en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李玉,女,1998年出生,硕士研究生。主要研究方向为锅炉废水处理用材料的腐蚀行为。E-mail:2467937177@qq.com

通讯作者:

刘光明,男,1971年出生,博士,教授,硕士研究生导师。主要研究方向为火电、核电锅炉和输变电用材料腐蚀行为和材料防护、危险性评估及PCB线路板先进制程。E-mail:gemliu@126.com

中图分类号:TG172

DOI:10.11933/j.issn.1007-9289.20230928002

参考文献 1
MA C Y,ZHOU L,ZHANG R X,et al.Enhancement in mechanical properties and corrosion resistance of 2507 duplex stainless steel via friction stir processing[J].Journal of Materials Research and Technology,2020,9(4):8296-8305.
参考文献 2
张聪,张振远,李胜,等.含氮双相不锈钢激光成型试样的力学与腐蚀性能[J].中国表面工程,2019,32(2):163-169.ZHANG Cong,ZHANG Zhenyuan,LI Sheng,et al.Mechanical and corrosion properties of laser-formed specimens of nitrogen-containing duplex stainless steel[J].China Surface Engineering,2019,32(2):163-169.(in Chinese)
参考文献 3
张兴洪.C、Si、Cr、Mo 含量对2507铸造双相不锈钢组织和性能的影响[D].哈尔滨:哈尔滨理工大学,2014.ZHANG Xinghong.Effects of C,Si,Cr and Mo contents on the organisation and properties of 2507 cast duplex stainless steel[D].Harbin:Harbin Institute of Technology,2014.(in Chinese)
参考文献 4
周冬梅.316L 不锈钢在高含氯离子乙二醇溶液中的腐蚀行为[D].成都:西南石油大学,2012.ZHOU Dongmei.Corrosion behaviour of 316L stainless steel in high chloride ion ethylene glycol solution[D].Chengdu:Southwest Petroleum University,2012.(in Chinese)
参考文献 5
ZHU J Y,LI D P,CHANG Wei,et al.In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of western Pacific Ocean[J].Journal of Materials Research and Technology,2020,9(4):8104-8116.
参考文献 6
王长罡,赵林,伍立坪,等.几种超级不锈钢在模拟低温多效海水淡化环境中的点蚀行为研究[J].腐蚀科学与防护技术,2018,30(4):339-345.WANG Changgang,ZHAO Lin,WU Liping,et al.Study on pitting behavior of several super stainless steels in simulated low temperature multi effect seawater desalination environment[J].Corrosion Science and Protection Technology,2018,30(4):339-345.(in Chinese)
参考文献 7
田丰.不锈钢在脱硫环境下的耐蚀性能研究[D].北京:中国机械科学研究总院,2012.TIAN Feng.Corrosion resistance of stainless steel in desulphurisation environments[D].Beijing:General Research Institute of Mechanical Sciences,2012.(in Chinese)
参考文献 8
李晗,刘元海,赵连红,等.300M 超高强度钢在模拟海洋环境中的腐蚀行为研究[J].中国腐蚀与防护学报,2023,43(1):87-94.LI Han,LIU Yuanhai,ZHAO Lianhong,et al.Research on corrosion behavior of 300M ultra high strength steel in simulated marine environment[J].Journal of Chinese Society for Corrosion and Protection,2023,43(1):87-94.(in Chinese)
参考文献 9
叶超,杜楠,赵晴,等.不锈钢点蚀行为及研究方法的进展[J].腐蚀与防护,2014,35(3):271-279.YE Chao,DU Nan,ZHAO Qing,et al.Progress in pitting corrosion behavior and research methods of stainless steel[J].Corrosion & Protection,2014,35(3):271-279.(in Chinese)
参考文献 10
刘新凯,韦庆朕,陈东旭,等.深海环境下静水压力与浸泡时间对304不锈钢电化学行为影响[J].辽宁科技大学学报,2022,45(3):179-182.LIU Xinkai,WEI Qingzhen,CHEN Dongxu,et al.The effect of hydrostatic pressure and immersion time on the electrochemical behavior of 304 stainless steel in deep sea environment[J].Journal of University of Science and Technology Liaoning,2022,45(3):179-182.(in Chinese)
