MoS2 在切削过程中会在刀-屑接触界面处形成润滑膜,从而在干切削加工中实现刀具自润滑。 DENG 等[50]利用激光加工技术在刀具前刀面上制备了不同特征的织构,并将二硫化钼(MoS2)固体润滑剂填充到有织构的前刀面,然后通过干切削试验同样得出,在切削过程中织构内的 MoS2 会在刀-屑接触界面形成润滑膜,并提升刀具的润滑效果。图7 所示为微纳织构软涂层刀具刀-屑接触处润滑膜形成过程:首先刀具表面的 MoS2 软涂层会被挤压到微纳织构的凹槽中,使得 MoS2 软涂层在切削过程中不易被切屑带走;当润滑膜被破坏时,由于高压、高温的影响,微纳织构凹槽中的 MoS2 软涂层会从凹槽溢出到刀-屑接触表面,从而在刀-屑接触面形成具有低剪切强度的润滑膜,进而实现刀具的自润滑,改善刀具的润滑性能。

  • 图7 织构表面润滑膜的形成过程[50]

  • Fig.7 Texture surface lubrication film formation process[50]

  • 2.3 微纳织构涂层刀具对刀-屑接触长度的影响

  • 在切削加工过程中微纳织构涂层刀具可以减小刀具-切屑的接触长度,从而改善摩擦条件,减少刀具的磨损,提高刀具的切削性能。LIAN 等[51]研究了 WS2 软涂层微纳织构自润滑干式切削刀具 (WTT),该刀具前刀面与切屑的接触长度如图8 所示。

  • 从图8 可以看出,由于微纳织构的存在,刀具的前刀面与切屑的接触长度有所减小,实际接触长度可以表示为:

  • lf'=lf-nl0=lf-lfll0=1-l0llf
    (1)
  • 式中,lf'为实际接触长度,lf为名义接触长度,n 为槽数,l0为纹理长度,l 为相邻两织构之间的距离。由此清晰可知刀-屑长度明显减小,因此摩擦力、切削力也会随之减小。

  • 此外,有学者对微纳织构涂层刀具的刀-屑接触长度进行定量研究。例如,WU 等[49]通过激光加工技术在刀具表面制备了椭圆凹槽微织构,并将 MoS2 固体润滑剂嵌入织构槽中,然后使用常规刀具(CT)、微织构自润滑刀具(SLT)、脉动热管自冷却刀具(SCT) 和微织构自润滑脉动热管自冷却刀具(SLCT)进行了 Ti6Al4V 合金干切削对比试验,并在 v=90 m / min 的速度下切削3 min 后测量前刀面和后刀面的磨损区域,如图9 所示。测量结果显示,CT、SLT、SCT、SLCT 四种刀具前刀面刀-屑和后刀面刀-屑接触长度分别为 493.6、436.1、481.6、419.2 µm 和 321.3、288.1、255.7、 232.3 µm,从数据可以证实,微纳织构涂层刀具可以减小刀-屑之间接触长度。AHMED 等[52]分别在刀具前刀面上制备了平行、垂直和正方形图案的微织构,如图10a 所示,并通过试验得出,垂直、平行和方形织构刀具与未织构的刀具相比,刀-屑之间接触长度分别减少了 30.2%、50.5%、65.1%,如图10b 所示。

  • 图8 刀具-切屑接触长度示意图[51]

  • Fig.8 Schematic diagram of the tool-chip contact length[51]

  • 综合上述研究,总结出微纳织构涂层刀具的作用机理主要有以下几个方面:

  • (1)刀具表面制备微纳织构使刀具表面粗糙化,从而增大涂层与刀具基体的接触表面积,这有助于提升膜基结合强度;同时,微纳织构可以捕捉磨损颗粒,减少了由磨损颗粒所引起的微细切削,进而减小涂层的磨损。

  • (2)微纳织构涂层刀具的润滑效果。首先,微纳织构自身具有自润滑性能;其次,在液体润滑条件下,微纳织构可以储存润滑液,实现二次润滑,强化润滑液的效能;最后微纳织构与软涂层协同作用,实现双重润滑效果的同时,微纳织构还提升了软涂层的使用寿命。

  • (3)微纳织构涂层刀具可以减小刀-屑的接触长度,进而减小摩擦,减小刀具的磨损,提升其服役寿命。

  • 图9 四种刀具刀-屑接触长度测量结果[49]

  • Fig.9 Four types of tools tool-chip contact length measurement results [49]

  • 图10 不同织构刀具的刀-屑实际接触长度[52]

  • Fig.10 Different texture tool of tool-chip actual contact length[52]

  • 3 微纳织构与涂层对刀具自身性能的影响

  • 关于微纳织构涂层刀具自身性能的研究,特别是关于微纳织构涂层刀具的抗磨损性、抗粘结性和刀具寿命等自身性能的研究,对提高切削效率和加工质量、探索新型织构和涂层材料、优化刀具涂层工艺和制备技术、推动刀具创新及其工业应用的发展有重要意义。

  • 3.1 微纳织构涂层刀具的抗磨损性

  • 抗磨损性作为衡量刀具性能的重要指标之一,诸多研究表明微纳织构涂层刀具在抗磨损性方面相较常规刀具有明显优势。例如,LIU 等[45]利用飞秒激光加工技术和物理气相沉积法在硬质合金刀具后刀面成功制备了纳米织构和 TiAlN 涂层,并使用抛光的常规刀具(PCCT)、抛光的纳米织构常规刀具 (PNCT)、TiAlN 涂层常规刀具(TCCT)、纳米织构 TiAlN 涂层刀具(TNCT)进行干切削陶瓷对比试验,通过试验得出四种刀具在切削1.1 km之后刀具后刀面磨损形貌,如图11 所示,通过假定平均磨损量 VB=0.3 mm 为寿命标准,并测量 PCCT、PNCT、 TCCT、TNCT 四种刀具切削 1.1 km 后平均磨损量分别为 0.31、0.195、0.27、0.185 mm。由数据可以得知,与 PCCT 刀具相比,PNCT、TNCT 刀具在干车削绿色 Al2O3 陶瓷的过程中显著提高了刀具后刀面耐磨性,TNCT 刀具表现出最佳效果。他们在研究中指出,纳米织构可以增强涂层与基体之间的附着力,涂层分离后,纳米织构表现出“衍生切割”,以保护刀具未磨损面免受磨损;再者,后刀面上纳米织构和涂层的双重功能,使得刀具在干车削绿色陶瓷时获得了更好的后刀面耐磨性。LI 等[46]首先采用激光加工在硬质合金刀具表面制备了不同类型的微织构,然后使用电流体动力学雾化技术在微织构表面沉积 WS2 软涂层。研究发现,微织构可以存储 WS2 软涂层,在切削过程中 WS2 软涂层会从微织构中释放出来,形成润滑膜,降低刀具与工件之间的摩擦磨损,提高刀具的抗磨性能。MENG 等[38] 利用激光加工技术在硬质合金刀具表面加工了凹槽微织构,并成功地在凹槽微织构表面沉积 W-S-C 固体润滑涂层。研究发现,刀具表面微织构和 W-S-C 固体润滑涂层的协同作用,即凹槽织构可以捕获磨损碎屑,并且凹槽可以储存润滑剂涂层这有助于在刀具-切屑接触区域内提供足够的润滑剂,使得硬质合金刀具具有很好的抗磨损性能。CHANG 等[53]通过微喷砂改变了 TiAlN 涂层刀具的表面完整性,并使用具有不同表面完整性等级的 TiAlN 涂层刀具进行高速滑动磨损实验和切削实验。结果表明:具有低表面粗糙度的涂层表面可以有效降低摩擦因数,同时涂层较高的表面硬度和残余应力以及刀具表面织构的作用,使得刀具具有较高的耐磨性。同样地,LIU 等[54]采用湿式微喷砂加工对 TiN / Al2O3 / TiCN、薄 Al2O3 / TiCN 和厚 Al2O3 / TiCN 三种 CVD 涂层刀具表面进行处理,然后进行干式往复滑动试验,结果表明湿式微喷工艺可显著降低表面粗糙度,提高耐磨性。ZHANG 等[55]采用单点金刚石压痕法在硬质合金刀具表面制备不同间距的点状织构,并制备了复合纳米 Cu / WS2 润滑剂,然后在干切削和微量润滑 (MQL)条件下进行正交切削试验。结果表明:复合纳米 Cu / WS2 润滑剂在磨损路径上形成润滑油膜并存储在点状织构中,增强了刀具的抗磨性能。

  • 图11 刀具后刀面磨损形貌[45]

  • Fig.11 Flank-face worn topography of different tool[45]

  • 3.2 微纳织构涂层刀具的抗粘结性

  • 在切削铝合金、钛合金和高温合金等材料时,刀具表面很容易产生黏附现象,这加快了刀具的磨损。对微纳织构涂层刀具抗粘结性的研究对提高生产效率、改善加工质量等具有重要指导意义。对此,吴雪峰等[56]为了提高镍基高温合金加工效率,利用飞秒激光加工在 TiAIN 涂层刀具表面加工了微槽织构,并通过切削试验发现,相较无微槽织构涂层刀具而言,有微槽织构涂层刀具前刀面的磨损量和粘结磨损程度明显降低。ZHANG 等[41]利用飞秒激光加工技术在硬质合金刀具前刀面上制备了微织构和微 / 纳织构,然后使用阴极电弧蒸发技术在织构表面沉积了耐磨 TiAlN 涂层,开发了微织构 TiAlN 涂层刀具(MCT)和微 / 纳织构 TiAlN 涂层刀具(MNCT),并与没有织构的传统 TiAlN 涂层刀具(CCT)进行对比试验。图12 所示为白光干涉仪观察到的三种刀具磨损轨迹,结果表明微织构涂层刀具抗粘着性、磨损性能比常规刀具有明显提高,并且 MNCT 刀具显示出最佳的抗粘附性能。张克栋等[48]还采用激光加工在涂层刀具前刀面进行织构化处理,并在切削深度 ap=0.3 mm、进给量 f=0.1 mm / r、切削速度 v=40~200 m / min、切削时间为 5 min 的条件下进行连续车削试验。研究表明:刀具前刀面的微槽织构可以存储润滑液,减少刀-屑接触长度,同时 TiAlN 涂层本身具有良好的耐磨性,而且与 Fe 元素之间亲和力较小,使得涂层织构化刀具相较于织构化刀具具有更好的抗粘性能。

  • 图12 白光干涉仪检测刀具切削 5 min 后磨损表面的二维表面形貌、磨损剖面和三维表面形貌[41]

  • Fig.12 2D surface morphology, wear profiles and 3D surface morphology of tool wear surfaces after 5 min of cutting by optical interferometry[41]

  • 此外,研究人员还对微纳织构复合软涂层的协同作用对刀具抗粘性能的影响进行了研究。比如,LIAN 等[51]采用飞秒激光加工和中频磁控溅射、多弧离子镀、离子束辅助沉积技术制备了微纳织构 WS2 软涂层自润滑干式刀具(WTT)。通过切削试验表明:WTT 刀具表面的微纳织构可对 WS2 进行储存,在切削过程中,通过挤压和拖动 WS2,在微纳米织构表面形成一层薄薄的润滑膜,如图13 所示,进而有效降低刀具粘结磨损,使得在相同切削条件下,WTT 刀具前刀面和后刀面均表现出最佳的抗粘性能和耐磨性能。

