en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

徐梦芸,女,1999年出生,硕士。主要研究方向为空间环境防护涂层应力分析。E-mail:xumengyun21@mails.ucas.ac.cn;

张锦麟,男,1985年出生,学士。主要研究方向为空间环境防护涂层的制备与性能。E-mail:zhangjinlin@mail.sic.ac.cn;

马佳玉,女,1992年出生,硕士。主要研究方向为空间环境防护涂层的地面模拟试验。E-mail:majiayu@mail.sic.ac.cn;

唐登航,男,1998年出生,硕士。主要研究方向为空间环境防护涂层的设计与制备。E-mail:921670401@qq.com;

许文彬,男,1985年出生,硕士。主要研究方向为航天材料应用。E-mail:deeny8@163.com;

王亮,男,1982年出生,博士,硕士研究生导师。主要研究方向为高温热防护涂层的有限元模拟计算。E-mail:L.Wang@mail.sic.ac.cn;

章俞之,女,1972年出生,博士,博士研究生导师。主要研究方向为功能薄膜材料的制备及材料空间环境效应。E-mail:yzzhang@mail.sic.ac.cn;

宋力昕,男,1962年出生,博士,博士研究生导师。主要研究方向为航天器特种无机涂层材料、防热材料、飞船舷窗玻璃和材料制备过程计算机模拟。E-mail:lxsong@mail.sic.ac.cn

通讯作者:

谷红宇,女,1988年出生,博士,硕士研究生导师。主要研究方向为空间环境防护涂层的设计与制备。E-mail:guhongyu@mail.sic.ac.cn

中图分类号:V259;TG174

DOI:10.11933/j.issn.1007-9289.20230411001

参考文献 1
ZHANG W,YI M,SHEN Z,et al.Protection against atomic oxygen erosion of oxide coatings for spacecraft materials[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(8):1074-1078.
参考文献 2
赵云峰.航天特种高分子材料研究与应用进展[J].中国材料进展,2013,32(4):217-228,242.ZHAO Yunfeng.Progress in research and application of aerospace special polymer materials[J].Advances in Materials in China,2013,32(4):217-228,242.(in Chinese)
参考文献 3
DEVER J A,MILLER S K,SECHKAR E A,et al.Space environment exposure of polymer films on the materials international space station experiment:Results from MISSE 1 and MISSE 2[J].High Performance Polymers,2008,20(4-5):371-387.
参考文献 4
LIAW D J,WANG K L,HUANG Y C,et al.Advanced polyimide materials:syntheses,physical properties and applications[J].Progress in Polymer Science,2012,37(7):907-974.
参考文献 5
张宗波,郎冠卿,姜海富,等.低地球轨道航天器涂层防护技术研究进展[J].航天器环境工程,2016,33(1):109-114.ZHANG Zongbo,LANG Guanqing,JIANG Haifa,et al.Research progress of coating protection technology for low-earth orbit spacecraft[J].Spacecraft Environmental Engineering,2016,33(1):109-114.(in Chinese)
参考文献 6
王磊,卿凤翎,范含林.航天器用新型聚酰亚胺薄膜性能研究[J].空间科学学报,2012,32(6):869-873.WANG Lei,QING Fengling,FAN Hanlin.Properties of novel polyimide films for spacecraft[J].Chinese Journal of Space Science,2012,32(6):869-873.(in Chinese)
参考文献 7
THAKARE J G,PANDEY C,MAHAPATRA M M,et al.Thermal barrier coatings—A state of the art review[J].Metals and Materials International,2021,27(7):1947-1968.
参考文献 8
XU K,DU M,HAO L,et al.A review of high-temperature selective absorbing coatings for solar thermal applications[J].Journal of Materiomics,2020,6(1):167-182.
参考文献 9
MERINO-FERNANDEZ I,KHEMCHANDANI S L,DEL PINO J,et al.Phased array antenna analysis workflow applied to gateways for LEO satellite communications[J].Sensors,2022,22(23):9406.
参考文献 10
张杭,张家强,崔庆新,等.新型无机热控涂层的性能及应用[J].宇航材料工艺,2021,51(5):103-107.ZHANG Hang,ZHANG Jiaqiang,CUI Qingxin,et al.Properties and applications of novel inorganic thermal control coatings[J].Aerospace Materials Technology,2021,51(5):103-107.(in Chinese)
参考文献 11
平托,郑琰,李振宇,等.空间航天器低吸收-低发射率热控涂层的设计与制备[J].载人航天,2020,26(2):214-221.PING TUO,ZHENG Yan,LI Zhenyu,et al.Design and preparation of low absorption-low emissivity thermal control coating for space spacecraft[J].Human Spaceflight,2020,26(2):214-221.(in Chinese)
参考文献 12
卢榆孙,范本尧,冯煜东,等.卫星柔性热控材料性能及其稳定性研究[J].中国空间科学技术,2002(6):46-51.LU Yusun,FAN Benyao,FENG Yudong,et al.Study on performance and stability of satellite flexible thermal control materials[J].Chinese Space Science and Technology,2002(6):46-51.(in Chinese)
参考文献 13
XU M,ZHAO Y P,ZHANG X Y,et al.Highly homogeneous polysiloxane flexible coating for low earth orbital spacecraft with ultraefficient atomic oxygen resistance and self-healing behavior[J].ACS Applied Polymer Materials,2019,1(12):3253-3260.
参考文献 14
PUTZ B,WURSTER S,EDWARDS T E J,et al.Mechanical and optical degradation of flexible optical solar reflectors during simulated low earth orbit thermal cycling[J].Acta Astronautica,2020,175:277-289.
参考文献 15
CHAMBERLAIN M K,KIEFER S H,LAPOINTE M,et al.On-orbit flight testing of the roll-out solar array[J].Acta Astronautica,2021,179:407-414.
参考文献 16
傅宇蕾,恽卫东,曹争利,等.离轨薄膜帆帆面材料原子氧侵蚀的数值模拟研究[J].航天标准化,2021(1):6-11.FU Yulei,YUN Weidong,CAO Zhengli,et al.Numerical Simulation of atomic oxygen erosion of off-orbit thin film sail surface materials[J].Aerospace Standardization,2021(1):6-11.(in Chinese)
参考文献 17
ZHANG F,FENG Y,QIN M,et al.Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite[J].Advanced Functional Materials,2019,29(25):1901383.1-1901383.13
参考文献 18
KOONTZ S,LEGER L,ALBYN K,et al.Vacuum Ultraviolet-radiation atomic oxygen synergism in materials reactivity[J].Journal of Spacecraft and Rockets,1990,27(3):346-348.
参考文献 19
HAN J H,KIM C G.Low earth orbit space environment simulation and its effects on graphite/epoxy composites[J].Composite Structures,2006,72(2):218-226.
参考文献 20
BOWLES D E,TOMPKINS S S,SYKES G F.Electron-radiation effects on the thermal-expansion of graphite resin composites[J].Journal of Spacecraft and Rockets,1986,23(6):625-629.
参考文献 21
NAIRN J A.The Strain-energy release rate of composite microcracking — A variation approach[J].Journal of composite material,1989,23(11):1106-1129.
参考文献 22
ARNOLD G S,PEPLINSKI D R.Reaction of high-velocity atomic oxygen with carbon[J].AIAA Journal,1986,24(4):673-677.
参考文献 23
HOOSHANGI Z,FEGHHI S A H,SAEEDZADEHL R.The effects of low earth orbit atomic oxygen on the properties of polytetrafluoroethylene[J].ACTA Astronautica,2016,119:233-240.
参考文献 24
赵琳,李中华,郑阔海.原子氧防护涂层技术研究[J].真空与低温,2011,17(4):187-192,229.ZHAO Lin,LI Zhonghua,ZHENG Kuohai.Research on atomic oxygen protective coating technology[J].Vacuum and Low Temperature,2011,17(4):187-192,229.(in Chinese)
参考文献 25
李涛,姜海富,刘向鹏,等.空间原子氧环境对常用热控涂层的影响[J].航天器环境工程,2012,29(3):268-272.LI Tao,JIANG Haifu,LIU Xiangpeng,et al.Effect of space atomic oxygen environment on common thermal control coatings[J].Spacecraft Environmental Engineering,2012,29(3):268-272.(in Chinese)
参考文献 26
多树旺,李美栓,张亚明,等.低地轨道环境中的原子氧对空间材料的侵蚀与防护涂层[J].腐蚀科学与防护技术,2002(3):152-156.DUO Shuwang,LI Meishuan,ZHANG Yaming,et al.Erosion and protective coating of space materials by atomic oxygen in low-earth orbit environment[J].Corrosion Science and Protection Technology,2002(3):152-156.(in Chinese)
参考文献 27
CORDERO N,YOON J,SUO Z G.Channel cracks in a hermetic coating consisting of organic and inorganic layers[J].Applied Physics Letters,2007,90(11):111910.
参考文献 28
QIAN M,MURRAY V J,WEI W,et al.Resistance of POSS polyimide blends to hyperthermal atomic oxygen attack[J].ACS Applied Materials & Interfaces,2016,8(49):33982-33992.
参考文献 29
WANG D,MA J,LI P,et al.Flexible hard coatings with self-evolution behavior in a low earth orbit environment[J].ACS Applied Materials & Interfaces,2021,13(38):46003-46014.
参考文献 30
ZHANG Y,YUAN H,YAN W,et al.Atomic-oxygen-durable and antistatic alpha-AlxTiyO/gamma-NiCr coating on Kapton for aerospace applications[J].ACS Applied Materials & Interfaces,2021,13(48):58179-58192.
参考文献 31
WANG Y,JI H Y,LI L Z,et al.Trilayered film with excellent tribological performance:A combination of graphene oxide and perfluoropolyethers[J].Tribology Letters,2015,60(3):1-7.
参考文献 32
BOTLHOKO O J,LETWABA L,BANDYOPADHYAY J,et al.UV-protection,tribology,and mechanical properties of ZnO-containing polyamide composites[J].Journal of Applied Polymer Science,2020,137(9):48418.
参考文献 33
BARROSO G,KRAUS T,DEGENHARDT U,et al.Functional coatings based on preceramic polymers[J].Advanced Engineering Materials,2016,18(5):746-753.
参考文献 34
DUO S,LIU T,ZOU X,et al.Properties of Al2O3-SiO2 Protective coatings prepared by sol-gel process in atomic oxygen environment[J].Rare Metal Materials and Engineering,2009,38:743-746.
参考文献 35
WU B H,ZHANG Y,YANG D Y,et al.Self-healing anti-atomic-oxygen phosphorus-containing polyimide film via molecular level incorporation of nanocage trisilanolphenyl POSS:Preparation and characterization[J].Polymers,2019,11(6):1013.
参考文献 36
ZHANG Y,WU B H,WANG H L,et al.Preparation and characterization of transparent polyimide nanocomposite films with potential applications as spacecraft antenna substrates with low dielectric features and good sustainability in atomic-oxygen environments[J].Nanomaterials,2021,11(8):1886.
参考文献 37
ZHAO J F,LIU Z Q,WANG B,et al.Tool coating effects on cutting temperature during metal cutting processes:Comprehensive review and future research directions[J].Mechanical Systems and Signal Processing,2021,150:107302.
参考文献 38
PIAO Z Y,XU B S,WANG H D,et al.Rolling contact fatigue behavior of thermal-sprayed coating:A review[J].Critical Review in Solid State and Material Sciences,2020,45(6):429-456.
参考文献 39
HUSSAIN M,RIZVI S H A,ABBAS N,et al.Recent developments in coatings for orthopedic metallic implants[J].Coatings,2021,11(7):791.
参考文献 40
TABATABAEIAN A,GHASEMI A R,SHOKRIEH M M,et al.Residual stress in engineering materials:A review[J].Advanced Engineering Materials,2022,24(3):2100786.
参考文献 41
GHADAMI F,AGHDAM A S R.Improvement of high velocity oxy-fuel spray coatings by thermal post-treatments:A critical review[J].Thin Solid Films,2019,678:42-52.
参考文献 42
ZHAO M H,XU X X,LIANG S,et al.Characterization method of the layer thickness of surface residual stress based on instrumented indentation testing[J].AIP Advances,2019,9(9):095024.
参考文献 43
ASHTIJOO P,BHATTACHERJEE S,SUTARTO R,et al.Fabrication and characterization of adherent diamond-like carbon based thin films on polyethylene terephthalate by end hall ion beam deposition[J].Surface & Coatings Technology,2016,308:90-97.
参考文献 44
LI Q Z,HUANG T,YANG M,et al.Effects of gradient structure and modulation period of Ta/TaN/Ta(C,N)/Ta-DLC multilayer coatings prepared by HiPIMS[J].Surface & Coatings Technology,2023,459:129406.
参考文献 45
SICOT O,GONG X L,CHEROUAT A,et al.Determination of residual stress in composite laminates using the incremental hole-drilling method[J].Journal of Composite Materials,2003,37(9):831-844.
参考文献 46
HARRINGTON J,SCHAJER G.Measurement of structural stresses by hole-drilling and DIC[J].Experimental Mechanics,2017,57(4):559-567.
参考文献 47
WENZELBURGER M,LóPEZ D,GADOW R.Methods and application of residual stress analysis on thermally sprayed coatings and layer composites[J].Surface and Coatings Technology,2006,201(5):1995-2001.
参考文献 48
ABUBAKAR A A,ADESINA A Y,ARIF A M,et al.Evaluation of residual stress in thick metallic coatings using the combination of hole drilling and micro-indentation methods[J].Journal of Materials Research and Technology—JMR&T,2022,20:867-881.
参考文献 49
DONG Y B,SHAO W Z,JIANG J T,et al.Minimization of residual Stress in an Al-Cu alloy forged plate by different heat treatments[J].Journal of Materials Engineering and Performance,2015,24(6):2256-2265.
参考文献 50
ZHOU Y C,HASHIDA T.Thermal fatigue failure induced by delamination in thermal barrier coating[J].International Journal of Fatigue,2002,24(2-4):407-417.
参考文献 51
RECH S,TRENTIN A,VEZZU S,et al.Influence of pre-heated Al 6061 substrate temperature on the residual stresses of multipass Al coatings deposited by cold spray[J].Journal of Thermal Spray Technology,2011,20(1-2):243-251.
参考文献 52
LIMA C R C,NIN J,GUILEMANY J M.Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the modified layer removal method(MLRM)[J].Surface & Coatings Technology,2006,200(20-21):5963-5972.
参考文献 53
GARZA C,DAS R,SHTERENLIKHT A,et al.Measurement of assembly stress in composite structures using the deep-hole drilling technique[J].Composite Structures,2018,202:119-126.
参考文献 54
OSTEN W,PEDRINI G,WEIDMANN P,et al.A flexible method for residual stress measurement of spray coated layers by laser made hole drilling and SLM based beam conditioning[M].San Diego:SPIE,9660:95-98.
参考文献 55
GUINARD C,MONTAY G,GUIPONT V,et al.Residual stress analysis of laser-drilled thermal barrier coatings involving various bond coats[J].Journal of Thermal Spray Technology,2015,24(1-2):252-262.
参考文献 56
PEDRINI G,MARTINEZ-GARCIA V,WEIDMANN P,et al.Residual stress analysis of ceramic coating by laser ablation and digital holography[J].Experimental Mechanics,2016,56(5):683-701.
参考文献 57
MARTINEZ-GARCIA V,PEDRINI G,WEIDMANN P,et al.Non-contact residual stress analysis method with displacement measurements in the nanometric range by laser made material removal and SLM based beam conditioning on ceramic coatings[J].Surface & Coatings Technology,2019,371:14-19.
参考文献 58
XU J Y,HUANG X H,CHEN M,et al.Drilling characteristics of carbon/epoxy and carbon/polyimide composites[J].Materials and Manufacturing processes,2020,35(15):1732-1740.
参考文献 59
MAGNIER A,SCHOLTES B,NIENDORF T.On the reliability of residual stress measurements in polycarbonate samples by the hole drilling method[J].Polymer Testing,2018,71:329-334.
参考文献 60
MAGNIER A,WU T,TINKLOH S R,et al.On the reliability of residual stress measurements in unidirectional carbon fibre reinforced epoxy composites[J].Polymer Testing,2021,97:107146.
参考文献 61
TABATABAEIAN A,GHASEMI A R.The impact of MWCNT modification on the structural performance of polymeric composite profiles[J].Polymer Bulletin,2020,77(12):6563-6576.
参考文献 62
FU K K,SHEPPARD L R,CHANG L,et al.Length-scale-dependent nanoindentation creep behaviour of Ti/Al multilayers by magnetron sputtering[J].Materials Characterization,2018,139:165-175.
参考文献 63
XIAO Y,WU L,LUO J,et al.Mechanical response of thin hard coatings under indentation considering rough surface and residual stress[J].Diamond and Related Materials,2020,108:107991.
参考文献 64
ABDOOS M,BOSE B,RAWAL S,et al.The influence of residual stress on the properties and performance of thick TiAlN multilayer coating during dry turning of compacted graphite iron[J].Wear,2020,454-455:203342.
参考文献 65
ANANTHAKRISHNA G,KRISHNAMOORTHY S.A novel approach to modelling nanoindentation instabilities[J].Crystals,2018,8(5):200.
参考文献 66
KIELY J D,HWANG R Q,HOUSTON J E.Effect of surface steps on the plastic threshold in nanoindentation[J].Physical Review Letters,1998,81(20):4424-4427.
参考文献 67
CORCORAN S G,COLTON R J,LILLEODDEN E T,et al.Anomalous plastic deformation at surfaces:Nanoindentation of gold single crystals[J].Physical Review B,1997,55(24):16057-16060.
参考文献 68
GOULDSTONE A,KOH H J,ZENG K Y,et al.Discrete and continuous deformation during nanoindentation of thin films[J].Acta Materialia,2000,48(9):2277-2295.
参考文献 69
FANG X,JIN G,CUI X F,et al.Evolution characteristics of residual stress in metastable Ni-B alloy coatings identified by nanoindentation[J].Surface & Coatings Technology,2016,305:208-214.
参考文献 70
KIM C H,HEUER A H.A high-temperature displacement-sensitive indenter for studying mechanical properties of thermal barrier coatings[J].Journal of Materials Research,2004,19(1):351-356.
参考文献 71
SHANG F L,ZHANG X,GUO X C,et al.Determination of high temperature mechanical properties of thermal barrier coatings by nanoindentation[J].Surface Engineering,2014,30(4):283-289.
参考文献 72
WATANABE M,MERCER C,LEVI C G,et al.A probe for the high temperature deformation of thermal barrier oxides[J].Acta Materialia,2004,52(6):1479-1487.
参考文献 73
HE R J,QU Z L,PEI Y M,et al.High temperature indentation tests of YSZ coatings in air up to 1 200 ℃[J].Materials Letters,2017,209:5-7.
参考文献 74
QU Z,WEI K,HE Q,et al.High temperature fracture toughness and residual stress in thermal barrier coatings evaluated by an in-situ indentation method[J].Ceramics International,2018,44(7):7926-7929.
参考文献 75
GAIR J L,LAMBETH R H,COLE D P,et al.Strong process-structure interaction in stoveable poly(urethane-urea)aligned carbon nanotube nanocomposites[J].Composites Science and Technology,2018,166:115-124.
参考文献 76
LEWIS G,XU J,MADIGAN S,et al.Influence of two changes in the composition of an acrylic bone cement on its handling,thermal,physical,and mechanical properties[J].Journal of Materials Science-materials in Medicine,2007,18(8):1649-1658.
参考文献 77
DAHL S,RATS D,VON STEBUT J,et al.Micromechanical characterisation of plasma treated polymer surfaces[J].Thin Solid Films,1999,355:290-294.
参考文献 78
KAULE T,ZHANG Y,EMMERLING S,et al.Nanoscale thermomechanics of wear-resilient polymeric bilayer systems[J].ACS Nano,2013,7(1):748-759.
参考文献 79
HE G Y,SUN D Y,ZANG S L,et al.Evaluation of the elastic-plastic properties of TiN coating by nanoindentation technologies using FEM-reverse algorithm[J].Surface & Coatings Technology,2021,409:126855.
参考文献 80
LODH A,THOOL K,SAMAJDAR I.X-ray Diffraction for the determination of residual stress of crystalline material:An overview[J].Transactions of the Indian Institute of Metals,2022,75(4):983-995.
参考文献 81
BRUNO G,CERETTI M,GIRARDIN E,et al.Relaxation of residual stress in MMC after combined plastic deformation and heat treatment[J].Scripta Materialia,2004,51(10):999-1004.
参考文献 82
AN N Y,SHUAI S S,HU T,et al.Application of synchrotron X-ray imaging and diffraction in additive manufacturing:A review[J].Acta Metallurgica Sinica-English Letters,2022,35(1):25-48.
参考文献 83
FISCHER K,OETTEL H.Analysis of residual stress gradients in thin films using SEEMANN-BOHLIN-X-ray diffraction[M].Aedermannsdorf:Materials Science Forum,1996:301-306.
参考文献 84
OWOSENI T A,BAI M,CURRY N,et al.Residual stress measurement of suspension HVOF-sprayed alumina coating via a hole-drilling method[J].Journal of Thermal Spray Technology,2020,29(6):1339-1350.
参考文献 85
KANIA B,INDYKA P,TARKOWSKI L,et al.X-ray diffraction grazing-incidence methods applied for gradient-free residual stress profile measurements in electrodeposited Ni coatings[J].Journal of Applied Crystallography,2015,48:71-78.
参考文献 86
MARCISZKO-WIACKOWSKA M,HNIDA-GUT K E,BACZMANSKI A,et al.Topography and residual stress analysis for Cu/Au/Co multilayered system[J].Surface & Coatings Technology,2019,380:125060.
参考文献 87
WANG A N,CHUANG C P,YU G P,et al.Determination of average X-ray strain(AXS)on TiN hard coatings using cos2 α sin2 ψ X-ray diffraction method[J].Surface & Coating Technology,2015,262:40-47.
参考文献 88
GELFI M,BONTEMPI E,ROBERTI R,et al.Residual stress analysis of thin films and coatings through XRD2 experiments[J].Thin Solid Films,2004,450(1):143-147.
参考文献 89
MARCISZKO M,BACZMANSKI A,WROBEL M,et al.Multireflection grazing incidence diffraction used for stress measurements in surface layers[J].Thin Solid Films,2013,530:81-84.
参考文献 90
KARPOV I D,EM V T,SUMIN V V.Measuring residual stresses in vamas international calibration block with the stress diffractometer of Ir-8 reactor[J].Russian Journal of Nondestructive Testing,2019,55(4):328-333.
参考文献 91
FU P,ZHAN K,JIANG C H.Micro-structure and surface layer properties of 18CrNiMo7-6 steel after multistep shot peening[J].Materials & Design,2013,51:309-314.
参考文献 92
MATEJICEK J,SAMPATH S,BRAND P C,et al.Quenching,thermal and residual stress in plasma sprayed deposits:NiCrAlY and YSZ coatings[J].Acta Materialia,1999,47(2):607-617.
参考文献 93
ROGANTE M,MIKULA P,VRANA M.Residual stresses assessment in coated materials:complementarity between Neutron and X-ray techniques[J].Key Engineering Materials,2011,465:259-262.
参考文献 94
BRANDT L R,SALVATI E,PAPADAKI C,et al.Probing the deformation and fracture properties of Cu/W nano-multilayers by in situ SEM and synchrotron XRD strain microscopy[J].Surface & Coating Technology,2017,320:158-167.
参考文献 95
NISHINO T,KOTERA M,INAYOSHI N,et al.Residual stress and microstructures of aromatic polyimide with different imidization processes[J].Polymer,2000,41(18):6913-6918.
参考文献 96
LUAN B,LIU X Y,NAGATA J,et al.Residual stress analysis — An important consideration for coating of stereolithography polymers[J].Surface & Coating Technology,2005,192(2-3):323-330.
参考文献 97
LUO Q S,YANG S C.Uncertainty of the X-ray diffraction(XRD)sin2 ψ Technique in measuring residual stresses of physical vapor deposition(PVD)hard coatings[J].Coatings,2017,7(8):128.
参考文献 98
YE C,JIANG P.Accurate residual stress measurement as a function of depth in environmental barrier coatings via a combination of X-ray diffraction and Raman spectroscopy[J].Ceramics International,2020,46(8):12613-12617.
参考文献 99
DAS B,BRODARD P,BANDYOPADHYAY P P.Raman spectroscopy assisted residual stress measurement of plasma sprayed and laser remelted zirconia splats and coatings[J].Surface and Coatings Technology,2019,378:124920.
参考文献 100
AHMED F,BAYERLEIN K,ROSIWAL S M,et al.Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate:Analysis by micro-Raman spectroscopy and analytical modelling[J].Acta Materialia,2011,59(14):5422-5433.
参考文献 101
CUI Y,GUO M,WANG C,et al.Evolution of the residual stress in porous ceramic abradable coatings under thermal exposure[J].Surface and Coatings Technology,2020,394:125915.
参考文献 102
TANAKA M,KITAZAWA R,TOMIMATSU T,et al.Residual stress measurement of an EB-PVD Y2O3-ZrO2 thermal barrier coating by micro-Raman spectroscopy[J].Surface & Coatings Technology,2009,204(5):657-660.
参考文献 103
ZHU X,HUANG Y,ZHENG W,et al.Crystallinity,stresses,and cracks of YSZ coatings characterized by SEM-EBSD-Raman spectroscopy[J].Journal of Thermal Spray Technology,2020,29(5):995-1001.
参考文献 104
QIU W,CHENG C L,LIANG R R,et al.Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy[J].Acta Mechanica Sinica,2016,32(5):805-812.
参考文献 105
LI Q,GOU Y R,WANG T G,et al.Study on local residual stress in a nanocrystalline Cr2O3 coating by micro-raman spectroscopy[J].Coatings,2019,9(8):500.
参考文献 106
OHTSUKA S,ZHU W,TOCHINO S,et al.In-depth analysis of residual stress in an alumina coating on silicon nitride substrate using confocal Raman piezo-spectroscopy[J].Acta Materialia,2007,55(4):1129-1135.
参考文献 107
SRINIVASAN N,BHASKAR L K,KUMAR R,et al.Residual stress gradient and relaxation upon fatigue deformation of diamond-like carbon coated aluminum alloy in air and methanol environments[J].Materials & Design,2018,160:303-312.
参考文献 108
DAS B,BRODARD P,BANDYOPADHYAY P P.Raman spectroscopy assisted residual stress measurement of plasma sprayed and laser remelted zirconia splats and coatings[J].Surface & Coatings Technology,2019,378:124920.
参考文献 109
MIYAGAWA H,KAMIYA D,SATO C,et al.Strain measurement for Raman-inactive substrates with PbO thin films using Raman coating method[J].Journal of Materials Science,1999,34(1):105-110.
参考文献 110
KORSUNSKY A M,SALVATI E,LUNT A G J,et al.Nanoscale residual stress depth profiling by Focused Ion Beam milling and eigenstrain analysis[J].Materials & Design,2018,145:55-64.
参考文献 111
ZHANG X,LI C,WITHERS P J,et al.Determination of local residual stress in an air plasma spray thermal barrier coating(APS-TBC)by microscale ring coring using a picosecond laser[J].Scripta Materialia,2019,167:126-130.
参考文献 112
ROMANO-BRANDT L,SALVATI E,LE BOURHIS E,et al.Nano-scale residual stress depth profiling in Cu/W nano-multilayers as a function of magnetron sputtering pressure[J].Surface and Coatings Technology,2020,381:125142.
参考文献 113
MIRGHADERI H,RANJI A R,FADAVIE M.The effect of polyurea coating on fatigue life of mild steel[J].Journal of Materials Engineering and Performance,2021,30(5):3831-3844.
参考文献 114
LI G,SUN J,XU Y,et al.Microstructure,mechanical properties,and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS[J].Surface and Coatings Technology,2018,353:274-281.
参考文献 115
UçAK N,ASLANTAS K,ÇIçEK A.The effects of Al2O3 coating on serrated chip geometry and adiabatic shear banding in orthogonal cutting of AISI 316L stainless steel[J].Journal of Materials Research and Technology,2020,9(5):10758-10767.
参考文献 116
DE MARCHI L,MARZANI A,MINIACI M.A dispersion compensation procedure to extend pulse-echo defects location to irregular waveguides[J].NDT & E International,2013,54:115-122.
参考文献 117
TANUMA K,MAN C S,CHEN Y.Dispersion of rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress[J].International Journal of Engineering Science,2015,92:63-82.
参考文献 118
LIU B,DONG S,XU B,et al.Coating thickness affects surface stress measurement of brush electro-plating nickel coating using Rayleigh wave approach[J].Ultrasonics,2012,52(7):861-865.
参考文献 119
QIAN Z,HUANG H,LIU W,et al.Magnetomechanical model for coating/substrate interface and its application in interfacial crack propagation length characterization[J].Journal of Applied Physics,2018,124(20):203904.
参考文献 120
SHKURATNIK V L,KRAVCHENKO O S,FILIMONOV Y L.Acoustic emission of rock salt at different uniaxial strain rates and under temperature[J].Journal of Applied Mechanics and Technicals Physics,2020,61(3):479-485.
参考文献 121
RONG G,YAO M D,PENG J,et al.Influence of initial thermal cracking on physical and mechanical behaviour of a coarse marble:insights from uniaxial compression tests with acoustic emission monitoring[J].Geophysical Journal International,2018,214(3):1886-1900.
参考文献 122
SCHAJER G S,YANG L.Residual-stress measurement in orthotropic materials using the hole-drilling method[J].Experimental Mechanics,1994,34(4):324-333.
参考文献 123
曹枝军,袁建辉,苏怀宇,等.声发射技术在热障涂层失效机理中的研究进展及展望[J].中国表面工程,2023,36(2):34-53.Cao Zhijun,YUAN Jianhui,SU Huaiyu,et al.Research progress and prospect of acoustic emission technology in failure mechanism of thermal barrier coatings[J].China Surface Engineering,2023,36(2):34-53.(in Chinese)
参考文献 124
LIU L G,LI Q,LIU X H,et al.Stress field simulation of carburized specimens with different carbon content during quenching process[J].Materials Letters,2007,61(4-5):1251-1255.
参考文献 125
LIU L G,LI Q,LIAO B,et al.Stress field simulation of the specimen with multi-layer phase structure[J].Materials Science and Engineering A-structural Materials Properties Microstructure and Processing,2006,435:484-490.
参考文献 126
JAMSHIDIAN M,RABCZUK T.Phase field modelling of stressed grain growth:Analytical study and the effect of microstructural length scale[J].Journal of Computational Physics,2014,261:23-35.
参考文献 127
ZHANG J H,LI X X,XU D S,et al.Phase field simulation of the stress-induced alpha microstructure in Ti-6Al-4 V alloy and its CPFEM properties evaluation[J].Journal of Materials Science & Technology,2021,90:168-182.
参考文献 128
ALVES C L M,REZENDE J,SENK D,et al.Phase-field simulation of peritectic steels solidification with transformation-induced elastic effect[J].Journal of Materials Research and Technology-JMR&T,2020,9(3):3805-3816.
参考文献 129
OKUNO Y,SAKASHITA Y.Effective hamiltonian approach to studying the field-induced structural phase transition of BaTiO3[J].Japanese Journal of Applied Physics,2009,48(2):021403.
参考文献 130
GUYONNEAU D,MERMOZ E,MAILHE J,et al.Stress optimization and study of the sensitivity to geometric variations of a spur gear tooth profile[J].Mechanics & Industry,2013,14(1):31-41.
参考文献 131
WANG F,CHEN Z Q,WEI Y Q,et al.Numerical modeling of tensile behavior of fiber-reinforced polymer composites[J].Journal of Composite Materials,2010,44(19):2325-2340.
参考文献 132
CHASON E,JAGTAP P.Effect of grain size on thin film stress and morphology using kinetic Monte Carlo simulations[J].Journal of Applied Physics,2020,128(14):145301.
参考文献 133
GADELMOULA A,AL-ATHEL K S,AKHTAR S S,et al.A stochastically generated geometrical finite element model for predicting the residual stresses of thermally sprayed coatings under different process parameters[J].Journal of Thermal Spray Technology,2020,29(6):1256-1267.
参考文献 134
KIM N,YUN G,KIM D-N.Overlapping finite element analysis for structures under thermal loads with spatially varying gradients[J].Journal of Mechanical Science and Technology,2022,36(3):1379-1390.
参考文献 135
LIU Y,SCHINDLER A K.Finite-element modeling of early-age concrete behavior under high level of tensile stress[J].Materials and Structures,2019,52(2):30.1-30.14.
参考文献 136
MU C,SONG W,HUI T.Reliability parameter optimization of electromagnetic relay for aerospace products based on 3D thermal stress field[J].IOP Conference Series:Earth and Environmental Science,2021,632(4):042059.
参考文献 137
IQBAL M D,BIRK C,OOI E T,et al.Development of the scaled boundary finite element method for crack propagation modeling of elastic solids subjected to coupled thermo-mechanical loads[J].Computer Methods in Applied Mechanics and Engineering,2021,387:114106.
参考文献 138
MEN X D,TAO F H,GAN L,et al.Erosion behavior and surface cracking mechanism of Co-based coating deposited via PTA under high-speed propellant airflow[J].Surface & Coatings Technology,2019,372:369-375.
参考文献 139
JOSELL D,BONEVICH J E,NGUYEN T M,et al.Heat transfer through nanoscale multilayered thermal barrier coatings at elevated temperatures[J].Surface & Coatings Technology,2015,275:75-83.
参考文献 140
TIAN X,XIONG S,ZHANG Y,et al.Simulation of thermal stress in ion beam sputtered Ta2O5/SiO2 multilayer coatings on different substrates by finite element analysis[J].Surface and Coatings Technology,2019,362:225-233.
参考文献 141
LU Z,LYU G L,GULHANE A,et al.Experimental and modeling studies of bond coat species effect on microstructure evolution in EB-PVD thermal barrier coatings in cyclic thermal environments[J].Coatings,2019,9(10):626.
参考文献 142
CHEN F Y,HE W Q.Finite element design of MgO/Ni system functionally graded materials[J].Journal of Materials Processing Technology,2007,182(1-3):181-184.
参考文献 143
JOSHI S C,NG H W.Optimizing functionally graded nickel-zirconia coating profiles for thermal stress relaxation[J].Simulation Modelling Practice and Theory,2011,19(1):586-598.
参考文献 144
DUBIEL A,GRABOWSKI G,GOLY M,et al.The influence of thermal residual stresses on mechanical properties of silicon nitride-based composites[J].Materials,2020,13(5):1092.
参考文献 145
SONG Y,WU W J,QIN M,et al.Effect of geometric parameter on thermal stress generation in fabrication process of double-ceramic-layers thermal barrier coating system[J].Journal of the European Ceramic Society,2018,38(11):3962-3973.
参考文献 146
刘思思,杨正航,武云文,等.超音速火焰喷涂 Ni-CeO2复合涂层的数值模拟及耐磨耐腐蚀性能[J].中国表面工程,2023,36(3):180-192.LIU Sisi,YANG Zhenghang,WU Yunwen,et al.Numerical Simulation and wear resistance of Ni-CeO2 composite coating by Supersonic Flame spraying[J].China Surface Engineering,2023,36(3):180-192.(in Chinese)
参考文献 147
XUE X L,ZENG C F,WANG S B,et al.Mechanical-thermal response of brittle titanium films on polymer substrates:in-situ observations and FE modelling[J].Journal of Micromechanics and Microengineering,2020,30(6):065013.
参考文献 148
LI G R,WANG L S.Durable TBCs with self-enhanced thermal insulation based on co-design on macro-and microstructure[J].Applied Surface Science,2019,483:472-480.
参考文献 149
ZHOU H,LIU H Y,FU K K,et al.Numerical simulation of failure of composite coatings due to thermal and hygroscopic stresses[J].Coatings,2019,9(4):243.
参考文献 150
HUANG J B,WANG W Z,LU X,et al.Effect of particle size on the thermal shock resistance of plasma-sprayed YSZ coatings[J].Coatings,2017,7(9):150.
参考文献 151
BAKER M,ROSLER J,HEINZE G.A parametric study of the stress state of thermal barrier coatings Part II:cooling stresses[J].Acta Materialia,2005,53(2):469-476.
参考文献 152
BUROV A,FEDOROVA E.Modeling of interface failure in a thermal barrier coating system on Ni-based superalloys[J].Engineering Failure Analysis,2021,123:105320.
参考文献 153
POPA M,HVIZDOS P,ANNE G,et al.Thermal residual stress gradients in an alumina-zirconia composite obtained by electrophoretic deposition[J].Journal of The European Ceramic Society,2006,26(4-5):553-558.
参考文献 154
HASSANI S,BIELAWSKI M,BERES W,et al.Impact stress absorption and load spreading in multi-layered erosion-resistant coatings[J].Wear,2010,268(5-6):770-776.
参考文献 155
GUO H B,GONG S K,XU H B.Evaluation of hot-fatigue behaviors of EB-PVD gradient thermal barrier coatings[J].Materials Science And Engineering A-Structural Materials Properties Microstructure and Processing,2002,325(1-2):261-269.
参考文献 156
HE J Y,DING L Y,CAI J,et al.A novel high temperature resistant Mo-Cu functional gradient coating for optic fiber Bragg grating[J].Results in Physics,2019,14:102456.
参考文献 157
CHEN C X,TAN J Y,WU W,et al.Modeling and experimental studies of coating delamination of biodegradable magnesium alloy cardiovascular stents[J].ACS Biomaterials Science & Engineering,2018,4(11):3864-3873.
参考文献 158
HE X,LARSEN R,CHEN F L,et al.Block cracking in surface coatings of polymeric substrates[J].Engineering Fracture Mechanics,2020,233:107073.
参考文献 159
YANG T S,CHANG S Y,DENG J H.Investigation of loading-unloading curve and stress distribution of thin hard coating by finite element analysis during nanoindentation process[J].Applied Mechanics and Materials,2013,465-466:1365-1369.
参考文献 160
SANTANA Y Y,LA BARBERA-SOSA J G,STAIA M H,et al.Measurement of residual stress in thermal spray coatings by the incremental hole drilling method[J].Surface & Coatings Technology,2006,201(5):2092-2098.
参考文献 161
ZHU J G,XIE H M,LI Y J,et al.Interfacial residual stress analysis of thermal spray coatings by miniature ring-core cutting combined with DIC method[J].Experimental Mechanics,2014,54(2):127-136.
参考文献 162
BAE G,JANG J I,LEE C.Correlation of particle impact conditions with bonding,nanocrystal formation and mechanical properties in kinetic sprayed nickel[J].Acta Materialia,2012,60(8):3524-3535.
参考文献 163
JIANG J S,WU D,WANG W Z,et al.Fracture behavior of TBCs with cooling hole structure under cyclic thermal loadings[J].Ceramics International,2020,46(3):3644-3654.
参考文献 164
ALEKSEENKO I,PEDRINI G,MARTINEZ-GARCIA V,et al.Residual stress evaluation in ceramic coating under industrial conditions by digital holography[J].IEEE Transactions on Industrial Informatics,2020,16(2):1102-1110.
参考文献 165
ROACHE D C,BUMGARDNER C H,HARRELL T M,et al.Unveiling damage mechanisms of chromium-coated zirconium-based fuel claddings at LWR operating temperature by in-situ digital image correlation[J].Surface & Coatings Technology,2022,429:127909.
参考文献 166
BAE J S,KRISHNASWAMY S.Subinterfacial cracks in bimaterial systems subjected to mechanical and thermal loading[J].Engineering Fracture Mechanics,2001,68(9):1081-1094.
目录contents