参考文献 11
程建国,刘震,赵士光,等.17-4PH 不锈钢在不同浓度HCl环境中的电化学腐蚀行为[J].材料保护,2021,54(10):29-35,72.CHENG Jianguo,LIU Zhen,ZHAO Shiguang,et al.Electrochemical corrosion behavior of 17-4PH stainless steel in different concentrations of HCl environment[J].Materials Protection,2021,54(10):29-35,72.(in Chinese)
参考文献 12
瞿芳婷,李辉辉,胥聪敏.2507 双相不锈钢在不同 Cl 含量冷却水中的腐蚀行为[J].金属功能材料,2015,22(3):41-45.QU Fangting,LI Huihui,XU Congmin.Corrosion behavior of 2507 duplex stainless steel in cooling water with different Cl contents[J].Metallic Functional Materials,2015,22(3):41-45.(in Chinese)
参考文献 13
WANG M T,WANG L W,ZHAO K,et al.Understanding the passivation behavior and film chemistry of four corrosion-resistant alloys in the simulated flue gas condensates[J].Materials Today Communications,2022,31:103567.
参考文献 14
ZHU M,ZHANG Q,YUAN Y F,et al.Study on the correlation between passive film and AC corrosion behavior of 2507 super duplex stainless steel in simulated marine environment[J].Journal of Electroanalytical Chemistry,2020,864:114072.
参考文献 15
金松.超级双相不锈钢2507腐蚀与钝化行为研究[D].天津:天津大学,2015.JIN Song.Study on corrosion and passivation behavior of super duplex stainless steel 2507[D].Tianjin:Tianjin University,2015.(in Chinese)
参考文献 16
贺志豪,贾建文,李阳,等.超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J].中国腐蚀与防护学报,2023,43(2):408-414.HE Zhihao,JIA Jianwen,LI Yang,et al.Study on passivation behavior of super austenitic stainless steel in simulated flue gas desulfurization condensate[J].Journal of Chinese Society for Corrosion and Protection,2023,43(2):408-414.(in Chinese)
参考文献 17
余翠兰,张钰柱,宋斌杰.2507 双相不锈钢在海水脱硫环境中的腐蚀行为[J].材料热处理学报,2023,44(1):95-107.YU Cuilan,ZHANG Yuzhu,SONG Binjie.Corrosion behavior of 2507 duplex stainless steel in seawater desulfurization environment[J].Transactions of Materials and Heat Treatment,2023,44(1):95-107.(in Chinese)
参考文献 18
刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社,2006.LIU Daoxin.Corrosion and protection of materials[M].Xi’ an:Northwestern Polytechnical University Press,2006.(in Chinese)
参考文献 19
CHAO C Y,LIN L F,MACDONALD D D.A point defect model for anodic passive films I.film growth kinetics[J].Journal of the Electrochemical Society,1981,128(6):1187-1194.
参考文献 20
HUTTUNEN-SAARIVIRTA E,ISOTAHDON E,QUE Z,et al.Pitting corrosion on highly alloyed stainless steels in dilute sulphuric acid containing sodium chloride[J].Electrochimica Acta,2023,457:142404.
参考文献 21
邓博,蒋益明,龚佳,等.双相不锈钢临界点蚀温度和再钝化温度[J].中国有色金属学报,2007,17(1):47-53.DENG Bo,JIANG Yiming,GONG Jia,et al.Critical pitting temperature and repassivation temperature of duplex stainless steel[J].The Chinese Journal of Nonferrous Metals,2007,17(1):47-53.(in Chinese)
目录contents

