en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马式跃,男,1999年出生,硕士研究生。主要研究方向为高速低温喷涂。E-mail:940614131@qq.com

通讯作者:

杨冠军,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为防护涂层和钙钛矿电池。E-mail:ygj@mail.xjtu.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20230327002

参考文献 1
张伟,郭永明,陈永雄.热喷涂技术在产品再制造领域的应用及发展趋势[J].中国表面工程,2011,24(6):1-10.ZHANG Wei,GUO Yongming,CHEN Yongxiong.Applications and future development of thermal spraying technologies for remanufacturing engineering[J].China Surface Engineering,2011,24(6):1-10.(in Chinese)
参考文献 2
陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al.Development status and prospect on equipment application of thermal spray technology[J].China Surface Engineering,2021,34(4):12-18.(in Chinese)
参考文献 3
陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016,37(1):3-21.CHEN Lin,YANG Guanjun,LI Chengxin,et al.Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings[J].Advanced Ceramics,2016,37(1):3-21.(in Chinese)
参考文献 4
WEI Z Y,MENG G H,CHEN L,et al.Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J].Journal of Advanced Ceramics,2022,11(7):985-1068.
参考文献 5
季珩,黄利平,郑学斌.气氛环境对等离子体喷涂钛涂层的影响研究[J].热喷涂技术,2011,3(3):44-47.JI Heng,HUANG Liping,ZHENG Xuebin.Effects of atmosphere environment on oxygen content and bonding strength of plasma sprayed titanium coatings[J].Thermal Spray Technology,2011,3(3):44-47.(in Chinese)
参考文献 6
张鹏,周正,贺定勇,等.喷涂工艺及其粒子状态对涂层结合强度的影响[J].热喷涂技术,2015,7(1):27-31,10.ZHANG Peng,ZHOU Zheng,HE Dingyong,et al.Effects of spraying parameters and related particle status on coating bond strength[J].Thermal Spray Technology,2015,7(1):27-31,10.(in Chinese)
参考文献 7
周超极,朱胜,王晓明,等.热喷涂涂层缺陷形成机理与组织结构调控研究概述[J].材料导报,2018,32(19):3444-3455,3464.ZHOU Chaoji,ZHU Sheng,WANG Xiaoming,et al.A review on thermally sprayed coating defects formation mechanism and microstructure modification[J].Materials Review,2018,32(19):3444-3455,3464.(in Chinese)
参考文献 8
BERGER L M.Application of hardmetals as thermal spray coatings[J].International Journal of Refractory Metals and Hard Materials,2015,49:350-364.
参考文献 9
KAWAKITA J,KURODA S,FUKUSHIMA T,et al.Dense titanium coatings by modified HVOF spraying[J].Surface and Coatings Technology,2006,201(3):1250-1255.
参考文献 10
韩滔,邓春明,刘敏,等.常规超音速和低温超音速火焰喷涂WC-10Co-4Cr涂层的断裂韧性[J].硅酸盐学报,2014,42(3):409-415.HAN Tao,DENG Chunming,LIU Min,et al.Fracture toughness of normal high velocity oxygen-fuel flame and low temperature high velocity oxygen-fuel sprayed WC-10Co-4Cr coating[J].Journal of the Chinese Ceramic Society,2014,42(3):409-415.(in Chinese)
参考文献 11
GAO X,LI C,XU Y,et al.Effects of fuel types and process parameters on the performance of an activated combustion high velocity air-fuel(AC-HVAF)thermal spray system[J].Journal of Thermal Spray Technology,2021,30(7):1875-1890.
参考文献 12
黄春杰,殷硕,李文亚,等.冷喷涂技术及其系统的研究现状与展望[J].表面技术,2021,50(7):1-23.HUANG Chunjie,YIN Shuo,LI Wenya,et al.Cold spray technology and its system:research status and prospect[J].Surface Technology,2021,50(7):1-23.(in Chinese)
参考文献 13
ASSADI H,GARTNER F,STOLTENHOFF T,et al.Bonding mechanism in cold gas spraying[J].Acta Materialia,2003,51(15):4379-4394.
参考文献 14
LI W Y,LIAO H L,LI C J,et al.On high velocity impact of micro-sized metallic particles in cold spraying[J].Applied Surface Science,2006,253(5):2852-2862.
参考文献 15
SCHMIDT T,GARTNER F,ASSADI H,et al.Development of a generalized parameter window for cold spray deposition[J].Acta Materialia,2006,54(3):729-742.
参考文献 16
雒晓涛,谢天,李长久,等.冷喷涂金属的组织与性能调控[J].中国表面工程,2020,33(4):68-81.LUO Xiaotao,XIE Tian,LI Changjiu,et al.Microstructure and properties tailoring of cold sprayed metals[J].China Surface Engineering,2020,33(4):68-81.(in Chinese)
参考文献 17
朱胜,杜文博,王晓明,等.基于高熵合金的镁合金表面防护技术研究[J].装甲兵工程学院学报,2013,27(6):79-84.ZHU Sheng,DU Wenbo,WANG Xiaoming,et al.Research on surface protection technology for magnesium alloys based on high entropy alloy[J].Journal of Academy of Armored Force Engineering,2013,27(6):79-84.(in Chinese)
参考文献 18
WONG W,IRISSOU E,RYABININ A N,et al.Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings[J].Journal of Thermal Spray Technology,2011,20(1-2):213-226.
参考文献 19
CODDET P,VERDY C,CODDET C,et al.Mechanical properties of thick 304L stainless steel deposits processed by He cold spray[J].Surface and Coatings Technology,2015,277:74-80.
参考文献 20
周克崧,刘敏,邓春明,等.新型热喷涂及其复合技术的进展[J].中国材料进展,2009,28(Z2):1-8.ZHOU Kesong,LIU Min,DENG Chunming,et al.Recent development of new thermal spray technology and combined technology[J].Materials China,2009,28(Z2):1-8.(in Chinese)
参考文献 21
周超极,王晓明,朱胜,等.低温超音速喷涂原态沉积高铝青铜涂层的耐腐蚀性能[J].中国表面工程,2017,30(3):66-73.ZHOU Chaoji,WANG Xiaoming,ZHU Sheng,et al.Corrosion resistance of aluminum-rich bronze coating deposited by low thermal supersonic spraying technique maintaining original characteristics of particle[J].China Surface Engineering,2017,30(3):66-73.(in Chinese)
参考文献 22
KURODA S,WATANABE M,KIM K,et al.Current status and future prospects of warm spray technology[J].Journal of Thermal Spray Technology,2011,20(4):653-676.
参考文献 23
KURODA S,KAWAKITA J,WATANABE M,et al.Warm spraying—A novel coating process based on high-velocity impact of solid particles[J].Science and Technology of Advanced Materials,2008,9(3):033002.
参考文献 24
YUAN X,WANG H,HOU G,et al.Numerical modeling of a low temperature high velocity air fuel spraying process with injection of liquid and metal particles[J].Journal of Thermal Spray Technology,2006,15(3):413-421.
参考文献 25
SINGH H,SIDHU T S,KALSI S B S,et al.Development of cold spray from innovation to emerging future coating technology[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2013,35(3):231-245.
参考文献 26
LI W Y,LI C J,LIAO H L.Significant influence of particle surface oxidation on deposition efficiency,interface microstructure and adhesive strength of cold-sprayed copper coatings[J].Applied Surface Science,2010,256(16):4953-4958.
参考文献 27
章华兵,张俊宝,梁永立,等.冷喷涂Ni涂层的微观组织[J].中国有色金属学报,2008(8):1421-1425.ZHANG Huabing,ZHANG Junbao,LIANG Yongli,et al.Microstructures of cold-sprayed Ni coating[J].The Chinese Journal of Nonferrous Metals,2008(8):1421-1425.(in Chinese)
参考文献 28
BAE G,KUMAR S,YOON S,et al.Bonding features and associated mechanisms in kinetic sprayed titanium coatings[J].Acta Materialia,2009,57(19):5654-5666.
参考文献 29
SCHMIDT T,ASSADI H,GARTNER F,et al.From particle acceleration to impact and bonding in cold spraying[J].Journal of Thermal Spray Technology,2009,18(5-6):794-808.
参考文献 30
ASSADI H,SCHMIDT T,RICHTER H,et al.On parameter selection in cold spraying[J].Journal of Thermal Spray Technology,2011,20(6):1161-1176.
参考文献 31
KAMARAJ M,RADHAKRISHNAN V M.Cold spray coating diagram:bonding properties and construction methodology[J].Journal of Thermal Spray Technology,2019,28(4):756-768.
参考文献 32
VILLAFUERTE J.Modern cold spray:materials,process,and applications[M].Cham:Springer International,2015.
参考文献 33
LI S,MUDDLE B,JAHEDI M,et al.A numerical investigation of the cold spray process using underexpanded and overexpanded jets[J].Journal of Thermal Spray Technology,2012,21(1):108-120.
参考文献 34
YIN S,ZHANG M,GUO Z W,et al.Numerical investigations on the effect of total pressure and nozzle divergent length on the flow character and particle impact velocity in cold spraying[J].Surface and Coatings Technology,2013,232:290-297.
参考文献 35
LEE M W,PARK J J,KIM D Y,et al.Optimization of supersonic nozzle flow for titanium dioxide thin-film coating by aerosol deposition[J].Journal of Aerosol Science,2011,42(11):771-780.
参考文献 36
李文亚,樊柠松,殷硕.冷喷涂过程中气固两相流动行为及喷涂工艺优化研究新进展[J].中国表面工程,2020,33(4):82-101.LI Wenya,FAN Ningsong,YIN Shuo.State-of-the-art of gas-solid two-phase flow behavior during cold spray and process parameters optimization[J].China Surface Engineering,2020,33(4):82-101.(in Chinese)
参考文献 37
STOLTENHOFF T,KREYE H,RICHTER H J.An analysis of the cold spray process and its coatings[J].Journal of Thermal Spray Technology,2002,11(4):542-550.
参考文献 38
PATTISON J,CELOTTO S,KHAN A,et al.Standoff distance and bow shock phenomena in the cold spray process[J].Surface and Coatings Technology,2008,202(8):1443-1454.
参考文献 39
PARK J J,LEE M W,YOON S S,et al.Supersonic nozzle flow simulations for particle coating applications:effects of shockwaves,nozzle geometry,ambient pressure,and substrate location upon flow characteristics[J].Journal of Thermal Spray Technology,2011,20(3):514-522.
参考文献 40
TABBARA H,GU S,MCCARTNEY D G,et al.Study on process optimization of cold gas spraying[J].Journal of Thermal Spray Technology,2011,20(3):608-620.
参考文献 41
FAUCHAIS P L,HEBERLEIN J V R,BOULOS M I.Thermal spray fundamentals[M].Boston:Springer US,2014.
参考文献 42
HUANG R,FUKANUMA H.Study of the influence of particle velocity on adhesive strength of cold spray deposits[J].Journal of Thermal Spray Technology,2012,21(3-4):541-549.
参考文献 43
LI W Y,LI C J.Optimal design of a novel cold spray gun nozzle at a limited space[J].Journal of Thermal Spray Technology,2005,14(3):391-396.
参考文献 44
HUANG G S,GU D M,LI X B,et al.Numerical simulation on syphonage effect of laval nozzle for low pressure cold spray system[J].Journal of Materials Processing Technology,2014,214(11):2497-2504.
参考文献 45
李铁藩,王恺,吴杰,等.冷喷涂装置研究进展[J].热喷涂技术,2011,3(2):15-34.LI Tiefan,WANG Kai,WU Jie,et al.Development on cold spray apparatus[J].Thermal Spray Technology,2011,3(2):15-34.(in Chinese)
参考文献 46
WANG X D,ZHANG B,LV J S,et al.Investigation on the clogging behavior and additional wall cooling for the axial-injection cold spray nozzle[J].Journal of Thermal Spray Technology,2015,24(4):696-701.
参考文献 47
孙鑫,乔伟,时冰伟,等.电阻式加热器概述及发展趋势[J].内燃机与配件,2020(14):45-48.SUN Xin,QIAO Wei,SHI Bingwei,et al.The summarize and development tendency of electric resistance heaters[J].Internal Combustion Engine and Parts,2020(14):45-48.(in Chinese)
参考文献 48
FUKANUMA H,HUANG R.Development of high temperature gas heater in the cold spray coating system[C]//Proceedings of the International Thermal Spray Conference(ITSC),2009,May 4-7,2009,Las Vegas,Nevada,USA.2009.
参考文献 49
程相飞,兰海明,黄仁忠,等.冷喷涂气体加热器的优化研究[J].材料研究与应用,2022,16(2):291-296.CHENG Xiangfei,LAN Haiming,HUANG Renzhong,et al.Optimizing study of cold spray gas heater[J].Materials Research and Application,2022,16(2):291-296.(in Chinese)
参考文献 50
PAPYRIN A,KOSAREV V,KLINKOV S,et al.Cold spray technology[M].Oxford:Elsevier,2006.
参考文献 51
TINASHE S E.Conceptual design of a low pressure cold gas dynamic spray(LPCGDS)system[D].Johannesburg:University of the Witwatersrand,2010.
参考文献 52
黄国胜,李相波,邢路阔.一种冷喷涂用空气加热器:CN201110092660.3[P].2012-09-05.HUANG Guosheng,LI Xiangbo,XING Lukuo.An air heater for cold spraying:CN201110092660.3[P].2012-09-05.(in Chinese)
参考文献 53
MAEV R G,LESHCHYNSKY V.Introduction to low pressure gas dynamic spray:physics and technology[M].Weinheim:John Wiley & Sons,2009.
参考文献 54
BROWNING J A.Hypervelocity impact fusion—A technical note[J].Journal of Thermal Spray Technology,1992,1(4):289-292.
参考文献 55
BROWNING J A.Viewing the future of high-velocity oxyfuel(HVOF)and high-velocity air fuel(HVAF)thermal spraying[J].Journal of Thermal Spray Technology,1999,8(3):351-356.
参考文献 56
TAYLOR K,JODOIN B,KAROV J.Particle loading effect in cold spray[J].Journal of Thermal Spray Technology,2006,15(2):273-279.
参考文献 57
胡晓冬,马磊,罗铖.激光熔覆同步送粉器的研究现状 [J].航空制造技术,2011(9):46-49.HU Xiaodong,MA Lei,LUO Cheng.Research status of powder feeder for laser cladding[J].Aeronautical Manufacturing Technology,2011(9):46-49.(in Chinese)
参考文献 58
程畅栋,李兴军,欧益忠,等.一种用于冷喷涂的高压送粉装置研制[J].现代制造技术与装备,2020,56(11):5-8.CHENG Changdong,LI Xingjun,OU Yizhong,et al.Development of a high pressure powder feeding device for cold spraying[J].Modern Manufacturing Technology and Equipment,2020,56(11):5-8.(in Chinese)
参考文献 59
HANFT D,GLOSSE P,DENNELER S,et al.The aerosol deposition method:A modified aerosol generation unit to improve coating quality[J].Materials,2018,11(9):1572.
参考文献 60
OGATA K,HARADA T,KAWAHARA H,et al.Characteristics of vibrating fluidization and transportation for Al2O3 powder[J].Materials,2022,15(6):2191.
参考文献 61
TAN A,LEK J,SUN W,et al.Influence of particle velocity when propelled using N2 or N2-He mixed gas on the properties of cold-sprayed Ti6Al4V coatings[J].Coatings,2018,8(9):327.
参考文献 62
YAWS C L.Matheson gas data book[M].New York:McGraw Hill Professional,2001.
参考文献 63
王汉功,查柏林.多功能超音速火焰喷涂的燃烧特性研究[J].材料保护,2002(4):28-30.WANG Hangong,ZHA Bailin.Combustion characteristics of multi-function oxygen fuel spraying with supersonic velocity[J].Materiais Protection,2002(4):28-30.(in Chinese)
参考文献 64
侯根良,王汉功,袁晓静,等.超音速火焰喷涂燃烧室燃气成分与温度的计算[J].兵器材料科学与工程,2005(2):16-18.HOU Genliang,WANG Hangong,YUAN Xiaojing,et al.Combustion gas components and temperature analysis for supersonic flame spray[J].Ordnance Material Science and Engineering,2005(2):16-18.(in Chinese)
参考文献 65
FUKUMOTO M,WADA H,TANABE K,et al.Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process[J].Journal of Thermal Spray Technology,2007,16(5-6):643-650.
参考文献 66
YIN S,CAVALIERE P,ALDWELL B,et al.Cold spray additive manufacturing and repair:Fundamentals and applications[J].Additive Manufacturing,2018,21:628-650.
参考文献 67
SENG D H L,ZHANG Z,ZHANG Z Q,et al.Influence of spray angle in cold spray deposition of Ti-6Al-4V coatings on Al6061-T6 substrates[J].Surface and Coatings Technology,2022,432:128068.
参考文献 68
WU H J,XIE X L,LIU M M,et al.A new approach to simulate coating thickness in cold spray[J].Surface and Coatings Technology,2020,382:125151.
参考文献 69
WU H J,XIE X L,LIU M M,et al.Stable layer-building strategy to enhance cold-spray-based additive manufacturing[J].Additive Manufacturing,2020,35:101356.
参考文献 70
TAN A W Y,SUN W,PHANG Y P,et al.Effects of traverse scanning speed of spray nozzle on the microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings[J].Journal of Thermal Spray Technology,2017,26(7):1484-1497.
参考文献 71
CAI Z H,DENG S H,LIAO H L,et al.The effect of spray distance and scanning step on the coating thickness uniformity in cold spray process[J].Journal of Thermal Spray Technology,2014,23(3):354-362.
参考文献 72
杜学芳.超音速火焰喷涂控制系统的设计[D].西安:长安大学,2009.DU Xuefang.Design of high velocity oxygen fuel control system[D].Xi’ an:Chang’ an University,2009.(in Chinese)
参考文献 73
DAVIS J R.Handbook of thermal spray technology[M].Ohio:ASM International,2004.
参考文献 74
SUSANTI V,MARTIDES E MIRDANIES M,et al.Design system of high-velocity oxygen fuel(HVOF)thermal spray coating based on computerization[J].Key Engineering Materials,2017,728:105-110.
参考文献 75
查柏林,王汉功,袁晓静.超音速火焰喷涂技术及应用 [M].北京:国防工业出版社,2013.ZHA Bailin,WANG Hangong,YUAN Xiaojing.Technology and application of supersonic flame spraying technology[M].Beijing:National Defense Industry Press,2013.(in Chinese)
目录contents