  • 图13 切削过程中润滑膜形成过程示意图[51]

  • Fig.13 Lubricating film in the process of cutting process diagram[51]

  • 3.3 微纳织构涂层刀具的寿命

  • 刀具寿命是切削过程中衡量刀具综合切削性能的重要指标。研究不同材料加工过程对微纳织构涂层刀具服役寿命的影响机理尤显必要。吴雪峰等[56] 利用飞秒激光加工在 TiAIN 涂层刀具表面加工出微槽织构,并进行镍基高温合金切削试验。研究发现:相较于无微槽织构刀具而言,有微槽织构刀具前刀面的磨损量和粘结磨损程度均明显降低,使得 TiAIN 涂层刀具具有更长的寿命。WU 等[57]采用激光加工在硬质合金刀具表面制备凹槽织构,然后将MoS2 固体润滑剂填充到凹槽织构表面,并对 Ti6Al4V 合金进行干车削试验。结果表明:相较常规刀具,填充有固体润滑剂的凹槽刀具耐磨性得到明显提高,寿命得到显著改善。WU 等[58]在另一研究中,在刀具前刀面上制备微织构并将 MoS2 填充到微织构表面,然后对钛合金进行干铣削试验,研究发现所研制的微织构涂层刀具的寿命提高 20%~25%。RONADSON 等[59]研究了 TiN-WS2 涂层刀具、织构刀具和 TiN-WS2 涂层织构刀具干加工 Ti6Al4V 时的切削性能。与传统刀具相比,TiN-WS2 涂层刀具、织构刀具和 TiN-WS2 涂层织构刀具的寿命分别提高了 35%、29%和 43%。

  • 此外,研究人员对延长刀具服役寿命的方法也展开了相应研究。LIU 等[60]使用激光加工在不锈钢基材表面上制备了凹坑阵列织构,然后将氟化石墨烯(FG) / MoS2 纳米复合涂层沉积在凹坑阵列织构表面。通过试验得出:与织构表面只有 MoS2 涂层相比,织构表面具有纳米复合涂层可以将摩擦因数降低到 0.036,显著降低磨损,从而延长刀具使用寿命。而 LI 等[46]采用激光加工在硬质合金刀具表面上制备了不同的微织构,然后使用电流体动力学雾化技术制备了厚度约为 20 µm 的均匀致密 WS2 涂层。研究发现:刀具表面微织构化可以提高涂层与基材的结合强度,从而延长 WS2 涂层的磨损寿命,使得刀具具有更长的服役寿命。

  • 房磊琦等[61]和吴振宇等[62]研究了不同表面处理方式对涂层刀具切削寿命的影响。房磊琦等[61]采用湿喷砂、干喷砂和微粒子喷丸对高速钢基体表面进行处理,然后在已处理表面沉积 AlCrN 涂层,并研究了不同处理后 AlCrN 涂层刀具的切削性能。图14 所示为不同前处理工艺 AlCrN 涂层刀具的切削寿命曲线,设磨钝标准 VB=0.2 mm,从图14 可以得出,当未前处理、微粒子喷丸前处理、湿喷砂前处理和干喷砂前处理的 AlCrN 涂层刀具达到磨钝标准后,切削长度分别为 10、8、9.5、11 m。由此可知,经干喷砂前处理的涂层刀具拥有最好的切削性能,相较于未前处理的 AlCrN 涂层刀具,切削长度提高了约 10%。而吴振宇等[62]研究了深冷、微喷砂和深冷+微喷砂处理对 TiAlSiN 涂层刀具切削寿命的影响,图15 所示为不同工艺处理表面的涂层刀具切削寿命曲线,设后刀面磨损量达到 0.3 mm 时,刀具失效,未处理刀具、深冷处理刀具、微喷砂处理刀具、深冷+微喷砂处理刀具后刀面磨损量达到磨损标准时,切削时长分别为 18、20.3、21.6、 25.4 min,深冷+微喷砂处理刀具表现处最好的切削性能,相较于前面三种刀具寿命分别提高了 41%、 25%、18%。

  • 图14 不同前处理工艺 AlCrN 涂层刀具的切削寿命曲线[61]

  • Fig.14 Cutting life curves of AlCrN coated tools with different pretreatment processes[61]

  • 图15 不同表面处理工艺的涂层刀具切削寿命曲线[62]

  • Fig.15 Cutting life curves of coated tools with different surface treatment processes [62]

  • 4 微纳织构复合涂层对刀具切削性能的影响

  • 通过表面涂层技术和表面织构技术在刀具表面制备微纳织构和涂层对改善刀具切削性能有很大影响,特别是在减小切削力、降低切削温度以及减小刀-屑之间的摩擦因数等方面有着显著效果。对微纳织构涂层刀具的切削力、切削温度以及刀具-切屑界面的摩擦因数等方面的研究,对于优化刀具设计与工艺参数、提高加工效率、控制成本和改进润滑冷却效果具有重要意义。

  • 4.1 刀具表面微纳织构复合涂层对切削力的影响

  • 国内外学者对刀具表面制备微纳织构和涂层在切削过程中对切削力的影响进行了研究,并分析了其影响因素。比如,MISHRA 等[63]制备了人字形织构涂层刀具,并进行干切削试验,结果表明相较于常规刀具,切削力有所降低。FANG 等[64]采用激光加工成功地在 TiAlN 涂层硬质合金刀具表面制备了金字塔微结构,通过切削试验表明,激光织构化涂层刀具能更好降低切削力,表现出良好的切削能力。 ZHANG 等[65]研究了织构化 TiAlN 涂层刀具在不同润滑情况下的切削性能,结果表明在完全润滑条件下,切削力降低 21.2%~34.7%,在非完全润滑条件下,切削力仅降低 2%~8%。ARULKIRUBAKARAN 等[66]在硬质合金涂层(TiN、TiAlN)刀具前刀面上制备了不同类型的织构,然后在半固态润滑条件下加工钛合金,结果表明在不同切削速度下,TiAlN 涂层垂直织构刀具可更好地降低切削力,且切削力平均减少 10%~20%。ZHOU 等[67]采用光纤激光和阴极真空电弧离子镀制备了火山状织构 CrAlN 涂层刀具,在干式和湿式切削条件下,用织构化涂层刀具和未织构涂层刀具进行 Ti6Al4V 合金切削对比试验,结果表明,织构化涂层刀具优于传统刀具,尤其是湿式切削,织构区域密度为 20% 的涂层刀具的主切削力 Fz 和径向力 Fy分别降低 11.6%和 21.25%。

  • 以上表述了刀具表面制备微纳织构复合硬涂层对切削力的影响。此外,研究人员还对刀具表面制备微纳织构复合软涂层对切削力的影响进行了研究。DENG 等[50]采用激光加工在硬质合金刀具前刀面制备了不同几何特征的微织构,然后在织构表面填充了 MoS2 固体润滑剂,并进行了干切削试验,结果表明与传统刀具相比,切削力降低了 15%~25%。XING 等[68]研制了 WS2 / Zr 软涂层纳米织构刀具,并使用该刀具进行了干切削试验,研究得出与常规刀具相比,切削力有所降低。GAJRANI 等[69] 使用维氏硬度计开发了微织构刀具,并将 MoS2 固体润滑剂与石墨基润滑脂混合填充到微织构刀具表面,并通过切削试验得出,与无织构刀具相比,微织构涂层刀具的切削力降低了 41.06%,而与微织构刀具相比,微织构涂层刀具切削力降低了 19.02%。DENG 等[40]还利用飞秒激光加工在硬质合金刀具前刀面上制备了椭圆形织构,然后使用多弧离子镀在其表面沉积了 WS2 固体润滑剂涂层,并使用织构刀具(TT),沉积有 WS2 涂层的织构刀具(TT-WS2) 和常规硬质合金刀具(CT)进行了干切削试验,试验得出,与 CT 刀具相比,TT 刀具和 TT-WS2刀具的切削力显著降低,且分别降低了 13%~22%和 25%~44%,如图16 所示。LIAN 等[70]使用飞秒激光加工在刀具表面成功制备了纳米织构,然后采用物理气相沉积法在纳米织构表面沉积二硫化钨 (WS2)得到了纳米织构 WS2 软涂层自润滑刀具 (CFTWS)。然后使用不同刀具进行切削试验,并通过试验得出不同切削参数条件下,硬质合金刀具 (YS8)、纳米织构自润滑刀具(CFT)和 CFTWS 刀具切削力与切削速度的关系变化曲线,如图17 所示。图示表明:与 YS8 和 CFT 刀具相比,CFTWS 刀具切削力分别降低 20%~40%和 10%~20%。从图16 和图17 可以看出切削力是随着切削速度的增大而呈现出先微弱变大然后逐渐减小的趋势。

  • 上述关于刀具表面制备软 / 硬涂层复合微纳织构对切削力的影响研究,表明微纳织构涂层刀具相较于常规刀具能显著降低切削力。通过分析总结以上文献可以得出影响切削力的因素主要有以下几个方面:

  • (1)湿切削中,微纳织构可以储存润滑液,在切削过程中,切削液将被挤出织构表面,黏附在刀-屑接触面,并形成具有较低剪切强度(τ)的润滑膜; 同时,刀具表面的微纳织构减少了刀-屑的接触长度,而切削力与接触长度和剪切强度(τ)成正比关系,故可以降低切削力。

  • (2)刀具表面的微纳织构具有自润滑性,且在干切削中,微纳织构对软涂层(C、MoS2、WS2、 CaF2 等)起储存作用,在切削过程中,通过挤压和拖动软涂层,在刀-屑接触面形成剪切强度(τ)较低的润滑膜,因而可以有效降低切削力。

  • 图16 不同刀具在不同切削速度下的切削力 (a)轴向推力 Fx (b)径向推力 Fy (c)主切削力 Fz [40]

  • Fig.16 Cutting forces of different tools at different cutting speeds. (a) Axial thrust force Fx; (b) Radial thrust force Fy; (c) Main force Fz. [40]

  • 图17 不同刀具在不同切削速度下的切削力 (a)轴向推力 Fx (b)径向推力 Fy (c)主切削力 Fz [70]

  • Fig.17 Cutting forces of different tools at different cutting speeds. (a) Axial thrust force Fx; (b) Radial thrust force Fy; (c) Main force Fz. [70]

  • (3)切削力的降低还与硬涂层本身性能有关,例如涂层具有更好的粘合强度,较低的表面粗糙度和更小的摩擦因数是也是切削力减小的因素。

  • (4)其他因素,比如微纳织构的形状、尺寸大小以及织构与切削刃方向等。

  • 4.2 刀具表面微纳织构和涂层对摩擦因数的影响

  • 关于微纳织构涂层刀具降低摩擦因数的研究,根据金属切削理论,刀具的切削角γ0 与径向推力 Fy 与主切削力 Fz 之比之间存在近似关系:Fy/Fz=tanβ-γ0,推导出刀具-切屑接触界面处的平均摩擦因数[65]