    摘要

    热法蒸发技术在废水处理方面得到广泛应用,且随着废水不断蒸发浓缩,溶液中的 Cl 含量成倍增加,导致用于蒸发设备的材料也因此快速腐蚀而失效。2507 钢是一种 Cr、Mo 元素含量高的双相不锈钢,结合了铁素体和奥氏体不锈钢共同优点,因此具有极好的耐点蚀性能。为研究 2507 双相不锈钢在酸性高氯环境中的腐蚀情况,采用动电位极化、电化学阻抗谱、 Mott-Schottky 曲线以及动态浸泡试验等方法进行测试,利用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)以及 3D 显微镜对浸泡腐蚀后的试样性能进行表征。研究结果显示,随 Cl-浓度增加,腐蚀电位 Ecorr负移,腐蚀电流密度 Icorr增加,极化电阻 Rp 减小,且施主密度 ND和受主密度 NA增加,材料的耐蚀性降低。2507 双相不锈钢在酸性高氯(pH 为 3、120 g / L) 腐蚀液中浸泡 35 d 的平均腐蚀速率为 2.51 μm / a。试样表面蚀孔数量较少,蚀孔外径在 70~100 μm,平均点蚀深度为 20.493 μm,最大点蚀速率为 0.275 mm / a,属于轻度腐蚀,体现了不锈钢在酸性高氯环境中良好的耐蚀性。由于目前关于高氯废水蒸发设备材料的腐蚀数据非常缺乏,因此 2507 双相不锈钢的腐蚀情况可以为选材提供数据支撑。

    Abstract

    Thermal evaporation technology is widely used in wastewater treatment. With the continuous evaporation and concentration of wastewater, the Cl content in the solution increases exponentially, resulting in rapid corrosion and failure of the materials used for evaporation equipment. 2507 duplex stainless steel is often utilized due to its high content of Cr and Mo elements. This material combines the advantages of both ferrite and austenitic stainless steels, resulting in excellent resistance to pitting corrosion.To investigate the corrosion of 2507 duplex stainless steel in acidic and highly chlorinated environments, dynamic potential polarization, electrochemical impedance, Mott-Schottky curves, and dynamic immersion experiments were used. The electrochemical tests were performed in an acidic solution (pH 3) containing fluorine (F 300 mg / L) and varying concentrations of Cl (20, 60, 90, 120, 150 g / L) at a temperature of 60 ℃. The stainless steel was subjected to an immersion test in a corrosive solution with 120 g / L of Cl , 300 mg / L of F , and pH 3 at 80 ℃ for 35 d. Dynamic stirring was employed at a linear velocity of 2 m / s, and the solution was renewed every 7 d. Three parallel samples were taken, and the properties of the specimens were characterized using metallographic microscopy, scanning electron microscopy (SEM), energy spectrometry (EDS), and 3D microscopy. The study investigated the corrosive effect of chloride ion concentration on 2507 duplex stainless steel through electrochemical tests, and immersion corrosion tests were conducted to examine the corrosion conditions of stainless steel in a highly chlorinated environment.The results indicate that in various electrochemical tests, the corrosion potential Ecorr in the polarization curve shifts towards the negative direction, and the corrosion current density Icorr gradually increases with the rise in chloride ion solubility. Thermodynamically, the more negative the corrosion potential Ecorr, the higher the tendency of the material to corrode; kinetically, the larger the corrosion current density Icorr, the poorer the corrosion resistance of the material. The higher the pitting potential Eb, the stronger the corrosion resistance of the material. The test results indicate that an increase in the chloride ion concentration accelerates the corrosion of the material. In addition, the impedance spectrum shows a decrease in the capacitive arc radius as the concentration of chloride ions increases. A larger capacitive arc radius indicates greater resistance to charge transfer at the interface between the metal and solution, which in turn suggests stronger corrosion resistance of the material. The polarization resistance Rp reflects the state of the surface passivation film and is crucial in evaluating the corrosion resistance. The Rp value decreases as the concentration of chloride ions increases. The Mott-Schottky curve shows an increase in both donor density ND and acceptor density NA with an increase in Cl concentration, indicating an increase in point defects within the passivation film and a reduction in the corrosion resistance of the material. The metallographic analysis of stainless steel after 35 d of immersion in the corrosive solution revealed that pitting corrosion primarily occurs in the boundary region of the α-phase and γ-phase or in the γ-phase zone. This suggests that in the duplex stainless steel, the α-phase is more corrosion-resistant than the γ-phase. The average corrosion rate of the material was 2.51 μm / a, as measured by the weightlessness method. The SEM morphology revealed a small number of etching holes on the surface of the specimen, with an outer diameter of approximately 70–100 μm. The average pitting depth of the alloy after corrosion was 20.493 μm, and the maximum pitting rate was 0.275 mm / a as measured by 3D microscope. These results indicate mild corrosion and reflect the good corrosion resistance of stainless steel in acidic and highly chlorinated environments. Due to the lack of corrosion data on the materials used in perchlorinated wastewater evaporation equipment, the corrosion of 2507 duplex stainless steel can provide data support for material selection.