    摘要

    高速低温喷涂是利用固相或含固相的低温粉末在高速度、高动能作用下碰撞基体表面沉积的喷涂方法,具有氧化轻微、结合牢固、组织致密、综合力学性能优异等潜在优势,在高性能金属或金属基复合材料涂层制备、增材制造和零件损伤修复等领域获得广泛关注。以粉末低温高速碰撞沉积过程为主线,凝练现有冷喷涂和低温超音速火焰喷涂两种具体工艺的共性特征,阐明喷涂气流与粉末颗粒的气固两相交互作用规律,分析出合理调控颗粒温度和速度是改善沉积体性能的关键。其次分析高速低温喷涂设备系统的构成,详细讨论各核心部件的结构设计策略及对气固流动行为的影响,总结出通过调整工艺参数与喷枪结构,可以实现颗粒温度和速度的按需控制。最后,对高速低温喷涂工艺及设备系统发展目前尚存的关键问题进行展望。总结如何通过喷涂参数与装置设计,最终达成调控沉积体性能的目的,有助于深入理解高速低温喷涂的沉积机理,对研制高性能的喷涂设备系统具有参考意义。

    Abstract

    High-velocity low-temperature spray is a spray method that utilizes a solid-phase powder or a low-temperature powder containing a non-solid phase to deposit on a substrate surface through collision at high velocity and kinetic energy. Compared to the traditional thermal spray that relies on melting particles for coating deposition, this spray method exhibits potential advantages, such as low oxidation of the material, high bonding strength with the substrate, dense microstructure, and excellent comprehensive mechanical properties. Therefore, it has attracted extensive attention domestically and internationally in the fields of metal or metal matrix composite coatings, additive manufacturing, and the rapid repair of damaged components. First, as typical high-velocity low-temperature spray methods, cold spray, and low-temperature high-velocity oxygen-fuel spray share common characteristics: powder particles interact with the gas in the nozzle, experiencing heating and acceleration through heat transfer and the drag force of the gas. The elevated kinetic and internal energies of the particles may induce certain behaviors that have the potential to enhance interface bonding. These behaviors include fragmentation of the oxidation films, structural changes, and even localized melting upon collision with the material surface. The analysis of some studies indicates a significant influence of velocity and temperature on the material deposition behavior and the final coating performance. Subsequently, spray strategy planning and coating performance modulation can be performed, guided by the deposition window constrained by the particle velocity and temperature. The particle temperature determines the ductility during collision, thereby influencing the deformation behavior, surface morphology, flatness, material jetting behavior, and bonding quality, whereas the velocity determines the kinetic energy during collision, thereby influencing the stress and strain inside the material. The subsequent section of this paper discusses the composition of high-velocity low-temperature spray equipment systems, including the spray gun system (comprising a nozzle and gas heater), powder feeder, gas / fuel sources, spray scanning component, and control system. The structural design strategies of each major component and their influence on the gas-solid flow behavior are discussed in detail. The spray gun is the core component of the spray system, which comprises a nozzle that supplies initial kinetic energy to the gas and a gas heater that supplies initial internal energy to the gas. Under specific process conditions, the particle velocity demonstrates an initial increase followed by a decrease with the expansion length or expansion ratio of the nozzle, whereas the trend of the particle temperature is reversed. Gas heaters are primarily categorized as electric and combustion flame heaters. This serves as a crucial basis for distinguishing between cold spray and high-velocity oxygen-fuel spray. Electric heaters operate at a maximum temperature of approximately 1300 K and are designed with intricate and convoluted airflow paths within limited volumes to maximize heating efficiency. The maximum temperature of the combustion flame can reach 3400 K. Adjusting the type and proportion of combustion reactants, along with implementing rational cooling flow control strategies, allows for the continuous regulation of the flame temperature across a wide range. Therefore, a comprehensive approach involving the adjustment of the process parameters and spray gun structure achieves on-demand control of the particle temperature and velocity. Finally, some key issues in the high-velocity low-temperature spray process, and equipment systems are discussed. The main emphasis of this paper is to summarize the methods by which control over coating performance can be attained through the design of the spraying parameters and apparatus. This study contributes to an in-depth understanding of the deposition mechanisms in high-velocity low-temperature sprays and provides a valuable reference for the development of high-performance spray equipment systems.