  • μ=tanβ=tanγ0-arctanFyFz
    (2)
  • 式中,β 为摩擦角,γ0为前角,Fy 为径向推力,Fz 为主切削力。

  • 刀具的前角已知,根据不同刀具在不同切削条件下所获得的切削力可以计算出平均摩擦因数,进而得出摩擦因数随切削速度的变化曲线图,如图18 所示。对比 4.1 节中图16 和图17 可知,摩擦因数与切削力随着切削速度的变化具有相似的变化趋势[506840-70]

  • 此外,学者对影响摩擦因数的因素展开了研究。比如,李佩真等[71]采用原子沉积法(Atomic layer deposition,ALD)分别在点状微织构和条状微织构 YT5 硬质合金刀具(微织构刀具)表面沉积了纳米 Al2O3 涂层。研究指出,微织构能降低刀具刀-屑界面间的摩擦因数;而纳米 Al2O3 涂层能进一步降低微织构刀具刀-屑界面间的摩擦因数;其中纳米 Al2O3 涂层与微织构相结合将刀-屑界面间的摩擦由滑动摩擦转变为滑动-滚动复合摩擦的形式,如图19 所示,从而降低了微织构刀具刀-屑界面间的摩擦因数,改善了摩擦性能,提高了刀具耐用度。LIU 等[60]使用激光加工在不锈钢基材表面上制备了凹坑阵列织构,然后将氟化石墨烯(FG) / MoS2纳米复合涂层沉积在凹坑阵列织构表面。通过试验得出: MoS2 纳米薄膜层间剪切而主导了润滑性能,而 FG 纳米薄膜由于其疏水性,抑制了外界湿度对 MoS2 纳米薄膜的影响;同时,织构表面可以通过改变滑动界面处的应力分布来促进润滑膜的形成,并充当纳米涂层的储存空间,使得织构表面具有 FG / MoS2 纳米复合涂层的基体摩擦因数降低至 0.036。 MISHRA 等[72]采用激光加工在 WC / Co 基体表面制备了微孔织构,然后在微孔织构表面沉积了 AlCrN 和 AlTiN 涂层,并研究了在高载荷和低载荷条件下,不同刀具的摩擦因数变化,试验得出在高载荷下,织构化 AlCrN 涂层刀具的摩擦因数最大降低了 27%。

  • 图18 不同刀具在不同切削速度下的刀-屑界面摩擦因数曲线[40-70]

  • Fig.18 Friction foctor between the tool-chip interface of different tools at different cutting speed[40, 70]

  • 图19 纳米 Al2O3涂层微织构刀具的减摩机理[71]

  • Fig.19 Antifriction mechanism of nano-Al2O3 coating micro-texture tool[71]

  • 张志强等[73]利用激光加工在硬质合金刀具表面制备了椭圆织构和沟槽织构,然后利用热丝化学气相沉积法(HFCVD)分别制备了硼掺杂无织构金刚石薄膜(Boron-doped untextured diamond films,BDUTD)、硼掺杂椭圆织构金刚石薄膜 ( Boron-doped elliptical textured diamond films,BDETD)、硼掺杂沟槽织构金刚石薄膜 ( Boron-doped grooved textured diamond films,BDGTD),并进行了摩擦磨损试验。试验得出,三种刀具在不同水润滑条件下的摩擦因素特性,如图20 所示。从图中可以看出 BDETD 和 BDGTD 比 BDUTD 具有较低的摩擦因数。

  • RONADSON 等[59]研究了 TiN-WS2 涂层刀具、织构刀具和 TiN-WS2 涂层织构刀具干加工 Ti6Al4V 合金时的切削性能。研究表明,织构减少了刀-屑接触长度,与此同时 TiN-WS2 涂层通过其有效的润滑性能,可以降低刀具和工件之间的涂层亲和力的影响,使得 TiN-WS2 涂层织构刀具在加工过程中相较于常规刀具摩擦因数降低了 47%。

  • 通过以上研究可以看出,微纳织构涂层刀具在切削过程中能更好地减小刀-屑之间的摩擦,降低刀-屑界面摩擦因数。特别是刀具表面制备软涂层与微纳织构,很大程度上改变了干切削的加工性能,使得刀具具有更长的服役寿命,降低了制造成本。

  • 图20 金刚石薄膜摩擦因数曲线 (a)金刚石薄膜在水润滑条件下的摩擦因数曲线 (b)图(a)在摩擦 200 s 之前的局部放大图[73]

  • Fig.20 Diamond film friction factor curves. (a) Friction factor curve of the diamond film under water lubrication; (b) locally enlarged image before friction 200 s of (a) .[73]

  • 4.3 刀具表面微纳织构和涂层对切削温度的影响

  • 在切削加工中,刀具与工件之间的摩擦和热量释放会导致刀具和工件迅速升温,增加材料疲劳和氧化的风险,增加刀具的磨损和断裂,影响刀具的使用寿命和工件表面加工质量。所以,通过材料表面改性技术,在刀具制备微纳织构和涂层,充分发挥织构和涂层在降低切削温度方面的特性。有研究表明[74-75],切削温度与刀具-切屑接触长度以及刀具-切屑界面润滑性能有关。微纳织构涂层刀具由于微纳织构的存在可以减小刀具-切屑的接触长度,与此同时微纳织构可以存储润滑剂,提供更好的润滑效果,从而改善刀具与工件的之间的摩擦,降低了切削温度。相关学者[5068-6976]在研究中也得出切削温度的降低与微纳织构减小刀具-切屑接触长度以及微纳织构和涂层可以提供良好的润滑效果有关。DENG 等[40]还利用飞秒激光在硬质合金刀具前刀面上制备了椭圆形织构,并使用多弧离子镀技术在椭圆形织构表面沉积了 WS2 软涂层,然后使用织构刀具(TT)、WS2 软涂层织构刀具(TT-WS2)和常规硬质合金刀具(CT)进行干切削试验。结果表明:与 CT 刀具相比,TT 刀具和 TT-WS2 刀具的切削温度分别降低 9%和 16%。类似地,LIAN 等[70]利用飞秒激光加工和物理气相沉积技术开发了 WS2 软涂层纳米织构自润滑刀具 (CFTWS),然后使用所开发的刀具进行了切削试验。研究得出:与 YS8 刀具和纳米织构自润滑刀具 (CFT)相比,CFTWS 刀具的切削温度分别降低了 10%~20%和 5%~10%。如图21 所示,为不同切削速度下不同刀具的切削温度,从图中看出微纳织构涂层刀具较其他刀具具有更低的切削温度,并且不同刀具切削温度随着切削速度的增大而呈现出不断增大趋势。邢佑强等[39]制备了软涂层微纳织构刀具,并与传统刀具进行干切削对比试验,结果表明软涂层微纳织构刀具切削温度减小了 17%~20%。他们在研究中指出切削温度的降低与软涂层在刀具-切屑界面形成润滑膜有关,同时还指出微纳织构一定程度上增加了刀具的散热面积,能够加速刀具表面温度与空气中的热对流速度,因而能够有效地降低切削温度。张克栋等[48]在研究织构化涂层刀具在液体润滑条件下进行切削试验时同样也得出,切削温度的降低与微纳织构增加散热面积有关。此外,微纳织构涂层刀具还可以改善温度分布,如图22 所示,从图看出干切削时不同刀具表面的温度分布,并且在相同条件下不同刀具呈现出不同的切削温度。而孙华亮等[77]利用聚焦离子束在 TiAlN 涂层刀具前刀面加工了微织构,并结合有限元仿真与车削试验的方法,所得结果也证明了表面微织构有利于改善刀具表面切削温度分布。

  • 图21 不同切削速度下不同刀具的切削温度[4070]

  • Fig.21 Cutting temperature at the tool nose of the different tools at different cutting speed[40, 70]

  • 图22 干切削时不同刀具的刀-屑接触界面温度分布[5169-70]

  • Fig.22 Temperature distribution of tool-chip contact surface with different tools during dry cutting[51, 69-70]

  • 综合上述研究,微纳织构涂层刀具的切削温度得以降低的主要原因有以下几个方面:① 微纳织构涂层刀具可以减小刀-屑的接触长度、同时微纳织构可以存储润滑剂,在加工过程中通过高温、高压使得润滑剂在刀-屑接触界面形成了低剪切强度的润滑膜,为切削过程提供了更有效的润滑和冷却。 ② 微纳织构一定程度上增加了刀具的散热面积,能够加速刀具表面温度与空气中的热对流速度。③ 微纳织构涂层刀具还可以改善切削温度的分布情况。总的来说,通过在刀具表面应用微纳织构和涂层,可以有效地降低切削温度。不过具体的影响还要根据材料、切削条件以及所使用的微纳织构和涂层类型等因素进行综合考虑。

  • 5 微纳织构涂层刀具的应用

  • 5.1 绿色切削技术

  • 在切削加工中,使用切削液可以减小刀具的摩擦磨损,带走切削过程所产生的切削热,进而降低切削温度,但切削液的过度使用会对操作者的健康以及环境造成影响。因此,绿色切削技术受到广泛青睐。然而,绿色切削技术中—最常见的干式和准干式切削过程中,刀具与工件会产生恶劣摩擦、产生大量的热量,导致较高的切削温度和刀具磨损较快,很大程度上缩短了刀具的服役寿命,并直接影响了加工表面的质量。因此,国内外学者结合表面涂层技术和表面织构技术在刀具表面制备微纳织构和软涂层,在切削过程中充分发挥了两者的优异性能,使得在改善刀具性能以及切削性能方面得到很大提升,并且这一研究所开发的微纳织构涂层刀具有望成为绿色切削技术得以突破的有效助力。比如,国外学者 GAJRANI 等[78]制备了 MoS2 涂层微织构碳化钨刀具,并通过干切削试验发现涂有 MoS2 涂层的垂直微织构碳化钨刀具性能更好,该刀具可以成为加工中切削液的可行替代品。AHMED 等[79]采用激光加工和物理气相沉积技术开发了二硫化钨 (WS2)软涂层微织构刀具,并进行了干切削试验。结果表明,与无织构 WS2 软涂层刀具相比,切削力最大降低 24%,切削温度降低 50%,摩擦因数降低13%,刀具磨损降低 50%、加工表面粗糙度降低 66%。国内学者也对此展开了大量研究,比如相关研究人员[38-404650687075]采用不同制备方式开发了微纳织构软涂层刀具用于干切削加工。结果都表明,微纳织构软涂层刀具相较于传统刀具,对降低切削力、切削温度和刀-屑接触面摩擦因数有显著影响,同时减小了刀具的磨损,延长刀具服役寿命。文献[50]所开发的微纳织构软涂层刀具的切削力降低了 15%~25%,切削温度降低了 5%~15%,摩擦因数降低了 10%;文献[40]所开发的微纳织构软涂层刀具的切削力降低了 25%~44%,切削温度降低了 16%,摩擦因数降低了 13%~26%。文献[70] 所开发的微纳织构软涂层刀具的切削力降低了 20%~40%,切削温度降低了 10%~20%,摩擦因数降低了 10%~25%。文献[75]所开发的微纳织构软涂层刀具的切削力降低了 16.2%~24.7%,切削温度降低了 20.4%,摩擦因数降低了 13.3%~21.4%。