    摘要

    柔性聚合物材料作为航天器表面用关键材料,易受到空间环境的协同损伤,在其表面制备防护涂层是实现长期服役的重要技术。但由于常用防护涂层与基体间的性能差异,涂层易因应力出现开裂和剥落,因此应力分析对于材料的设计和优化非常重要。对于涂层应力的分析方法,主要可以分为基于试验测量以及基于数值仿真的有限元分析方法两类。梳理目前常见的试验测量方法,分析有损法和无损法试验测量的应用,整理归纳基于数值仿真的有限元分析方法的原理以及相关应用,比较不同方法的优缺点,总结其局限性以及应用前景。不同应力测试分析方法在材料的服役寿命和失效形式预测中发挥了重要作用,但传统的机械有损测量方法难对应力情况进行实时监测,近年来发展起来的无损法也存在一定的应用局限性,有限元模拟具有实时、全面的应力测量优点,但是与实际涂层模型具有一定的差距。基于目前试验方法与有限元仿真各自的局限性,提出将有限元仿真与试验表征结合成为进一步指导涂层设计的有效方法,有望有效预测涂层失效机制,优化涂层材料制备工艺,开发具有低应力结构的涂层材料,为聚合物表面用关键涂层材料的轻量化发展和长期可靠服役提供技术支撑。

    Abstract

    Flexible polymer materials, which are key materials for spacecraft surfaces, are exposed to the synergistic erosion of ultraviolet(UV) irradiation, ionizing irradiation, and atomic oxygen in the space environment, resulting in material loss and functional failure. Therefore, to achieve long-term service, it is often necessary to prepare protective coatings on surfaces. For most coating materials, during processing, manufacturing, and use, owing to their brittleness, the coating often exhibits a local stress concentration due to temperature changes. With the continuous increase in thermal stress, cracking and spalling occur after exceeding the tensile strength limit, which has become a significant factor affecting performance. Therefore, the analysis of the thermal stress distribution is significant in the design and optimization of coatings. The analysis methods of thermal stress in coatings can be divided into two categories: experimental measurements and finite element analysis based on numerical simulations. Owing to the limitations of a single stress-testing method, limitations in the process of material stress analysis have not been addressed. Therefore, an increasing number of researchers have combined finite element simulations with experimental characterization. Finite element simulations can be used to analyze the theoretical stress distribution of materials under idealized conditions and further optimize the calculation parameters according to environmental conditions, gradually approaching the coating condition under real conditions. Moreover, measuring the actual stress distribution of a material through experiments and matching it with the calculated results effectively solves the problem of calculation reliability. The key factors influencing the material stress can also be effectively understood by analyzing the gap between the simulation and measured results. The combination of finite element simulations and experimental measurements has gradually become the most widely used method for analyzing the stress of coating materials. Owing to the mutual restrictions of the flexibility and protection ability of space-protective coatings on polymer surfaces, improving the flexibility of materials while maintaining good protection performance has become a key problem. Therefore, the stress analysis of the coating has become an important direction for improving the coating design. Space-protective coatings, especially inorganic coatings with good protective properties, face complex temperature-cycling environments in the actual space environment, and changes in the temperature field cause different degrees of deformation, cracking, and other failures of coating materials. In addition, the protective coating needs to be processed at a certain temperature during the preparation process, and a change in these temperature fields causes stress problems in the protective coating. However, it is difficult for traditional stress testing methods to effectively characterize the process of stress generation and accumulation without failure. Finite element simulation is limited in that it is difficult to establish environmental and material models in the actual application process. Therefore, by summarizing the current common thermal stress analysis methods, this study aims to analyze the relevant factors affecting the service life of the coating, which will help adjust the composition, structure, microstructure, and other parameters of the material, predict the failure form of the coating and optimize the preparation process of the coating material. By analyzing the advantages and limitations of destructive test methods and non-destructive test methods based on experimental measurements, as well as finite element simulations, this paper further summarizes the improvement of the current commonly used stress analysis methods by combining the two to guide the coating design and develop coating materials with a low-stress structure. This study provides technical support for the lightweight development and long-term reliable service of key coating materials for polymer surfaces.