  • 0 前言

  • 热喷涂技术是以加热熔化的粉末颗粒为材料,实现涂层快速沉积或复杂型体增材制造[1-4]。然而,由于材料熔化必须加热到熔点之上,在通常应用的大气条件下,合金等非氧化物材料高温氧化较为严重,产生氧化物夹杂,制约涂层或沉积体发挥材料自身的优异性能[5-8]

  • 为抑制材料氧化,发展了高速低温喷涂方法。高速低温喷涂是利用固相或含固相低温粒子在高速度、高动能作用下碰撞基体表面沉积的喷涂方法。在高速低温喷涂中,一方面,在材料尚未熔化或主要材料尚未熔化的条件下,粒子处于相对较低的温度,即使在大气中其氧化动力学速度也有效降低; 另一方面,利用特殊设计的喷枪产生高速喷涂气流,将粒子加速到较高的速度,缩短粒子在大气或束流中的飞行时间,即缩短材料的氧化时间[9–12]。因此,较低的预热温度和较高的粒子飞行速度使涂层或沉积体的氧化得到抑制,从而使涂层材料能够充分发挥自身的优异性能。

  • 冷喷涂(Cold spray,CS)工艺是最早提出的高速低温喷涂方法。通常情况下固态粒子撞击基体后发生反弹,并同时对基体产生冲蚀作用。然而,当粒子被加速到某临界值之上时,即可发生材料的碰撞沉积[13-16]。据此开发了冷喷涂技术,鉴于常用的气流温度显著低于常用的高温火焰或等离子焰流,且粒子由原来通常熔化“热”态变为固相“冷”态,也称为冷气动力学喷涂(Cold gas dynamic spray,CGDS)。冷喷涂工艺若沉积一些延展性好的金属及合金材料,能够低成本制备出高结合、高致密的涂层[17],若沉积一些高强度、难变形的材料,需要使用价格昂贵的氦气,用于提高粒子速度[18-19],因此有必要进一步寻找粒子加速的新途径。

  • 低温超音速火焰喷涂工艺为提高粒子加速效果提供了新思路。该工艺在传统超音速火焰喷涂装置的基础上,注入冷却介质(氮气、水等),降低焰流温度,同时增加燃烧室压力,提高焰流速度,填补了冷喷涂与传统超音速火焰喷涂之间温度 / 速度参数范围的缺口[20-21]。日本国立物质研究院在 HVOF (High-velocity oxygen-fuel,HVOF,也称高速氧气-燃料喷涂)喷枪燃烧室和喷嘴入口之间注入起冷却作用的氮气,称作温喷涂(Warm spray,WS)工艺,制备出了氧含量低于 1.0%(wt.%)的 Ti 涂层[22-23]。还有研究提出在 HVAF(High-velocity air-fuel,HVAF,也称高速空气-燃料喷涂)喷枪送粉口前将冷却水注入至高温焰流,能够获得接近冷喷涂的工艺温度[24]。低温超音速火焰喷涂通过冷却介质降低焰流温度,获得了高速低温气流,进一步丰富了高速低温喷涂方法的范畴。

  • 在现有喷涂工艺中,无论是冷喷涂工艺还是低温超音速火焰喷涂工艺,共性特征均为高速低温喷涂,区别于原有粉末熔化热喷涂工艺的特点[25]

  • (1)高速低温喷涂的气流,最初是经电加热或焰流加热,后在 Laval 喷嘴内将热量传递给粉末,同时急剧加速,将内能转化为粉末沉积所需动能,依赖于喷嘴内的气固作用行为,促使固相材料以超音速撞击基体,发生塑性变形,显著异于熔化粉末喷涂时的液体流动变形。

  • (2)由于固相粒子温度低,没有经历熔融相变,材料沉积时氧化问题得到有效抑制,可获得氧含量更低的高品质涂层或沉积体,对基体的热影响也较小,同时也使可供沉积的材料变得丰富,最常见的便是金属及合金,也适用于陶瓷和复合材料。

  • (3)借助粒子与沉积基体(真实基体或者已沉积材料的表面)的界面大变形,破碎甚至完全清除界面处的氧化膜,制备的沉积体具备高致密度、高结合强度、高沉积效率的优势,从而使高速低温喷涂在 3D 打印及再制造修复领域发挥着重要作用。由此可见,高速低温喷涂是热喷涂技术中一类独具特色的新方法。

  • 本文从高速低温喷涂工艺原理出发,基于粒子变形过程和结合机理分析,阐明粒子碰撞前的速度和温度是影响变形行为的关键因素。为调控粒子速度和温度,总结了主要系统部件中的气固流动及作用行为研究进展,综述主导气固两相交互作用行为的喷枪核心零部件设计策略和相应参数调控方法,旨在促进深入理解高速低温喷涂沉积机理和研发高性能喷涂设备系统。

  • 1 高速低温喷涂工艺

  • 1.1 高速低温喷涂原理

  • 高速低温喷涂原理,为现有冷喷涂工艺和低温超音速火焰喷涂工艺的共性原理,如图1 所示。装置内存在两股高压气体,一股为粉末加速气体,另一股为送粉载气。加速气体经电加热装置预热或燃烧产生,作为能量流,在喷嘴内同载气运送的颗粒流发生交互作用,对其加热加速。颗粒流主要以固相形式加速后,离开喷枪朝基体运动,当颗粒流的碰撞速度超过某一临界速度时,便能紧密地沉积在基体表面。图2a 展示了不同喷涂工艺制备的涂层在性能上的差异,导致该结果的直接原因是碰撞时颗粒流的温度和速度存在区别,如图2b 所示。

  • 图1 高速低温喷涂工艺的装置示意图 (P 为气源 / 燃料源压力,Tg为气体温度,Vg为气体速度,Tp为颗粒温度,Vp 为颗粒速度)

  • Fig.1 Schematic diagram of high velocity low temperature spray device (P is pressure of high pressure gas / fuel, Tg is gas temperature, Vg is gas velocity, Tp is particle temperature, and Vp is particle velocity)

  • 图2 多种喷涂工艺的典型特征对比

  • Fig.2 Comparison of typical characteristics for various spray processes

  • 1.2 粒子碰撞沉积对其速度温度的需求

  • 粒子在与基体碰撞后严重变形,变为扁平状,基体表面则形成凹坑,随着碰撞过程进行,粒子与基体的接触面积逐渐增加,界面处发生了复杂变化。 LI 等[26]在 Q235 基体上沉积了氧化物占比 0.38%的 Cu,发现界面有大量破碎氧化物夹杂,分析认为变形沉积过程如图3 所示,粒子碰撞破坏了表面的氧化膜,从而暴露出部分新鲜表面,破碎的氧化物多数保留在界面处,而只有新鲜表面在碰撞压力作用下实现了连接。章华兵等[27]通过分析 Ni 涂层界面处的微观组织,认为材料发生了高应变速率的大塑性变形,位错胞在界面处形成,后先沿接剪切方向拉伸变为长条状亚晶,最后可能破碎为取向相差较大的等轴晶。BAE 等[28]用 600℃的 He 将 Ti 加速至 950 m / s 后,沉积在低碳钢上,发现了因液态金属快速凝固形成的球形小颗粒,认为 Ti 较低的热导率以及碰撞过程的较高温度,导致局部熔化。颗粒流的高动能、高内能,可能使材料表面在碰撞时发生氧化膜破碎、组织变化甚至局部熔化等行为,极大促进了界面结合。

  • 只有粒子的碰撞速度高于一依赖于材料属性和颗粒温度的参量——临界沉积速度时,才能实现结合。颗粒温度若保持一定,涂层沉积效率随颗粒冲击速度先缓慢升高,在达到 50%后迅速达到峰值,有文献将 50%沉积效率时的碰撞速度作为临界沉积速度;当碰撞速度继续升高时,可能会因冲蚀效应导致沉积效率下降,将沉积效率降至 0%时的碰撞速度作为冲蚀速度[29-31]。两参量间的范围称作该材料的沉积窗口,当扩展至不同的碰撞温度,便能得到由速度和温度限定的沉积窗口,如图4a、4b 所示。沉积窗口限定了涂层结合所需颗粒温度和速度的大致范围,从而在此基础上,进行喷涂策略规划和涂层性能调控。

  • 图3 颗粒沉积过程示意图[26]

  • Fig.3 Schematic diagram of the single particle deposition process[26]

  • 涂层性能与粒子碰撞时的温度和速度大小紧密相关。颗粒温度将决定碰撞时的延展性,从而决定变形方式、表面形貌、扁平程度、溅射效果和结合质量等,速度将决定碰撞时的动能,从而决定材料内部的应力和应变。ASSADI 等[13]研究发现,Cu 颗粒温度提高 50 K,临界沉积速度能降低约 20 m / s。此外,还总结出颗粒速度与临界沉积速度的比值 Vp / Vcr,与粒子变形行为,乃至涂层结合强度和沉积效率有较为显著的关系,如图5,当颗粒速度接近 1.5 倍临界沉积速度,是保证涂层具备优异性能的重要条件[30]。颗粒速度和温度决定了材料的变形沉积行为,从而对涂层性能有显著影响,因此保证温度和速度条件达到要求,是喷涂工艺设计最主要的目标。

  • 图4 由颗粒速度和颗粒温度限定的颗粒沉积窗口[2931]

  • Fig.4 Window of particle deposition defined by particle velocity and temperature[29, 31]

  • 图5 涂层性能与 Vp / Vcr的关系[30-31]

  • Fig.5 Relationship between coating performance and Vp / Vcr [30-31]

  • 2 高速低温喷涂设备系统

  • 高速低温喷涂设备系统主要由喷枪系统(喷嘴部件、气体加热系统)、送粉器、气源 / 燃料源、喷涂扫描部件和控制部件组成。下文阐述部件内的气固流动及交互作用行为,讨论关键零部件的设计原则与喷涂工艺的优化策略,以对颗粒温度和速度进行调控。

  • 2.1 主导气固作用行为的喷嘴部件

  • 喷嘴是颗粒流实现预热、加速的核心部件。CD (Converging-diverging)喷嘴,也称 De Laval 喷嘴,是高速低温喷涂系统最常使用喷嘴结构,由截面逐渐收缩的收敛段和逐渐增加的扩张段组成,中间交界区称为喉部,如图1 中所示,而扩张段出口截面积与喉部截面积的比值称为膨胀比[32]