  • 0 前言

  • 为了达到工业废水零排放的目标,近年来晶种法强制循环蒸发浓缩技术得到了大力发展。在水处理领域,热法蒸发技术处理脱硫废水得到广泛应用。脱硫废水成分复杂,盐含量较高,腐蚀性较强,其中以 Cl 等卤素离子最具有腐蚀性,尤其在高浓度情况下,其腐蚀性会加剧。常规脱硫废水中,Cl 初始含量在 20 g / L 左右,随着废水不断蒸发浓缩,各类成分将会成倍增加,达到饱和时,Cl 含量最高可达 150 g / L 以上。用于蒸发设备的材料在这种极度恶劣的环境下也因快速腐蚀而失效,造成极大损失。 2507 是一种超级双相不锈钢,结合了铁素体和奥氏体不锈钢共同优点[1-2],且 Cr、Mo 元素含量较高。Cr 元素可在材料表面形成致密的氧化膜,而 Mo 元素主要是促进 Cr 元素在氧化膜中的富集,有助于提高膜的稳定性,故该不锈钢具有极好的耐点蚀性能[3]。 PREN(耐点腐蚀能力当量)=[w(Cr)+3.3w(Mo)+ 16w(N)]×100,可以评价材料的腐蚀性能[1],PREN 值越高,其耐蚀性越强。316L 不锈钢的 PREN 值在 25 左右,2507 双相不锈钢的 PREN 值大于 40,说明 2507 双相不锈钢具有较高的耐蚀性能,研究它在高氯废水中的腐蚀是非常有意义的。周冬梅[4]研究表明,316L 不锈钢在浓度为 36.516 g / L 的 Cl 溶液中的腐蚀速率为 0.078 1 mm / a,超过行规 0.076 mm / a,表明 316L 不锈钢的耐蚀性能难以满足高氯环境的需求。ZHU 等[5]研究表明,在海洋环境中, 2507 双相不锈钢耐点蚀性能优于 2205、317L 和 316L 等不锈钢,尤其是在腐蚀 592 d 后,该不锈钢仍有一个较宽且稳定的钝化区。王长罡等[6]研究表明,当 2507 不锈钢在浓缩两倍的海水模拟液中进行腐蚀时,发现不同温度下(20、40、70℃)材料无明显点蚀。田丰[7]研究表明,当脱硫环境中 Cl 浓度达到 50 g / L 时,316L 不锈钢表面观察到点蚀现象,而 254SMo 和 2507 不锈钢表面无明显变化,不易发生点蚀,说明后两种不锈钢的耐点蚀性能良好。

  • 然而,目前国内外对于 2507 双相不锈钢在高温高氯下的腐蚀研究报道较少。本文通过研究 2507 不锈钢在酸性高氯废水模拟液中的电化学测试和浸泡腐蚀试验,简要探讨该材料的腐蚀机理,为蒸发设备选材提供数据支撑。

  • 1 试验

  • 1.1 试样材料

  • 试验材料为 2507 双相不锈钢,其化学成分如表1 所示。

  • 表1 2507 双相不锈钢的化学成分(质量分数 / wt.%)

  • Table1 Chemical composition of 2507 duplex austenitic stainless steel (wt.%)

  • 1.2 试样制备和试验方法

  • 采用 CS310M 电化学工作站进行电化学测试,采用标准三电极体系,饱和甘汞电极(Saturated calomel electrode,SCE)为参比电极,铂片电极为辅助电极。研究电极的非工作面用铜导线连接,并用环氧树脂密封,工作面的面积是 1 cm2。测试前依次用 600#、800#、1000#、1200#、1500#、2000#砂纸对工作面进行逐级打磨直至光亮,后用去离子水冲洗并吹干,最后用酒精擦拭干净。测试不同 Cl 浓度下材料的动电位极化曲线、EIS曲线和Mott-Schottky 曲线,分析 2507 双相不锈钢在高氯废水溶液下的腐蚀行为。试验介质为不同 Cl 浓度(20、60、90、120、 150 g / L)的含氟(F 300 mg / L)酸性(pH 为 3) 溶液,测试温度为 60℃。