  • 0 前言

  • 聚合物材料由于具有优异的光、热、力学性能等特性获得了广泛应用。随着航天器朝着轻量化、可展收方向发展,柔性轻质的聚合物材料被广泛地应用于航天器表面的热控、电源和柔性结构等领域[1-2]。然而,空间服役普遍面临严苛的复杂环境,存在紫外辐照、带电粒子、高真空、冷热循环、低地球轨道(Low earth orbit,LEO)空间环境中的原子氧等恶劣环境因素的影响,对航天器的运行造成了极大的威胁[3-4]。更重要的是,其他环境因素与原子氧对聚合物等材料存在多因素协同作用,也将加速材料的破坏,威胁在轨安全运行。因此,为了保证长期在轨服役需求,在聚合物材料表面制备空间环境防护涂层非常重要[5-6]

  • 由于聚合物表面空间防护涂层柔性与防护能力相互制约的特性,如何在提高材料柔性的同时,维持较好的防护性能,成为关键问题,因此对涂层的应力分析是改善涂层设计的一个重要指导方向。空间防护涂层,特别是防护性能较好的无机涂层,在实际的空间环境服役过程中,面临着复杂的冷热交变环境,温度场的变化会使得涂层材料发生不同程度的形变、开裂等失效问题。而且防护涂层在制备过程中通常需要在一定温度下进行处理,这些温度场的变化也会对防护涂层造成应力问题。聚合物表面空间环境防护涂层在温度场下的失效问题与其内部应力的积累有关,面对环境温度的变化时,涂层往往因热失配产生热应力,随着应力的积累并达到临界强度极限时,出现开裂、脱落等失效问题。因此,对于聚合物表面空间环境防护涂层的热应力分析,是防护涂层使用过程中可靠性评价的一个重要问题,通过分析涂层材料的温度场应力分布情况,有望对材料的失效过程进行预测。通过对影响涂层寿命的相关因素,如厚度、表面能、热膨胀系数差、组成结构设计等进行分析,将有助于调节材料的组成、结构和微观形貌等参数,并进一步预测涂层的失效形式,了解涂层的失效机理,反馈设计合理的涂层制备参数,制备力学性能优异的聚合物表面用空间环境防护涂层材料[7]

  • 目前常见的应力分析方法主要有基于试验测量的应力测试方法及基于数值模拟的有限元模拟,这两种方法从不同的角度考察涂层的应力分布情况,具有各自的应用范围及优势[8]。试验测量的应力分析方法具有直接、便捷的优点,但普遍存在精度不高、测量范围有限等劣势。而有限元可以针对不同材料进行特异性分析,而且对测试条件和测量范围要求很低,可以较为准确地展现材料的应力分布情况,弥补试验测量的不足之处。因此,将有限元模拟与试验测量相结合对涂层材料的应力分布情况进行分析,可以结合两者的优势,具体分析涂层的失效机理,有望预测涂层的失效过程,优化材料制备工艺,指导长寿命、多功能和高可靠的聚合物表面空间环境防护涂层材料设计。

  • 本文在分析目前航天器常用聚合物的应用背景、服役环境、防护涂层设计的基础上,详细介绍常见的应力分析方法,并进一步对应力分析如何指导长寿命、多功能和高可靠的聚合物表面空间环境防护涂层材料设计提出建议。

  • 1 聚合物的空间环境应用与防护涂层

  • 航天器的热控、结构和电源三个主要分系统外部大量使用聚合物及其复合材料。近年来,随着我国空间科学、通信、遥感、对地观测等民用和军事需求日益增长,以空间站和低轨卫星互联网为代表的低轨航天器已成为我国太空战略的重要组成部分。SpaceX 基于“星链”卫星平台的“星盾”卫星系统进一步凸显了低成本、规模化低轨航天器对国家安全的重要性[9]。低轨航天器的批量化研制更是迫切需要大量使用质量轻、耐弯折、易量产的柔性聚合物薄膜材料以大幅降低研制和发射成本。航天器各分系统应用较多的聚合物材料主要包括聚酰亚胺薄膜、氟塑料薄膜、聚脂薄膜、环氧树脂等。根据对功能的不同需求,涂层往往设计为具有不同厚度的单层结构或者多层梯度结构等,如热控涂层的厚度大多数为 100 μm 左右,而低轨航天器表面的耐原子氧涂层厚度在 1 μm 左右。热控材料作为航天器温度控制功能的关键材料,通过调节表面的太阳吸收比和发射率来调节航天器表面热平衡温度[10-12]。聚合物材料如聚酰亚胺(PI)、聚全氟乙丙烯(F46) 等,具有较好的空间稳定性和柔性,是航天器最常用的柔性热控材料基材。太阳电池阵基板常用刚性基板、柔性基板结构,其表面大量采用聚酰亚胺薄膜、环氧树脂等[13-14]。近年来,随着全柔性太阳电池阵的研制,无色透明氟塑料薄膜亦成为太阳电池阵柔性封装的关键材料[15]。此外,柔性航天器也是重要的发展方向之一,比如增阻离轨薄膜帆是针对低地轨道的小卫星等空间碎片清除技术中可行性最高、经济性能最好的技术之一。离轨帆帆面轻薄,帆面材料为双面镀铝的聚酰亚胺或聚酯薄膜。2019 年发射的金牛座离轨帆使用了仅 6 μm 厚的聚酯薄膜[16]。除此之外,航天器在轨运行过程中,容易受到自身结构或者环境因素的影响引起机械结构和部件的振动和变形,导致航天器的结构形状变形或者工作精度下降,影响如航空发动机叶片、空间望远镜支架、传感器等典型器件,由于这些器件对于高精度和高稳定性的需求,基于柔性结构的材料和器件成为了航天装备的主体。高聚物如聚酰亚胺、聚二甲基硅氧烷(PPMS)、PI、聚酯等,具有优异的机械性能和柔性,在柔性结构和器件中获得了广泛的应用[17]

  • 由于航天器运行的空间环境存在诸多的恶劣环境因素,紫外辐照、带电粒子、高真空、冷热循环、低轨空间环境中的原子氧等都会对聚合物产生破坏作用,因此聚合物在空间环境服役的过程往往需要进行防护。紫外辐照是太阳电磁辐照在 10~400 nm 的主要表现形式,能够提供高于有机聚合物分子结合键能的能量,使得有机物化学键断裂,影响材料的力学、光学等性能[18-19]。空间环境中还存在着原子核尺寸的高能带电粒子,当带电粒子与材料发生相互作用时,会将自身的动能转移至材料内部,通过电离作用或者轰击的高能作用使有机材料发生断链并降低力学性能[20]。由于空间环境无空气介质传热,在航天器面向太阳和背离太阳的不同位置,会有较大的温度差别,而长期的冷热循环会使得结构中产生较大的热应力,进一步使得材料疲劳受损。空间极端温度环境造成的聚合物材料变形,可能会进一步影响各部件的正常工作,如光伏电池阵在变形较大的情况下将无法展开等[21]。除这些在高、中、低运行轨道普遍存在的恶劣环境因素外,近年来发展的空间站、星链等卫星航天器运行的低地球轨道存在着大量的原子氧(紫外线分解氧气分子产生),其动能达到 5 eV,能使大多数材料的化学键断裂进一步氧化剥蚀,而且当撞击材料时会产生高热量,严重影响聚合物材料的在轨服役寿命[22-26]

  • 对低轨空间环境的聚合物材料进行防护时,主要分为有机防护涂层、无机防护涂层和有机-无机复合涂层三类。有机防护涂层的应用范围广,可以适用于不同尺寸和形状的材料表面。有机防护涂层通常具有透光性好、韧性好和附着力强等优点,将树脂、聚酯等有机物通过涂覆、模压等方式制备在有机基底上,可以有效抵抗空间环境中的冷热交变带来的应力影响,但是有机涂层当面对低轨环境中的原子氧时,是通过牺牲涂层结构被原子氧氧化成致密的防护层,从而实现的防护功能,但通过氧化形成的防护层致密程度不高,防护性能相对无机涂层较差[27-29]。因此,具有较高致密度的无机涂层是当前应用更为广泛的空间防护涂层,通常通过磁控溅射、等离子喷涂、溶胶凝胶等方法制备在聚合物表面,具有较为显著的原子氧屏蔽效应[30]。除此之外,无机涂层在耐磨、防腐蚀、防静电等功能化方向上也具有独特的优势。将石墨烯、二硫化钼等二维材料制备在聚合物表面,可以增强材料的耐磨、耐腐蚀和防静电性能[31];将氧化锌、氧化钛等宽禁带半导体通过磁控溅射制备在聚合物表面,可以实现紫外防护[32];在聚合物表面制备具有耐高温性能的氧化锆基热障涂层,延长高温部件的使用寿命[33];含硅的无机涂层可以提高低轨航天器材料表面聚酰亚胺耐原子氧侵蚀性能等[34]。但是无机涂层具有的力学性能差、与有机基材之间的热膨胀系数差距大、附着力差等问题极大地限制了其在空间环境中的应用。由于有机涂层与无机涂层各自的局限性,有机-无机复合涂层逐渐得到了研究。有机-无机复合涂层兼顾了两者的共同优势,可以同时具备优异的耐原子氧性能、较好的力学性能等。但是由于有机成分在材料体系中的比例与防护性能成负相关,与力学性能成正相关,因此如何在维持优异的防护性能的同时提高材料的抗开裂、脱落成为当前研究的主要问题[35-36]

  • 对于具有较好柔性的有机涂层,在制备过程中不容易产生由温度变化而导致的热应力失效问题,而无机涂层以及有机-无机涂层由于基底与涂层之间力学性能之间的差异,会产生较为显著的热应力分布。聚合物表面涂层材料的聚合物防护涂层在制备过程中由于制备方法的差异,对其实际应力情况也有较大的差异,在面对空间环境的冷热交变时,也将会有较为不同的应力分布情况。在面对空间环境中的冷热循环时,防护涂层与聚合物基体间会由于热膨胀系数差异较大,发生不同程度的形变,在界面和边缘处产生较大的拉 / 压应力,随着应力的不断增加,微裂纹逐渐产生,一旦微裂纹形成,就会在拉应力的持续作用下进一步扩展,降低涂层的断裂性能和结合能力,产生大裂纹和剥落等失效问题。当温度下降时,涂层更容易产生较大的压应力,而压应力的存在不会直接导致材料损伤,而是通过疲劳的积累影响涂层的使用寿命,而且会导致涂层与基底之间分离。当表面存在压应力时,其发生断裂的过程中,拉应力将首先平衡已有的压应力,当进一步继续增大到断裂强度极限时就会发生断裂。由于涂层与基体之间的相互约束,涂层无法发生位移,只能通过弹塑性变形来释放应力,而随着温度的持续变化,热应力也将持续生成,当应力超过变形所能释放的限度时,就会持续积累,直至达到抗张、抗压强度极限,导致裂纹、屈曲等失效形式,导致材料的失效问题[37-42],如对航天器起到热防护作用的热障涂层,在制备过程中往往需要高温烧结。因此,基底与涂层之间热膨胀系数的差异,会导致较大的残余热应力产生,进一步导致脱层脱落和开裂问题,而通过不同形式的掺杂合成,可以降低涂层的烧结温度,进一步降低涂层的残余热应力变化,提高附着力[43];具有较好耐磨性和硬度高的类金刚石涂层在热沉积过程中的残余热应力将会极大地影响其热稳定性,通过对涂层的梯度设计,将极大地提高涂层在高温下的服役稳定性[44]。无机防护涂层如 SiOx等,在温度变化过程中,会由于热膨胀系数相对于聚合物基底较小,而产生较小的变形程度,从而与变形程度较大的基底之间产生较大的拉 / 压应力,导致进一步发生涂层开裂或脱落。而且,根据已有的研究结果表明,对于低轨航天器表面原子氧防护涂层而言,当基体与涂层之间的热膨胀系数差距较大时,会导致防原子氧性能下降,而且在反复的冷热交变过程中会改变聚合物基底中的键合情况,使材料与 AO 之间的相互作用被削弱[44]

  • 通过无机涂层热应力的产生因素可以发现,空间环境防护涂层在其制备、加工和使用过程中会受到温度的影响而产生不同程度的热应力问题,进一步导致材料和器件的失效。通过分析聚合物表面空间防护无机涂层和有机-无机复合涂层的应力分布情况,将对于了解涂层的失效过程,预测涂层的使用寿命,设计合理的涂层结构具有重要的意义,针对不同涂层的应力分析方法也各有不同,而有机-无机复合涂层的结构模型较为复杂,在目前常见的应力分析方法中,仍未能进行较为准确的试验测量或者模拟计算。因此,本文主要针对具有较为完备应力分析方法的空间环境无机防护涂层,在制备过程和外界温度载荷下的热应力分析方法进行了总结和分析。

  • 2 基于试验测量的热应力分析方法

  • 基于试验测量的热应力分析方法主要可以分为有损法和无损法两大类。有损法指的是利用机械测试方法对结构进行破坏,释放材料内部的应力,从而得到测量结果,常用的机械测量方法有钻孔法、压痕法、切条法和柔度法等,有损法具有实时性,无需局限于实验室的环境中,且可以测试尺寸较大的材料,具有方便快捷的优点。

  • 随着测试方法的不断发展,无损法由于对被测材料没有损害而逐渐成为了常用的应力测试手段,它主要是通过用间接方法来表征应力的大小,如光、声、高速粒子等,包括 X 射线衍射法(中子衍射法)、拉曼光谱法、声发射法、超声波法等,无损法的测试原理较为复杂,但是精度较高,可以精确测量较小范围内的应力大小。当通过测量的手段分析涂层的应力时,往往只能测量稳定状态下的残余热应力,不具有时效性。接下来将对其中几种常用的应力分析方法进行简单介绍。

  • 2.1 钻孔法

  • 钻孔法是一种测量残余热应力时较为常用的有损测试技术。其原理是在材料表面钻孔,使孔表面的应力重新分布,同时孔周围会产生相应的形变,用应变计测量各方向上的变形大小,结合钻孔直径、深度、应变计尺寸及涂层、基体的相关参数等,可以推导出应力分布情况[45-46]。根据钻孔的深度可以将钻孔法细分为贯穿材料厚度的通孔法和非贯穿性的盲孔法。通孔法通过贯穿材料厚度方向上的孔,可以较为准确地得到整体应力值,盲孔法则对材料破坏程度更小,能更准确地反映表面的应力情况。

  • 利用钻孔法可以考察沿深度方向涂层中的应力分布情况,对涂层的粘结强度进行表征,可以得到涂层与基体间的结合强度与涂层组成之间的关系。除此之外,还可以得到制备过程中,处理温度、粉末形貌和气流量等工艺参数对热应力的影响,有利于了解涂层的可靠性,并优化工艺制备参数[47]。 ABUBAKAR 等[48]利用钻孔法考察了等离子喷涂的 NiCrAl 和 Ni-20Al 涂层的残余热应力,得到了涂层中的应力分布情况,拉伸残余热应力沿深度方向为非线性等双轴分布,极大地降低了涂层的粘结强度。对于钻孔法而言,通常将材料的横向结构视为各向同性的平面均匀结构,当研究材料内部层深方向上的分布情况往往需要结合材料表面的电解腐蚀或者抛光等方法进行剥层,包括沿表面进行均匀腐蚀剥层和斜面腐蚀剥层等方法[49-50],通过切削或者电化学腐蚀将材料逐层剥离,释放材料内部应力,破坏原有的平衡状态,使得应力状态重新平衡分布,对由残余热应力释放导致的挠度进行建模并计算,根据产生的变形力与剥层中的残余热应力大小相等、方向相反的原理,可以得出各层应力的大小。RECH 等[51]利用机械的方法对材料进行砂纸打磨剥层,表面用应变计测量位移变化,转化为应力大小,并结合 X 射线衍射测试的结果,得到了前处理温度对涂层残余热应力的影响。LIMA 等[52]通过纵向方向上的机械剥层及应变测试,分析了不同梯度结构涂层的应力分布情况,CoNiCrAlY 层和 NiCoCrAlY 涂层的应力在表面处较高,随着距离基体的距离越近,应力值越小,逐渐转变为压缩应力,证明了该方法对于测量不同层状结构的涂层系统不同位置处的应力值的有效性和准确性。使用钻孔法测量应力大小时,一般认为小孔区域内应力均匀分布,因此将几张应变片布置在以孔为中心的圆上,即可测出应变情况。根据其测试原理可知,当要研究材料各位置的应力分布情况时,需要对材料不同位置进行取点分析,操作较为繁琐[53],而且在对材料进行钻孔的过程中,容易造成应力集中导致材料塑性形变,产生较大的误差。钻孔法通常使用的应变片只能贴在相对光滑和平坦的表面,描述二维平面内的应变情况,尺寸相对也较大,在分辨率和实用性方面都存在一定的局限性。因此,随着应力测试技术的不断发展,钻孔法也逐渐获得改进,利用脉冲激光等高效方式对涂层表面打孔,可以产生各种形状的孔结构,更有利于精确测量应力大小,再结合数字全息技术、电子散斑干涉、云纹干涉等光学方法对表面变形进行精确测量,可以将钻孔法从静态测量拓展到对瞬态应力的测量[54-55]。PEDRIN 等[56]利用激光脉冲对涂层表面进行切削钻孔,并结合数字全息技术对由于应力释放产生的三维位移进行测量,结合材料的相关参数,得到了如图1 所示涂层的残余热应力分布情况,与标准的机械钻孔应变仪的测量结果具有较好的一致性。该方法可以减少机械加工过程中的接触及误差,并且对于测量动态变化过程某些状态下的瞬态应力具有较好的可行性。 MARTINEZ-GARCIA 等[57]也利用这种方法调控了等离子喷涂参数,得到了具有较大残余压应力的 Al2O3 / TiO2涂层。

  • 图1 激光钻孔示意图 (a)圆孔(b)环形孔(c)自由成型[56]

  • Fig.1 Schematic diagram of laser drilling: (a) Hole shape milling; (b) Ring shape milling; (c) Free shape milling. [56]

  • 钻孔法用于研究聚合物表面空间环境防护涂层材料的应力情况时,由于涂层材料的叠加性以及基底的应变敏感性,往往需要对不同层结构的材料进行本征参数的分析,以获得准确的应力分布情况,操作较为繁琐。XU 等[58]通过钻孔法分析碳 / 聚酰亚胺和碳 / 环氧复合材料的应力情况发现,聚合物基材料产生的钻孔受温度影响较小,钻孔时的热稳定性和变形程度较好。MAGNIER 等[59]利用钻孔法分析了聚碳酸酯材料的应力情况,通过分析得出,通过在水中淬火可以产生压应力,减少由于环境温度因素产生的应力开裂问题。他们在此基础上分析了碳纤维增强环氧复合材料的应力情况,得到了可以精确测量该复合材料应力情况的钻孔参数和校准系数,对于分析复杂堆叠结构的聚合物基底复合材料的应力情况提供理论指导[60]。TABATABAEIAN 等[61]通过钻孔分析了玻璃纤维增强聚合物(GFRP)不同厚度试样在热疲劳后的分层损伤情况,结果表明,通过添加多壁碳纳米管可以显著降低其残余应力大小和分层损伤状态。

  • 2.2 压痕法

  • 压痕技术与钻孔法相似,利用被测材料的应变情况来反映应力大小,是一种操作较为简单而且测试精度较高的应力分析方法,属于微损测试方法。测量原理是,对待测材料施加连续变化的载荷,随着载荷的增大,样品表面逐渐下压产生位移至不可恢复后产生孔洞,此时可以得到载荷-位移的关系曲线(图2),对于内部存在残余热应力状态的涂层而言,在面对压入的载荷时,根据内部的压应力或者拉应力状态,会产生不同的作用,产生与零应力状态下不同的压痕深度,通过比较应变增量可以分析材料的力学性能参数,结合数值分析得到函数关系,进一步求解出材料的应力应变[62-64]