  • 2.1.1 气体压力对能量流动力学特性的影响

  • 喷涂时,喷嘴内气流需要在喉部由亚音速变为超音速,而气体压力是驱动这一过程的关键条件[33-34]。喷嘴入口气压较低时,整个喷嘴内的气体流速都低于音速,当气压逐渐增加,出口处的马赫数随之升高,如图6 中 Zone1 所示。当压力达到一定程度时,气体开始在喉部达到音速,并在扩张段继续加速至超音速。但气压仍处于较低水平,导致喷嘴出口处的气压低于环境压力,为适应环境压力,可能会在扩张段开始产生冲击波,如图7c 所示[35-36]。冲击波处,气体速度呈周期性波动,这不利于颗粒持续加速。随着压力继续增加,冲击波会逐渐向喷嘴出口移动,马赫数因而出现波动变化,如图6 中 Zone2 所示,但总体呈上升趋势。直到喷嘴出口气压高于环境压力,冲击波便完全移动至喷嘴外,此时喷嘴出口处的马赫数不再改变,如图6 中Zone3所示。若喷嘴出口气压恰好等于环境压力,喷嘴内外没有任何冲击波出现。总之,随着气体压力增加,喷嘴出口的气流速度先增加,后受冲击波影响而波动增加,直至冲击波完全移至喷嘴外,气流速度不再受压力影响,最终趋于平稳。

  • 图6 喷嘴出口处压缩空气马赫数随总压的变化情况[34]

  • Fig.6 Variation of compressed air Mach number at the exit of nozzles with total pressure[34]

  • 图7 多个喷嘴扩张段内外的气流速度分布模拟结果[35-36]

  • Fig.7 Simulation results of gas velocity contour inside and outside divergent section for multiple nozzles[35-36]

  • 2.1.2 颗粒流和能量流的交互作用

  • 喷嘴内,颗粒流同能量流进行能量交换,获得沉积所需的速度和温度。高温高压气流在扩张段膨胀,将内能转化为动能,进而带动颗粒流加速。两相流动过程也包含热量传递,颗粒流被预热(低于熔点),以提高自身的塑性变形能力。

  • 以 De Laval 喷嘴为例,分析喷涂时喷嘴内外能量流的变化情况。在收敛段,气流由亚音速开始加速,直至在末端达到音速。气流主要在扩张段的前三分之一段加速,并且基本达到出口速度的90%[37]。当气体最终流动至基体附近,会在其表面形成高密度的弓形激波,并且气流由超音速突然减速至零[3538-40]。气体速度的增加是以降低焓值为代价,其温度往往会在喉部附近急剧下降,下降幅度会很大,可能导致气流温度远低于颗粒熔点,甚至低于室温,从而造成颗粒的严重冷却,因此合理的气流预热是必要的。综上,气体以温度降低为代价,在喷嘴扩张段完成最主要的加速过程,提供颗粒沉积所需能量。

  • 气流通过拖曳力带动颗粒加速,若颗粒为球形,加速度 ap 的计算方程如下[41]

  • ap=Fdmp=3Cdρg3dpρpVg-VpVg-Vp
    (1)
  • 式中,Fd 为拖曳力,mp 为颗粒质量,dp 为颗粒直径,ρp 为颗粒密度,ρg 为气流密度,Vp 为颗粒速度,Vg 为气流速度,Cd 为阻力系数,大小和雷诺数相关。

  • 一般而言,喷嘴内颗粒速度会始终低于气流速度,因而颗粒会跟随气流持续加速。由于收敛段内气流速度较低,轴向送入的颗粒在此停留时间较长,会因对流传热显著升温。在扩张段,若使用低预热温度气流或小尺寸颗粒,颗粒温度很快就会超过气流,随后温度会因受冷气流影响而缓慢下降,但始终保持高于气流温度的状态,这有效减少了颗粒的氧化行为,但也使自身延展性受到影响[42]。颗粒流因受气流拖曳力和对流传热作用,在喷嘴内加速升温,而喷嘴外的交互作用对其影响较小,颗粒流基本以出口处的温度和速度进行碰撞。

  • 2.1.3 基于交互作用行为的喷嘴结构优化

  • CD 喷嘴在优化设计时,主要调整扩张段长度和膨胀比。扩张段长度适当增加会提高颗粒加速时间,进而提高颗粒速度。YIN 等[34]设定喷嘴入口 3.0 MPa 的空气总压,避免喷嘴内出现冲击波,模拟结果显示,随扩张段长度增加,喷嘴出口处的气流马赫数先增加后减小,分析认为气流过长的加速过程导致了严重的黏度损失,当扩张段过长,颗粒能够加速至高于气流,并随后减速,因此颗粒的撞击速度随扩张段增加呈现先增加后减小的趋势,如图8a。膨胀比在特定工艺条件下存在最佳数值。LI 等[43]设定 2 MPa 的氮气总压,逐渐增加喷嘴出口直径,尺寸较小时出口气压高于环境压力,气流速度随膨胀比的变化符合准一维等熵流动模型,因而颗粒速度随膨胀比增加而增加,当膨胀比达到一定程度时,出口气压低于环境压力,喷嘴内形成冲击波,颗粒加速便会受到阻碍,如图8b。特定工艺条件下,存在最佳的扩张段长度或膨胀比,使颗粒达到最高速度。

  • 图8 喷嘴结构对颗粒速度的影响[3443]

  • Fig.8 Influence of the nozzle structure on particle velocity[34, 43]

  • 高速低温喷涂系统有时也用 CDB(Converging-diverging-barrel)喷嘴,该喷嘴是在 CD 喷嘴出口增加了一段等截面管(Barrel)。CDB 喷嘴若轴向尺寸与 CD 喷嘴相当,相较于 CD 喷嘴扩张段内的充分加速,超音速气流在等截面管内流动会发生能量损耗,导致出口处的速度相对较低,但也保持了更高的温度。HUANG 等[44]经模拟发现,CDB 喷嘴内气流压力下降较快,若在喷嘴下游将颗粒径向送入,可以选择更低的气流压力进行送粉,从而避免高压送粉系统的使用,减少了装置结构及工艺成本,因此 CDB 喷嘴常采用径向送粉。并且,径向送入的颗粒与加速气流的接触时间大幅降低,可能对交互作用造成影响,但也能避免喷嘴喉部发生堵塞或磨损,提高了喷嘴的使用寿命,而对于使用燃烧火焰作为热源的喷涂系统,还避免了颗粒与燃烧火焰直接接触,显著降低了预热温度,有助于固相沉积。CDB 喷嘴由于内部气压下降较快,适合径向送粉,常应用于低压喷涂系统和以燃烧火焰为热源的喷涂系统。

  • 2.2 主导初始能量流的气体加热系统

  • 气体加热系统通过预热加速气体,为喷嘴内的交互作用提供初始能量,包括对流换热提高颗粒温度,以及促进气流膨胀(理想气体音速与温度的平方根成正比)提高颗粒速度,如图9 所示[29]。气体加热系统出口常与喷嘴入口直接相连,组合为喷枪系统,可以避免气体在通道流动中造成的损耗[1245]。高温气流会显著提高喷嘴壁面温度,使颗粒在收敛段加速时粘附在喷嘴内壁表面,导致喉部堵塞,还可能造成喷嘴氧化并产生较为严重的热应力,因此喷枪系统常在喷嘴壁面设计冷却回路,通过冷却介质(氮气、水、空气等)循环流动降低喷嘴温度[46]

  • 图9 不同温度和压力的氮气作为工艺气体时铜颗粒速度和温度的模拟结果 (钟形喷嘴,颗粒在喉部上游 20 mm 处送入,等熵计算)[29]

  • Fig.9 Calculated copper particle impact velocities and temperatures for different temperatures and pressures of nitrogen as process gas (bell-shaped nozzle, particle injection 20 mm upstream of the smallest nozzle cross section, isentropic calculation) [29]

  • 气体加热系统主要分为电加热和燃烧火焰加热,这也是区分冷喷涂与超音速火焰喷涂的重要依据。电加热装置最高温度一般在 1 300 K,若要制备镍基合金、不锈钢、MCrAlY 等材料的致密涂层,使用该装置存在一定的温度瓶颈,因此如何降低装置运行成本、提高加热效率是电加热装置的优化重点;相比之下,燃烧火焰的最高温度可达 3 400 K[41], Al、Cu 等金属材料极易氧化甚至熔化,造成工艺失去固相沉积的优势,因此如何调整燃烧反应、降低焰流温度是火焰加热装置的优化重点。

  • 电加热主要使用接触式加热装置,电热电阻元件通电产热,并与加速气体直接接触,以对流换热的形式实现预热,具有加热效率高、升 / 降温速度快、控温精度高等优势[47]。按电阻元件形状可以分为螺旋管式和电阻丝式,如图10a、10b 所示。螺旋管式适当增加圈数或尺寸[48-50],电阻丝式在狭窄通路内设置复杂回路[51],都可以增加气流的接触面积和加热时间,实现更高的输出温度。 Kinetiks(R)4000 / 47 系统使用了两级螺旋管式加热器,第一级加热功率 30 kW,气体温度能达到 420℃,第二级仅需 17 kW 就能提高至 800℃[45]。部分喷涂系统采用双回流加热装置[52-53],如图10c、10d 所示,加速气体先在加热通道外部对流换热,再折流进入加热通道内进行二次加热,最大限度地提高了热量的利用效率,缩减了装置体积。电加热装置多在有限的体积内设置复杂曲折的气流通路,尽可能提高加热效率。

  • 图10 按电阻元件形状与双回流结构分类的四种电加热装置[50-53]

  • Fig.10 Four electric heaters classified by the shape of the resistance element and the dual-return structure[50-53]

  • 燃烧火焰加热装置是利用燃料的化学能来获得高温气流,装置结构主要包括燃烧室和火花塞,若是液态燃料燃烧还需使用雾化喷嘴。燃烧产生的焰流温度过高,只有经工艺调控后才可用作加速气流。燃料和助燃剂的成分、比例会显著影响燃烧温度。常见燃料(丙烷、煤油、氢气等)与氧气的最高火焰温度在 3 000~3 400 K,空气作助燃剂时则会低 600~800 K,当反应物的比例不符合化学计量数,会造成焰流温度偏低[41]。对于以燃油为原料的 HVOF,有研究将氧气压力增加至 4 MPa,喷嘴出口的气流温度能降至 1 400℃,而使用空气作助燃剂,0.4 MPa 就能达到类似的温度条件[54-55]。若在焰流中注入氮气或水,甚至能将气体温度降低至 700℃左右[23-24]。因此,通过调整燃烧反应物的种类和比例,以及制定合理的冷却流量调控策略,可以在较大的温度范围内连续调节焰流温度,以获得可控、稳定、低温的能量流。

  • 2.3 主导初始颗粒流的送粉器

  • 送粉器通过载气以稳定的送粉速率将粉末原料送入喷嘴。送粉速率主要影响涂层厚度。TAYLOR等[56]以 0.9~4.7 g / min 的送粉速率沉积了 Cu 涂层,涂层厚度随送粉速率先线性增加,在速率达到 4.1 g / min 后略微下降。对送粉器而言,能精确调控送粉速率是最主要的设计要求;其次,送粉口气压可能远高于大气压,单纯依靠送粉器的机械结构无法完成送粉过程,必须有载气的协助。