  • 5.2 难加工材料加工

  • 难加工材料钛合金、高温合金、金属基复合材料等切削过程中,存在切削力大、切削温度高、刀具磨损严重等问题。所以,为提高难加工材料切削刀具的切削性能,不少学者在刀具表面制备微纳织构复合涂层,以强化难加工材料切削过程中刀具综合切削性能。比如,吴雪峰等[56]利用飞秒激光加工在 TiAIN 涂层刀具表面加工出微槽织构,通过切削镍基高温合金试验发现,相较于无微槽织构刀具而言,有微槽织构刀具前刀面的磨损量和粘结磨损程度明显降低。ARULKIRUBAKARAN 等[80]在涂层 (TiN 和 TiAlN)和未涂层切削刀具的前刀面上制备不同类型织构,并进行了切削 Ti6Al4V 合金试验。结果发现,在使用 TiAlN 涂层的垂直织构刀具加工 Ti6Al4V 合金的过程中,切削力和切削温度最小。 XIANG 等[81]用激光打标机和热丝化学气相沉积 (HFCVD)制备了微织构金刚石涂层铣刀,并对碳纤维增强塑料(CFRP)进行铣削试验。试验得出,微织构金刚石涂层刀具比未涂层刀具和常规涂层刀具具有更长的服役寿命和更好的切削性能,加工后的 CFRP 表面质量更高。

  • 5.3 高速切削技术

  • 随着高速切削技术的发展,切削过程产生的局部高温高压、刀具磨损严重、刀具服役寿命缩短等瓶颈问题日益凸显;同时,随着工件加工精度要求越来越高,普通刀具很难满足加工要求。而微纳织构涂层刀具在高速切削加工中的应用可以提供更好地达到温度控制、润滑冷却效果,提高切削性能和刀具寿命。因此,探索微纳织构涂层刀具在高速切削加工中的应用具有广阔前景。LIU 等[37]使用离子束 / 激光技术在 WC / Co 基体上制备了微凹坑阵列织构,利用阴极电弧蒸发技术在微凹坑阵列织构表面沉积了 AlCrN 涂层,并在高速切削 (v=200 m / min)条件下进行了干切削试验,结果表明微织构涂层刀具的切削力和摩擦因数相较于常规涂层刀具分别降低了 10.2%~20.6%和 16.7%。 DENG 等[50]制备了 MoS2 软涂层微织构刀具,在高速切削下进行干切削试验。试验结果得出,与常规刀具相比,软涂层微织构刀具的切削力降低了 15%~25%,切削温度降低了 5%~15%,摩擦因数降低了 10%;而当前刀面织构为椭圆时,在相同条件下具有最小的切削力、切削温度和摩擦因数。 DENG[40]还利用飞秒激光在硬质合金刀具前刀面上制备了椭圆形织构,然后使用多弧离子镀在椭圆形织构表面沉积了 WS2 固体润滑剂涂层,并进行了干切削试验。结果表明:在高速切削(v=250 m / min) 情况下,与常规刀具相比,切削力降低了 25%~44%,切削温度降低了 16%,刀-屑间摩擦因数降低了 13%~26%。ZHANG 等[75]采用阴极电弧蒸发技术在硬质合金刀具表面沉积 TiAlN 涂层,然后使用飞秒激光加工在刀具表面成功制备了纳米织构,最后使用磁控溅射镀膜技术在纳米织构表面沉积了 WS2 软涂层,并对 AISI1045 淬硬钢进行干切削试验,结果表明,在高速切削(v=200 m / min)时,切削力降低了 16.2%~24.7%,切削温度降低了 20.4%,摩擦因数降低了 13.3%~21.4%。常垲硕等[82]采用湿式微喷砂技术对 TiAlN 涂层硬质合金刀具表面进行处理,然后进行高速干切削钛合金试验。他们在研究中指出,处理后的刀具摩擦因数小,耐磨性、抵抗冲击的能力更强,延长了稳定磨损阶段的持续时间,将刀具的最大寿命提升了约 50%

  • 综上所述,微纳织构涂层刀具在很多领域得到应用,特别是在干切削加工、难加工材料加工和高速切削方面得到广泛运用。随着表面涂层技术和表面织构技术的不断开发与创新,微纳织构涂层刀具也将得到发展,应用领域也将更加广泛。值得注意的是,微纳织构涂层刀具的具体应用还取决于材料的特性、加工要求和工艺条件等因素。适合应用微纳织构涂层刀具的领域在不断扩展和深化,随着制造技术的进步,未来还将有更多创新的应用出现。此外,为了更系统直观地呈现微纳织构涂层刀具主要性能的差异化,用表1 总结了有关微纳织构涂层刀具自身性能以及切削性能的相关研究,并列出了研究者所采用的制备技术、刀具材料、工件材料、涂层成分以及织构类型等。

  • 表1 微纳织构涂层刀具相关研究

  • Table1 Studies related to micro-nano texture coated tools

  • (continued Table)

  • 6 结论与展望

  • 6.1 结论

  • 切削刀具表面同时制备微纳织构和涂层可以显著增强刀具的切削稳定性,使刀具具有更长的服役寿命和更好的切削性能。通过综述研究可以得出以下结论。

  • (1)微纳织构涂层刀具的制备技术包括表面涂层制备技术和表面织构制备技术,表面涂层技术相对完善,已经形成较为完善的理论体系;而表面织构技术主要有激光加工、聚焦离子束加工、电火花加工、微喷砂加工等技术,其中激光加工技术是国内外使用最广泛的加工技术。

  • (2)微纳织构涂层刀具的作用机理包括微纳织构对涂层附着性能的影响、微纳织构复合涂层对润滑效果的影响、微纳织构涂层刀具可以减小刀-屑接触长度,从而减小刀具的磨损,延长刀具寿命。

  • (3)微纳织构涂层刀具由于微纳织构可以减少刀-屑的接触长度、捕捉切削过程中产生的磨损颗粒;同时可以储存润滑液,改善润滑效果,从而减少刀具的磨粒磨损以及粘结磨损,提高刀具的抗磨损性能以及抗粘结性能,使得刀具具有更长的服役寿命。

  • (4)微纳织构可以储存润滑剂,在切削过程中,在刀-屑接触界面形成剪切强度较低的润滑膜,可改善润滑效果;同时,刀具表面的微纳织构可减少刀-屑的接触长度,使得微纳织构涂层刀具相较于其他常规刀具能够更显著地降低切削力、切削温度和刀-屑接触界面的摩擦因数。切削力的降低还与硬涂层本身性能有关,涂层自身具有更好的粘合强度,良好的表面粗糙度和更小的摩擦因数也是切削力减小的因素;而切削温度的降低还与微纳织构的存在一定程度上增加了刀具的散热面积,能够加速刀具表面温度与空气中的热对流速度有关。此外,微纳织构涂层刀具在切削过程中刀具-切屑间的摩擦因数与切削力有着相同的变化趋势,并且切削过程中微纳织构涂层刀具摩擦因数的减小,还与微纳织构和涂层改变摩擦接触形式及两者存在自润滑性有关。

  • (5)目前微纳织构涂层刀具已被广泛地应用于绿色切削加工中。在难加工材料方面,它主要应用于钛合金的切削加工,而关于高温合金的切削加工研究还比较少。此外,在高速切削加工中微纳织构涂层刀具也有一定程度的应用。

  • 6.2 展望

  • 综合上述研究得出,微纳织构涂层刀具对于改善切削性能存在显著影响,相较于常规刀具,很大程度上改善了切削效果。但是关于微纳织构涂层刀具很多工作须进一步探索和研究。以下为微纳织构涂层刀具目前现状及微纳织构涂层刀具未来研究方向。

  • (1)目前微纳织构涂层刀具表面织构的制备普遍采用激光加工、电火花加工等热加工方式,但是这些加工方式在刀具表面会形成热应力并导致刀具变形。所以,改变加工参数,优化加工参数或探究更加经济、环保有效的加工方式是未来研究重点。此外,通过采用复合制备技术(即两种或两种以上的加工方法)在刀具表面制备微纳织构,可以弥补单一制备方法的不足,充分发挥单一制备技术的优势,从而获得更加理想的微纳织构特性,使微纳织构涂层刀具实现更好的实际切削效果。因此,今后应不断改进微纳织构和涂层制备技术,以提高质量调控与制备效率。

  • (2)目前研究的微纳织构涂层刀具基体材料主要是硬质合金系列,而对陶瓷材料、超硬材料(金刚石材料和立方氮化硼材料)系列为刀具基体的微纳织构涂层刀具的研究较少。今后因加强这些刀具材料的研究,并且应针对不同加工材料的属性以及不同加工场合选择合适的刀具材料,以充分发挥刀具材料所固有的优异特性。

  • (3)目前微纳织构涂层刀具的研究主要集中在车削加工方面,而对于微纳织构和涂层协同作用在铣削、钻削等加工中提高刀具耐磨性以及改善切削性能等方面研究不足,因此今后应更加注重这些方面的研究。

  • (4)目前微纳织构涂层刀具表面织构形状还比较单一,大多还是凹槽、凹坑。对于其他形状微纳织构以及复合微纳织构的研究相对较少。而且对于所制备的织构是否最优还存在一定分歧,并未形成一个完善的理论体系。对织构的加工参数、织构形状和位置分布等还有待加强探索。此外,微纳织构涂层刀具表面涂层现阶段还主要是单一的二元涂层、多元涂层以及软涂层,而对于多元复合涂层、梯度涂层、多元复合纳米涂层、超硬涂层以及软-硬复合涂层的研究较少。所以加强其他形状微纳织构以及复合微纳织构与多元复合涂层、梯度涂层、多元复合纳米涂层、超硬涂层以及软-硬复合涂层等多功能性涂层的协同作用是未来研究重点方向。

  • (5)目前对于微纳织构涂层刀具的研究方法主要是切削试验,而仿真试验与切削试验的结合研究相对较少。所以今后应加强计算机仿真技术与切削试验的结合研究,通过计算机仿真技术对现实的切削过程进行模拟,通过计算机研究人员可更加直观、实时地监测模拟过程中性能指标变化;并且通过仿真技术模拟出相对最优参数,再通过仿真所得出的最优参数进行生产,这样可以在很大程度上降低成本。

  • (6)微纳织构涂层刀具在干切削加工得到广泛运用。在加工材料方面,微纳织构涂层刀具目前主要用于各种合金钢和钛合金的切削研究,而应用在碳钎维增强塑料(CFRP)、金属基陶瓷增强颗粒复合材料、高温合金等材料加工领域的研究相对较少,若深入挖掘微纳织构复合涂层刀具抗破阻热、耐磨耐蚀等优异性能,则有望突破以上难加工材料高效高质加工技术瓶颈。此外,还需要加强探索微纳织构涂层刀具在高速 / 高性能加工、微切削加工等领域的应用,扩宽其应用领域。

  • 参考文献

    • [1] 季思源,万维财,彭卓豪,等.切削高温合金用涂层的研究进展[J].工具技术,2022,56(2):3-10.JI Siyuan,WAN Weicai,PENG Zhuohao,et al.Research progress of coating for cutting superalloy[J].Tool Technology,2022,56(2):3-10.(in Chinese)

    • [2] CELIK A,ALAGAC M S,TURAN S,et al.Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718[J].Wear,2017,378-379:58-67.