  • 图2 压痕法测试过程中的载荷-位移曲线[79]

  • Fig.2 Load-displacement curve during indentation measurement[79]

  • 压痕法相比于钻孔法对材料的表面破坏程度更小,而且具有较高的空间分辨率,对于分析小尺寸涂层的应力分布情况具有独特的优势。首先对材料施加载荷使其发生弹性变形,而随着载荷进一步加大,当越过临界点时材料将发生塑性变形,随后进行卸载,在卸载的过程中,材料的弹性变形将恢复,而塑性变形则无法恢复,成为微压痕,根据这一过程形成的曲线即为载荷-位移曲线,根据该曲线可以较为准确地分析涂层的应力分布情况[65]。随着技术的不断发展,材料和器件也逐渐趋于集成化和微细化,传统的压痕技术已经不能满足对精度的需求,针对更小尺寸样品的微米压痕法和纳米压痕法随之产生,对于考察局部结构与材料力学性能的关系具有极高的价值[66-68]。由于微、纳米压痕法可以测量极小区域内的应力分布情况,因此通常可以获得材料在某一路径上应力的连续变化过程。FANG 等[69]利用纳米压痕法对 Ni-B 涂层结晶度与应力值的关系进行了研究,发现涂层内部为压应力,残余压应力大小与其结晶度有关,残余压应力会随晶粒尺寸的减小而减小,在热处理的过程中,由于缺陷消失造成的涂层体积减小将提高整体致密度,进一步导致内部拉伸应力增加而抵消部分残余压应力,使总体压应力值减小。常规的压痕法主要针对于变温过程结束后稳定状态下的应力测量,而高温压痕的测试方法可以测量材料的高温状态下的实时应力情况,对于了解其高温失效机理具有独特的优势[70-72]。HE 等[73] 分析了不同温度下氧化钇稳定氧化锆(YSZ)涂层的载荷-位移曲线,结果表明,最大压痕深度与测试温度成正比,说明温度越高,塑性变形程度越大。QU 等[74] 利用原位高温压痕法考察了纳米尺寸的YSZ涂层材料在高温下的断裂性能和残余热应力,将样品在高温炉中升温到所需温度并保温,当达到热平衡状态后,施加载荷,结果表明材料的应力和断裂性能都会随着温度的升高而下降。

  • 纳米压痕对于实时检测涂层材料在实际应用环境中的应力分布情况和涂层失效过程具有较好的应用前景。但是同时存在一定的问题,当将纳米压痕法用于聚合物表面空间环境防护涂层的应力分析时,需要考虑基底与涂层之间的相互约束行为,压痕深度以及涂层在针头压入时的表面粗糙度以及表面张力等均对测试的准确性和可重复性均有较大的影响[75-76]。DAHL 等[77]通过低载荷纳米压痕法分析了聚合物表面等离子沉积涂层的应力情况,结果表明,等离子沉积的方法可以形成界面渐变层,进一步提高涂层与基底之间的附着力,具有更好的力学性能。KAULE 等[78]设计了一种用于聚合物表面的纳米压痕技术,通过减小针尖的尖端半径,简化聚合物材料的应力计算模型,表征了保护涂层对材料屈服强度和软化温度的影响,证明了该方法用于聚合物表面不同涂层热力学性能的可行性。尽管微纳米压痕技术已经获得了充分的发展,但是当用于存在高低温、电磁场等复杂环境下的测试时,仍然有诸多的问题,如对复杂空间环境的分析模型设计困难等。

  • 2.3 X 射线衍射法(中子衍射法)

  • 在利用 X 射线衍射仪分析材料图谱时,如果待测样品处于零应力状态,则不论样品所处的倾斜角度的值,都会产生相同的衍射峰位置。当样品受到应力时,晶面间距会产生变化,当改变 ψ 角时,同一特征峰的位置会产生峰型和峰位的变化,测试方法如图3 所示,结合以下公式可以计算出应力大小[80-82]

  • σφ=-E2(1+v)cotθ0π180(2θ)sin2θ
    (1)
  • K=-E2(1+v)cotθ0π180
    (2)
  • M=cotθ0π180
    (3)
  • 图3 X 射线衍射应力测量的几何结构示意图[97]

  • Fig.3 Geometric structure illustration of X-ray diffraction[97]

  • X 射线衍射法进行实际测试时,分为同倾法和侧倾法两种常规方法。当 2θ 所处平面与 ψ 平面相重合时的测量方法称为同倾法,当 2θ 所处平面与 ψ 平面垂直时的测量方法称为侧倾法。在实际测量过程中,当可测试角度有限时,通常使用侧倾法。X 射线的缺点在于穿透深度有限,只能测量材料表面的残余热应力。当测量材料内部应力分布情况时,就需要与能够测量获得纵向深度方向上应力的测试方法相结合,如对样品进行逐层剥离,再测量每层的表面应力大小,就可以获得各个位置上的应力分布情况[83];或者与钻孔法相结合,通过对不同深度孔的应力分析,也可以获得不同深度的应力分布[84];除此之外,通过改变 X 射线的有限穿透深度,也可以获得厚度方向上的应力梯度。KANIA 等[85]利用穿透深度不同的 X 射线,研究了单晶镍涂层的应力梯度,证明了该方法用于测量具有微观梯度结构材料的应力分布时的有效性。MARIANNA 等[86]的研究结果表明,涂层与基体的厚度对于材料应力具有较大的影响,沉积时间越长,涂层的厚度越厚,应力会越接近于涂层界面,而且应力的大小与距离界面的距离成反比。

  • 通过对 X 射线衍射技术的改进,对于不同材料的应力测试精度和针对性也不断提高。WANG 等[87] 提出了一种平均 X 射线应变(AXS)的方法,通过测量不同旋转角度的cos2αsin2ϕ 可以提高 X 射线应变测量的精度,减小应力计算值的偏差。GELFI 等[88]利用掠入射小角 X 射线衍射技术(GIXRD)测量了 LaCoO3 的应力情况,证明了小角度扫描方法对于测量厚度较小的薄膜材料的准确性。 MARCISZKO 等[89]利用多反射掠入射小角 X 射线衍射技术,通过较小角度下入射角度的改变,测量了表层残余热应力梯度的分布情况。除了 X 射线衍射法外,中子衍射法也是一种测量结构内部应力的有效方法,中子衍射法与 X 射线衍射测试方法的原理相似,利用特征衍射峰位置的变化间接表征应力大小,但是中子衍射具有更高的能量,能够穿透的深度相比于 X 射线更深,对于测定厚度较厚的样品内部的残余热应力具有准确度更高的优势[4990-91]。 MATEJICEK 等 [92] 用中子衍射的方法测定了 NiCrAlY 和 YSZ 涂层热喷涂后的残余热应力,确定了沉积温度对应力的影响规律。ROGANTE 等[93]指出,将中子衍射与 X 射线衍射相结合,可以提高应力测量的精度,并扩大应力测量的范围,证明了两种技术之间的互补性。

  • 由于 X 射线衍射的特异性,只能分析具有晶体结构的涂层材料的应力情况,当用于聚合物材料表面空间环境防护涂层的应力表征时,可以无损地测量出表面涂层各位置应力分布情况,但对聚合物基底的应力情况,往往需要添加银粉、铝粉等金属微粒填料增加晶体结构,局限于一定的使用范围。在低应力范围内,聚合物中金属导电粒子的应力和应变与基体内的应力和应变成正比,根据这一方法可以快速简便地测量无晶体结构的聚合物材料的应力分布。BRANDT 等[94]将同步加速 X 射线衍射 (SXDM)与扫描电子显微镜及数字图像相关 (Digital image correlation,DIC)相结合,分析了聚合物基底上多层金属纳米薄膜的拉伸过程,验证了应力应变模型的准确性。NISHINO 等[95]利用 X 射线衍射法分析了聚酰亚胺与铝之间的应力情况,结果表明调控热处理和蒸发温度可以制备具有低应力水平和高弹性模量的聚酰亚胺。LUAN 等[96]将 X 射线衍射法与钻孔法相结合,分析了聚合物表面金属涂层的应力情况,表明 50 μm 厚的 Cu 涂层可以实现较低的应力结构。

  • 2.4 拉曼光谱法

  • 拉曼光谱相比于 X 射线衍射和中子衍射法具有更强的穿透力、较高的空间分辨率(1 μm)和较宽的频谱范围[98]。材料应力的存在会导致微观结构和相应结构振动的能量变化,进一步导致特征峰位置频移,根据频移可以精确计算出晶体内部应力的变化情况[99]。利用拉曼光谱可以分析涂层应力的动态变化过程,根据拉压应力的不同,材料的特征峰位置将向不同方向移动,可以定性分析涂层应力的变化过程[100]。通过测量应力应变与拉曼峰频移距离之间的关系,得到拉曼频移-应力系数 Пu。涂层内部应力与拉曼频移、零应力的基准拉曼频移之间的关系为[101]

  • σ=Δv2Πu
    (4)
  • TANAKA 等[102]用拉曼光谱法测定了大气等离子喷涂热障涂层的应力情况,得到了单轴外加压应力与拉曼频移具有线性关系,理论热应力与实际测量值差距较小,证明了拉曼光谱法测试热应力的准确性和有效性。ZHU 等[103]利用透射电子显微镜-背散射电子衍射—拉曼光谱(TEM-EBSD-Raman)联用,分析了涂层结晶度与应力和裂纹之间的关系,根据拉曼峰宽与结晶度成负相关,峰移程度与应力水平成正相关的规律,研究结果表明,应力集中主要出现在结晶度差的位置,更容易出现裂纹。由于拉曼光谱具有优异的穿透性能,对于考察材料在不同深度范围内的残余热应力分布情况具有独特的优势[104]。LI 等[105]通过拉曼光谱技术探讨了 Cr2O3 应力随厚度的变化规律,根据研究结果表面,涂层表面存在的残余拉应力是导致表面微裂纹形成的主要原因,当涂层厚度小于 0.8 μm 时,涂层应力与厚度直接相关,当厚度较大时,应力大小基本稳定,与厚度的相关性降低。 OHTSUKA 等[106]利用共聚焦拉曼光谱技术分析了化学气相沉积在Si3N4表面的Al2O3涂层的残余热应力,提出了应力与厚度的关系方程,得到了厚度方向上的应力分布情况,涂层的外表面以及涂层与基体界面处分别为应力的最小值与最大值。

  • 将拉曼光谱与 X 射线衍射或者其他应力测量手段相结合,可以通过互相映证,增加测量结果的可靠性。SRINIVASAN 等[107]利用拉曼光谱技术与 X 射线衍射相结合,分析了铝合金基体上的金刚石镀层涂层(DLC)的残余热应力,通过对材料的 G 峰位置的测量,间接量化了材料的无应力状态下的峰位置(图4a),并进一步根据分层 DLC 涂层应力状态下与无应力状态下的峰位置对比(图4b)可以看出,应力存在情况下,峰位置明显右移,证明了沉积后薄膜内部处于压应力的状态,结果发现涂层材料的应力松弛量与失效前的载荷循环次数存在良相关性。DAS 等[108]将拉曼光谱技术与 X 射线衍射相结合,分析了淬火过程的热应力大小,两种测试手段的分析结果一致,得出了等离子喷涂过程中粒子速度和温度对应力的影响规律。

  • 与 X 射线衍射相似,拉曼光谱法局限于测量具有拉曼活性的涂层材料,容易受到聚焦深度、测试温度等外界条件的影响,对聚合物表面空间环境防护涂层材料进行应力分析时,只有进行有效的标定才能得到准确的应力值。KAMIYA 等[109]利用拉曼光谱法分析了PbO涂层在聚合物表面与金属表面的应力情况,结果表面,树脂表面涂层在沉积过程产生的热应力和其他残余应力远大于金属表面。

  • 图4 DLC 涂层应力状态下的拉曼峰移[107]

  • Fig.4 Raman shift of DLC coating under stress condition[107]

  • 除此之外,有损应力测量方法还包括环芯法、切条法,无损测量方法还有超声波法、磁性法和声发射法等。环芯法是通过在待测区域贴上一圈应变花,在应变花外切削一个圆环形的槽,通过应变片测量的变形大小得到应力大小,与钻孔法相比,破坏性更大,但测试精度更高[110-112]。切条法与钻孔法和环芯法原理类似,通过对材料进行切条,释放其中的纵向应力,利用应变仪测量相应的应变大小,间接计算出应力大小[113-115]。超声波法的测量原理是通过声波在材料内部的传播情况来定量计算应力大小,当材料内部的应力发生变化时,超声波的传播速度将发生变化,进一步根据传播速度和不同材料的声弹常数之间的关系就可以计算出材料的应力大小[116-118]。磁测法主要针对于具有磁性效应的金属材料,当材料内部的应力发生变化时,就会出现磁畴位移、磁化现象和磁致伸缩效应等等,会导致材料的磁场强度、磁化率等发生变化,根据其与应力之间的关系,就可以计算出相应的应力值[119]。声发射法主要用于测量具有缺陷结构或者裂纹的材料的应力分布情况,当材料内部应力分布情况发生变化时,往往会产生弹性波,通过对声发射信号的检测,可以得到相应的应力分布规律[50120-123]。这些常见应力测量方法的优缺点比较及适用范围如表1 所示。

  • 表1 常见应力测试方法的比较

  • Table1 Comparison of common methods for stress test

  • 3 基于数值模拟的有限元热应力分析方法

  • 基于数值模拟的应力分析方法,根据模拟尺度的不同,主要可以分为宏观尺度的有限元法[124-125]、介观尺度的相场法[126-128]和微观尺度的蒙特卡罗法[129-132]。由于对温度场的应力分析是对温度、材料系统和应力之间的相互作用关系进行模拟的过程,蒙特卡罗法和相场法更倾向于模拟组织形貌的演变过程,在模拟温度变化过程的应力情况方面研究较少。有限元模拟对于多场耦合条件下的应力模拟具有准确、实时的优点,因此以下对数值模拟中最常用的有限元分析方法进行详细阐述和分析。

  • 3.1 有限元热应力分析方法的原理及过程

  • 对于试验测量的方法而言,大多只能给出局部区域应力的平均值,很难表征涂层内部具体的应力分布情况[133],因此研究者提出了各种分析和计算的模型来模拟应力的变化规律。基于数值模拟的有限元分析可以通过获取数字图像、定义环境条件,对器件和材料的内部应力分布情况进行分析,与现有的通过设计并生产后进行参数优化不同,通过有限元模拟可以在设计阶段考察材料的实际应用寿命,节省生产时间和不必要的实验过程。有限元模拟热应力问题,可以将温度和应变两个环境因素,看作两个相互独立但又互相影响的耦合场,将得到的温度场结果作为温度载荷与外力场作为外力载荷,施加于材料结构中,得到结构应力及应变随温度和时间的变化情况,进一步预测材料的失效形式,从而优化设计。

  • 进行热分析的过程实质上是对传热控制方程的求解,即将实际问题中的外界条件,转换为模型中的边界条件,进行方程求解进一步得到计算结果,分为前处理、求解、后处理三个主要步骤。首先将实体模型转换为有限元模型,并根据所分析问题的实际类型,选择合适的单元属性,同时需要对材料的热力学参数进行设定,包括弹性模量、泊松比、热膨胀系数、导热系数、比热等。最后,根据所需要的精度划分网格,网格的精细程度将极大影响到计算结果的准确度[134-135]。在进行求解的过程中,需要对材料施加边界条件,对于热分析而言,通常将温度、热流率、对流、热流密度、生热率作为自由度约束施加于边界上,并对热分析过程施加分析时间和分析步长,进入求解过程,最后根据求解结果,可以对节点温度、变形程度、应力分布等结果进行读取,以等值云图、矢量图和表格等形式展示,进一步得到所需要的问题结果[136]

  • 3.2 有限元热应力分析方法的实际应用

  • 在实际制造和使用的过程中,普遍存在着由温度不均匀或者热膨胀系数不同导致的热应力和变形问题,如热加工过程中材料内部温度变化导致的复杂热应力变化过程;在使用过程中会出现局部发热,造成热失配问题,产生热应力;高温涂层材料制备完成后在自然冷却过程中产生的残余热应力;卫星表面材料在空间冷热交变环境下的温度变化引起的热应力等问题,成为了限制材料应用发展的瓶颈问题[137]

  • 对于涂层材料而言,在制备和使用过程中会产生一定的热应力。在涂层的实际制备过程中,往往通过热喷涂、氧化等高温手段进行制备。因此在涂层冷却至室温的过程中,会由于热膨胀系数的不同而产生残余热应力,导致材料局部应力集中,进一步导致开裂和剥落问题[138]。在使用过程中,也会由外界环境温度的改变而导致热应力的出现,造成涂层的失效问题。因此,对涂层热应力进行分析,将有利于了解涂层的失效机理,预测失效形式。通过有限元模拟材料的不同结构在热环境下的应力规律,将有望通过改进涂层的制备工艺,制备具有低应力结构的涂层材料,为设计长寿命、高可靠的涂层材料提供理论基础[139]

  • 从组成角度而言,同一基体表面不同种类的涂层,在同一温度环境下,将具有较大的应力差异,同时,施加一定的循环温度场,不同涂层发生失效前的循环次数也不同。当基体类型不同时,基体与涂层热膨胀系数差距越大,热失配问题越严重[140]。因此通过分析不同元素组成的材料的应力分布,有利于了解不同元素涂层的使用寿命[141]。CHEN 等[142] 利用有限元分析了不同组成成分的 MgO / Ni 复合材料的残余热应力分布情况,得到了第一主应力、最大径向应力等应力水平最低时的最佳成分分布指数,综合考虑了材料强度和应力水平,设计了具有优异力学性能的 MgO / Ni 复合梯度材料。JOSHI 等[143]模拟了不同组成的 Ni / ZrO2 在热载荷作用下的应力分布,根据热力学性能与成分的影响关系,得到了能使界面结构产生均匀和较低应力场的组成成比例,优化了涂层厚度和梯度结构参数。DUBIEL 等[144]分析了不同组成的 Si3N4 的残余热应力情况,模拟结果(图5)表明,SiC 的加入会增加平均压应力,在晶界处产生较大的压缩应力,TiN 的加入对于应力值影响最大,Si3N4-TiN 复合材料的应力值最高,在晶粒接触处应力较大,Si3N4 晶粒间应力较小。

  • 图5 残余热应力分布

  • Fig.5 Distribution of residual thermal stresses

  • 从结构的角度而言,涂层的厚度、形貌以及涂层与基体间的界面形状发生改变时,往往对其在温度场中的应力规律也有较大的影响。例如研究结果表明,涂层的断裂问题主要由热应力导致的局部应力集中导致,裂纹密度与涂层的厚度比有关[145-146],考虑到相同的拉伸应变条件下,较薄的涂层需要将更多的应力转移到基体上,即涂层中的应力随厚度的增加而减小[147]。LI 等[148]利用有限元模拟了涂层中的裂纹扩展过程,结果表明,随着厚度的增加,应变能释放率呈线性增长,即涂层越厚,其裂纹扩展速度越快,寿命越短。ZHOU 等[149]通过有限元分析不同形貌的涂层结构,结果表明,在 2D 模型中,矩形的涂层形状相比于圆形更不容易产生局部应力,即球状涂层结构相比于片层结构更容易产生裂纹。HUANG 等[150]采用两种不同粒径的原料制备了 YSZ 涂层,利用有限元模拟分析了孔隙分布情况对涂层材料热循环过程中应力分布的影响,研究结果表明,尺寸较大的颗粒喷涂得到的涂层具有更长的服役寿命,而当孔隙呈垂直于基体方向分布时,可以显著降低涂层内的热应力大小。BAKER 等[151]分析了涂层界面形状对应力的影响,根据研究结果表明当界面曲线的振幅值为 2.5 μm 时,涂层具有较小的压缩应力值,而除此之外的应力值大致与振幅的变化相同。BUROV 等[152]分析了 TGO 涂层的不同界面形貌:正弦波均厚界面和不规则非均匀厚度界面层,有限元模拟结果表明,正弦波界面的波谷位置更容易发生裂纹扩展现象,而不规则界面层具有更大的压缩应力。

  • 目前的防护涂层中,具有梯度结构成分分布的复合涂层材料得到了广泛研究。梯度成分可以减小基底与涂层之间的性能突变,通过形成热膨胀系数过渡变化的涂层结构,可以有效减小热应力带来的消极影响[153-154]。GUO 等[155]利用热循环测试结合有限元模拟,分析了 YSZ 涂层与基底间增加氧化铝过渡层前后的应力情况,结果表明,渐变层的加入有效降低了应力和应力梯度水平,有望延长涂层的使用寿命。HE 等[156]用 ANSYS 模拟了金属梯度功能防护层的应力分布情况(图6),与非梯度层结构相比,应力降低了 5.5 kPa。