  • 高速低温喷涂最常使用的是转盘式送粉器和流化床送粉器。转盘式送粉器首先将粉末送入粉盘凹槽内,电机带动粉盘转动,从而将粉末送至吸粉嘴,密闭的送粉器内有载气通入,利用压差将粉末从吸粉嘴吸出,经送粉管运至喷嘴[57-58]。凹槽的体积和数量决定了单位时间内输送粉末的体积,改变粉盘转速就能控制送粉速率。转盘式送粉器送粉精度高、可靠性好、颗粒填充方便,应用极为广泛。流化床送粉器通常利用振动或搅拌装置,使粉末颗粒在载气中流化,并跟随气体沿导管流动至喷嘴,送粉速率一般通过振动频率或搅拌装置转速以及载气压力控制[5359-60]

  • 2.4 提供加速气体的气源 / 燃料源

  • 加速气体是加热加速颗粒的直接介质,使用电加热的冷喷涂工艺常用氮气、氦气或氮气-氦气的混合气体作为加速气体,有时也会使用压缩空气,而使用火焰加热的喷涂工艺将燃烧产物及部分未燃烧的反应物用作加速气体。

  • 冷喷涂所用加速气体,不发生反应并具有良好的热物理性能,其加速效果和气体摩尔质量密切相关[61]。氦气(4.003 g / mol)加速效果最好,如图11 所示,使用氦气时涂层致密度及沉积效率较高[42]。然而,氦气的热导率(0.150 16 W·m−1 ·K−1,25℃)相比氮气(0.024 75 W·m−1 ·K−1,25℃) 偏大,在扩张段的膨胀程度也更大,气流在喉部降温严重,因而会对颗粒流造成较为严重的冷却[61-62]。相同工艺条件下氦气的花费可达氮气的 80 多倍,喷涂成本也偏高。空气(28.96 g / mol)的加速效果最差,但成本低,仅使用空气压缩机便能提供稳定气源,一些低温下不易氧化、临界沉积速度较低的材料,可以考虑使用。氮气(28.013 g / mol)价格相比氦气较为可控,工业生产可以使用液氮供气,得以进一步降低成本,并且加速效果比空气更好,因而应用最为广泛。氮气中每混入 10%体积的氦气,总的气体速度能够增加 20~30 m / s,因此氮气-氦气混合气体用作加速气体也能实现较好的综合效益[61]

  • 图11 喷嘴出口 30 mm 处颗粒速度随加速气体温度的变化[42]

  • Fig.11 Variation of particle velocity with accelerated gas temperature at 30 mm from the nozzle outlet[42]

  • 理想条件下,燃烧火焰加热装置内,氢气与氧气燃烧的最终产物是水,碳氢化合物的最终产物是 CO2 和水,由于燃烧温度过高,燃烧产物会因强烈的原子振动而离解,导致 CO2和 H2O 分解成可燃气体(O2、H2)和原子气体(O、H 和 OH)[63-64]。温度越高,原子气体占比越大,而完全燃烧产物则相应减少。此外,高速低温喷涂还需将冷却介质与高温焰流进行混合降温,介质成分也会影响气体的流动行为。

  • 2.5 控制喷涂轨迹的扫描部件

  • 为适应复杂形状的样品喷涂,须要控制喷枪或基体,按照预设的喷涂轨迹精确、稳定地移动,保证涂层均匀涂覆。通常是喷枪作为工业机器人的末端执行器,然而在喷涂一些回转体件或平板零件时,有时固定喷枪,而通过工业机器人或笛卡尔坐标机器人控制基体移动。此外,考虑部分材料沉积困难,还可以在基体底部增加加热装置,通过提高基体温度,改善颗粒-基体界面的变形和结合[65]

  • 喷涂扫描过程中颗粒的运动学参数包括喷涂角度、喷嘴和基体间的相对速度、喷涂距离和扫描间距[3666]

  • 喷涂角度指喷嘴轴线与基体表面所成角度,只有垂直基体表面的速度分量有促进沉积的作用,当角度发生倾斜,该有效速度降低,材料变形不足,会造成涂层致密度下降,如图12 所示,因此应尽量保持 90°的喷涂角度[67-69]。喷枪和基体间的相对速度决定了喷嘴在某区域的停留时间,因此较低的相对速度会有更多粉末碰撞沉积,从而提高了单次沉积体的高度,但也可能产生较大残余应力,甚至造成分层,如图13 所示。此外,涂层孔隙率会随着相对速度增加而增加,影响沉积质量[70]

  • 图12 喷涂角度对涂层结构和性能的影响[67]

  • Fig.12 Influence of the spray angle on the coating structure and property[67]

  • 图13 喷枪和基体间相对速度对涂层结构和性能的影响[70]

  • Fig.13 Influence of traverse speed on the coating structure and property[70]

  • 喷涂距离指喷嘴出口距基体表面的距离, PATTISON 等[38]沉积了 Ti、Al、Cu 颗粒,发现沉积效率都随喷涂距离先上升后下降,认为颗粒在喷嘴外可以继续加速,促使更多小尺寸粒子能够穿过弓形激波,从而与基体碰撞结合,当喷涂距离过长时,小粒子会因反向拖曳力减速,导致无法沉积,造成沉积效率下降。扫描间距指多道次沉积时两个相邻单道次沉积体间的距离,其会影响涂层平整度,通常将扫描间距设为单道次沉积物宽度的 1 / 2[3671]

  • 2.6 维持系统运行的控制部件

  • 控制部件通过电路系统将可编程控制器 (Programmable logic controller,PLC)、人机交互装置 (Guide user interface,GUI)以及各式的传感器、阀门等组合起来,对气体加热系统、送粉器、气源 / 燃料源、机器人等部件进行控制,包括控制装置的开闭、监测和调节各类参数等,如图14 所示[72-75]。可编程控制器是控制系统的核心部件,通过处理、传输各种指令控制部件运行。人机交互装置包括有各类按钮或触摸显示器,用于设置参数大小,同时显示各种实时监测数据。传感器主要检测各种关键参数数值,包括有压力传感器、温度传感器、流量传感器等。阀门用于送粉、送气、冷却流、燃油等通道的打开或关闭,并进行压力、流量等的调节。

  • 图14 调控各喷涂设备组件及相应参数的控制系统

  • Fig.14 Control system for controlling spray equipment components and corresponding parameters

  • 目前维持系统运行的控制部件多是开环控制系统,操作人员手动设置参数数值,喷涂时参数若出现偏差或受到扰动,难以及时反馈给操作人员进行调整。高速低温喷涂过程复杂,对粉末速度和温度有着严格要求,因此期望开发基于输出的闭环控制系统。例如,喷涂开始前设定好气体加热温度和送粉速率的预期值,喷涂过程中控制系统根据监测结果,自动调整加热功率 / 燃气流量、送粉器的振动单元功率 / 电机转速,缩小监测结果与预期值间的差值,从而通过精准的过程控制保证生产质量。

  • 3 结论与展望

  • (1)在高速低温喷涂沉积过程中,碰撞前粉末颗粒的速度和温度是影响沉积行为的关键因素,颗粒速度接近 1.5 倍临界沉积速度是保证涂层具备优异性能的重要条件。

  • (2)在粉末与气流的气固耦合流动过程中,提高气体压力和温度以及对粉末粒径和形貌做出合理选择,均可改善粉末颗粒的加速效果,而粉末软化效果的改善主要通过提高气体温度实现。

  • (3)在组成喷涂系统的喷枪(喷嘴部件、气体加热系统)、送粉器、气源、喷涂扫描控制部件和控制部件中,喷嘴是决定粉末颗粒速度、温度乃至沉积行为的核心部件,特定工艺条件下,颗粒速度随喷嘴扩张段长度或膨胀比增加呈现先增加后减小的趋势,而颗粒温度的变化趋势则相反。

  • 为更深刻地理解高速低温喷涂沉积机理和研发高性能喷涂装备系统、促进高品质涂层制备和应用,须深入研究以下问题:

  • (1)喷嘴磨损、堵塞等发生机理、实时监测和解决方法。

  • (2)喷涂复杂表面时低角沉积导致的涂层组织疏松、界面结合差等问题的改进措施。

  • (3)零件喷涂修复或增材制造时界面残余应力的演化规律及调控手段。

  • 参考文献

    • [1] 张伟,郭永明,陈永雄.热喷涂技术在产品再制造领域的应用及发展趋势[J].中国表面工程,2011,24(6):1-10.ZHANG Wei,GUO Yongming,CHEN Yongxiong.Applications and future development of thermal spraying technologies for remanufacturing engineering[J].China Surface Engineering,2011,24(6):1-10.(in Chinese)

    • [2] 陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al.Development status and prospect on equipment application of thermal spray technology[J].China Surface Engineering,2021,34(4):12-18.(in Chinese)

    • [3] 陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016,37(1):3-21.CHEN Lin,YANG Guanjun,LI Chengxin,et al.Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings[J].Advanced Ceramics,2016,37(1):3-21.(in Chinese)

    • [4] WEI Z Y,MENG G H,CHEN L,et al.Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J].Journal of Advanced Ceramics,2022,11(7):985-1068.

    • [5] 季珩,黄利平,郑学斌.气氛环境对等离子体喷涂钛涂层的影响研究[J].热喷涂技术,2011,3(3):44-47.JI Heng,HUANG Liping,ZHENG Xuebin.Effects of atmosphere environment on oxygen content and bonding strength of plasma sprayed titanium coatings[J].Thermal Spray Technology,2011,3(3):44-47.(in Chinese)

    • [6] 张鹏,周正,贺定勇,等.喷涂工艺及其粒子状态对涂层结合强度的影响[J].热喷涂技术,2015,7(1):27-31,10.ZHANG Peng,ZHOU Zheng,HE Dingyong,et al.Effects of spraying parameters and related particle status on coating bond strength[J].Thermal Spray Technology,2015,7(1):27-31,10.(in Chinese)

    • [7] 周超极,朱胜,王晓明,等.热喷涂涂层缺陷形成机理与组织结构调控研究概述[J].材料导报,2018,32(19):3444-3455,3464.ZHOU Chaoji,ZHU Sheng,WANG Xiaoming,et al.A review on thermally sprayed coating defects formation mechanism and microstructure modification[J].Materials Review,2018,32(19):3444-3455,3464.(in Chinese)

    • [8] BERGER L M.Application of hardmetals as thermal spray coatings[J].International Journal of Refractory Metals and Hard Materials,2015,49:350-364.

    • [9] KAWAKITA J,KURODA S,FUKUSHIMA T,et al.Dense titanium coatings by modified HVOF spraying[J].Surface and Coatings Technology,2006,201(3):1250-1255.

    • [10] 韩滔,邓春明,刘敏,等.常规超音速和低温超音速火焰喷涂WC-10Co-4Cr涂层的断裂韧性[J].硅酸盐学报,2014,42(3):409-415.HAN Tao,DENG Chunming,LIU Min,et al.Fracture toughness of normal high velocity oxygen-fuel flame and low temperature high velocity oxygen-fuel sprayed WC-10Co-4Cr coating[J].Journal of the Chinese Ceramic Society,2014,42(3):409-415.(in Chinese)

    • [11] GAO X,LI C,XU Y,et al.Effects of fuel types and process parameters on the performance of an activated combustion high velocity air-fuel(AC-HVAF)thermal spray system[J].Journal of Thermal Spray Technology,2021,30(7):1875-1890.