  • 动电位极化曲线:在测试之前,研究电极先在-1 V(相对于 SCE)下预极化 5 min,后在开路电位下稳定 30 min,再在-0.9~1.5 V 范围内(扫描速率为 0.5 mV / s)进行测试,当电流密度增大到 1 mA / cm2 时,极化电位反向扫描。EIS 曲线:测试之前,研究电极先在-1 V(相对于 SCE)下预极化 5 min,然后在-0.2 V 的恒电位极化 1 000 s,后在开路电位下稳定 30 min,阻抗谱频率在 10−2~105 Hz,测量幅值为 10 mV。Mott-Schottky 曲线:测试之前,研究电极先在-1 V(相对于 SCE)下预极化 5 min,然后在-0.2 V 的恒电位极化 1 000 s,后在开路电位下稳定 30 min,测量幅度为 50 mV,测量电位为-1~1 V(相对于 SCE),频率为 1 kHz。

  • 浸泡腐蚀试验试样尺寸为 30 mm×15 mm× 3 mm。样品表面经金相砂纸逐级打磨至 800#,用去离子水冲洗并吹干,然后使用丙酮、酒精超声清洗试件表面,吹干保存备用。将试样浸泡在 80℃的腐蚀液(Cl 120 g / L、F 300 mg / L,pH 3)中 35 d,采取动态搅拌(线速度为 2 m / s),每 7 d 更新一次溶液,取三个平行样。试样腐蚀 35 d 后,在 60℃的化学清洗液中对表面进行除锈 20 min(除锈液: 100 mL 浓 HNO3 加水稀释到 1 000 mL)。试验前后用分析天平称重[8]。试样的腐蚀速率 R 按式(1)计算,试样的点蚀速度 R'按式(2)计算。通过 MA2000 型正置光学显微镜(Optical microscope,OM)对试样的微观组织进行观察(金相腐蚀液:60 mL 酒精+ 60 mL 盐酸+3 g 氯化铜;室温下腐蚀 20~30 s)[3],使用 D8 advance-D8X 型 X 射线衍射仪(X-ray diffraction,XRD)进行物相分析,采用 SU1510 型扫描电子显微镜(Scanning electron microscope,SEM) 和 INCA 型能谱仪(Energy dispersive spectrometer,EDS)对腐蚀后的样品表面进行形貌和产物元素分析 (试样取出后,在 60℃下用去离子水清洗 30 min 后吹干),用 KH-7700 型 3D 扫描显微镜测量点蚀深度。

  • R=8.76×107M-M1STD
    (1)
  • 式中,M 为试验前试样质量(g),M1 为试验后试样质量(g),S 为试样总面积(cm 2),T 为试验时间 (h),D 为材料密度(kg / m3)。

  • R'=8.76×103ΔdΔT
    (2)
  • 式中 d 为点蚀深度(mm)。

  • 2 结果与讨论

  • 2.1 电化学测试

  • 2.1.1 动电位极化曲线

  • 图1 为 2507 双相不锈钢在不同浓度 Cl 的腐蚀液中的动电位极化曲线。从图可见,2507 双相不锈钢在不同浓度 Cl 的腐蚀液中的动电位极化曲线中没有出现明显的活化-钝化区,而是直接进入钝化状态,说明 2507 双相不锈钢在腐蚀液中的耐蚀性良好。随着 Cl 浓度 c(Cl)升高,极化曲线中的腐蚀电位 Ecorr不断向负方向移动,腐蚀电流密度 Icorr逐渐增加,如表2 所示。从热力学上分析, Ecorr越低,材料发生腐蚀的倾向越高;从动力学上分析,Icorr 越大,材料的耐蚀性越差。点蚀电位 Eb 也是判断合金腐蚀性能的重要参数之一[9-12]。金属材料点腐蚀的产生需要表面电位在 Eb 之上,因此 Eb 越高,材料的耐蚀性就越强,表2 的结果说明 Cl 浓度增加会加速材料的腐蚀。由图1 可见,2507 双相不锈钢在点蚀电位附近,电流密度出现快速上升后又快速下降的现象,这是由于金属表面钝化膜处于不断溶解和修复的动态平衡中。再钝化电位 Ep 是正反向极化曲线的交点所对应的电位,EbEp 的差值可以体现钝化膜的修复能力,差值越小说明修复能力越好[13]。由表2 可知,2507 双相不锈钢在腐蚀液中的钝化膜修复能力相差不大。