    • [3] WANG F,JI K,GUO Z.Microstructural analysis of failure progression for coated carbide tools during high-speed milling of Ti-6Al-4V[J].Wear,2020,456-457.

    • [4] ROY S,KUMAR R,ANURAG,et al.A brief review on machining of Inconel 718[J].Materials Today:Proceedings,2018,5(9):18664-18673.

    • [5] 孙加林,周咏辉,邓建新.织构化涂层刀具研究进展[J].工具技术,2015,49(7):3-7.SUN Jialin,ZHOU Yonghui,DENG Jianxin.Research progress of textured coating tools[J].Tool Technology,2015,49(7):3-7.(in Chinese)

    • [6] 唐联耀,唐玲艳,李鹏南,等.微织构刀具切削钛合金的研究进展[J].宇航材料工艺,2020,50(4):8-12.TANG Lianyao,TANG Lingyan,LI Pengnan,et al.Research progress of micro texture tool cutting titanium alloy[J].Aerospace Materials Technology,2020,50(4):8-12.(in Chinese)

    • [7] LIAN Y,LONG Y,ZHAO G,et al.Performance of CrCN-WS2 hard/soft composite coated tools in dry cutting of titanium alloys[J].Journal of Manufacturing Processes,2020,54:201-209.

    • [8] 王启民,黄健,王成勇,等.高速切削刀具物理气相沉积涂层研究进展[J].航空制造技术,2013(14):78-83.WANG Qimin,HUANG Jian,WANG Chengyong,et al.Physical vapor deposition coating research progress on high speed cutting tool[J].Aviation Manufacturing Technology,2013(14):78-83.(in Chinese)

    • [9] 范其香,林静,王铁钢.刀具涂层材料的最新研究进展[J].表面技术,2022,51(2):1-19,28.FAN Qixiang,LIN Jing,WANG Tiegang.Recent research progress of tool coating materials[J].Surface Technology,2022,51(2):1-19,28.(in Chinese)

    • [10] DENG Y,CHEN W,LI B,et al.Physical vapor deposition technology for coated cutting tools:A review[J].Ceramics International,2020,46(11):18373-18390.

    • [11] 邵泽宽.涂层刀具的现状研究[J].有色金属科学与工程,2017,8(6):57-64.SHAO Zekuan.Study on the status of coated tools[J].Nonferrous Metal Science and Engineering,2017,8(6):57-64.(in Chinese)

    • [12] SUGIHARA T,KOBAYASHI R,ENOMOTO T.Direct observations of tribological behavior in cutting with textured cutting tools[J].International Journal of Machine Tools & Manufacture,2021,168:103726.

    • [13] KUMAR C S,PATEL S K.Effect of WEDM surface texturing on Al2O3/TiCN composite ceramic tools in dry cutting of hardened steel[J].Ceramics International,2018,44(2):2510-2523.

    • [14] ZHOU C,GUO X,ZHANG K,et al.The coupling effect of micro-groove textures and nanofluids on cutting performance of uncoated cemented carbide tools in milling Ti-6Al-4V[J].Journal of Materials Processing Technology,2019,271:36-45.

    • [15] 刘伟,刘顺,梁桂强,等.微织构刀具切削性能及减摩效果的仿真分析[J].表面技术,2022,51(2):338-346.LIU Wei,LIU Shun,LIANG Guiqiang,et al.Simulation analysis of cutting performance and anti-friction effect of micro-texture tool[J].Surface Technology,2022,51(2):338-346.(in Chinese)

    • [16] PANG M,LIU X,LIU K.Effect of conical micro-grooved texture on tool-chip friction property and cutting performance of WC-TiC/Co cemented carbide tools[J].Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology,2019,233(5):791-804.

    • [17] 张克栋,邓建新,姜超,等.微纳织构涂层刀具研究进展[J].航空制造技术,2015(6):38-42.ZHANG Kedong,DENG Jianxin,JIANG Chao,et al.Micro-nano texture coating tool research progress[J].Aviation Manufacturing Technology,2015(6):38-42.(in Chinese)

    • [18] 郭杰,徐看,刘利国,等.刀具涂层技术现状与发展趋势[J].工具技术,2014,48(3):3-7.GUO Jie,XU Jian,LIU Liguo,et al.Cutting tool coating technology present situation and development trend of[J].Tool Technology,2014,48(3):3-7.(in Chinese)

    • [19] SCHINTLMEISTER W,WALLGRAM W,KANZ J,et al.Cutting tool materials coated by chemical vapour deposition[J].Wear,1984,100(13):153-169.

    • [20] YI J,LI M L,ZHOU H X,et al.Enhanced tribological properties of Y/MoS2 composite coatings prepared by chemical vapor deposition[J].Ceramics International,2020,46(15):23813-23819.

    • [21] KATAMUNE Y,IZUMI A,ICHIKAWA K,et al.Heavy phosphorus doping of diamond by hot-filament chemical vapor deposition[J].Diamond and Related Materials,2023,134:109789.

    • [22] 张韬,沈彬,孙方宏,等.热丝化学气相沉积法制备优质微米亚微米级单晶金刚石的研究[J].金刚石与磨料磨具工程,2011,31(6):7-11.ZHANG Tao,SHEN Bin,SUN Fanghong,et al.Preparation of high-quality micron-submicron single crystal diamond by hot wire chemical vapor deposition[J].Diamond and Abrasives Engineering,2011,31(6):7-11.(in Chinese)

    • [23] HU X,LI M,WANG Y,et al.Growth of 2-inch diamond films on 4H-SiC substrate by microwave plasma CVD for enhanced thermal performance[J].Vacuum,2023,211:111895.

    • [24] SHI J,FENG X,HUANG Y,et al.Growth of carbon nanotubes on diamond with a robust structural connection via microwave plasma chemical vapor deposition[J].Coatings,2022,12(12):12121838.

    • [25] NICLAS S.MUELLER,ANTHONY J,et al.Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition[J].Carbon,2014,78:347-355.

    • [26] 凌国伟,沈辉宇,周福堂.阴极电弧沉积技术及其发展[J].真空,1996(1):1-12.LING Guowei,SHEN Huiyu,ZHOU Futang.Cathode arc deposition technology and its development[J].Vacuum,1996(1):1-12.(in Chinese)

    • [27] 余东海,王成勇,成晓玲,等.磁控溅射镀膜技术的发展[J].真空,2009,46(2):19-25.YU Donghai,WANG Chengyong,CHENG Xiaoling,et al.Development of magnetron sputtering coating technology[J].Vacuum,2009,46(2):19-25.(in Chinese)

    • [28] 张权,耿东森,许雨翔,等.电弧/溅射复合沉积技术的发展及其在刀具涂层中的应用[J].表面技术,2021,50(5):20-35,101.ZHANG Quan,GENG Dongsen,XU Yuxiang,et al.Arc/sputtering deposition technology and its application in coating[J].Surface Technology,2021,50(5):20-35,101.(in Chinese)

    • [29] 李春伟,苗红涛,徐淑艳,等.复合高功率脉冲磁控溅射技术的研究进展[J].表面技术,2016,45(6):82-90.LI Chunwei,MIAO Hongtao,XU Shuyan,et al.Research progress of composite high-power pulsed magnetron sputtering[J].Surface Technology,2016,45(6):82-90.(in Chinese)

    • [30] 朱祥瑞,韩明月,冯蓬勃,等.双极高功率脉冲磁控溅射技术薄膜制备研究进展[J].中国表面工程,2022,35(5):10-22 ZHU Xiangrui,HAN Mingyue,FENG Fuxing,et al.Research progress of thin films prepared by double ultra-high power pulsed magnetron sputtering[J].China Surface Engineering,2022,35(5):10-22.(in Chinese)

    • [31] 傅永庆,朱晓东,徐可为,等.离子束辅助沉积技术及其进展[J].材料科学与工程,1996(3):23-33.FU Yongqing,ZHU Xiaodong,XU Kewei,et al.Advances in ion beam assisted deposition[J].Materials Science and Engineering,1996(3):23-33.(in Chinese)

    • [32] 郭江,王兴宇,赵勇,等.微织构刀具制备技术及加工性能研究新进展[J].机械工程学报,2021,57(13):172-200.GUO Jiang,WANG Xingyu,ZHAO Yong,et al.New progress in preparation technology and machining performance of micro-texture tools[J].Journal of Mechanical Engineering,2021,57(13):172-200.

    • [33] ZHOU X,HE L,ZHOU T,et al.A comprehensive review of tool surface texturing in the cutting process[J].International Journal of Advanced Manufacturing Technology,2022,123(7-8):2427-2467.

    • [34] ARSLAN A,MASJUKI H H,KALAM M A,et al.Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance:A review[J].Critical Reviews in Solid State and Materials Sciences,2016,41(6):447-481.

    • [35] 邓建新,孟莹,张志慧,等.织构化表面涂层的研究进展[J].航空制造技术,2022,65(7):22-35.DENG Jianxin,MENG Ying,ZHANG Zhihui,et al.Advances in textured surface coatings[J].Aeronautical Manufacturing Technology,2022,65(7):22-35.(in Chinese)

    • [36] CHEN Y,XIANG D,FENG H,et al.Fabrication and performance of boron doped textured diamond coated tool[J].Surface Engineering,2020,36(4):371-378.

    • [37] LIU F,HAN Y,GUO X,et al.Adhesion and machining performance of PVD AlCrN coatings with an ion beam/laser textured substrate[J].Surface & Coatings Technology,2021,423:127607.

    • [38] MENG R,DENG J,LIU Y,et al.Improving tribological performance of cemented carbides by combining laser surface texturing and W-S-C solid lubricant coating[J].International Journal of Refractory Metals & Hard Materials,2018,72:163-171.

    • [39] 邢佑强,邓建新,岳鸿志,等.WS2/Zr 软涂层微纳织构陶瓷刀具的制备及其切削性能[J].航空制造技术,2014(12):48-53.XING Youqiang,DENG Jianxin,YUE Hongzhi,et al.Fabrication and machinability of micro-nano textured ceramic tool with WS2/Zr soft coating[J].Aeronautical Manufacturing Technology,2014(12):48-53.(in Chinese)

    • [40] DENG J,LIAN Y,WU Z,et al.Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings[J].Surface & Coatings Technology,2013,222:135-143.

    • [41] ZHANG K,DENG J,SUN J,et al.Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting[J].Applied Surface Science,2015,355:602-614.