    • [12] 黄春杰,殷硕,李文亚,等.冷喷涂技术及其系统的研究现状与展望[J].表面技术,2021,50(7):1-23.HUANG Chunjie,YIN Shuo,LI Wenya,et al.Cold spray technology and its system:research status and prospect[J].Surface Technology,2021,50(7):1-23.(in Chinese)

    • [13] ASSADI H,GARTNER F,STOLTENHOFF T,et al.Bonding mechanism in cold gas spraying[J].Acta Materialia,2003,51(15):4379-4394.

    • [14] LI W Y,LIAO H L,LI C J,et al.On high velocity impact of micro-sized metallic particles in cold spraying[J].Applied Surface Science,2006,253(5):2852-2862.

    • [15] SCHMIDT T,GARTNER F,ASSADI H,et al.Development of a generalized parameter window for cold spray deposition[J].Acta Materialia,2006,54(3):729-742.

    • [16] 雒晓涛,谢天,李长久,等.冷喷涂金属的组织与性能调控[J].中国表面工程,2020,33(4):68-81.LUO Xiaotao,XIE Tian,LI Changjiu,et al.Microstructure and properties tailoring of cold sprayed metals[J].China Surface Engineering,2020,33(4):68-81.(in Chinese)

    • [17] 朱胜,杜文博,王晓明,等.基于高熵合金的镁合金表面防护技术研究[J].装甲兵工程学院学报,2013,27(6):79-84.ZHU Sheng,DU Wenbo,WANG Xiaoming,et al.Research on surface protection technology for magnesium alloys based on high entropy alloy[J].Journal of Academy of Armored Force Engineering,2013,27(6):79-84.(in Chinese)

    • [18] WONG W,IRISSOU E,RYABININ A N,et al.Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings[J].Journal of Thermal Spray Technology,2011,20(1-2):213-226.

    • [19] CODDET P,VERDY C,CODDET C,et al.Mechanical properties of thick 304L stainless steel deposits processed by He cold spray[J].Surface and Coatings Technology,2015,277:74-80.

    • [20] 周克崧,刘敏,邓春明,等.新型热喷涂及其复合技术的进展[J].中国材料进展,2009,28(Z2):1-8.ZHOU Kesong,LIU Min,DENG Chunming,et al.Recent development of new thermal spray technology and combined technology[J].Materials China,2009,28(Z2):1-8.(in Chinese)

    • [21] 周超极,王晓明,朱胜,等.低温超音速喷涂原态沉积高铝青铜涂层的耐腐蚀性能[J].中国表面工程,2017,30(3):66-73.ZHOU Chaoji,WANG Xiaoming,ZHU Sheng,et al.Corrosion resistance of aluminum-rich bronze coating deposited by low thermal supersonic spraying technique maintaining original characteristics of particle[J].China Surface Engineering,2017,30(3):66-73.(in Chinese)

    • [22] KURODA S,WATANABE M,KIM K,et al.Current status and future prospects of warm spray technology[J].Journal of Thermal Spray Technology,2011,20(4):653-676.

    • [23] KURODA S,KAWAKITA J,WATANABE M,et al.Warm spraying—A novel coating process based on high-velocity impact of solid particles[J].Science and Technology of Advanced Materials,2008,9(3):033002.

    • [24] YUAN X,WANG H,HOU G,et al.Numerical modeling of a low temperature high velocity air fuel spraying process with injection of liquid and metal particles[J].Journal of Thermal Spray Technology,2006,15(3):413-421.

    • [25] SINGH H,SIDHU T S,KALSI S B S,et al.Development of cold spray from innovation to emerging future coating technology[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2013,35(3):231-245.

    • [26] LI W Y,LI C J,LIAO H L.Significant influence of particle surface oxidation on deposition efficiency,interface microstructure and adhesive strength of cold-sprayed copper coatings[J].Applied Surface Science,2010,256(16):4953-4958.

    • [27] 章华兵,张俊宝,梁永立,等.冷喷涂Ni涂层的微观组织[J].中国有色金属学报,2008(8):1421-1425.ZHANG Huabing,ZHANG Junbao,LIANG Yongli,et al.Microstructures of cold-sprayed Ni coating[J].The Chinese Journal of Nonferrous Metals,2008(8):1421-1425.(in Chinese)

    • [28] BAE G,KUMAR S,YOON S,et al.Bonding features and associated mechanisms in kinetic sprayed titanium coatings[J].Acta Materialia,2009,57(19):5654-5666.

    • [29] SCHMIDT T,ASSADI H,GARTNER F,et al.From particle acceleration to impact and bonding in cold spraying[J].Journal of Thermal Spray Technology,2009,18(5-6):794-808.

    • [30] ASSADI H,SCHMIDT T,RICHTER H,et al.On parameter selection in cold spraying[J].Journal of Thermal Spray Technology,2011,20(6):1161-1176.

    • [31] KAMARAJ M,RADHAKRISHNAN V M.Cold spray coating diagram:bonding properties and construction methodology[J].Journal of Thermal Spray Technology,2019,28(4):756-768.

    • [32] VILLAFUERTE J.Modern cold spray:materials,process,and applications[M].Cham:Springer International,2015.

    • [33] LI S,MUDDLE B,JAHEDI M,et al.A numerical investigation of the cold spray process using underexpanded and overexpanded jets[J].Journal of Thermal Spray Technology,2012,21(1):108-120.

    • [34] YIN S,ZHANG M,GUO Z W,et al.Numerical investigations on the effect of total pressure and nozzle divergent length on the flow character and particle impact velocity in cold spraying[J].Surface and Coatings Technology,2013,232:290-297.

    • [35] LEE M W,PARK J J,KIM D Y,et al.Optimization of supersonic nozzle flow for titanium dioxide thin-film coating by aerosol deposition[J].Journal of Aerosol Science,2011,42(11):771-780.

    • [36] 李文亚,樊柠松,殷硕.冷喷涂过程中气固两相流动行为及喷涂工艺优化研究新进展[J].中国表面工程,2020,33(4):82-101.LI Wenya,FAN Ningsong,YIN Shuo.State-of-the-art of gas-solid two-phase flow behavior during cold spray and process parameters optimization[J].China Surface Engineering,2020,33(4):82-101.(in Chinese)

    • [37] STOLTENHOFF T,KREYE H,RICHTER H J.An analysis of the cold spray process and its coatings[J].Journal of Thermal Spray Technology,2002,11(4):542-550.

    • [38] PATTISON J,CELOTTO S,KHAN A,et al.Standoff distance and bow shock phenomena in the cold spray process[J].Surface and Coatings Technology,2008,202(8):1443-1454.

    • [39] PARK J J,LEE M W,YOON S S,et al.Supersonic nozzle flow simulations for particle coating applications:effects of shockwaves,nozzle geometry,ambient pressure,and substrate location upon flow characteristics[J].Journal of Thermal Spray Technology,2011,20(3):514-522.

    • [40] TABBARA H,GU S,MCCARTNEY D G,et al.Study on process optimization of cold gas spraying[J].Journal of Thermal Spray Technology,2011,20(3):608-620.

    • [41] FAUCHAIS P L,HEBERLEIN J V R,BOULOS M I.Thermal spray fundamentals[M].Boston:Springer US,2014.

    • [42] HUANG R,FUKANUMA H.Study of the influence of particle velocity on adhesive strength of cold spray deposits[J].Journal of Thermal Spray Technology,2012,21(3-4):541-549.

    • [43] LI W Y,LI C J.Optimal design of a novel cold spray gun nozzle at a limited space[J].Journal of Thermal Spray Technology,2005,14(3):391-396.

    • [44] HUANG G S,GU D M,LI X B,et al.Numerical simulation on syphonage effect of laval nozzle for low pressure cold spray system[J].Journal of Materials Processing Technology,2014,214(11):2497-2504.

    • [45] 李铁藩,王恺,吴杰,等.冷喷涂装置研究进展[J].热喷涂技术,2011,3(2):15-34.LI Tiefan,WANG Kai,WU Jie,et al.Development on cold spray apparatus[J].Thermal Spray Technology,2011,3(2):15-34.(in Chinese)

    • [46] WANG X D,ZHANG B,LV J S,et al.Investigation on the clogging behavior and additional wall cooling for the axial-injection cold spray nozzle[J].Journal of Thermal Spray Technology,2015,24(4):696-701.

    • [47] 孙鑫,乔伟,时冰伟,等.电阻式加热器概述及发展趋势[J].内燃机与配件,2020(14):45-48.SUN Xin,QIAO Wei,SHI Bingwei,et al.The summarize and development tendency of electric resistance heaters[J].Internal Combustion Engine and Parts,2020(14):45-48.(in Chinese)

    • [48] FUKANUMA H,HUANG R.Development of high temperature gas heater in the cold spray coating system[C]//Proceedings of the International Thermal Spray Conference(ITSC),2009,May 4-7,2009,Las Vegas,Nevada,USA.2009.

    • [49] 程相飞,兰海明,黄仁忠,等.冷喷涂气体加热器的优化研究[J].材料研究与应用,2022,16(2):291-296.CHENG Xiangfei,LAN Haiming,HUANG Renzhong,et al.Optimizing study of cold spray gas heater[J].Materials Research and Application,2022,16(2):291-296.(in Chinese)

    • [50] PAPYRIN A,KOSAREV V,KLINKOV S,et al.Cold spray technology[M].Oxford:Elsevier,2006.

    • [51] TINASHE S E.Conceptual design of a low pressure cold gas dynamic spray(LPCGDS)system[D].Johannesburg:University of the Witwatersrand,2010.

    • [52] 黄国胜,李相波,邢路阔.一种冷喷涂用空气加热器:CN201110092660.3[P].2012-09-05.HUANG Guosheng,LI Xiangbo,XING Lukuo.An air heater for cold spraying:CN201110092660.3[P].2012-09-05.(in Chinese)

    • [53] MAEV R G,LESHCHYNSKY V.Introduction to low pressure gas dynamic spray:physics and technology[M].Weinheim:John Wiley & Sons,2009.

    • [54] BROWNING J A.Hypervelocity impact fusion—A technical note[J].Journal of Thermal Spray Technology,1992,1(4):289-292.

    • [55] BROWNING J A.Viewing the future of high-velocity oxyfuel(HVOF)and high-velocity air fuel(HVAF)thermal spraying[J].Journal of Thermal Spray Technology,1999,8(3):351-356.

    • [56] TAYLOR K,JODOIN B,KAROV J.Particle loading effect in cold spray[J].Journal of Thermal Spray Technology,2006,15(2):273-279.