  • 利用有限元分析对于聚合物表面无机涂层的应力情况时,往往需要对通过简化的双层结构模型,分析在不同温度位移场下的应力分布情况。CHEN 等[157]利用有限元分析了聚合物与无机涂层之间的界面结合强度,聚合物基底相比于无机物基底具有更均匀的应变和更紧密的附着力,而且涂层厚度的减小和界面强度的提高能够抵抗涂层与基底之间的失配问题。HE 等[158]比较了有限元模拟温度变化下产生裂纹的间距与实际测量的区别,结果表明,有限元分析可以较为准确地分析涂层结构的位移和应力分布,有效预测开裂情况。目前,将有限元应用于聚合物表面空间环境涂层的热应力分析实例较少,未来将有很高的发展潜力。因此,根据涂层在温度场中的应力分布规律,可以得到具有低应力结构的涂层材料的结构设计参数,如材料种类、厚度、孔隙率、梯度成分等微观参数,为涂层材料的制备提供理论基础。根据不同制备参数对涂层的应力影响规律,可以设计出兼具优异性能和低应力长寿命的涂层材料。

  • 图6 简单多层金属涂层和金属梯度涂层热应力分布[156]

  • Fig.6 Stress distributions of Simple multilayer metal structure and metal gradient structure[156]

  • 4 数值模拟与试验测量相结合的热应力分析方法

  • 对于目前常见的热应力分析方法,试验测量的方法具有操作简单、测量结果较为可靠、测试过程和模型完备等优点,但也具有一定的局限性,如盲孔法和切条法等机械测量方法需要对材料进行破坏,X 射线衍射法和拉曼光谱法只能测量材料表面的应力大小,声发射法很难表征实际应力大小等。而且对于在高温环境下服役的材料而言,其对温度的动态响应过程将极大地影响到材料的使用寿命,而常规的应力测试方法仅能考察材料终态时的残余热应力,对于分析变温过程中的应力情况具有一定的难度。而基于数值仿真的有限元分析方法,可以考察材料在动态温度环境下的应力响应,对于分析材料的寿命具有一定的优势,但是由于材料具有的各向异性、不均匀性和复杂结构,如何建立合理而贴近材料真实情况的模型成为了一个重要难题。因此将有限元模拟方法与试验测量方法相结合,可以从不同角度分析热应力的分布情况,兼顾两者的优势,有望在相互论证的同时,指导涂层材料的设计和制备[159]

  • 使用有损测试方法测试涂层应力时,涂层的尺寸以及表面粗糙度将对测试结果的准确性产生一定的影响,将有限元模拟与有损测试方法相结合,可以为理论模型建立更完备的应用范围,更加深入地理解材料蠕变、裂纹等问题的发生机理。SANTANA 等[160]为了研究热喷涂过程中产生的热应力问题,将增量钻孔法与有限元模拟相结合,将钻孔后的样品切片,用 SEM 测量涂层厚度和孔深度,然后根据钻孔法得到的应变-深度曲线计算得到了材料残余热应力。有限元结果显示,涂层的应力值从表面向界面处递减,随涂层厚度的增加而减小。ZHU 等[161] 将微观尺度的环芯法与有限元模拟相结合,确定了不同应力条件下的位移情况以及涂层界面的应力状态。BAE 等[162]将纳米压痕法与有限元模拟相结合,研究了镍涂层的动态喷涂过程中,温度对键合、微观结构和力学性能的影响,研究结果表明,当温度较高时,涂层的粘结强度和硬度都会更高,等效应力更低。

  • 使用无损方法测试涂层应力时,通常可以将材料的动态变化过程有效地表征出来,但由于无损测试方法的工作环境有限,无法得到材料真实工作环境下的应力分布情况,将有限元模拟与无损测试方法相结合,可以在动态测量材料热应力的同时,完善有损测试方法的理论模型并扩展到较宽的工作温度范围,更完整地表征材料的应力分布情况。JIANG 等[163]为了研究循环温度载荷作用下 TBC 涂层冷却孔周围的应力演化规律和断裂行为,利用有限元法和拉曼光谱法分析了应力情况,有限元模拟了循环温度载荷下的残余热应力值揭示了其断裂机理,结果表面,孔周围的边缘效应导致了剪切应力进一步导致界面剥落,引起了界面裂纹的产生,随着循环次数的增加,裂纹会继续扩展并与表面裂纹共同作用,导致涂层的断裂,所得到的应力值与通过拉曼光谱法测量得到的应力值良好对应。 ALEKSEENKO 等[164]设计了一种陶瓷残余热应力的评价系统,用激光烧蚀技术处理材料,再根据数字全息技术测量了烧蚀部位附近由残余热应力释放产生的位移,并结合有限元模拟,根据位移、形状和材料参数计算了涂层内部不同深度的残余热应力分布情况。ROACHE 等[165]为了了解涂层的断裂机制,减少氧化通道,分析了在反应器工作温度情况下的涂层材料的裂纹及断裂问题,利用声发射方法和 DIC 技术,检测了室温以及高温环境时涂层断裂信号的差异,利用有限元模拟分析了材料的应力应变情况,得到了涂层的应力状态。

  • 将有限元模拟与试验测量方法相结合可以有效分析聚合物基底表面的防护涂层的热应力情况。 BAE[166]等分析了铝 / PMMA 材料界面的热应力分布,将有限元模拟与光学测量技术(PSI)结合,模拟和测量了热载荷和机械载荷引起的应力强化因子,热效应产生的应力强化因子将引起界面的断裂行为,证明了试验测量与有限元模拟良好吻合。由于聚合物基底 / 无机涂层在径向和切向上的热膨胀系数不同,因此在热载荷作用下产生的热应力也差异较大。将有限元模拟与试验测量的方法相结合,从元素组成、孔隙分布、微观形貌、断裂机理出发,研究涂层在温度场内的热应力分布规律,为设计具有低应力结构的涂层材料提供有效的数据分析,得到兼具优异定向特异性能和力学性能的涂层制备参数。结合试验测量的方法,对实际制备的涂层进行考察,分析其实际应力情况,验证涂层的可靠性和合理性,通过研究聚合物表面空间环境防护涂层材料的应力情况以提高其服役寿命具有重要的意义。

  • 5 结论与展望

  • 聚合物表面空间环境防护涂层热应力导致的开裂和剥落问题已经成为限制涂层进一步使用和发展的一个重要因素,基于热应力分析方法对材料的服役寿命和失效形式进行预测具有重要意义。

  • (1)传统的通过机械方法对材料进行破坏性的测量方法具有一定的优势,且具有较为完整的理论体系,可以便捷地分析模型的主应力情况,但其存在的精度不高、操作过程繁琐、无法对应力情况进行实时监测等缺陷极大地限制了其应用范围。

  • (2)近年来发展起来的无损法可以在很大程度上提高应力分析精度,而且操作简单,可以应用于不同尺寸和结构的材料。但是,大多数无损方法也存在一定的局限性,如衍射法测量精度高但仪器设备复杂且成本较高;纳米压痕技术对于不同材料的理论模型还需要进一步验证;超声波法无法得到材料内部应力分布的具体情况。

  • (3)与通过试验测量的有损及无损分析方法不同,有限元模拟具有实时、准确、全面的应力测量优点,但是由于与实际涂层模型具有一定的差距,在准确建模方面具有一定的困难。

  • 通过将有限元模拟与试验测量结果相结合的方法,将在很大程度上避免某种方法具有的局限性,通过仿真模拟和试验测量两种不同的角度进行分析,有望全面、具体、准确、实时地分析涂层材料热应力分布情况,解释材料宏观失效问题的机理,指导涂层制备参数,对于分析聚合物表面空间环境防护涂层材料的寿命和可靠性具有重大意义。面对复杂的空间环境,如何准确分析聚合物表面空间环境防护涂层的应力分布情况,优化涂层结构设计,验证涂层材料服役的可靠性,成为了当前的阻碍涂层进一步发展的关键问题。

  • (1)由于当前有损、无损的测量方式在实时测量方面的局限性,导致对涂层材料的热应力失效过程的分析往往是在脱离温度场后,通过试验测量的方法得到的,对此试验测量方法已经因为实际应用过程中的需求,做出了对实时性的改进,如变温环境下的试验测量方法结合实时数字图像分析,可以得到材料的实时应力变化情况。

  • (2)未来的试验测量的应力分析方法将进一步演变为变温环境下的测试手段,并增强实时监测能力,实现对热应力的动态测量和实时监测。而随着有限元模拟的不断发展,涂层材料的热应力问题将逐渐走向精准性和可控性。

  • (3)聚合物表面空间环境防护涂层在服役过程中,往往受到多种环境因素的共同作用,很难通过试验模拟准确的应力分析结果,而有限元能够准确分析复杂物理场耦合下的应力分析,对于分析复杂服役环境下的多因素耦合应力演化过程具有较好的应用前景,但与此同时会出现非线性计算结果有效性的问题。因此将有限元模拟在多因素耦合方面的优势与试验的有效性验证相结合,可以更为准确地计算模型模拟更为真实的服役条件,全面准确地预测防护涂层从制备到真实服役环境下全过程的应力分布及演变规律。

  • (4)未来的涂层热应力问题将有望利用有限元模拟首先进行模拟仿真,确定在服役环境中的应力危险点,提供热应力数据库基础,设计合理的机器学习模型,构建涂层服役寿命预测模型,根据实际所需的材料性能反向设计涂层的结构模型,最后通过实际制备,结合有损、无损试验测定方法,得到性能优异的涂层结构。这一方法,将有效缩小有限元模拟模型与实际问题的距离,打破仿真模拟与试验之间的壁垒,为涂层的设计过程提供理论数据基础和有效的数据分析方法,为设计分析一体化提供可能,为进一步的工程应用提供智能化的研究方法。

  • 参考文献

    • [1] ZHANG W,YI M,SHEN Z,et al.Protection against atomic oxygen erosion of oxide coatings for spacecraft materials[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(8):1074-1078.

    • [2] 赵云峰.航天特种高分子材料研究与应用进展[J].中国材料进展,2013,32(4):217-228,242.ZHAO Yunfeng.Progress in research and application of aerospace special polymer materials[J].Advances in Materials in China,2013,32(4):217-228,242.(in Chinese)

    • [3] DEVER J A,MILLER S K,SECHKAR E A,et al.Space environment exposure of polymer films on the materials international space station experiment:Results from MISSE 1 and MISSE 2[J].High Performance Polymers,2008,20(4-5):371-387.

    • [4] LIAW D J,WANG K L,HUANG Y C,et al.Advanced polyimide materials:syntheses,physical properties and applications[J].Progress in Polymer Science,2012,37(7):907-974.

    • [5] 张宗波,郎冠卿,姜海富,等.低地球轨道航天器涂层防护技术研究进展[J].航天器环境工程,2016,33(1):109-114.ZHANG Zongbo,LANG Guanqing,JIANG Haifa,et al.Research progress of coating protection technology for low-earth orbit spacecraft[J].Spacecraft Environmental Engineering,2016,33(1):109-114.(in Chinese)

    • [6] 王磊,卿凤翎,范含林.航天器用新型聚酰亚胺薄膜性能研究[J].空间科学学报,2012,32(6):869-873.WANG Lei,QING Fengling,FAN Hanlin.Properties of novel polyimide films for spacecraft[J].Chinese Journal of Space Science,2012,32(6):869-873.(in Chinese)

    • [7] THAKARE J G,PANDEY C,MAHAPATRA M M,et al.Thermal barrier coatings—A state of the art review[J].Metals and Materials International,2021,27(7):1947-1968.

    • [8] XU K,DU M,HAO L,et al.A review of high-temperature selective absorbing coatings for solar thermal applications[J].Journal of Materiomics,2020,6(1):167-182.

    • [9] MERINO-FERNANDEZ I,KHEMCHANDANI S L,DEL PINO J,et al.Phased array antenna analysis workflow applied to gateways for LEO satellite communications[J].Sensors,2022,22(23):9406.

    • [10] 张杭,张家强,崔庆新,等.新型无机热控涂层的性能及应用[J].宇航材料工艺,2021,51(5):103-107.ZHANG Hang,ZHANG Jiaqiang,CUI Qingxin,et al.Properties and applications of novel inorganic thermal control coatings[J].Aerospace Materials Technology,2021,51(5):103-107.(in Chinese)

    • [11] 平托,郑琰,李振宇,等.空间航天器低吸收-低发射率热控涂层的设计与制备[J].载人航天,2020,26(2):214-221.PING TUO,ZHENG Yan,LI Zhenyu,et al.Design and preparation of low absorption-low emissivity thermal control coating for space spacecraft[J].Human Spaceflight,2020,26(2):214-221.(in Chinese)

    • [12] 卢榆孙,范本尧,冯煜东,等.卫星柔性热控材料性能及其稳定性研究[J].中国空间科学技术,2002(6):46-51.LU Yusun,FAN Benyao,FENG Yudong,et al.Study on performance and stability of satellite flexible thermal control materials[J].Chinese Space Science and Technology,2002(6):46-51.(in Chinese)

    • [13] XU M,ZHAO Y P,ZHANG X Y,et al.Highly homogeneous polysiloxane flexible coating for low earth orbital spacecraft with ultraefficient atomic oxygen resistance and self-healing behavior[J].ACS Applied Polymer Materials,2019,1(12):3253-3260.

    • [14] PUTZ B,WURSTER S,EDWARDS T E J,et al.Mechanical and optical degradation of flexible optical solar reflectors during simulated low earth orbit thermal cycling[J].Acta Astronautica,2020,175:277-289.

    • [15] CHAMBERLAIN M K,KIEFER S H,LAPOINTE M,et al.On-orbit flight testing of the roll-out solar array[J].Acta Astronautica,2021,179:407-414.

    • [16] 傅宇蕾,恽卫东,曹争利,等.离轨薄膜帆帆面材料原子氧侵蚀的数值模拟研究[J].航天标准化,2021(1):6-11.FU Yulei,YUN Weidong,CAO Zhengli,et al.Numerical Simulation of atomic oxygen erosion of off-orbit thin film sail surface materials[J].Aerospace Standardization,2021(1):6-11.(in Chinese)

    • [17] ZHANG F,FENG Y,QIN M,et al.Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite[J].Advanced Functional Materials,2019,29(25):1901383.1-1901383.13

    • [18] KOONTZ S,LEGER L,ALBYN K,et al.Vacuum Ultraviolet-radiation atomic oxygen synergism in materials reactivity[J].Journal of Spacecraft and Rockets,1990,27(3):346-348.

    • [19] HAN J H,KIM C G.Low earth orbit space environment simulation and its effects on graphite/epoxy composites[J].Composite Structures,2006,72(2):218-226.

    • [20] BOWLES D E,TOMPKINS S S,SYKES G F.Electron-radiation effects on the thermal-expansion of graphite resin composites[J].Journal of Spacecraft and Rockets,1986,23(6):625-629.

    • [21] NAIRN J A.The Strain-energy release rate of composite microcracking — A variation approach[J].Journal of composite material,1989,23(11):1106-1129.

    • [22] ARNOLD G S,PEPLINSKI D R.Reaction of high-velocity atomic oxygen with carbon[J].AIAA Journal,1986,24(4):673-677.

    • [23] HOOSHANGI Z,FEGHHI S A H,SAEEDZADEHL R.The effects of low earth orbit atomic oxygen on the properties of polytetrafluoroethylene[J].ACTA Astronautica,2016,119:233-240.

    • [24] 赵琳,李中华,郑阔海.原子氧防护涂层技术研究[J].真空与低温,2011,17(4):187-192,229.ZHAO Lin,LI Zhonghua,ZHENG Kuohai.Research on atomic oxygen protective coating technology[J].Vacuum and Low Temperature,2011,17(4):187-192,229.(in Chinese)

    • [25] 李涛,姜海富,刘向鹏,等.空间原子氧环境对常用热控涂层的影响[J].航天器环境工程,2012,29(3):268-272.LI Tao,JIANG Haifu,LIU Xiangpeng,et al.Effect of space atomic oxygen environment on common thermal control coatings[J].Spacecraft Environmental Engineering,2012,29(3):268-272.(in Chinese)

    • [26] 多树旺,李美栓,张亚明,等.低地轨道环境中的原子氧对空间材料的侵蚀与防护涂层[J].腐蚀科学与防护技术,2002(3):152-156.DUO Shuwang,LI Meishuan,ZHANG Yaming,et al.Erosion and protective coating of space materials by atomic oxygen in low-earth orbit environment[J].Corrosion Science and Protection Technology,2002(3):152-156.(in Chinese)

    • [27] CORDERO N,YOON J,SUO Z G.Channel cracks in a hermetic coating consisting of organic and inorganic layers[J].Applied Physics Letters,2007,90(11):111910.

    • [28] QIAN M,MURRAY V J,WEI W,et al.Resistance of POSS polyimide blends to hyperthermal atomic oxygen attack[J].ACS Applied Materials & Interfaces,2016,8(49):33982-33992.

    • [29] WANG D,MA J,LI P,et al.Flexible hard coatings with self-evolution behavior in a low earth orbit environment[J].ACS Applied Materials & Interfaces,2021,13(38):46003-46014.

    • [30] ZHANG Y,YUAN H,YAN W,et al.Atomic-oxygen-durable and antistatic alpha-AlxTiyO/gamma-NiCr coating on Kapton for aerospace applications[J].ACS Applied Materials & Interfaces,2021,13(48):58179-58192.

    • [31] WANG Y,JI H Y,LI L Z,et al.Trilayered film with excellent tribological performance:A combination of graphene oxide and perfluoropolyethers[J].Tribology Letters,2015,60(3):1-7.

    • [32] BOTLHOKO O J,LETWABA L,BANDYOPADHYAY J,et al.UV-protection,tribology,and mechanical properties of ZnO-containing polyamide composites[J].Journal of Applied Polymer Science,2020,137(9):48418.

    • [33] BARROSO G,KRAUS T,DEGENHARDT U,et al.Functional coatings based on preceramic polymers[J].Advanced Engineering Materials,2016,18(5):746-753.

    • [34] DUO S,LIU T,ZOU X,et al.Properties of Al2O3-SiO2 Protective coatings prepared by sol-gel process in atomic oxygen environment[J].Rare Metal Materials and Engineering,2009,38:743-746.

    • [35] WU B H,ZHANG Y,YANG D Y,et al.Self-healing anti-atomic-oxygen phosphorus-containing polyimide film via molecular level incorporation of nanocage trisilanolphenyl POSS:Preparation and characterization[J].Polymers,2019,11(6):1013.

    • [36] ZHANG Y,WU B H,WANG H L,et al.Preparation and characterization of transparent polyimide nanocomposite films with potential applications as spacecraft antenna substrates with low dielectric features and good sustainability in atomic-oxygen environments[J].Nanomaterials,2021,11(8):1886.

    • [37] ZHAO J F,LIU Z Q,WANG B,et al.Tool coating effects on cutting temperature during metal cutting processes:Comprehensive review and future research directions[J].Mechanical Systems and Signal Processing,2021,150:107302.

    • [38] PIAO Z Y,XU B S,WANG H D,et al.Rolling contact fatigue behavior of thermal-sprayed coating:A review[J].Critical Review in Solid State and Material Sciences,2020,45(6):429-456.

    • [39] HUSSAIN M,RIZVI S H A,ABBAS N,et al.Recent developments in coatings for orthopedic metallic implants[J].Coatings,2021,11(7):791.

    • [40] TABATABAEIAN A,GHASEMI A R,SHOKRIEH M M,et al.Residual stress in engineering materials:A review[J].Advanced Engineering Materials,2022,24(3):2100786.

    • [41] GHADAMI F,AGHDAM A S R.Improvement of high velocity oxy-fuel spray coatings by thermal post-treatments:A critical review[J].Thin Solid Films,2019,678:42-52.

    • [42] ZHAO M H,XU X X,LIANG S,et al.Characterization method of the layer thickness of surface residual stress based on instrumented indentation testing[J].AIP Advances,2019,9(9):095024.

    • [43] ASHTIJOO P,BHATTACHERJEE S,SUTARTO R,et al.Fabrication and characterization of adherent diamond-like carbon based thin films on polyethylene terephthalate by end hall ion beam deposition[J].Surface & Coatings Technology,2016,308:90-97.

    • [44] LI Q Z,HUANG T,YANG M,et al.Effects of gradient structure and modulation period of Ta/TaN/Ta(C,N)/Ta-DLC multilayer coatings prepared by HiPIMS[J].Surface & Coatings Technology,2023,459:129406.

    • [45] SICOT O,GONG X L,CHEROUAT A,et al.Determination of residual stress in composite laminates using the incremental hole-drilling method[J].Journal of Composite Materials,2003,37(9):831-844.

    • [46] HARRINGTON J,SCHAJER G.Measurement of structural stresses by hole-drilling and DIC[J].Experimental Mechanics,2017,57(4):559-567.

    • [47] WENZELBURGER M,LóPEZ D,GADOW R.Methods and application of residual stress analysis on thermally sprayed coatings and layer composites[J].Surface and Coatings Technology,2006,201(5):1995-2001.