    • [42] 张克栋.基体表面织构化TiAlN涂层刀具的制备与应用的基础研究[D].济南:山东大学,2017.ZHANG Kedong.Preparation and application of textured TiAlN coating tool on substrate surface[D].Jinan:Shandong University,2014.(in Chinese)

    • [43] 张翔,邓建新,张贵梁,等.基体表面纳织构化对AlCrN涂层刀具界面结合强度影响的研究[J].工具技术,2017,51(9):17-21.ZHANG Xiang,DENG Jianxin,ZHANG Guiliang,et al.Study on the effect of nano-texture on the interfacial bonding strength of AlCrN coating[J].Tool Technology,2017,51(9):17-21.(in Chinese)

    • [44] 孟祥峰,张克栋,郭旭红,等.等离子体辅助激光织构化预处理增强TiAlN刀具涂层膜基结合强度的机理研究[J].工具技术,2020,54(9):7-13.MENG Xiangfeng,ZHANG Kedong,GUO Xuhong,et al.Study on the mechanism of plasma-assisted laser texture pretreatment to enhance the bonding strength of TiAlN tool coatings[J].Tool Technology,2020,54(9):7-13.(in Chinese)

    • [45] LIU Y,DENG J,LIU L,et al.Effect of nano-scale texture pretreatment on wear resistance of WC/Co tools with/without TiAlN coated flank-face in dry turning of green Al2O3 ceramics[J].Ceramics International,2018,44(17):21176-21187.

    • [46] LI X,DENG J,LIU L,et al.Tribological properties of WS2 coatings deposited on textured surfaces by electrohydrodynamic atomization[J].Surface & Coatings Technology,2018,352:128-143.

    • [47] ENOMOTO T,SUGIHARA T.Improving anti-adhesive properties of cutting tool surfaces by nano-micro-textures[J].Cirp Annals-Manufacturing Technology,2010,59(1):597-600.

    • [48] 张克栋,邓建新,邢佑强,等.涂层刀具表面织构化及切削性能研究[J].润滑与密封,2015,40(2):8-16,22.ZHANG Kedong,DENG Jianxin,XING Youqiang,et al.Study on surface texture and machinability of coated tool[J].Lubrication Engineering,2015,40(2):8-16,22.(in Chinese)

    • [49] WU Z,DENG J,SU C,et al.Performance of the micro-texture self-lubricating and pulsating heat pipe self-cooling tools in dry cutting process[J].International Journal of Refractory Metals and Hard Materials,2014,45:238-248.

    • [50] DENG J,WU Z,LIAN Y,et al.Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes[J].International Journal of Refractory Metals and Hard Materials,2011,30(1):164-172.

    • [51] LIAN Y,CHEN H,MU C,et al.Experimental investigation and mechanism analysis of tungsten disulfide soft coated micro-nano textured self-lubricating dry cutting tools[J].International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(2):219-230.

    • [52] AHMED Y S,PAIVA J M,ARIF A F M,et al.The effect of laser micro-scale textured tools on the tool-chip interface performance and surface integrity during austenitic stainless-steel turning[J].Applied Surface Science,2020,510:145455-145455.

    • [53] CHANG K,DONG Y,ZHENG G,et al.Friction and wear properties of TiAlN coated tools with different levels of surface integrity[J].Ceramics International,2022,48(4):4433-4443.

    • [54] LIU C,LIU Z,WANG B.Modification of surface morphology to enhance tribological properties for CVD coated cutting tools through wet micro-blasting post-process[J].Ceramics International,2018,44(3):3430-3439.

    • [55] ZHANG G,CHEN B,WU G,et al.Experimental assessment of textured tools with nano-lubricants in orthogonal cutting of titanium alloy[J].Journal of Mechanical Science and Technology,2022,36(5):2489-2497.

    • [56] 吴雪峰,梅三林.飞秒激光对TiAIN涂层刀具微织构加工参数的优化 [J].激光与光电子学进展:1-19 [2023-02-13].http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1232.168.WU Xuefeng,MEI Sanlin.Optimization of micro texture processing parameters of TiAIN coating tool by femtosecond laser[J].Advances in Laser and Optoelectronics:1-19[2023-02-13].http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1232.168.(in Chinese)

    • [57] WU Z,DENG J,CHEN Y,et al.Performance of the self-lubricating textured tools in dry cutting of Ti6Al4V[J].The International Journal of Advanced Manufacturing Technology,2012,62:943-951.

    • [58] WU Z,XING Y,CHEN J.Improving the performance of micro-textured cutting tools in dry milling of Ti6Al4V alloys[J].Micromachines,2021,12(8):12080945.

    • [59] RONADSON B J,VIJAYAN K,SANMUGAM S,et al.Improving dry machining performance of surface modified cutting tools through combined effect of texture and TiN-WS2 coating[J].Journal of Manufacturing Processes,2023,85:101-108.

    • [60] LIU Y,LI J,YI S,et al.Enhancement of friction performance of fluorinated graphene and molybdenum disulfide coating by micro dimple arrays[J].Carbon,2020,167:122-131.

    • [61] 房磊琦,张家敏,蔡飞,等.不同基体前处理对AlCrN涂层结构和性能的影响[J].表面技术,2022,51(2):66-76.FANG Leiqi,ZHANG Jiamin,CAI Fei,et al.Effect of different matrix pretreatment on structure and properties of AlCrN coating[J].Surface Technology,2022,51(2):66-76.(in Chinese)

    • [62] 吴振宇,郑光明,颜培,等.表面处理对TiAlSiN涂层刀具表面完整性及切削性能的影响研究[J].中国机械工程,2023,34(1):75-83.WU Zhenyu,ZHENG Guangming,YAN Pei,et al.Effect of surface treatment on surface integrity and machining performance of TiAlSiN coated tool[J].China Mechanical Engineering,2023,34(1):75-83.(in Chinese)

    • [63] MISHRA S K,GHOSH S,ARAVINDAN S.Characterization and machining performance of laser-textured chevron shaped tools coated with AlTiN and AlCrN coatings[J].Surface & Coatings Technology,2018,334:344-356.

    • [64] FANG S,KLEIN S,BAEHRE D,et al.Performance of laser surface textured cemented carbide tools during abrasive machining:Coating effects,surface integrity assessment and wear characterization[J].Cirp Journal of Manufacturing Science and Technology,2020,31:130-139.

    • [65] ZHANG K,DENG J,XING Y,et al.Effect of microscale texture on cutting performance of WC/Co-based TiAlN coated tools under different lubrication conditions[J].Applied Surface Science,2015,326:107-118.

    • [66] ARULKIRUBAKARAN D,SENTHILKUMAR V.Performance of TiN and TiAlN coated micro-grooved tools during machining of Ti6Al4V alloy[J].International Journal of Refractory Metals and Hard Materials,2017,62:47-57.

    • [67] ZHOU Y,FU Y,YANG J.Effect of volcano-like textured coated tools on machining of Ti6Al4V:An experimental and simulative investigation[J].International Journal of Advanced Manufacturing Technology,2022,120(11-12):7785-7802.

    • [68] XING Y,DENG J,LI S,et al.Cutting performance and wear characteristics of Al2O3/TiC ceramic cutting tools with WS2/Zr soft-coatings and nano-textures in dry cutting[J].Wear,2014,318(1-2):12-26.

    • [69] GAJRANI K K,PAVAN Kumar Reddy R,RAVI Sankar M.Tribo-mechanical and surface morphological comparison of untextured,mechanical micro-textured(MμT),and coated-MμT cutting tools during machining[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2018,233(1):95-111.

    • [70] LIAN Y,DENG J,YAN G,et al.Preparation of tungsten disulfide(WS2)soft-coated nano-textured self-lubricating tool and its cutting performance[J].International Journal of Advanced Manufacturing Technology,2013,68(9-12):2033-2042.

    • [71] 李佩真,唐思文,孙林,等.基于原子沉积法的纳米 Al2O3 涂层微织构刀具刀-屑界面间摩擦因数研究[J].现代制造工程,2020(10):26-32.LI Peizhen,TANG Siwen,SUN Lin,et al.Study on friction coefficient between cutter and chip interface of nano-Al2O3 coating micro-texture tool based on atomic deposition method[J].Modern Manufacturing Engineering,2020(10):26-32.(in Chinese)

    • [72] MISHRA S K,GHOSH S,ARAVINDAN S.Investigations into friction and wear behavior of AlTiN and AlCrN coatings deposited on laser textured WC/Co using novel open tribometer tests[J].Surface & Coatings Technology,2020,387:125513.

    • [73] 张志强,向道辉,胡永伟,等.织构对硼掺杂金刚石涂层刀具摩擦学性能的影响[J].中国表面工程,2021,34(1):50-59.ZHANG Zhiqiang,XIANG Daohui,HU Yongwei,et al.Influence of texture on tribological properties of boron-doped diamond coated tool[J].China Surface Engineering,2021,34(1):50-59.(in Chinese)

    • [74] 连云崧.软涂层微纳织构自润滑刀具的制备及其切削性能研究[D].济南:山东大学,2014.LIAN Yunsong.Study on preparation and machinability of micro-nano texture self-lubricating tool with soft coating[D].Jinan:Shandong University,2014.(in Chinese)

    • [75] ZHANG K,DENG J,DING Z,et al.Improving dry machining performance of TiAlN hard-coated tools through combined technology of femtosecond laser-textures and WS2 soft-coatings[J].Journal of Manufacturing Processes,2017,30:492-501.

    • [76] 姜超,邓建新,张翔,等.织构化AlCrN涂层刀具车削加工奥氏体沉淀硬化不锈钢的切削性能研究[J].工具技术,2016,50(12):13-19.JIANG Chao,DENG Jianxin,ZHANG Xiang,et al.Research on machinability of austenitic precipitation-hardened stainless steel by turning textured AlCrN coating tool[J].Tool Technology,2016,50(12):13-19.(in Chinese)

    • [77] 孙华亮,涂杰松,商宏飞,等.织构对涂层刀具切削性能影响的有限元分析及实验研究[J].现代制造工程,2013(9):1-6.SUN Hualiang,TU Jiesong,SHANG Hongfei,et al.Finite element analysis and experimental study on effect of texture on cutting performance of coating tool[J].Modern Manufacturing Engineering,2013(9):1-6.(in Chinese)

    • [78] GAJRANI K K,SURESH S,SANKAR M R.Environmental friendly hard machining performance of uncoated and MoS2 coated mechanical micro-textured tungsten carbide cutting tools[J].Tribology International,2018,125:141-155.

    • [79] AHMED Y S,VELDHUIS S C.Enhancement of carbide tool performance during dry machining through a combination of laser surface texturing and tungsten disulfide soft coatings[J].Surface & Coatings Technology,2021,428.

    • [80] ARULKIRUBAKARAN D,SENTHILKUMAR V,DINESH S.Effect of textures on machining of Ti-6Al-4V alloy for coated and uncoated tools:A numerical comparison[J].International Journal of Advanced Manufacturing Technology,2017,93(1-4):347-360.

    • [81] XIANG D,FENG H,GUO Z,et al.Preparation technology and properties of micro-texture diamond-coated tools[J].International Journal of Refractory Metals & Hard Materials,2018,76:16-24.

    • [82] 常垲硕,郑光明,李阳,等.湿式微喷砂处理对切削TC4的涂层刀具表面完整性及切削性能影响[J].材料导报,2021,35(16):16086-16092.CHANG Kaishuo,ZHENG Guangming,LI Yang,et al.Effect of wet microblast treatment on surface integrity and machinability of TC4 coating tool[J].Materials Review,2021,35(16):160866-16092.