    • [57] 胡晓冬,马磊,罗铖.激光熔覆同步送粉器的研究现状 [J].航空制造技术,2011(9):46-49.HU Xiaodong,MA Lei,LUO Cheng.Research status of powder feeder for laser cladding[J].Aeronautical Manufacturing Technology,2011(9):46-49.(in Chinese)

    • [58] 程畅栋,李兴军,欧益忠,等.一种用于冷喷涂的高压送粉装置研制[J].现代制造技术与装备,2020,56(11):5-8.CHENG Changdong,LI Xingjun,OU Yizhong,et al.Development of a high pressure powder feeding device for cold spraying[J].Modern Manufacturing Technology and Equipment,2020,56(11):5-8.(in Chinese)

    • [59] HANFT D,GLOSSE P,DENNELER S,et al.The aerosol deposition method:A modified aerosol generation unit to improve coating quality[J].Materials,2018,11(9):1572.

    • [60] OGATA K,HARADA T,KAWAHARA H,et al.Characteristics of vibrating fluidization and transportation for Al2O3 powder[J].Materials,2022,15(6):2191.

    • [61] TAN A,LEK J,SUN W,et al.Influence of particle velocity when propelled using N2 or N2-He mixed gas on the properties of cold-sprayed Ti6Al4V coatings[J].Coatings,2018,8(9):327.

    • [62] YAWS C L.Matheson gas data book[M].New York:McGraw Hill Professional,2001.

    • [63] 王汉功,查柏林.多功能超音速火焰喷涂的燃烧特性研究[J].材料保护,2002(4):28-30.WANG Hangong,ZHA Bailin.Combustion characteristics of multi-function oxygen fuel spraying with supersonic velocity[J].Materiais Protection,2002(4):28-30.(in Chinese)

    • [64] 侯根良,王汉功,袁晓静,等.超音速火焰喷涂燃烧室燃气成分与温度的计算[J].兵器材料科学与工程,2005(2):16-18.HOU Genliang,WANG Hangong,YUAN Xiaojing,et al.Combustion gas components and temperature analysis for supersonic flame spray[J].Ordnance Material Science and Engineering,2005(2):16-18.(in Chinese)

    • [65] FUKUMOTO M,WADA H,TANABE K,et al.Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process[J].Journal of Thermal Spray Technology,2007,16(5-6):643-650.

    • [66] YIN S,CAVALIERE P,ALDWELL B,et al.Cold spray additive manufacturing and repair:Fundamentals and applications[J].Additive Manufacturing,2018,21:628-650.

    • [67] SENG D H L,ZHANG Z,ZHANG Z Q,et al.Influence of spray angle in cold spray deposition of Ti-6Al-4V coatings on Al6061-T6 substrates[J].Surface and Coatings Technology,2022,432:128068.

    • [68] WU H J,XIE X L,LIU M M,et al.A new approach to simulate coating thickness in cold spray[J].Surface and Coatings Technology,2020,382:125151.

    • [69] WU H J,XIE X L,LIU M M,et al.Stable layer-building strategy to enhance cold-spray-based additive manufacturing[J].Additive Manufacturing,2020,35:101356.

    • [70] TAN A W Y,SUN W,PHANG Y P,et al.Effects of traverse scanning speed of spray nozzle on the microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings[J].Journal of Thermal Spray Technology,2017,26(7):1484-1497.

    • [71] CAI Z H,DENG S H,LIAO H L,et al.The effect of spray distance and scanning step on the coating thickness uniformity in cold spray process[J].Journal of Thermal Spray Technology,2014,23(3):354-362.

    • [72] 杜学芳.超音速火焰喷涂控制系统的设计[D].西安:长安大学,2009.DU Xuefang.Design of high velocity oxygen fuel control system[D].Xi’ an:Chang’ an University,2009.(in Chinese)

    • [73] DAVIS J R.Handbook of thermal spray technology[M].Ohio:ASM International,2004.

    • [74] SUSANTI V,MARTIDES E MIRDANIES M,et al.Design system of high-velocity oxygen fuel(HVOF)thermal spray coating based on computerization[J].Key Engineering Materials,2017,728:105-110.

    • [75] 查柏林,王汉功,袁晓静.超音速火焰喷涂技术及应用 [M].北京:国防工业出版社,2013.ZHA Bailin,WANG Hangong,YUAN Xiaojing.Technology and application of supersonic flame spraying technology[M].Beijing:National Defense Industry Press,2013.(in Chinese)

  • 参考文献

    • [1] 张伟,郭永明,陈永雄.热喷涂技术在产品再制造领域的应用及发展趋势[J].中国表面工程,2011,24(6):1-10.ZHANG Wei,GUO Yongming,CHEN Yongxiong.Applications and future development of thermal spraying technologies for remanufacturing engineering[J].China Surface Engineering,2011,24(6):1-10.(in Chinese)

    • [2] 陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al.Development status and prospect on equipment application of thermal spray technology[J].China Surface Engineering,2021,34(4):12-18.(in Chinese)

    • [3] 陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016,37(1):3-21.CHEN Lin,YANG Guanjun,LI Chengxin,et al.Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings[J].Advanced Ceramics,2016,37(1):3-21.(in Chinese)

    • [4] WEI Z Y,MENG G H,CHEN L,et al.Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J].Journal of Advanced Ceramics,2022,11(7):985-1068.

    • [5] 季珩,黄利平,郑学斌.气氛环境对等离子体喷涂钛涂层的影响研究[J].热喷涂技术,2011,3(3):44-47.JI Heng,HUANG Liping,ZHENG Xuebin.Effects of atmosphere environment on oxygen content and bonding strength of plasma sprayed titanium coatings[J].Thermal Spray Technology,2011,3(3):44-47.(in Chinese)

    • [6] 张鹏,周正,贺定勇,等.喷涂工艺及其粒子状态对涂层结合强度的影响[J].热喷涂技术,2015,7(1):27-31,10.ZHANG Peng,ZHOU Zheng,HE Dingyong,et al.Effects of spraying parameters and related particle status on coating bond strength[J].Thermal Spray Technology,2015,7(1):27-31,10.(in Chinese)

    • [7] 周超极,朱胜,王晓明,等.热喷涂涂层缺陷形成机理与组织结构调控研究概述[J].材料导报,2018,32(19):3444-3455,3464.ZHOU Chaoji,ZHU Sheng,WANG Xiaoming,et al.A review on thermally sprayed coating defects formation mechanism and microstructure modification[J].Materials Review,2018,32(19):3444-3455,3464.(in Chinese)

    • [8] BERGER L M.Application of hardmetals as thermal spray coatings[J].International Journal of Refractory Metals and Hard Materials,2015,49:350-364.

    • [9] KAWAKITA J,KURODA S,FUKUSHIMA T,et al.Dense titanium coatings by modified HVOF spraying[J].Surface and Coatings Technology,2006,201(3):1250-1255.

    • [10] 韩滔,邓春明,刘敏,等.常规超音速和低温超音速火焰喷涂WC-10Co-4Cr涂层的断裂韧性[J].硅酸盐学报,2014,42(3):409-415.HAN Tao,DENG Chunming,LIU Min,et al.Fracture toughness of normal high velocity oxygen-fuel flame and low temperature high velocity oxygen-fuel sprayed WC-10Co-4Cr coating[J].Journal of the Chinese Ceramic Society,2014,42(3):409-415.(in Chinese)

    • [11] GAO X,LI C,XU Y,et al.Effects of fuel types and process parameters on the performance of an activated combustion high velocity air-fuel(AC-HVAF)thermal spray system[J].Journal of Thermal Spray Technology,2021,30(7):1875-1890.

    • [12] 黄春杰,殷硕,李文亚,等.冷喷涂技术及其系统的研究现状与展望[J].表面技术,2021,50(7):1-23.HUANG Chunjie,YIN Shuo,LI Wenya,et al.Cold spray technology and its system:research status and prospect[J].Surface Technology,2021,50(7):1-23.(in Chinese)

    • [13] ASSADI H,GARTNER F,STOLTENHOFF T,et al.Bonding mechanism in cold gas spraying[J].Acta Materialia,2003,51(15):4379-4394.

    • [14] LI W Y,LIAO H L,LI C J,et al.On high velocity impact of micro-sized metallic particles in cold spraying[J].Applied Surface Science,2006,253(5):2852-2862.

    • [15] SCHMIDT T,GARTNER F,ASSADI H,et al.Development of a generalized parameter window for cold spray deposition[J].Acta Materialia,2006,54(3):729-742.

    • [16] 雒晓涛,谢天,李长久,等.冷喷涂金属的组织与性能调控[J].中国表面工程,2020,33(4):68-81.LUO Xiaotao,XIE Tian,LI Changjiu,et al.Microstructure and properties tailoring of cold sprayed metals[J].China Surface Engineering,2020,33(4):68-81.(in Chinese)

    • [17] 朱胜,杜文博,王晓明,等.基于高熵合金的镁合金表面防护技术研究[J].装甲兵工程学院学报,2013,27(6):79-84.ZHU Sheng,DU Wenbo,WANG Xiaoming,et al.Research on surface protection technology for magnesium alloys based on high entropy alloy[J].Journal of Academy of Armored Force Engineering,2013,27(6):79-84.(in Chinese)

    • [18] WONG W,IRISSOU E,RYABININ A N,et al.Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings[J].Journal of Thermal Spray Technology,2011,20(1-2):213-226.

    • [19] CODDET P,VERDY C,CODDET C,et al.Mechanical properties of thick 304L stainless steel deposits processed by He cold spray[J].Surface and Coatings Technology,2015,277:74-80.

    • [20] 周克崧,刘敏,邓春明,等.新型热喷涂及其复合技术的进展[J].中国材料进展,2009,28(Z2):1-8.ZHOU Kesong,LIU Min,DENG Chunming,et al.Recent development of new thermal spray technology and combined technology[J].Materials China,2009,28(Z2):1-8.(in Chinese)

    • [21] 周超极,王晓明,朱胜,等.低温超音速喷涂原态沉积高铝青铜涂层的耐腐蚀性能[J].中国表面工程,2017,30(3):66-73.ZHOU Chaoji,WANG Xiaoming,ZHU Sheng,et al.Corrosion resistance of aluminum-rich bronze coating deposited by low thermal supersonic spraying technique maintaining original characteristics of particle[J].China Surface Engineering,2017,30(3):66-73.(in Chinese)

    • [22] KURODA S,WATANABE M,KIM K,et al.Current status and future prospects of warm spray technology[J].Journal of Thermal Spray Technology,2011,20(4):653-676.

    • [23] KURODA S,KAWAKITA J,WATANABE M,et al.Warm spraying—A novel coating process based on high-velocity impact of solid particles[J].Science and Technology of Advanced Materials,2008,9(3):033002.

    • [24] YUAN X,WANG H,HOU G,et al.Numerical modeling of a low temperature high velocity air fuel spraying process with injection of liquid and metal particles[J].Journal of Thermal Spray Technology,2006,15(3):413-421.

    • [25] SINGH H,SIDHU T S,KALSI S B S,et al.Development of cold spray from innovation to emerging future coating technology[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2013,35(3):231-245.

    • [26] LI W Y,LI C J,LIAO H L.Significant influence of particle surface oxidation on deposition efficiency,interface microstructure and adhesive strength of cold-sprayed copper coatings[J].Applied Surface Science,2010,256(16):4953-4958.