    • [48] ABUBAKAR A A,ADESINA A Y,ARIF A M,et al.Evaluation of residual stress in thick metallic coatings using the combination of hole drilling and micro-indentation methods[J].Journal of Materials Research and Technology—JMR&T,2022,20:867-881.

    • [49] DONG Y B,SHAO W Z,JIANG J T,et al.Minimization of residual Stress in an Al-Cu alloy forged plate by different heat treatments[J].Journal of Materials Engineering and Performance,2015,24(6):2256-2265.

    • [50] ZHOU Y C,HASHIDA T.Thermal fatigue failure induced by delamination in thermal barrier coating[J].International Journal of Fatigue,2002,24(2-4):407-417.

    • [51] RECH S,TRENTIN A,VEZZU S,et al.Influence of pre-heated Al 6061 substrate temperature on the residual stresses of multipass Al coatings deposited by cold spray[J].Journal of Thermal Spray Technology,2011,20(1-2):243-251.

    • [52] LIMA C R C,NIN J,GUILEMANY J M.Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the modified layer removal method(MLRM)[J].Surface & Coatings Technology,2006,200(20-21):5963-5972.

    • [53] GARZA C,DAS R,SHTERENLIKHT A,et al.Measurement of assembly stress in composite structures using the deep-hole drilling technique[J].Composite Structures,2018,202:119-126.

    • [54] OSTEN W,PEDRINI G,WEIDMANN P,et al.A flexible method for residual stress measurement of spray coated layers by laser made hole drilling and SLM based beam conditioning[M].San Diego:SPIE,9660:95-98.

    • [55] GUINARD C,MONTAY G,GUIPONT V,et al.Residual stress analysis of laser-drilled thermal barrier coatings involving various bond coats[J].Journal of Thermal Spray Technology,2015,24(1-2):252-262.

    • [56] PEDRINI G,MARTINEZ-GARCIA V,WEIDMANN P,et al.Residual stress analysis of ceramic coating by laser ablation and digital holography[J].Experimental Mechanics,2016,56(5):683-701.

    • [57] MARTINEZ-GARCIA V,PEDRINI G,WEIDMANN P,et al.Non-contact residual stress analysis method with displacement measurements in the nanometric range by laser made material removal and SLM based beam conditioning on ceramic coatings[J].Surface & Coatings Technology,2019,371:14-19.

    • [58] XU J Y,HUANG X H,CHEN M,et al.Drilling characteristics of carbon/epoxy and carbon/polyimide composites[J].Materials and Manufacturing processes,2020,35(15):1732-1740.

    • [59] MAGNIER A,SCHOLTES B,NIENDORF T.On the reliability of residual stress measurements in polycarbonate samples by the hole drilling method[J].Polymer Testing,2018,71:329-334.

    • [60] MAGNIER A,WU T,TINKLOH S R,et al.On the reliability of residual stress measurements in unidirectional carbon fibre reinforced epoxy composites[J].Polymer Testing,2021,97:107146.

    • [61] TABATABAEIAN A,GHASEMI A R.The impact of MWCNT modification on the structural performance of polymeric composite profiles[J].Polymer Bulletin,2020,77(12):6563-6576.

    • [62] FU K K,SHEPPARD L R,CHANG L,et al.Length-scale-dependent nanoindentation creep behaviour of Ti/Al multilayers by magnetron sputtering[J].Materials Characterization,2018,139:165-175.

    • [63] XIAO Y,WU L,LUO J,et al.Mechanical response of thin hard coatings under indentation considering rough surface and residual stress[J].Diamond and Related Materials,2020,108:107991.

    • [64] ABDOOS M,BOSE B,RAWAL S,et al.The influence of residual stress on the properties and performance of thick TiAlN multilayer coating during dry turning of compacted graphite iron[J].Wear,2020,454-455:203342.

    • [65] ANANTHAKRISHNA G,KRISHNAMOORTHY S.A novel approach to modelling nanoindentation instabilities[J].Crystals,2018,8(5):200.

    • [66] KIELY J D,HWANG R Q,HOUSTON J E.Effect of surface steps on the plastic threshold in nanoindentation[J].Physical Review Letters,1998,81(20):4424-4427.

    • [67] CORCORAN S G,COLTON R J,LILLEODDEN E T,et al.Anomalous plastic deformation at surfaces:Nanoindentation of gold single crystals[J].Physical Review B,1997,55(24):16057-16060.

    • [68] GOULDSTONE A,KOH H J,ZENG K Y,et al.Discrete and continuous deformation during nanoindentation of thin films[J].Acta Materialia,2000,48(9):2277-2295.

    • [69] FANG X,JIN G,CUI X F,et al.Evolution characteristics of residual stress in metastable Ni-B alloy coatings identified by nanoindentation[J].Surface & Coatings Technology,2016,305:208-214.

    • [70] KIM C H,HEUER A H.A high-temperature displacement-sensitive indenter for studying mechanical properties of thermal barrier coatings[J].Journal of Materials Research,2004,19(1):351-356.

    • [71] SHANG F L,ZHANG X,GUO X C,et al.Determination of high temperature mechanical properties of thermal barrier coatings by nanoindentation[J].Surface Engineering,2014,30(4):283-289.

    • [72] WATANABE M,MERCER C,LEVI C G,et al.A probe for the high temperature deformation of thermal barrier oxides[J].Acta Materialia,2004,52(6):1479-1487.

    • [73] HE R J,QU Z L,PEI Y M,et al.High temperature indentation tests of YSZ coatings in air up to 1 200 ℃[J].Materials Letters,2017,209:5-7.

    • [74] QU Z,WEI K,HE Q,et al.High temperature fracture toughness and residual stress in thermal barrier coatings evaluated by an in-situ indentation method[J].Ceramics International,2018,44(7):7926-7929.

    • [75] GAIR J L,LAMBETH R H,COLE D P,et al.Strong process-structure interaction in stoveable poly(urethane-urea)aligned carbon nanotube nanocomposites[J].Composites Science and Technology,2018,166:115-124.

    • [76] LEWIS G,XU J,MADIGAN S,et al.Influence of two changes in the composition of an acrylic bone cement on its handling,thermal,physical,and mechanical properties[J].Journal of Materials Science-materials in Medicine,2007,18(8):1649-1658.

    • [77] DAHL S,RATS D,VON STEBUT J,et al.Micromechanical characterisation of plasma treated polymer surfaces[J].Thin Solid Films,1999,355:290-294.

    • [78] KAULE T,ZHANG Y,EMMERLING S,et al.Nanoscale thermomechanics of wear-resilient polymeric bilayer systems[J].ACS Nano,2013,7(1):748-759.

    • [79] HE G Y,SUN D Y,ZANG S L,et al.Evaluation of the elastic-plastic properties of TiN coating by nanoindentation technologies using FEM-reverse algorithm[J].Surface & Coatings Technology,2021,409:126855.

    • [80] LODH A,THOOL K,SAMAJDAR I.X-ray Diffraction for the determination of residual stress of crystalline material:An overview[J].Transactions of the Indian Institute of Metals,2022,75(4):983-995.

    • [81] BRUNO G,CERETTI M,GIRARDIN E,et al.Relaxation of residual stress in MMC after combined plastic deformation and heat treatment[J].Scripta Materialia,2004,51(10):999-1004.

    • [82] AN N Y,SHUAI S S,HU T,et al.Application of synchrotron X-ray imaging and diffraction in additive manufacturing:A review[J].Acta Metallurgica Sinica-English Letters,2022,35(1):25-48.

    • [83] FISCHER K,OETTEL H.Analysis of residual stress gradients in thin films using SEEMANN-BOHLIN-X-ray diffraction[M].Aedermannsdorf:Materials Science Forum,1996:301-306.

    • [84] OWOSENI T A,BAI M,CURRY N,et al.Residual stress measurement of suspension HVOF-sprayed alumina coating via a hole-drilling method[J].Journal of Thermal Spray Technology,2020,29(6):1339-1350.

    • [85] KANIA B,INDYKA P,TARKOWSKI L,et al.X-ray diffraction grazing-incidence methods applied for gradient-free residual stress profile measurements in electrodeposited Ni coatings[J].Journal of Applied Crystallography,2015,48:71-78.

    • [86] MARCISZKO-WIACKOWSKA M,HNIDA-GUT K E,BACZMANSKI A,et al.Topography and residual stress analysis for Cu/Au/Co multilayered system[J].Surface & Coatings Technology,2019,380:125060.

    • [87] WANG A N,CHUANG C P,YU G P,et al.Determination of average X-ray strain(AXS)on TiN hard coatings using cos2 α sin2 ψ X-ray diffraction method[J].Surface & Coating Technology,2015,262:40-47.

    • [88] GELFI M,BONTEMPI E,ROBERTI R,et al.Residual stress analysis of thin films and coatings through XRD2 experiments[J].Thin Solid Films,2004,450(1):143-147.

    • [89] MARCISZKO M,BACZMANSKI A,WROBEL M,et al.Multireflection grazing incidence diffraction used for stress measurements in surface layers[J].Thin Solid Films,2013,530:81-84.

    • [90] KARPOV I D,EM V T,SUMIN V V.Measuring residual stresses in vamas international calibration block with the stress diffractometer of Ir-8 reactor[J].Russian Journal of Nondestructive Testing,2019,55(4):328-333.

    • [91] FU P,ZHAN K,JIANG C H.Micro-structure and surface layer properties of 18CrNiMo7-6 steel after multistep shot peening[J].Materials & Design,2013,51:309-314.

    • [92] MATEJICEK J,SAMPATH S,BRAND P C,et al.Quenching,thermal and residual stress in plasma sprayed deposits:NiCrAlY and YSZ coatings[J].Acta Materialia,1999,47(2):607-617.

    • [93] ROGANTE M,MIKULA P,VRANA M.Residual stresses assessment in coated materials:complementarity between Neutron and X-ray techniques[J].Key Engineering Materials,2011,465:259-262.

    • [94] BRANDT L R,SALVATI E,PAPADAKI C,et al.Probing the deformation and fracture properties of Cu/W nano-multilayers by in situ SEM and synchrotron XRD strain microscopy[J].Surface & Coating Technology,2017,320:158-167.

    • [95] NISHINO T,KOTERA M,INAYOSHI N,et al.Residual stress and microstructures of aromatic polyimide with different imidization processes[J].Polymer,2000,41(18):6913-6918.

    • [96] LUAN B,LIU X Y,NAGATA J,et al.Residual stress analysis — An important consideration for coating of stereolithography polymers[J].Surface & Coating Technology,2005,192(2-3):323-330.

    • [97] LUO Q S,YANG S C.Uncertainty of the X-ray diffraction(XRD)sin2 ψ Technique in measuring residual stresses of physical vapor deposition(PVD)hard coatings[J].Coatings,2017,7(8):128.

    • [98] YE C,JIANG P.Accurate residual stress measurement as a function of depth in environmental barrier coatings via a combination of X-ray diffraction and Raman spectroscopy[J].Ceramics International,2020,46(8):12613-12617.

    • [99] DAS B,BRODARD P,BANDYOPADHYAY P P.Raman spectroscopy assisted residual stress measurement of plasma sprayed and laser remelted zirconia splats and coatings[J].Surface and Coatings Technology,2019,378:124920.

    • [100] AHMED F,BAYERLEIN K,ROSIWAL S M,et al.Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate:Analysis by micro-Raman spectroscopy and analytical modelling[J].Acta Materialia,2011,59(14):5422-5433.

    • [101] CUI Y,GUO M,WANG C,et al.Evolution of the residual stress in porous ceramic abradable coatings under thermal exposure[J].Surface and Coatings Technology,2020,394:125915.

    • [102] TANAKA M,KITAZAWA R,TOMIMATSU T,et al.Residual stress measurement of an EB-PVD Y2O3-ZrO2 thermal barrier coating by micro-Raman spectroscopy[J].Surface & Coatings Technology,2009,204(5):657-660.

    • [103] ZHU X,HUANG Y,ZHENG W,et al.Crystallinity,stresses,and cracks of YSZ coatings characterized by SEM-EBSD-Raman spectroscopy[J].Journal of Thermal Spray Technology,2020,29(5):995-1001.

    • [104] QIU W,CHENG C L,LIANG R R,et al.Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy[J].Acta Mechanica Sinica,2016,32(5):805-812.

    • [105] LI Q,GOU Y R,WANG T G,et al.Study on local residual stress in a nanocrystalline Cr2O3 coating by micro-raman spectroscopy[J].Coatings,2019,9(8):500.

    • [106] OHTSUKA S,ZHU W,TOCHINO S,et al.In-depth analysis of residual stress in an alumina coating on silicon nitride substrate using confocal Raman piezo-spectroscopy[J].Acta Materialia,2007,55(4):1129-1135.

    • [107] SRINIVASAN N,BHASKAR L K,KUMAR R,et al.Residual stress gradient and relaxation upon fatigue deformation of diamond-like carbon coated aluminum alloy in air and methanol environments[J].Materials & Design,2018,160:303-312.

    • [108] DAS B,BRODARD P,BANDYOPADHYAY P P.Raman spectroscopy assisted residual stress measurement of plasma sprayed and laser remelted zirconia splats and coatings[J].Surface & Coatings Technology,2019,378:124920.

    • [109] MIYAGAWA H,KAMIYA D,SATO C,et al.Strain measurement for Raman-inactive substrates with PbO thin films using Raman coating method[J].Journal of Materials Science,1999,34(1):105-110.

    • [110] KORSUNSKY A M,SALVATI E,LUNT A G J,et al.Nanoscale residual stress depth profiling by Focused Ion Beam milling and eigenstrain analysis[J].Materials & Design,2018,145:55-64.

    • [111] ZHANG X,LI C,WITHERS P J,et al.Determination of local residual stress in an air plasma spray thermal barrier coating(APS-TBC)by microscale ring coring using a picosecond laser[J].Scripta Materialia,2019,167:126-130.

    • [112] ROMANO-BRANDT L,SALVATI E,LE BOURHIS E,et al.Nano-scale residual stress depth profiling in Cu/W nano-multilayers as a function of magnetron sputtering pressure[J].Surface and Coatings Technology,2020,381:125142.

    • [113] MIRGHADERI H,RANJI A R,FADAVIE M.The effect of polyurea coating on fatigue life of mild steel[J].Journal of Materials Engineering and Performance,2021,30(5):3831-3844.

    • [114] LI G,SUN J,XU Y,et al.Microstructure,mechanical properties,and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS[J].Surface and Coatings Technology,2018,353:274-281.

    • [115] UçAK N,ASLANTAS K,ÇIçEK A.The effects of Al2O3 coating on serrated chip geometry and adiabatic shear banding in orthogonal cutting of AISI 316L stainless steel[J].Journal of Materials Research and Technology,2020,9(5):10758-10767.

    • [116] DE MARCHI L,MARZANI A,MINIACI M.A dispersion compensation procedure to extend pulse-echo defects location to irregular waveguides[J].NDT & E International,2013,54:115-122.

    • [117] TANUMA K,MAN C S,CHEN Y.Dispersion of rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress[J].International Journal of Engineering Science,2015,92:63-82.

    • [118] LIU B,DONG S,XU B,et al.Coating thickness affects surface stress measurement of brush electro-plating nickel coating using Rayleigh wave approach[J].Ultrasonics,2012,52(7):861-865.

    • [119] QIAN Z,HUANG H,LIU W,et al.Magnetomechanical model for coating/substrate interface and its application in interfacial crack propagation length characterization[J].Journal of Applied Physics,2018,124(20):203904.

    • [120] SHKURATNIK V L,KRAVCHENKO O S,FILIMONOV Y L.Acoustic emission of rock salt at different uniaxial strain rates and under temperature[J].Journal of Applied Mechanics and Technicals Physics,2020,61(3):479-485.

    • [121] RONG G,YAO M D,PENG J,et al.Influence of initial thermal cracking on physical and mechanical behaviour of a coarse marble:insights from uniaxial compression tests with acoustic emission monitoring[J].Geophysical Journal International,2018,214(3):1886-1900.

    • [122] SCHAJER G S,YANG L.Residual-stress measurement in orthotropic materials using the hole-drilling method[J].Experimental Mechanics,1994,34(4):324-333.

    • [123] 曹枝军,袁建辉,苏怀宇,等.声发射技术在热障涂层失效机理中的研究进展及展望[J].中国表面工程,2023,36(2):34-53.Cao Zhijun,YUAN Jianhui,SU Huaiyu,et al.Research progress and prospect of acoustic emission technology in failure mechanism of thermal barrier coatings[J].China Surface Engineering,2023,36(2):34-53.(in Chinese)

    • [124] LIU L G,LI Q,LIU X H,et al.Stress field simulation of carburized specimens with different carbon content during quenching process[J].Materials Letters,2007,61(4-5):1251-1255.

    • [125] LIU L G,LI Q,LIAO B,et al.Stress field simulation of the specimen with multi-layer phase structure[J].Materials Science and Engineering A-structural Materials Properties Microstructure and Processing,2006,435:484-490.

    • [126] JAMSHIDIAN M,RABCZUK T.Phase field modelling of stressed grain growth:Analytical study and the effect of microstructural length scale[J].Journal of Computational Physics,2014,261:23-35.

    • [127] ZHANG J H,LI X X,XU D S,et al.Phase field simulation of the stress-induced alpha microstructure in Ti-6Al-4 V alloy and its CPFEM properties evaluation[J].Journal of Materials Science & Technology,2021,90:168-182.

    • [128] ALVES C L M,REZENDE J,SENK D,et al.Phase-field simulation of peritectic steels solidification with transformation-induced elastic effect[J].Journal of Materials Research and Technology-JMR&T,2020,9(3):3805-3816.

    • [129] OKUNO Y,SAKASHITA Y.Effective hamiltonian approach to studying the field-induced structural phase transition of BaTiO3[J].Japanese Journal of Applied Physics,2009,48(2):021403.

    • [130] GUYONNEAU D,MERMOZ E,MAILHE J,et al.Stress optimization and study of the sensitivity to geometric variations of a spur gear tooth profile[J].Mechanics & Industry,2013,14(1):31-41.

    • [131] WANG F,CHEN Z Q,WEI Y Q,et al.Numerical modeling of tensile behavior of fiber-reinforced polymer composites[J].Journal of Composite Materials,2010,44(19):2325-2340.

    • [132] CHASON E,JAGTAP P.Effect of grain size on thin film stress and morphology using kinetic Monte Carlo simulations[J].Journal of Applied Physics,2020,128(14):145301.

    • [133] GADELMOULA A,AL-ATHEL K S,AKHTAR S S,et al.A stochastically generated geometrical finite element model for predicting the residual stresses of thermally sprayed coatings under different process parameters[J].Journal of Thermal Spray Technology,2020,29(6):1256-1267.

    • [134] KIM N,YUN G,KIM D-N.Overlapping finite element analysis for structures under thermal loads with spatially varying gradients[J].Journal of Mechanical Science and Technology,2022,36(3):1379-1390.

    • [135] LIU Y,SCHINDLER A K.Finite-element modeling of early-age concrete behavior under high level of tensile stress[J].Materials and Structures,2019,52(2):30.1-30.14.

    • [136] MU C,SONG W,HUI T.Reliability parameter optimization of electromagnetic relay for aerospace products based on 3D thermal stress field[J].IOP Conference Series:Earth and Environmental Science,2021,632(4):042059.

    • [137] IQBAL M D,BIRK C,OOI E T,et al.Development of the scaled boundary finite element method for crack propagation modeling of elastic solids subjected to coupled thermo-mechanical loads[J].Computer Methods in Applied Mechanics and Engineering,2021,387:114106.

    • [138] MEN X D,TAO F H,GAN L,et al.Erosion behavior and surface cracking mechanism of Co-based coating deposited via PTA under high-speed propellant airflow[J].Surface & Coatings Technology,2019,372:369-375.

    • [139] JOSELL D,BONEVICH J E,NGUYEN T M,et al.Heat transfer through nanoscale multilayered thermal barrier coatings at elevated temperatures[J].Surface & Coatings Technology,2015,275:75-83.

    • [140] TIAN X,XIONG S,ZHANG Y,et al.Simulation of thermal stress in ion beam sputtered Ta2O5/SiO2 multilayer coatings on different substrates by finite element analysis[J].Surface and Coatings Technology,2019,362:225-233.

    • [141] LU Z,LYU G L,GULHANE A,et al.Experimental and modeling studies of bond coat species effect on microstructure evolution in EB-PVD thermal barrier coatings in cyclic thermal environments[J].Coatings,2019,9(10):626.

    • [142] CHEN F Y,HE W Q.Finite element design of MgO/Ni system functionally graded materials[J].Journal of Materials Processing Technology,2007,182(1-3):181-184.

    • [143] JOSHI S C,NG H W.Optimizing functionally graded nickel-zirconia coating profiles for thermal stress relaxation[J].Simulation Modelling Practice and Theory,2011,19(1):586-598.

    • [144] DUBIEL A,GRABOWSKI G,GOLY M,et al.The influence of thermal residual stresses on mechanical properties of silicon nitride-based composites[J].Materials,2020,13(5):1092.

    • [145] SONG Y,WU W J,QIN M,et al.Effect of geometric parameter on thermal stress generation in fabrication process of double-ceramic-layers thermal barrier coating system[J].Journal of the European Ceramic Society,2018,38(11):3962-3973.