  • 参考文献

    • [1] 季思源,万维财,彭卓豪,等.切削高温合金用涂层的研究进展[J].工具技术,2022,56(2):3-10.JI Siyuan,WAN Weicai,PENG Zhuohao,et al.Research progress of coating for cutting superalloy[J].Tool Technology,2022,56(2):3-10.(in Chinese)

    • [2] CELIK A,ALAGAC M S,TURAN S,et al.Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718[J].Wear,2017,378-379:58-67.

    • [3] WANG F,JI K,GUO Z.Microstructural analysis of failure progression for coated carbide tools during high-speed milling of Ti-6Al-4V[J].Wear,2020,456-457.

    • [4] ROY S,KUMAR R,ANURAG,et al.A brief review on machining of Inconel 718[J].Materials Today:Proceedings,2018,5(9):18664-18673.

    • [5] 孙加林,周咏辉,邓建新.织构化涂层刀具研究进展[J].工具技术,2015,49(7):3-7.SUN Jialin,ZHOU Yonghui,DENG Jianxin.Research progress of textured coating tools[J].Tool Technology,2015,49(7):3-7.(in Chinese)

    • [6] 唐联耀,唐玲艳,李鹏南,等.微织构刀具切削钛合金的研究进展[J].宇航材料工艺,2020,50(4):8-12.TANG Lianyao,TANG Lingyan,LI Pengnan,et al.Research progress of micro texture tool cutting titanium alloy[J].Aerospace Materials Technology,2020,50(4):8-12.(in Chinese)

    • [7] LIAN Y,LONG Y,ZHAO G,et al.Performance of CrCN-WS2 hard/soft composite coated tools in dry cutting of titanium alloys[J].Journal of Manufacturing Processes,2020,54:201-209.

    • [8] 王启民,黄健,王成勇,等.高速切削刀具物理气相沉积涂层研究进展[J].航空制造技术,2013(14):78-83.WANG Qimin,HUANG Jian,WANG Chengyong,et al.Physical vapor deposition coating research progress on high speed cutting tool[J].Aviation Manufacturing Technology,2013(14):78-83.(in Chinese)

    • [9] 范其香,林静,王铁钢.刀具涂层材料的最新研究进展[J].表面技术,2022,51(2):1-19,28.FAN Qixiang,LIN Jing,WANG Tiegang.Recent research progress of tool coating materials[J].Surface Technology,2022,51(2):1-19,28.(in Chinese)

    • [10] DENG Y,CHEN W,LI B,et al.Physical vapor deposition technology for coated cutting tools:A review[J].Ceramics International,2020,46(11):18373-18390.

    • [11] 邵泽宽.涂层刀具的现状研究[J].有色金属科学与工程,2017,8(6):57-64.SHAO Zekuan.Study on the status of coated tools[J].Nonferrous Metal Science and Engineering,2017,8(6):57-64.(in Chinese)

    • [12] SUGIHARA T,KOBAYASHI R,ENOMOTO T.Direct observations of tribological behavior in cutting with textured cutting tools[J].International Journal of Machine Tools & Manufacture,2021,168:103726.

    • [13] KUMAR C S,PATEL S K.Effect of WEDM surface texturing on Al2O3/TiCN composite ceramic tools in dry cutting of hardened steel[J].Ceramics International,2018,44(2):2510-2523.

    • [14] ZHOU C,GUO X,ZHANG K,et al.The coupling effect of micro-groove textures and nanofluids on cutting performance of uncoated cemented carbide tools in milling Ti-6Al-4V[J].Journal of Materials Processing Technology,2019,271:36-45.

    • [15] 刘伟,刘顺,梁桂强,等.微织构刀具切削性能及减摩效果的仿真分析[J].表面技术,2022,51(2):338-346.LIU Wei,LIU Shun,LIANG Guiqiang,et al.Simulation analysis of cutting performance and anti-friction effect of micro-texture tool[J].Surface Technology,2022,51(2):338-346.(in Chinese)

    • [16] PANG M,LIU X,LIU K.Effect of conical micro-grooved texture on tool-chip friction property and cutting performance of WC-TiC/Co cemented carbide tools[J].Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology,2019,233(5):791-804.

    • [17] 张克栋,邓建新,姜超,等.微纳织构涂层刀具研究进展[J].航空制造技术,2015(6):38-42.ZHANG Kedong,DENG Jianxin,JIANG Chao,et al.Micro-nano texture coating tool research progress[J].Aviation Manufacturing Technology,2015(6):38-42.(in Chinese)

    • [18] 郭杰,徐看,刘利国,等.刀具涂层技术现状与发展趋势[J].工具技术,2014,48(3):3-7.GUO Jie,XU Jian,LIU Liguo,et al.Cutting tool coating technology present situation and development trend of[J].Tool Technology,2014,48(3):3-7.(in Chinese)

    • [19] SCHINTLMEISTER W,WALLGRAM W,KANZ J,et al.Cutting tool materials coated by chemical vapour deposition[J].Wear,1984,100(13):153-169.

    • [20] YI J,LI M L,ZHOU H X,et al.Enhanced tribological properties of Y/MoS2 composite coatings prepared by chemical vapor deposition[J].Ceramics International,2020,46(15):23813-23819.

    • [21] KATAMUNE Y,IZUMI A,ICHIKAWA K,et al.Heavy phosphorus doping of diamond by hot-filament chemical vapor deposition[J].Diamond and Related Materials,2023,134:109789.

    • [22] 张韬,沈彬,孙方宏,等.热丝化学气相沉积法制备优质微米亚微米级单晶金刚石的研究[J].金刚石与磨料磨具工程,2011,31(6):7-11.ZHANG Tao,SHEN Bin,SUN Fanghong,et al.Preparation of high-quality micron-submicron single crystal diamond by hot wire chemical vapor deposition[J].Diamond and Abrasives Engineering,2011,31(6):7-11.(in Chinese)

    • [23] HU X,LI M,WANG Y,et al.Growth of 2-inch diamond films on 4H-SiC substrate by microwave plasma CVD for enhanced thermal performance[J].Vacuum,2023,211:111895.

    • [24] SHI J,FENG X,HUANG Y,et al.Growth of carbon nanotubes on diamond with a robust structural connection via microwave plasma chemical vapor deposition[J].Coatings,2022,12(12):12121838.

    • [25] NICLAS S.MUELLER,ANTHONY J,et al.Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition[J].Carbon,2014,78:347-355.

    • [26] 凌国伟,沈辉宇,周福堂.阴极电弧沉积技术及其发展[J].真空,1996(1):1-12.LING Guowei,SHEN Huiyu,ZHOU Futang.Cathode arc deposition technology and its development[J].Vacuum,1996(1):1-12.(in Chinese)

    • [27] 余东海,王成勇,成晓玲,等.磁控溅射镀膜技术的发展[J].真空,2009,46(2):19-25.YU Donghai,WANG Chengyong,CHENG Xiaoling,et al.Development of magnetron sputtering coating technology[J].Vacuum,2009,46(2):19-25.(in Chinese)

    • [28] 张权,耿东森,许雨翔,等.电弧/溅射复合沉积技术的发展及其在刀具涂层中的应用[J].表面技术,2021,50(5):20-35,101.ZHANG Quan,GENG Dongsen,XU Yuxiang,et al.Arc/sputtering deposition technology and its application in coating[J].Surface Technology,2021,50(5):20-35,101.(in Chinese)

    • [29] 李春伟,苗红涛,徐淑艳,等.复合高功率脉冲磁控溅射技术的研究进展[J].表面技术,2016,45(6):82-90.LI Chunwei,MIAO Hongtao,XU Shuyan,et al.Research progress of composite high-power pulsed magnetron sputtering[J].Surface Technology,2016,45(6):82-90.(in Chinese)

    • [30] 朱祥瑞,韩明月,冯蓬勃,等.双极高功率脉冲磁控溅射技术薄膜制备研究进展[J].中国表面工程,2022,35(5):10-22 ZHU Xiangrui,HAN Mingyue,FENG Fuxing,et al.Research progress of thin films prepared by double ultra-high power pulsed magnetron sputtering[J].China Surface Engineering,2022,35(5):10-22.(in Chinese)

    • [31] 傅永庆,朱晓东,徐可为,等.离子束辅助沉积技术及其进展[J].材料科学与工程,1996(3):23-33.FU Yongqing,ZHU Xiaodong,XU Kewei,et al.Advances in ion beam assisted deposition[J].Materials Science and Engineering,1996(3):23-33.(in Chinese)

    • [32] 郭江,王兴宇,赵勇,等.微织构刀具制备技术及加工性能研究新进展[J].机械工程学报,2021,57(13):172-200.GUO Jiang,WANG Xingyu,ZHAO Yong,et al.New progress in preparation technology and machining performance of micro-texture tools[J].Journal of Mechanical Engineering,2021,57(13):172-200.

    • [33] ZHOU X,HE L,ZHOU T,et al.A comprehensive review of tool surface texturing in the cutting process[J].International Journal of Advanced Manufacturing Technology,2022,123(7-8):2427-2467.

    • [34] ARSLAN A,MASJUKI H H,KALAM M A,et al.Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance:A review[J].Critical Reviews in Solid State and Materials Sciences,2016,41(6):447-481.

    • [35] 邓建新,孟莹,张志慧,等.织构化表面涂层的研究进展[J].航空制造技术,2022,65(7):22-35.DENG Jianxin,MENG Ying,ZHANG Zhihui,et al.Advances in textured surface coatings[J].Aeronautical Manufacturing Technology,2022,65(7):22-35.(in Chinese)

    • [36] CHEN Y,XIANG D,FENG H,et al.Fabrication and performance of boron doped textured diamond coated tool[J].Surface Engineering,2020,36(4):371-378.

    • [37] LIU F,HAN Y,GUO X,et al.Adhesion and machining performance of PVD AlCrN coatings with an ion beam/laser textured substrate[J].Surface & Coatings Technology,2021,423:127607.

    • [38] MENG R,DENG J,LIU Y,et al.Improving tribological performance of cemented carbides by combining laser surface texturing and W-S-C solid lubricant coating[J].International Journal of Refractory Metals & Hard Materials,2018,72:163-171.

    • [39] 邢佑强,邓建新,岳鸿志,等.WS2/Zr 软涂层微纳织构陶瓷刀具的制备及其切削性能[J].航空制造技术,2014(12):48-53.XING Youqiang,DENG Jianxin,YUE Hongzhi,et al.Fabrication and machinability of micro-nano textured ceramic tool with WS2/Zr soft coating[J].Aeronautical Manufacturing Technology,2014(12):48-53.(in Chinese)

    • [40] DENG J,LIAN Y,WU Z,et al.Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings[J].Surface & Coatings Technology,2013,222:135-143.

    • [41] ZHANG K,DENG J,SUN J,et al.Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting[J].Applied Surface Science,2015,355:602-614.