    • [27] 章华兵,张俊宝,梁永立,等.冷喷涂Ni涂层的微观组织[J].中国有色金属学报,2008(8):1421-1425.ZHANG Huabing,ZHANG Junbao,LIANG Yongli,et al.Microstructures of cold-sprayed Ni coating[J].The Chinese Journal of Nonferrous Metals,2008(8):1421-1425.(in Chinese)

    • [28] BAE G,KUMAR S,YOON S,et al.Bonding features and associated mechanisms in kinetic sprayed titanium coatings[J].Acta Materialia,2009,57(19):5654-5666.

    • [29] SCHMIDT T,ASSADI H,GARTNER F,et al.From particle acceleration to impact and bonding in cold spraying[J].Journal of Thermal Spray Technology,2009,18(5-6):794-808.

    • [30] ASSADI H,SCHMIDT T,RICHTER H,et al.On parameter selection in cold spraying[J].Journal of Thermal Spray Technology,2011,20(6):1161-1176.

    • [31] KAMARAJ M,RADHAKRISHNAN V M.Cold spray coating diagram:bonding properties and construction methodology[J].Journal of Thermal Spray Technology,2019,28(4):756-768.

    • [32] VILLAFUERTE J.Modern cold spray:materials,process,and applications[M].Cham:Springer International,2015.

    • [33] LI S,MUDDLE B,JAHEDI M,et al.A numerical investigation of the cold spray process using underexpanded and overexpanded jets[J].Journal of Thermal Spray Technology,2012,21(1):108-120.

    • [34] YIN S,ZHANG M,GUO Z W,et al.Numerical investigations on the effect of total pressure and nozzle divergent length on the flow character and particle impact velocity in cold spraying[J].Surface and Coatings Technology,2013,232:290-297.

    • [35] LEE M W,PARK J J,KIM D Y,et al.Optimization of supersonic nozzle flow for titanium dioxide thin-film coating by aerosol deposition[J].Journal of Aerosol Science,2011,42(11):771-780.

    • [36] 李文亚,樊柠松,殷硕.冷喷涂过程中气固两相流动行为及喷涂工艺优化研究新进展[J].中国表面工程,2020,33(4):82-101.LI Wenya,FAN Ningsong,YIN Shuo.State-of-the-art of gas-solid two-phase flow behavior during cold spray and process parameters optimization[J].China Surface Engineering,2020,33(4):82-101.(in Chinese)

    • [37] STOLTENHOFF T,KREYE H,RICHTER H J.An analysis of the cold spray process and its coatings[J].Journal of Thermal Spray Technology,2002,11(4):542-550.

    • [38] PATTISON J,CELOTTO S,KHAN A,et al.Standoff distance and bow shock phenomena in the cold spray process[J].Surface and Coatings Technology,2008,202(8):1443-1454.

    • [39] PARK J J,LEE M W,YOON S S,et al.Supersonic nozzle flow simulations for particle coating applications:effects of shockwaves,nozzle geometry,ambient pressure,and substrate location upon flow characteristics[J].Journal of Thermal Spray Technology,2011,20(3):514-522.

    • [40] TABBARA H,GU S,MCCARTNEY D G,et al.Study on process optimization of cold gas spraying[J].Journal of Thermal Spray Technology,2011,20(3):608-620.

    • [41] FAUCHAIS P L,HEBERLEIN J V R,BOULOS M I.Thermal spray fundamentals[M].Boston:Springer US,2014.

    • [42] HUANG R,FUKANUMA H.Study of the influence of particle velocity on adhesive strength of cold spray deposits[J].Journal of Thermal Spray Technology,2012,21(3-4):541-549.

    • [43] LI W Y,LI C J.Optimal design of a novel cold spray gun nozzle at a limited space[J].Journal of Thermal Spray Technology,2005,14(3):391-396.

    • [44] HUANG G S,GU D M,LI X B,et al.Numerical simulation on syphonage effect of laval nozzle for low pressure cold spray system[J].Journal of Materials Processing Technology,2014,214(11):2497-2504.

    • [45] 李铁藩,王恺,吴杰,等.冷喷涂装置研究进展[J].热喷涂技术,2011,3(2):15-34.LI Tiefan,WANG Kai,WU Jie,et al.Development on cold spray apparatus[J].Thermal Spray Technology,2011,3(2):15-34.(in Chinese)

    • [46] WANG X D,ZHANG B,LV J S,et al.Investigation on the clogging behavior and additional wall cooling for the axial-injection cold spray nozzle[J].Journal of Thermal Spray Technology,2015,24(4):696-701.

    • [47] 孙鑫,乔伟,时冰伟,等.电阻式加热器概述及发展趋势[J].内燃机与配件,2020(14):45-48.SUN Xin,QIAO Wei,SHI Bingwei,et al.The summarize and development tendency of electric resistance heaters[J].Internal Combustion Engine and Parts,2020(14):45-48.(in Chinese)

    • [48] FUKANUMA H,HUANG R.Development of high temperature gas heater in the cold spray coating system[C]//Proceedings of the International Thermal Spray Conference(ITSC),2009,May 4-7,2009,Las Vegas,Nevada,USA.2009.

    • [49] 程相飞,兰海明,黄仁忠,等.冷喷涂气体加热器的优化研究[J].材料研究与应用,2022,16(2):291-296.CHENG Xiangfei,LAN Haiming,HUANG Renzhong,et al.Optimizing study of cold spray gas heater[J].Materials Research and Application,2022,16(2):291-296.(in Chinese)

    • [50] PAPYRIN A,KOSAREV V,KLINKOV S,et al.Cold spray technology[M].Oxford:Elsevier,2006.

    • [51] TINASHE S E.Conceptual design of a low pressure cold gas dynamic spray(LPCGDS)system[D].Johannesburg:University of the Witwatersrand,2010.

    • [52] 黄国胜,李相波,邢路阔.一种冷喷涂用空气加热器:CN201110092660.3[P].2012-09-05.HUANG Guosheng,LI Xiangbo,XING Lukuo.An air heater for cold spraying:CN201110092660.3[P].2012-09-05.(in Chinese)

    • [53] MAEV R G,LESHCHYNSKY V.Introduction to low pressure gas dynamic spray:physics and technology[M].Weinheim:John Wiley & Sons,2009.

    • [54] BROWNING J A.Hypervelocity impact fusion—A technical note[J].Journal of Thermal Spray Technology,1992,1(4):289-292.

    • [55] BROWNING J A.Viewing the future of high-velocity oxyfuel(HVOF)and high-velocity air fuel(HVAF)thermal spraying[J].Journal of Thermal Spray Technology,1999,8(3):351-356.

    • [56] TAYLOR K,JODOIN B,KAROV J.Particle loading effect in cold spray[J].Journal of Thermal Spray Technology,2006,15(2):273-279.

    • [57] 胡晓冬,马磊,罗铖.激光熔覆同步送粉器的研究现状 [J].航空制造技术,2011(9):46-49.HU Xiaodong,MA Lei,LUO Cheng.Research status of powder feeder for laser cladding[J].Aeronautical Manufacturing Technology,2011(9):46-49.(in Chinese)

    • [58] 程畅栋,李兴军,欧益忠,等.一种用于冷喷涂的高压送粉装置研制[J].现代制造技术与装备,2020,56(11):5-8.CHENG Changdong,LI Xingjun,OU Yizhong,et al.Development of a high pressure powder feeding device for cold spraying[J].Modern Manufacturing Technology and Equipment,2020,56(11):5-8.(in Chinese)

    • [59] HANFT D,GLOSSE P,DENNELER S,et al.The aerosol deposition method:A modified aerosol generation unit to improve coating quality[J].Materials,2018,11(9):1572.

    • [60] OGATA K,HARADA T,KAWAHARA H,et al.Characteristics of vibrating fluidization and transportation for Al2O3 powder[J].Materials,2022,15(6):2191.

    • [61] TAN A,LEK J,SUN W,et al.Influence of particle velocity when propelled using N2 or N2-He mixed gas on the properties of cold-sprayed Ti6Al4V coatings[J].Coatings,2018,8(9):327.

    • [62] YAWS C L.Matheson gas data book[M].New York:McGraw Hill Professional,2001.

    • [63] 王汉功,查柏林.多功能超音速火焰喷涂的燃烧特性研究[J].材料保护,2002(4):28-30.WANG Hangong,ZHA Bailin.Combustion characteristics of multi-function oxygen fuel spraying with supersonic velocity[J].Materiais Protection,2002(4):28-30.(in Chinese)

    • [64] 侯根良,王汉功,袁晓静,等.超音速火焰喷涂燃烧室燃气成分与温度的计算[J].兵器材料科学与工程,2005(2):16-18.HOU Genliang,WANG Hangong,YUAN Xiaojing,et al.Combustion gas components and temperature analysis for supersonic flame spray[J].Ordnance Material Science and Engineering,2005(2):16-18.(in Chinese)

    • [65] FUKUMOTO M,WADA H,TANABE K,et al.Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process[J].Journal of Thermal Spray Technology,2007,16(5-6):643-650.

    • [66] YIN S,CAVALIERE P,ALDWELL B,et al.Cold spray additive manufacturing and repair:Fundamentals and applications[J].Additive Manufacturing,2018,21:628-650.

    • [67] SENG D H L,ZHANG Z,ZHANG Z Q,et al.Influence of spray angle in cold spray deposition of Ti-6Al-4V coatings on Al6061-T6 substrates[J].Surface and Coatings Technology,2022,432:128068.

    • [68] WU H J,XIE X L,LIU M M,et al.A new approach to simulate coating thickness in cold spray[J].Surface and Coatings Technology,2020,382:125151.

    • [69] WU H J,XIE X L,LIU M M,et al.Stable layer-building strategy to enhance cold-spray-based additive manufacturing[J].Additive Manufacturing,2020,35:101356.

    • [70] TAN A W Y,SUN W,PHANG Y P,et al.Effects of traverse scanning speed of spray nozzle on the microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings[J].Journal of Thermal Spray Technology,2017,26(7):1484-1497.

    • [71] CAI Z H,DENG S H,LIAO H L,et al.The effect of spray distance and scanning step on the coating thickness uniformity in cold spray process[J].Journal of Thermal Spray Technology,2014,23(3):354-362.

    • [72] 杜学芳.超音速火焰喷涂控制系统的设计[D].西安:长安大学,2009.DU Xuefang.Design of high velocity oxygen fuel control system[D].Xi’ an:Chang’ an University,2009.(in Chinese)

    • [73] DAVIS J R.Handbook of thermal spray technology[M].Ohio:ASM International,2004.

    • [74] SUSANTI V,MARTIDES E MIRDANIES M,et al.Design system of high-velocity oxygen fuel(HVOF)thermal spray coating based on computerization[J].Key Engineering Materials,2017,728:105-110.

    • [75] 查柏林,王汉功,袁晓静.超音速火焰喷涂技术及应用 [M].北京:国防工业出版社,2013.ZHA Bailin,WANG Hangong,YUAN Xiaojing.Technology and application of supersonic flame spraying technology[M].Beijing:National Defense Industry Press,2013.(in Chinese)

  • 手机扫一扫看