  • 图1 2507 双相不锈钢在不同浓度 Cl 的腐蚀液中的动电位极化曲线

  • Fig.1 Potentiodynamic polarization curves of 2507 duplex stainless steel in corrosion solution with different concentrations of Cl

  • 表2 2507 双相不锈钢在高氯腐蚀液中的极化曲线参数

  • Table2 Polarization curve parameters of 2507 duplex stainless steel in high chloride corrosive solution

  • Where c (Cl) is chloride ion concentration, Ecorr is corrosion potentia, Eb is pitting potential, Ep is repassivation potential, Icorr is corrosion current density.

  • 2.1.2 电化学阻抗谱

  • 图2 为 2507 双相不锈钢在不同浓度 Cl 的腐蚀液中的电化学阻抗谱(Electrochemical impedance spectroscopy,EIS)。由图2a 可知,2507 双相不锈钢在高氯溶液中的阻抗谱均只有一个容抗弧,且容抗弧半径随 Cl 浓度增大而减小,容抗弧半径越大,意味着电荷在金属与溶液界面转移时受到的阻力越大,表明材料的耐蚀性越强。在波特模值图中,低频段反映电荷转移电阻,高频段反映溶液电阻,如图2b 所示,Cl 浓度越高,低频段的模值越小,反映了材料的耐蚀性越差;高频段基本重合,说明在高氯环境下,Cl 浓度对溶液电阻影响较小。在波特相位角图中,不同腐蚀液中均出现一个大宽峰,推测存在两个相近的时间常数,且相位角都小于 90°,表明反应体系中存在弥散效应。

  • 图2 2507 双相不锈钢在不同浓度 Cl 的腐蚀液中的电化学阻抗谱及等效电路

  • Fig.2 Electrochemical impedance spectra of 2507 duplex stainless steel in corrosion solution with different concentrations of Cl

  • 为了进一步研究材料表面钝化膜,采用 RsQfRfQdlRct)))型的等效电路来拟合阻抗谱数据。其中,Rs为溶液电阻,Qf为钝化膜电容,Rf为钝化膜电阻,Qdl 为双电层电容,Rct 为电荷转移电阻,拟合结果如表3 所示。Q 为常相位角元件,用于替换由于研究电极表面不均匀性引起的具有弥散效应的纯电容,n 为弥散系数。随着 Cl 浓度的增加,Rf 有下降的趋势,推测是钝化膜中缺陷增多,使钝化膜不完整,降低了不锈钢的保护性能。Rct 反映了电荷在电极过程中穿过电解质溶液和电极两相界面的困难程度,在各腐蚀液中 Rct都达到了 1 kΩ·cm 2,说明 2507 双相不锈钢在高氯废水溶液中的耐蚀性良好。有研究表明,极化电阻 RpRp=RctRf)反映了表面钝化膜的状态,是评价材料耐蚀性的重要参考依据[14]。一般认为,Rp 值越高,耐蚀性越好[15]RpRct 参数值随 Cl 浓度变化如图3 所示。Cl 浓度越高,Rp 值越小,进一步验证了高氯溶液对材料的腐蚀作用。

  • 表3 2507 双相不锈钢在腐蚀液中的电化学阻抗谱拟合参数

  • Table3 Electrochemical impedance spectrum fitting parameters of 2507 duplex stainless steel in corrosion solution

  • Where c (Cl) is chloride ion concentration, Rs is solution resistance, Rf is passivation film resistance, Rct is charge transfer resistance, Qf is passivation film capacitance, nf is dispersion coefficient of Qf, Qdl is double-layer capacitance, ndl is dispersion coefficient of Qdl, Rp is polarization resistance.