    • [42] 张克栋.基体表面织构化TiAlN涂层刀具的制备与应用的基础研究[D].济南:山东大学,2017.ZHANG Kedong.Preparation and application of textured TiAlN coating tool on substrate surface[D].Jinan:Shandong University,2014.(in Chinese)

    • [43] 张翔,邓建新,张贵梁,等.基体表面纳织构化对AlCrN涂层刀具界面结合强度影响的研究[J].工具技术,2017,51(9):17-21.ZHANG Xiang,DENG Jianxin,ZHANG Guiliang,et al.Study on the effect of nano-texture on the interfacial bonding strength of AlCrN coating[J].Tool Technology,2017,51(9):17-21.(in Chinese)

    • [44] 孟祥峰,张克栋,郭旭红,等.等离子体辅助激光织构化预处理增强TiAlN刀具涂层膜基结合强度的机理研究[J].工具技术,2020,54(9):7-13.MENG Xiangfeng,ZHANG Kedong,GUO Xuhong,et al.Study on the mechanism of plasma-assisted laser texture pretreatment to enhance the bonding strength of TiAlN tool coatings[J].Tool Technology,2020,54(9):7-13.(in Chinese)

    • [45] LIU Y,DENG J,LIU L,et al.Effect of nano-scale texture pretreatment on wear resistance of WC/Co tools with/without TiAlN coated flank-face in dry turning of green Al2O3 ceramics[J].Ceramics International,2018,44(17):21176-21187.

    • [46] LI X,DENG J,LIU L,et al.Tribological properties of WS2 coatings deposited on textured surfaces by electrohydrodynamic atomization[J].Surface & Coatings Technology,2018,352:128-143.

    • [47] ENOMOTO T,SUGIHARA T.Improving anti-adhesive properties of cutting tool surfaces by nano-micro-textures[J].Cirp Annals-Manufacturing Technology,2010,59(1):597-600.

    • [48] 张克栋,邓建新,邢佑强,等.涂层刀具表面织构化及切削性能研究[J].润滑与密封,2015,40(2):8-16,22.ZHANG Kedong,DENG Jianxin,XING Youqiang,et al.Study on surface texture and machinability of coated tool[J].Lubrication Engineering,2015,40(2):8-16,22.(in Chinese)

    • [49] WU Z,DENG J,SU C,et al.Performance of the micro-texture self-lubricating and pulsating heat pipe self-cooling tools in dry cutting process[J].International Journal of Refractory Metals and Hard Materials,2014,45:238-248.

    • [50] DENG J,WU Z,LIAN Y,et al.Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes[J].International Journal of Refractory Metals and Hard Materials,2011,30(1):164-172.

    • [51] LIAN Y,CHEN H,MU C,et al.Experimental investigation and mechanism analysis of tungsten disulfide soft coated micro-nano textured self-lubricating dry cutting tools[J].International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(2):219-230.

    • [52] AHMED Y S,PAIVA J M,ARIF A F M,et al.The effect of laser micro-scale textured tools on the tool-chip interface performance and surface integrity during austenitic stainless-steel turning[J].Applied Surface Science,2020,510:145455-145455.

    • [53] CHANG K,DONG Y,ZHENG G,et al.Friction and wear properties of TiAlN coated tools with different levels of surface integrity[J].Ceramics International,2022,48(4):4433-4443.

    • [54] LIU C,LIU Z,WANG B.Modification of surface morphology to enhance tribological properties for CVD coated cutting tools through wet micro-blasting post-process[J].Ceramics International,2018,44(3):3430-3439.

    • [55] ZHANG G,CHEN B,WU G,et al.Experimental assessment of textured tools with nano-lubricants in orthogonal cutting of titanium alloy[J].Journal of Mechanical Science and Technology,2022,36(5):2489-2497.

    • [56] 吴雪峰,梅三林.飞秒激光对TiAIN涂层刀具微织构加工参数的优化 [J].激光与光电子学进展:1-19 [2023-02-13].http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1232.168.WU Xuefeng,MEI Sanlin.Optimization of micro texture processing parameters of TiAIN coating tool by femtosecond laser[J].Advances in Laser and Optoelectronics:1-19[2023-02-13].http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1232.168.(in Chinese)

    • [57] WU Z,DENG J,CHEN Y,et al.Performance of the self-lubricating textured tools in dry cutting of Ti6Al4V[J].The International Journal of Advanced Manufacturing Technology,2012,62:943-951.

    • [58] WU Z,XING Y,CHEN J.Improving the performance of micro-textured cutting tools in dry milling of Ti6Al4V alloys[J].Micromachines,2021,12(8):12080945.

    • [59] RONADSON B J,VIJAYAN K,SANMUGAM S,et al.Improving dry machining performance of surface modified cutting tools through combined effect of texture and TiN-WS2 coating[J].Journal of Manufacturing Processes,2023,85:101-108.

    • [60] LIU Y,LI J,YI S,et al.Enhancement of friction performance of fluorinated graphene and molybdenum disulfide coating by micro dimple arrays[J].Carbon,2020,167:122-131.

    • [61] 房磊琦,张家敏,蔡飞,等.不同基体前处理对AlCrN涂层结构和性能的影响[J].表面技术,2022,51(2):66-76.FANG Leiqi,ZHANG Jiamin,CAI Fei,et al.Effect of different matrix pretreatment on structure and properties of AlCrN coating[J].Surface Technology,2022,51(2):66-76.(in Chinese)

    • [62] 吴振宇,郑光明,颜培,等.表面处理对TiAlSiN涂层刀具表面完整性及切削性能的影响研究[J].中国机械工程,2023,34(1):75-83.WU Zhenyu,ZHENG Guangming,YAN Pei,et al.Effect of surface treatment on surface integrity and machining performance of TiAlSiN coated tool[J].China Mechanical Engineering,2023,34(1):75-83.(in Chinese)

    • [63] MISHRA S K,GHOSH S,ARAVINDAN S.Characterization and machining performance of laser-textured chevron shaped tools coated with AlTiN and AlCrN coatings[J].Surface & Coatings Technology,2018,334:344-356.

    • [64] FANG S,KLEIN S,BAEHRE D,et al.Performance of laser surface textured cemented carbide tools during abrasive machining:Coating effects,surface integrity assessment and wear characterization[J].Cirp Journal of Manufacturing Science and Technology,2020,31:130-139.

    • [65] ZHANG K,DENG J,XING Y,et al.Effect of microscale texture on cutting performance of WC/Co-based TiAlN coated tools under different lubrication conditions[J].Applied Surface Science,2015,326:107-118.

    • [66] ARULKIRUBAKARAN D,SENTHILKUMAR V.Performance of TiN and TiAlN coated micro-grooved tools during machining of Ti6Al4V alloy[J].International Journal of Refractory Metals and Hard Materials,2017,62:47-57.

    • [67] ZHOU Y,FU Y,YANG J.Effect of volcano-like textured coated tools on machining of Ti6Al4V:An experimental and simulative investigation[J].International Journal of Advanced Manufacturing Technology,2022,120(11-12):7785-7802.

    • [68] XING Y,DENG J,LI S,et al.Cutting performance and wear characteristics of Al2O3/TiC ceramic cutting tools with WS2/Zr soft-coatings and nano-textures in dry cutting[J].Wear,2014,318(1-2):12-26.

    • [69] GAJRANI K K,PAVAN Kumar Reddy R,RAVI Sankar M.Tribo-mechanical and surface morphological comparison of untextured,mechanical micro-textured(MμT),and coated-MμT cutting tools during machining[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2018,233(1):95-111.

    • [70] LIAN Y,DENG J,YAN G,et al.Preparation of tungsten disulfide(WS2)soft-coated nano-textured self-lubricating tool and its cutting performance[J].International Journal of Advanced Manufacturing Technology,2013,68(9-12):2033-2042.

    • [71] 李佩真,唐思文,孙林,等.基于原子沉积法的纳米 Al2O3 涂层微织构刀具刀-屑界面间摩擦因数研究[J].现代制造工程,2020(10):26-32.LI Peizhen,TANG Siwen,SUN Lin,et al.Study on friction coefficient between cutter and chip interface of nano-Al2O3 coating micro-texture tool based on atomic deposition method[J].Modern Manufacturing Engineering,2020(10):26-32.(in Chinese)

    • [72] MISHRA S K,GHOSH S,ARAVINDAN S.Investigations into friction and wear behavior of AlTiN and AlCrN coatings deposited on laser textured WC/Co using novel open tribometer tests[J].Surface & Coatings Technology,2020,387:125513.

    • [73] 张志强,向道辉,胡永伟,等.织构对硼掺杂金刚石涂层刀具摩擦学性能的影响[J].中国表面工程,2021,34(1):50-59.ZHANG Zhiqiang,XIANG Daohui,HU Yongwei,et al.Influence of texture on tribological properties of boron-doped diamond coated tool[J].China Surface Engineering,2021,34(1):50-59.(in Chinese)

    • [74] 连云崧.软涂层微纳织构自润滑刀具的制备及其切削性能研究[D].济南:山东大学,2014.LIAN Yunsong.Study on preparation and machinability of micro-nano texture self-lubricating tool with soft coating[D].Jinan:Shandong University,2014.(in Chinese)

    • [75] ZHANG K,DENG J,DING Z,et al.Improving dry machining performance of TiAlN hard-coated tools through combined technology of femtosecond laser-textures and WS2 soft-coatings[J].Journal of Manufacturing Processes,2017,30:492-501.

    • [76] 姜超,邓建新,张翔,等.织构化AlCrN涂层刀具车削加工奥氏体沉淀硬化不锈钢的切削性能研究[J].工具技术,2016,50(12):13-19.JIANG Chao,DENG Jianxin,ZHANG Xiang,et al.Research on machinability of austenitic precipitation-hardened stainless steel by turning textured AlCrN coating tool[J].Tool Technology,2016,50(12):13-19.(in Chinese)

    • [77] 孙华亮,涂杰松,商宏飞,等.织构对涂层刀具切削性能影响的有限元分析及实验研究[J].现代制造工程,2013(9):1-6.SUN Hualiang,TU Jiesong,SHANG Hongfei,et al.Finite element analysis and experimental study on effect of texture on cutting performance of coating tool[J].Modern Manufacturing Engineering,2013(9):1-6.(in Chinese)

    • [78] GAJRANI K K,SURESH S,SANKAR M R.Environmental friendly hard machining performance of uncoated and MoS2 coated mechanical micro-textured tungsten carbide cutting tools[J].Tribology International,2018,125:141-155.

    • [79] AHMED Y S,VELDHUIS S C.Enhancement of carbide tool performance during dry machining through a combination of laser surface texturing and tungsten disulfide soft coatings[J].Surface & Coatings Technology,2021,428.

    • [80] ARULKIRUBAKARAN D,SENTHILKUMAR V,DINESH S.Effect of textures on machining of Ti-6Al-4V alloy for coated and uncoated tools:A numerical comparison[J].International Journal of Advanced Manufacturing Technology,2017,93(1-4):347-360.

    • [81] XIANG D,FENG H,GUO Z,et al.Preparation technology and properties of micro-texture diamond-coated tools[J].International Journal of Refractory Metals & Hard Materials,2018,76:16-24.

    • [82] 常垲硕,郑光明,李阳,等.湿式微喷砂处理对切削TC4的涂层刀具表面完整性及切削性能影响[J].材料导报,2021,35(16):16086-16092.CHANG Kaishuo,ZHENG Guangming,LI Yang,et al.Effect of wet microblast treatment on surface integrity and machinability of TC4 coating tool[J].Materials Review,2021,35(16):160866-16092.

  • 手机扫一扫看