    • [146] 刘思思,杨正航,武云文,等.超音速火焰喷涂 Ni-CeO2复合涂层的数值模拟及耐磨耐腐蚀性能[J].中国表面工程,2023,36(3):180-192.LIU Sisi,YANG Zhenghang,WU Yunwen,et al.Numerical Simulation and wear resistance of Ni-CeO2 composite coating by Supersonic Flame spraying[J].China Surface Engineering,2023,36(3):180-192.(in Chinese)

    • [147] XUE X L,ZENG C F,WANG S B,et al.Mechanical-thermal response of brittle titanium films on polymer substrates:in-situ observations and FE modelling[J].Journal of Micromechanics and Microengineering,2020,30(6):065013.

    • [148] LI G R,WANG L S.Durable TBCs with self-enhanced thermal insulation based on co-design on macro-and microstructure[J].Applied Surface Science,2019,483:472-480.

    • [149] ZHOU H,LIU H Y,FU K K,et al.Numerical simulation of failure of composite coatings due to thermal and hygroscopic stresses[J].Coatings,2019,9(4):243.

    • [150] HUANG J B,WANG W Z,LU X,et al.Effect of particle size on the thermal shock resistance of plasma-sprayed YSZ coatings[J].Coatings,2017,7(9):150.

    • [151] BAKER M,ROSLER J,HEINZE G.A parametric study of the stress state of thermal barrier coatings Part II:cooling stresses[J].Acta Materialia,2005,53(2):469-476.

    • [152] BUROV A,FEDOROVA E.Modeling of interface failure in a thermal barrier coating system on Ni-based superalloys[J].Engineering Failure Analysis,2021,123:105320.

    • [153] POPA M,HVIZDOS P,ANNE G,et al.Thermal residual stress gradients in an alumina-zirconia composite obtained by electrophoretic deposition[J].Journal of The European Ceramic Society,2006,26(4-5):553-558.

    • [154] HASSANI S,BIELAWSKI M,BERES W,et al.Impact stress absorption and load spreading in multi-layered erosion-resistant coatings[J].Wear,2010,268(5-6):770-776.

    • [155] GUO H B,GONG S K,XU H B.Evaluation of hot-fatigue behaviors of EB-PVD gradient thermal barrier coatings[J].Materials Science And Engineering A-Structural Materials Properties Microstructure and Processing,2002,325(1-2):261-269.

    • [156] HE J Y,DING L Y,CAI J,et al.A novel high temperature resistant Mo-Cu functional gradient coating for optic fiber Bragg grating[J].Results in Physics,2019,14:102456.

    • [157] CHEN C X,TAN J Y,WU W,et al.Modeling and experimental studies of coating delamination of biodegradable magnesium alloy cardiovascular stents[J].ACS Biomaterials Science & Engineering,2018,4(11):3864-3873.

    • [158] HE X,LARSEN R,CHEN F L,et al.Block cracking in surface coatings of polymeric substrates[J].Engineering Fracture Mechanics,2020,233:107073.

    • [159] YANG T S,CHANG S Y,DENG J H.Investigation of loading-unloading curve and stress distribution of thin hard coating by finite element analysis during nanoindentation process[J].Applied Mechanics and Materials,2013,465-466:1365-1369.

    • [160] SANTANA Y Y,LA BARBERA-SOSA J G,STAIA M H,et al.Measurement of residual stress in thermal spray coatings by the incremental hole drilling method[J].Surface & Coatings Technology,2006,201(5):2092-2098.

    • [161] ZHU J G,XIE H M,LI Y J,et al.Interfacial residual stress analysis of thermal spray coatings by miniature ring-core cutting combined with DIC method[J].Experimental Mechanics,2014,54(2):127-136.

    • [162] BAE G,JANG J I,LEE C.Correlation of particle impact conditions with bonding,nanocrystal formation and mechanical properties in kinetic sprayed nickel[J].Acta Materialia,2012,60(8):3524-3535.

    • [163] JIANG J S,WU D,WANG W Z,et al.Fracture behavior of TBCs with cooling hole structure under cyclic thermal loadings[J].Ceramics International,2020,46(3):3644-3654.

    • [164] ALEKSEENKO I,PEDRINI G,MARTINEZ-GARCIA V,et al.Residual stress evaluation in ceramic coating under industrial conditions by digital holography[J].IEEE Transactions on Industrial Informatics,2020,16(2):1102-1110.

    • [165] ROACHE D C,BUMGARDNER C H,HARRELL T M,et al.Unveiling damage mechanisms of chromium-coated zirconium-based fuel claddings at LWR operating temperature by in-situ digital image correlation[J].Surface & Coatings Technology,2022,429:127909.

    • [166] BAE J S,KRISHNASWAMY S.Subinterfacial cracks in bimaterial systems subjected to mechanical and thermal loading[J].Engineering Fracture Mechanics,2001,68(9):1081-1094.

  • 参考文献

    • [1] ZHANG W,YI M,SHEN Z,et al.Protection against atomic oxygen erosion of oxide coatings for spacecraft materials[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(8):1074-1078.

    • [2] 赵云峰.航天特种高分子材料研究与应用进展[J].中国材料进展,2013,32(4):217-228,242.ZHAO Yunfeng.Progress in research and application of aerospace special polymer materials[J].Advances in Materials in China,2013,32(4):217-228,242.(in Chinese)

    • [3] DEVER J A,MILLER S K,SECHKAR E A,et al.Space environment exposure of polymer films on the materials international space station experiment:Results from MISSE 1 and MISSE 2[J].High Performance Polymers,2008,20(4-5):371-387.

    • [4] LIAW D J,WANG K L,HUANG Y C,et al.Advanced polyimide materials:syntheses,physical properties and applications[J].Progress in Polymer Science,2012,37(7):907-974.

    • [5] 张宗波,郎冠卿,姜海富,等.低地球轨道航天器涂层防护技术研究进展[J].航天器环境工程,2016,33(1):109-114.ZHANG Zongbo,LANG Guanqing,JIANG Haifa,et al.Research progress of coating protection technology for low-earth orbit spacecraft[J].Spacecraft Environmental Engineering,2016,33(1):109-114.(in Chinese)

    • [6] 王磊,卿凤翎,范含林.航天器用新型聚酰亚胺薄膜性能研究[J].空间科学学报,2012,32(6):869-873.WANG Lei,QING Fengling,FAN Hanlin.Properties of novel polyimide films for spacecraft[J].Chinese Journal of Space Science,2012,32(6):869-873.(in Chinese)

    • [7] THAKARE J G,PANDEY C,MAHAPATRA M M,et al.Thermal barrier coatings—A state of the art review[J].Metals and Materials International,2021,27(7):1947-1968.

    • [8] XU K,DU M,HAO L,et al.A review of high-temperature selective absorbing coatings for solar thermal applications[J].Journal of Materiomics,2020,6(1):167-182.

    • [9] MERINO-FERNANDEZ I,KHEMCHANDANI S L,DEL PINO J,et al.Phased array antenna analysis workflow applied to gateways for LEO satellite communications[J].Sensors,2022,22(23):9406.

    • [10] 张杭,张家强,崔庆新,等.新型无机热控涂层的性能及应用[J].宇航材料工艺,2021,51(5):103-107.ZHANG Hang,ZHANG Jiaqiang,CUI Qingxin,et al.Properties and applications of novel inorganic thermal control coatings[J].Aerospace Materials Technology,2021,51(5):103-107.(in Chinese)

    • [11] 平托,郑琰,李振宇,等.空间航天器低吸收-低发射率热控涂层的设计与制备[J].载人航天,2020,26(2):214-221.PING TUO,ZHENG Yan,LI Zhenyu,et al.Design and preparation of low absorption-low emissivity thermal control coating for space spacecraft[J].Human Spaceflight,2020,26(2):214-221.(in Chinese)

    • [12] 卢榆孙,范本尧,冯煜东,等.卫星柔性热控材料性能及其稳定性研究[J].中国空间科学技术,2002(6):46-51.LU Yusun,FAN Benyao,FENG Yudong,et al.Study on performance and stability of satellite flexible thermal control materials[J].Chinese Space Science and Technology,2002(6):46-51.(in Chinese)

    • [13] XU M,ZHAO Y P,ZHANG X Y,et al.Highly homogeneous polysiloxane flexible coating for low earth orbital spacecraft with ultraefficient atomic oxygen resistance and self-healing behavior[J].ACS Applied Polymer Materials,2019,1(12):3253-3260.

    • [14] PUTZ B,WURSTER S,EDWARDS T E J,et al.Mechanical and optical degradation of flexible optical solar reflectors during simulated low earth orbit thermal cycling[J].Acta Astronautica,2020,175:277-289.

    • [15] CHAMBERLAIN M K,KIEFER S H,LAPOINTE M,et al.On-orbit flight testing of the roll-out solar array[J].Acta Astronautica,2021,179:407-414.

    • [16] 傅宇蕾,恽卫东,曹争利,等.离轨薄膜帆帆面材料原子氧侵蚀的数值模拟研究[J].航天标准化,2021(1):6-11.FU Yulei,YUN Weidong,CAO Zhengli,et al.Numerical Simulation of atomic oxygen erosion of off-orbit thin film sail surface materials[J].Aerospace Standardization,2021(1):6-11.(in Chinese)

    • [17] ZHANG F,FENG Y,QIN M,et al.Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite[J].Advanced Functional Materials,2019,29(25):1901383.1-1901383.13

    • [18] KOONTZ S,LEGER L,ALBYN K,et al.Vacuum Ultraviolet-radiation atomic oxygen synergism in materials reactivity[J].Journal of Spacecraft and Rockets,1990,27(3):346-348.

    • [19] HAN J H,KIM C G.Low earth orbit space environment simulation and its effects on graphite/epoxy composites[J].Composite Structures,2006,72(2):218-226.

    • [20] BOWLES D E,TOMPKINS S S,SYKES G F.Electron-radiation effects on the thermal-expansion of graphite resin composites[J].Journal of Spacecraft and Rockets,1986,23(6):625-629.

    • [21] NAIRN J A.The Strain-energy release rate of composite microcracking — A variation approach[J].Journal of composite material,1989,23(11):1106-1129.

    • [22] ARNOLD G S,PEPLINSKI D R.Reaction of high-velocity atomic oxygen with carbon[J].AIAA Journal,1986,24(4):673-677.

    • [23] HOOSHANGI Z,FEGHHI S A H,SAEEDZADEHL R.The effects of low earth orbit atomic oxygen on the properties of polytetrafluoroethylene[J].ACTA Astronautica,2016,119:233-240.

    • [24] 赵琳,李中华,郑阔海.原子氧防护涂层技术研究[J].真空与低温,2011,17(4):187-192,229.ZHAO Lin,LI Zhonghua,ZHENG Kuohai.Research on atomic oxygen protective coating technology[J].Vacuum and Low Temperature,2011,17(4):187-192,229.(in Chinese)

    • [25] 李涛,姜海富,刘向鹏,等.空间原子氧环境对常用热控涂层的影响[J].航天器环境工程,2012,29(3):268-272.LI Tao,JIANG Haifu,LIU Xiangpeng,et al.Effect of space atomic oxygen environment on common thermal control coatings[J].Spacecraft Environmental Engineering,2012,29(3):268-272.(in Chinese)

    • [26] 多树旺,李美栓,张亚明,等.低地轨道环境中的原子氧对空间材料的侵蚀与防护涂层[J].腐蚀科学与防护技术,2002(3):152-156.DUO Shuwang,LI Meishuan,ZHANG Yaming,et al.Erosion and protective coating of space materials by atomic oxygen in low-earth orbit environment[J].Corrosion Science and Protection Technology,2002(3):152-156.(in Chinese)

    • [27] CORDERO N,YOON J,SUO Z G.Channel cracks in a hermetic coating consisting of organic and inorganic layers[J].Applied Physics Letters,2007,90(11):111910.

    • [28] QIAN M,MURRAY V J,WEI W,et al.Resistance of POSS polyimide blends to hyperthermal atomic oxygen attack[J].ACS Applied Materials & Interfaces,2016,8(49):33982-33992.

    • [29] WANG D,MA J,LI P,et al.Flexible hard coatings with self-evolution behavior in a low earth orbit environment[J].ACS Applied Materials & Interfaces,2021,13(38):46003-46014.

    • [30] ZHANG Y,YUAN H,YAN W,et al.Atomic-oxygen-durable and antistatic alpha-AlxTiyO/gamma-NiCr coating on Kapton for aerospace applications[J].ACS Applied Materials & Interfaces,2021,13(48):58179-58192.

    • [31] WANG Y,JI H Y,LI L Z,et al.Trilayered film with excellent tribological performance:A combination of graphene oxide and perfluoropolyethers[J].Tribology Letters,2015,60(3):1-7.

    • [32] BOTLHOKO O J,LETWABA L,BANDYOPADHYAY J,et al.UV-protection,tribology,and mechanical properties of ZnO-containing polyamide composites[J].Journal of Applied Polymer Science,2020,137(9):48418.

    • [33] BARROSO G,KRAUS T,DEGENHARDT U,et al.Functional coatings based on preceramic polymers[J].Advanced Engineering Materials,2016,18(5):746-753.

    • [34] DUO S,LIU T,ZOU X,et al.Properties of Al2O3-SiO2 Protective coatings prepared by sol-gel process in atomic oxygen environment[J].Rare Metal Materials and Engineering,2009,38:743-746.

    • [35] WU B H,ZHANG Y,YANG D Y,et al.Self-healing anti-atomic-oxygen phosphorus-containing polyimide film via molecular level incorporation of nanocage trisilanolphenyl POSS:Preparation and characterization[J].Polymers,2019,11(6):1013.

    • [36] ZHANG Y,WU B H,WANG H L,et al.Preparation and characterization of transparent polyimide nanocomposite films with potential applications as spacecraft antenna substrates with low dielectric features and good sustainability in atomic-oxygen environments[J].Nanomaterials,2021,11(8):1886.

    • [37] ZHAO J F,LIU Z Q,WANG B,et al.Tool coating effects on cutting temperature during metal cutting processes:Comprehensive review and future research directions[J].Mechanical Systems and Signal Processing,2021,150:107302.

    • [38] PIAO Z Y,XU B S,WANG H D,et al.Rolling contact fatigue behavior of thermal-sprayed coating:A review[J].Critical Review in Solid State and Material Sciences,2020,45(6):429-456.

    • [39] HUSSAIN M,RIZVI S H A,ABBAS N,et al.Recent developments in coatings for orthopedic metallic implants[J].Coatings,2021,11(7):791.

    • [40] TABATABAEIAN A,GHASEMI A R,SHOKRIEH M M,et al.Residual stress in engineering materials:A review[J].Advanced Engineering Materials,2022,24(3):2100786.

    • [41] GHADAMI F,AGHDAM A S R.Improvement of high velocity oxy-fuel spray coatings by thermal post-treatments:A critical review[J].Thin Solid Films,2019,678:42-52.

    • [42] ZHAO M H,XU X X,LIANG S,et al.Characterization method of the layer thickness of surface residual stress based on instrumented indentation testing[J].AIP Advances,2019,9(9):095024.

    • [43] ASHTIJOO P,BHATTACHERJEE S,SUTARTO R,et al.Fabrication and characterization of adherent diamond-like carbon based thin films on polyethylene terephthalate by end hall ion beam deposition[J].Surface & Coatings Technology,2016,308:90-97.

    • [44] LI Q Z,HUANG T,YANG M,et al.Effects of gradient structure and modulation period of Ta/TaN/Ta(C,N)/Ta-DLC multilayer coatings prepared by HiPIMS[J].Surface & Coatings Technology,2023,459:129406.

    • [45] SICOT O,GONG X L,CHEROUAT A,et al.Determination of residual stress in composite laminates using the incremental hole-drilling method[J].Journal of Composite Materials,2003,37(9):831-844.

    • [46] HARRINGTON J,SCHAJER G.Measurement of structural stresses by hole-drilling and DIC[J].Experimental Mechanics,2017,57(4):559-567.

    • [47] WENZELBURGER M,LóPEZ D,GADOW R.Methods and application of residual stress analysis on thermally sprayed coatings and layer composites[J].Surface and Coatings Technology,2006,201(5):1995-2001.

    • [48] ABUBAKAR A A,ADESINA A Y,ARIF A M,et al.Evaluation of residual stress in thick metallic coatings using the combination of hole drilling and micro-indentation methods[J].Journal of Materials Research and Technology—JMR&T,2022,20:867-881.

    • [49] DONG Y B,SHAO W Z,JIANG J T,et al.Minimization of residual Stress in an Al-Cu alloy forged plate by different heat treatments[J].Journal of Materials Engineering and Performance,2015,24(6):2256-2265.

    • [50] ZHOU Y C,HASHIDA T.Thermal fatigue failure induced by delamination in thermal barrier coating[J].International Journal of Fatigue,2002,24(2-4):407-417.

    • [51] RECH S,TRENTIN A,VEZZU S,et al.Influence of pre-heated Al 6061 substrate temperature on the residual stresses of multipass Al coatings deposited by cold spray[J].Journal of Thermal Spray Technology,2011,20(1-2):243-251.

    • [52] LIMA C R C,NIN J,GUILEMANY J M.Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the modified layer removal method(MLRM)[J].Surface & Coatings Technology,2006,200(20-21):5963-5972.

    • [53] GARZA C,DAS R,SHTERENLIKHT A,et al.Measurement of assembly stress in composite structures using the deep-hole drilling technique[J].Composite Structures,2018,202:119-126.

    • [54] OSTEN W,PEDRINI G,WEIDMANN P,et al.A flexible method for residual stress measurement of spray coated layers by laser made hole drilling and SLM based beam conditioning[M].San Diego:SPIE,9660:95-98.

    • [55] GUINARD C,MONTAY G,GUIPONT V,et al.Residual stress analysis of laser-drilled thermal barrier coatings involving various bond coats[J].Journal of Thermal Spray Technology,2015,24(1-2):252-262.

    • [56] PEDRINI G,MARTINEZ-GARCIA V,WEIDMANN P,et al.Residual stress analysis of ceramic coating by laser ablation and digital holography[J].Experimental Mechanics,2016,56(5):683-701.

    • [57] MARTINEZ-GARCIA V,PEDRINI G,WEIDMANN P,et al.Non-contact residual stress analysis method with displacement measurements in the nanometric range by laser made material removal and SLM based beam conditioning on ceramic coatings[J].Surface & Coatings Technology,2019,371:14-19.

    • [58] XU J Y,HUANG X H,CHEN M,et al.Drilling characteristics of carbon/epoxy and carbon/polyimide composites[J].Materials and Manufacturing processes,2020,35(15):1732-1740.

    • [59] MAGNIER A,SCHOLTES B,NIENDORF T.On the reliability of residual stress measurements in polycarbonate samples by the hole drilling method[J].Polymer Testing,2018,71:329-334.

    • [60] MAGNIER A,WU T,TINKLOH S R,et al.On the reliability of residual stress measurements in unidirectional carbon fibre reinforced epoxy composites[J].Polymer Testing,2021,97:107146.

    • [61] TABATABAEIAN A,GHASEMI A R.The impact of MWCNT modification on the structural performance of polymeric composite profiles[J].Polymer Bulletin,2020,77(12):6563-6576.

    • [62] FU K K,SHEPPARD L R,CHANG L,et al.Length-scale-dependent nanoindentation creep behaviour of Ti/Al multilayers by magnetron sputtering[J].Materials Characterization,2018,139:165-175.

    • [63] XIAO Y,WU L,LUO J,et al.Mechanical response of thin hard coatings under indentation considering rough surface and residual stress[J].Diamond and Related Materials,2020,108:107991.

    • [64] ABDOOS M,BOSE B,RAWAL S,et al.The influence of residual stress on the properties and performance of thick TiAlN multilayer coating during dry turning of compacted graphite iron[J].Wear,2020,454-455:203342.

    • [65] ANANTHAKRISHNA G,KRISHNAMOORTHY S.A novel approach to modelling nanoindentation instabilities[J].Crystals,2018,8(5):200.

    • [66] KIELY J D,HWANG R Q,HOUSTON J E.Effect of surface steps on the plastic threshold in nanoindentation[J].Physical Review Letters,1998,81(20):4424-4427.

    • [67] CORCORAN S G,COLTON R J,LILLEODDEN E T,et al.Anomalous plastic deformation at surfaces:Nanoindentation of gold single crystals[J].Physical Review B,1997,55(24):16057-16060.

    • [68] GOULDSTONE A,KOH H J,ZENG K Y,et al.Discrete and continuous deformation during nanoindentation of thin films[J].Acta Materialia,2000,48(9):2277-2295.

    • [69] FANG X,JIN G,CUI X F,et al.Evolution characteristics of residual stress in metastable Ni-B alloy coatings identified by nanoindentation[J].Surface & Coatings Technology,2016,305:208-214.

    • [70] KIM C H,HEUER A H.A high-temperature displacement-sensitive indenter for studying mechanical properties of thermal barrier coatings[J].Journal of Materials Research,2004,19(1):351-356.

    • [71] SHANG F L,ZHANG X,GUO X C,et al.Determination of high temperature mechanical properties of thermal barrier coatings by nanoindentation[J].Surface Engineering,2014,30(4):283-289.

    • [72] WATANABE M,MERCER C,LEVI C G,et al.A probe for the high temperature deformation of thermal barrier oxides[J].Acta Materialia,2004,52(6):1479-1487.

    • [73] HE R J,QU Z L,PEI Y M,et al.High temperature indentation tests of YSZ coatings in air up to 1 200 ℃[J].Materials Letters,2017,209:5-7.

    • [74] QU Z,WEI K,HE Q,et al.High temperature fracture toughness and residual stress in thermal barrier coatings evaluated by an in-situ indentation method[J].Ceramics International,2018,44(7):7926-7929.

    • [75] GAIR J L,LAMBETH R H,COLE D P,et al.Strong process-structure interaction in stoveable poly(urethane-urea)aligned carbon nanotube nanocomposites[J].Composites Science and Technology,2018,166:115-124.

    • [76] LEWIS G,XU J,MADIGAN S,et al.Influence of two changes in the composition of an acrylic bone cement on its handling,thermal,physical,and mechanical properties[J].Journal of Materials Science-materials in Medicine,2007,18(8):1649-1658.

    • [77] DAHL S,RATS D,VON STEBUT J,et al.Micromechanical characterisation of plasma treated polymer surfaces[J].Thin Solid Films,1999,355:290-294.

    • [78] KAULE T,ZHANG Y,EMMERLING S,et al.Nanoscale thermomechanics of wear-resilient polymeric bilayer systems[J].ACS Nano,2013,7(1):748-759.

    • [79] HE G Y,SUN D Y,ZANG S L,et al.Evaluation of the elastic-plastic properties of TiN coating by nanoindentation technologies using FEM-reverse algorithm[J].Surface & Coatings Technology,2021,409:126855.

    • [80] LODH A,THOOL K,SAMAJDAR I.X-ray Diffraction for the determination of residual stress of crystalline material:An overview[J].Transactions of the Indian Institute of Metals,2022,75(4):983-995.

    • [81] BRUNO G,CERETTI M,GIRARDIN E,et al.Relaxation of residual stress in MMC after combined plastic deformation and heat treatment[J].Scripta Materialia,2004,51(10):999-1004.

    • [82] AN N Y,SHUAI S S,HU T,et al.Application of synchrotron X-ray imaging and diffraction in additive manufacturing:A review[J].Acta Metallurgica Sinica-English Letters,2022,35(1):25-48.

    • [83] FISCHER K,OETTEL H.Analysis of residual stress gradients in thin films using SEEMANN-BOHLIN-X-ray diffraction[M].Aedermannsdorf:Materials Science Forum,1996:301-306.

    • [84] OWOSENI T A,BAI M,CURRY N,et al.Residual stress measurement of suspension HVOF-sprayed alumina coating via a hole-drilling method[J].Journal of Thermal Spray Technology,2020,29(6):1339-1350.

    • [85] KANIA B,INDYKA P,TARKOWSKI L,et al.X-ray diffraction grazing-incidence methods applied for gradient-free residual stress profile measurements in electrodeposited Ni coatings[J].Journal of Applied Crystallography,2015,48:71-78.

    • [86] MARCISZKO-WIACKOWSKA M,HNIDA-GUT K E,BACZMANSKI A,et al.Topography and residual stress analysis for Cu/Au/Co multilayered system[J].Surface & Coatings Technology,2019,380:125060.

    • [87] WANG A N,CHUANG C P,YU G P,et al.Determination of average X-ray strain(AXS)on TiN hard coatings using cos2 α sin2 ψ X-ray diffraction method[J].Surface & Coating Technology,2015,262:40-47.

    • [88] GELFI M,BONTEMPI E,ROBERTI R,et al.Residual stress analysis of thin films and coatings through XRD2 experiments[J].Thin Solid Films,2004,450(1):143-147.

    • [89] MARCISZKO M,BACZMANSKI A,WROBEL M,et al.Multireflection grazing incidence diffraction used for stress measurements in surface layers[J].Thin Solid Films,2013,530:81-84.

    • [90] KARPOV I D,EM V T,SUMIN V V.Measuring residual stresses in vamas international calibration block with the stress diffractometer of Ir-8 reactor[J].Russian Journal of Nondestructive Testing,2019,55(4):328-333.

    • [91] FU P,ZHAN K,JIANG C H.Micro-structure and surface layer properties of 18CrNiMo7-6 steel after multistep shot peening[J].Materials & Design,2013,51:309-314.

    • [92] MATEJICEK J,SAMPATH S,BRAND P C,et al.Quenching,thermal and residual stress in plasma sprayed deposits:NiCrAlY and YSZ coatings[J].Acta Materialia,1999,47(2):607-617.

    • [93] ROGANTE M,MIKULA P,VRANA M.Residual stresses assessment in coated materials:complementarity between Neutron and X-ray techniques[J].Key Engineering Materials,2011,465:259-262.

    • [94] BRANDT L R,SALVATI E,PAPADAKI C,et al.Probing the deformation and fracture properties of Cu/W nano-multilayers by in situ SEM and synchrotron XRD strain microscopy[J].Surface & Coating Technology,2017,320:158-167.

    • [95] NISHINO T,KOTERA M,INAYOSHI N,et al.Residual stress and microstructures of aromatic polyimide with different imidization processes[J].Polymer,2000,41(18):6913-6918.

    • [96] LUAN B,LIU X Y,NAGATA J,et al.Residual stress analysis — An important consideration for coating of stereolithography polymers[J].Surface & Coating Technology,2005,192(2-3):323-330.

    • [97] LUO Q S,YANG S C.Uncertainty of the X-ray diffraction(XRD)sin2 ψ Technique in measuring residual stresses of physical vapor deposition(PVD)hard coatings[J].Coatings,2017,7(8):128.

    • [98] YE C,JIANG P.Accurate residual stress measurement as a function of depth in environmental barrier coatings via a combination of X-ray diffraction and Raman spectroscopy[J].Ceramics International,2020,46(8):12613-12617.

    • [99] DAS B,BRODARD P,BANDYOPADHYAY P P.Raman spectroscopy assisted residual stress measurement of plasma sprayed and laser remelted zirconia splats and coatings[J].Surface and Coatings Technology,2019,378:124920.

    • [100] AHMED F,BAYERLEIN K,ROSIWAL S M,et al.Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate:Analysis by micro-Raman spectroscopy and analytical modelling[J].Acta Materialia,2011,59(14):5422-5433.

    • [101] CUI Y,GUO M,WANG C,et al.Evolution of the residual stress in porous ceramic abradable coatings under thermal exposure[J].Surface and Coatings Technology,2020,394:125915.

    • [102] TANAKA M,KITAZAWA R,TOMIMATSU T,et al.Residual stress measurement of an EB-PVD Y2O3-ZrO2 thermal barrier coating by micro-Raman spectroscopy[J].Surface & Coatings Technology,2009,204(5):657-660.

    • [103] ZHU X,HUANG Y,ZHENG W,et al.Crystallinity,stresses,and cracks of YSZ coatings characterized by SEM-EBSD-Raman spectroscopy[J].Journal of Thermal Spray Technology,2020,29(5):995-1001.

    • [104] QIU W,CHENG C L,LIANG R R,et al.Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy[J].Acta Mechanica Sinica,2016,32(5):805-812.

    • [105] LI Q,GOU Y R,WANG T G,et al.Study on local residual stress in a nanocrystalline Cr2O3 coating by micro-raman spectroscopy[J].Coatings,2019,9(8):500.

    • [106] OHTSUKA S,ZHU W,TOCHINO S,et al.In-depth analysis of residual stress in an alumina coating on silicon nitride substrate using confocal Raman piezo-spectroscopy[J].Acta Materialia,2007,55(4):1129-1135.

    • [107] SRINIVASAN N,BHASKAR L K,KUMAR R,et al.Residual stress gradient and relaxation upon fatigue deformation of diamond-like carbon coated aluminum alloy in air and methanol environments[J].Materials & Design,2018,160:303-312.

    • [108] DAS B,BRODARD P,BANDYOPADHYAY P P.Raman spectroscopy assisted residual stress measurement of plasma sprayed and laser remelted zirconia splats and coatings[J].Surface & Coatings Technology,2019,378:124920.

    • [109] MIYAGAWA H,KAMIYA D,SATO C,et al.Strain measurement for Raman-inactive substrates with PbO thin films using Raman coating method[J].Journal of Materials Science,1999,34(1):105-110.

    • [110] KORSUNSKY A M,SALVATI E,LUNT A G J,et al.Nanoscale residual stress depth profiling by Focused Ion Beam milling and eigenstrain analysis[J].Materials & Design,2018,145:55-64.

    • [111] ZHANG X,LI C,WITHERS P J,et al.Determination of local residual stress in an air plasma spray thermal barrier coating(APS-TBC)by microscale ring coring using a picosecond laser[J].Scripta Materialia,2019,167:126-130.

    • [112] ROMANO-BRANDT L,SALVATI E,LE BOURHIS E,et al.Nano-scale residual stress depth profiling in Cu/W nano-multilayers as a function of magnetron sputtering pressure[J].Surface and Coatings Technology,2020,381:125142.

    • [113] MIRGHADERI H,RANJI A R,FADAVIE M.The effect of polyurea coating on fatigue life of mild steel[J].Journal of Materials Engineering and Performance,2021,30(5):3831-3844.

    • [114] LI G,SUN J,XU Y,et al.Microstructure,mechanical properties,and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS[J].Surface and Coatings Technology,2018,353:274-281.

    • [115] UçAK N,ASLANTAS K,ÇIçEK A.The effects of Al2O3 coating on serrated chip geometry and adiabatic shear banding in orthogonal cutting of AISI 316L stainless steel[J].Journal of Materials Research and Technology,2020,9(5):10758-10767.

    • [116] DE MARCHI L,MARZANI A,MINIACI M.A dispersion compensation procedure to extend pulse-echo defects location to irregular waveguides[J].NDT & E International,2013,54:115-122.

    • [117] TANUMA K,MAN C S,CHEN Y.Dispersion of rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress[J].International Journal of Engineering Science,2015,92:63-82.

    • [118] LIU B,DONG S,XU B,et al.Coating thickness affects surface stress measurement of brush electro-plating nickel coating using Rayleigh wave approach[J].Ultrasonics,2012,52(7):861-865.

    • [119] QIAN Z,HUANG H,LIU W,et al.Magnetomechanical model for coating/substrate interface and its application in interfacial crack propagation length characterization[J].Journal of Applied Physics,2018,124(20):203904.

    • [120] SHKURATNIK V L,KRAVCHENKO O S,FILIMONOV Y L.Acoustic emission of rock salt at different uniaxial strain rates and under temperature[J].Journal of Applied Mechanics and Technicals Physics,2020,61(3):479-485.

    • [121] RONG G,YAO M D,PENG J,et al.Influence of initial thermal cracking on physical and mechanical behaviour of a coarse marble:insights from uniaxial compression tests with acoustic emission monitoring[J].Geophysical Journal International,2018,214(3):1886-1900.

    • [122] SCHAJER G S,YANG L.Residual-stress measurement in orthotropic materials using the hole-drilling method[J].Experimental Mechanics,1994,34(4):324-333.

    • [123] 曹枝军,袁建辉,苏怀宇,等.声发射技术在热障涂层失效机理中的研究进展及展望[J].中国表面工程,2023,36(2):34-53.Cao Zhijun,YUAN Jianhui,SU Huaiyu,et al.Research progress and prospect of acoustic emission technology in failure mechanism of thermal barrier coatings[J].China Surface Engineering,2023,36(2):34-53.(in Chinese)

    • [124] LIU L G,LI Q,LIU X H,et al.Stress field simulation of carburized specimens with different carbon content during quenching process[J].Materials Letters,2007,61(4-5):1251-1255.

    • [125] LIU L G,LI Q,LIAO B,et al.Stress field simulation of the specimen with multi-layer phase structure[J].Materials Science and Engineering A-structural Materials Properties Microstructure and Processing,2006,435:484-490.

    • [126] JAMSHIDIAN M,RABCZUK T.Phase field modelling of stressed grain growth:Analytical study and the effect of microstructural length scale[J].Journal of Computational Physics,2014,261:23-35.

    • [127] ZHANG J H,LI X X,XU D S,et al.Phase field simulation of the stress-induced alpha microstructure in Ti-6Al-4 V alloy and its CPFEM properties evaluation[J].Journal of Materials Science & Technology,2021,90:168-182.

    • [128] ALVES C L M,REZENDE J,SENK D,et al.Phase-field simulation of peritectic steels solidification with transformation-induced elastic effect[J].Journal of Materials Research and Technology-JMR&T,2020,9(3):3805-3816.

    • [129] OKUNO Y,SAKASHITA Y.Effective hamiltonian approach to studying the field-induced structural phase transition of BaTiO3[J].Japanese Journal of Applied Physics,2009,48(2):021403.

    • [130] GUYONNEAU D,MERMOZ E,MAILHE J,et al.Stress optimization and study of the sensitivity to geometric variations of a spur gear tooth profile[J].Mechanics & Industry,2013,14(1):31-41.

    • [131] WANG F,CHEN Z Q,WEI Y Q,et al.Numerical modeling of tensile behavior of fiber-reinforced polymer composites[J].Journal of Composite Materials,2010,44(19):2325-2340.

    • [132] CHASON E,JAGTAP P.Effect of grain size on thin film stress and morphology using kinetic Monte Carlo simulations[J].Journal of Applied Physics,2020,128(14):145301.

    • [133] GADELMOULA A,AL-ATHEL K S,AKHTAR S S,et al.A stochastically generated geometrical finite element model for predicting the residual stresses of thermally sprayed coatings under different process parameters[J].Journal of Thermal Spray Technology,2020,29(6):1256-1267.

    • [134] KIM N,YUN G,KIM D-N.Overlapping finite element analysis for structures under thermal loads with spatially varying gradients[J].Journal of Mechanical Science and Technology,2022,36(3):1379-1390.

    • [135] LIU Y,SCHINDLER A K.Finite-element modeling of early-age concrete behavior under high level of tensile stress[J].Materials and Structures,2019,52(2):30.1-30.14.

    • [136] MU C,SONG W,HUI T.Reliability parameter optimization of electromagnetic relay for aerospace products based on 3D thermal stress field[J].IOP Conference Series:Earth and Environmental Science,2021,632(4):042059.

    • [137] IQBAL M D,BIRK C,OOI E T,et al.Development of the scaled boundary finite element method for crack propagation modeling of elastic solids subjected to coupled thermo-mechanical loads[J].Computer Methods in Applied Mechanics and Engineering,2021,387:114106.

    • [138] MEN X D,TAO F H,GAN L,et al.Erosion behavior and surface cracking mechanism of Co-based coating deposited via PTA under high-speed propellant airflow[J].Surface & Coatings Technology,2019,372:369-375.

    • [139] JOSELL D,BONEVICH J E,NGUYEN T M,et al.Heat transfer through nanoscale multilayered thermal barrier coatings at elevated temperatures[J].Surface & Coatings Technology,2015,275:75-83.

    • [140] TIAN X,XIONG S,ZHANG Y,et al.Simulation of thermal stress in ion beam sputtered Ta2O5/SiO2 multilayer coatings on different substrates by finite element analysis[J].Surface and Coatings Technology,2019,362:225-233.

    • [141] LU Z,LYU G L,GULHANE A,et al.Experimental and modeling studies of bond coat species effect on microstructure evolution in EB-PVD thermal barrier coatings in cyclic thermal environments[J].Coatings,2019,9(10):626.

    • [142] CHEN F Y,HE W Q.Finite element design of MgO/Ni system functionally graded materials[J].Journal of Materials Processing Technology,2007,182(1-3):181-184.

    • [143] JOSHI S C,NG H W.Optimizing functionally graded nickel-zirconia coating profiles for thermal stress relaxation[J].Simulation Modelling Practice and Theory,2011,19(1):586-598.

    • [144] DUBIEL A,GRABOWSKI G,GOLY M,et al.The influence of thermal residual stresses on mechanical properties of silicon nitride-based composites[J].Materials,2020,13(5):1092.

    • [145] SONG Y,WU W J,QIN M,et al.Effect of geometric parameter on thermal stress generation in fabrication process of double-ceramic-layers thermal barrier coating system[J].Journal of the European Ceramic Society,2018,38(11):3962-3973.

    • [146] 刘思思,杨正航,武云文,等.超音速火焰喷涂 Ni-CeO2复合涂层的数值模拟及耐磨耐腐蚀性能[J].中国表面工程,2023,36(3):180-192.LIU Sisi,YANG Zhenghang,WU Yunwen,et al.Numerical Simulation and wear resistance of Ni-CeO2 composite coating by Supersonic Flame spraying[J].China Surface Engineering,2023,36(3):180-192.(in Chinese)

    • [147] XUE X L,ZENG C F,WANG S B,et al.Mechanical-thermal response of brittle titanium films on polymer substrates:in-situ observations and FE modelling[J].Journal of Micromechanics and Microengineering,2020,30(6):065013.

    • [148] LI G R,WANG L S.Durable TBCs with self-enhanced thermal insulation based on co-design on macro-and microstructure[J].Applied Surface Science,2019,483:472-480.

    • [149] ZHOU H,LIU H Y,FU K K,et al.Numerical simulation of failure of composite coatings due to thermal and hygroscopic stresses[J].Coatings,2019,9(4):243.

    • [150] HUANG J B,WANG W Z,LU X,et al.Effect of particle size on the thermal shock resistance of plasma-sprayed YSZ coatings[J].Coatings,2017,7(9):150.

    • [151] BAKER M,ROSLER J,HEINZE G.A parametric study of the stress state of thermal barrier coatings Part II:cooling stresses[J].Acta Materialia,2005,53(2):469-476.

    • [152] BUROV A,FEDOROVA E.Modeling of interface failure in a thermal barrier coating system on Ni-based superalloys[J].Engineering Failure Analysis,2021,123:105320.

    • [153] POPA M,HVIZDOS P,ANNE G,et al.Thermal residual stress gradients in an alumina-zirconia composite obtained by electrophoretic deposition[J].Journal of The European Ceramic Society,2006,26(4-5):553-558.

    • [154] HASSANI S,BIELAWSKI M,BERES W,et al.Impact stress absorption and load spreading in multi-layered erosion-resistant coatings[J].Wear,2010,268(5-6):770-776.

    • [155] GUO H B,GONG S K,XU H B.Evaluation of hot-fatigue behaviors of EB-PVD gradient thermal barrier coatings[J].Materials Science And Engineering A-Structural Materials Properties Microstructure and Processing,2002,325(1-2):261-269.

    • [156] HE J Y,DING L Y,CAI J,et al.A novel high temperature resistant Mo-Cu functional gradient coating for optic fiber Bragg grating[J].Results in Physics,2019,14:102456.

    • [157] CHEN C X,TAN J Y,WU W,et al.Modeling and experimental studies of coating delamination of biodegradable magnesium alloy cardiovascular stents[J].ACS Biomaterials Science & Engineering,2018,4(11):3864-3873.

    • [158] HE X,LARSEN R,CHEN F L,et al.Block cracking in surface coatings of polymeric substrates[J].Engineering Fracture Mechanics,2020,233:107073.

    • [159] YANG T S,CHANG S Y,DENG J H.Investigation of loading-unloading curve and stress distribution of thin hard coating by finite element analysis during nanoindentation process[J].Applied Mechanics and Materials,2013,465-466:1365-1369.

    • [160] SANTANA Y Y,LA BARBERA-SOSA J G,STAIA M H,et al.Measurement of residual stress in thermal spray coatings by the incremental hole drilling method[J].Surface & Coatings Technology,2006,201(5):2092-2098.

    • [161] ZHU J G,XIE H M,LI Y J,et al.Interfacial residual stress analysis of thermal spray coatings by miniature ring-core cutting combined with DIC method[J].Experimental Mechanics,2014,54(2):127-136.

    • [162] BAE G,JANG J I,LEE C.Correlation of particle impact conditions with bonding,nanocrystal formation and mechanical properties in kinetic sprayed nickel[J].Acta Materialia,2012,60(8):3524-3535.

    • [163] JIANG J S,WU D,WANG W Z,et al.Fracture behavior of TBCs with cooling hole structure under cyclic thermal loadings[J].Ceramics International,2020,46(3):3644-3654.

    • [164] ALEKSEENKO I,PEDRINI G,MARTINEZ-GARCIA V,et al.Residual stress evaluation in ceramic coating under industrial conditions by digital holography[J].IEEE Transactions on Industrial Informatics,2020,16(2):1102-1110.

    • [165] ROACHE D C,BUMGARDNER C H,HARRELL T M,et al.Unveiling damage mechanisms of chromium-coated zirconium-based fuel claddings at LWR operating temperature by in-situ digital image correlation[J].Surface & Coatings Technology,2022,429:127909.

    • [166] BAE J S,KRISHNASWAMY S.Subinterfacial cracks in bimaterial systems subjected to mechanical and thermal loading[J].Engineering Fracture Mechanics,2001,68(9):1081-1094.

  • 手机扫一扫看