  • 图3 2507 双相不锈钢的电化学阻抗谱拟合参数

  • Fig.3 Electrochemical impedance spectrum fitting parameters of 2507 duplex stainless steel

  • 2.1.3 Mott-Schottky 曲线

  • 不锈钢表面形成的钝化膜通常都具有半导体性质,该半导体性质可以通过 Mott-Schottky 曲线来分析,分别有 p 型和 n 型半导体两种。n 型半导体的特性与 Fe2O3、FeOOH、MoO3氧化物有关,p 型半导体的特性与 Cr2O3 氧化物有关。从图4 中可以看出,在不同 Cl 浓度的腐蚀液中 Mott-Schottky 曲线变化趋势相同,主要可分为两个电位区间。第一个电位区间为 0~0.3 V,线性部分斜率为正,代表了 n 型半导体的性质;第二个电位区间为 0.5~0.9 V,线性部分斜率为负,代表了 p 型半导体的性质,说明 2507 不锈钢的钝化膜具有双层结构,外层是具有 n 型半导体特性的 Fe 的氧化物,内层是具有 p 型半导体特性的Cr的氧化物。曲线的斜率在电位为0.4 V 左右时由正变负,说明材料表面氧化物的电子结构发生变化[15]

  • 图4 2507 不锈钢在不同浓度 Cl 的腐蚀液中的 Mott-Schottky 曲线

  • Fig.4 Mott-Schottky curve of 2507 stainless steel in corrosion solution with different concentrations of Cl

  • 通过对两个区间的线性部分进行线性拟合,再根据 Mott-Schottky 式(3)、(4)得到施主密度 ND 和受主密度 NA,结果如表4 所示。NDNA都有随 Cl 浓度升高而增大的现象,这表明钝化膜内的点缺陷增多,说明材料的耐蚀性降低[16]

  • 1C2=2eε0εrNDE-Efb-KTe
    (3)
  • 1C2=2eε0εrNAE-Efb-KTe
    (4)
  • 式中,e 是电子电荷(0.1 602 189 aC),ε0为真空介电常数(88.542 fF / cm),εr是相对介电常数,K 是波耳兹曼常数(13.8 yJ / K),T 是开尔文温度(K), Efb 是平带电位(相对于 SCE)(V),E 是施加电位 (相对于 SCE)(V),C 为钝化膜的空间电荷层电容 (F)。

  • 表4 2507 不锈钢在腐蚀液中的施主密度 ND和受主密度 NA

  • Table4 Donor density ND and acceptor density NA of 2507 stainless steel in corrosive solution

  • Where ND is donor density, NA is acceptor density

  • 2.2 浸泡腐蚀试验

  • 2.2.1 金相组织和物相分析

  • 图5 为 2507 双相不锈钢未腐蚀、浸泡腐蚀 35 d 后的金相组织以及不锈钢浸泡前的 XRD 图谱。由图5a、5c 中可知,该不锈钢的主要成分由铁素体相 (α)和奥氏体相(γ)构成,微观组织呈条带状分布,两相界线清晰[17]。通过 Image-Pro plus 图像分析软件,测定 α 相和 γ 相的含量占比分别为 51.09%、 48.91%,且 α / γ 相约为 1。从图5b 可见,点蚀主要发生在 α 相和 γ 相的边界区域或者是 γ 相区中,说明在 2507 双相不锈钢中,α 相比 γ 相更耐蚀。

  • 图5 2507 双相不锈钢的金相组织和 XRD 图谱

  • Fig.5 Metallographic organization and XRD pattern of 2507 duplex stainless steel

  • 2.2.2 动力学分析和形貌观察

  • 图6 为 316L 不锈钢和 2507 双相不锈钢在高氯腐蚀液中的动力学曲线。每 7 d 对试样进行称重(不做化学清洗,仅用去离子水清洗,后将试样放回),得到单位面积质量变化,如式(5)所示,从而绘制出腐蚀动力学曲线。

  • 图6 316L 不锈钢和 2507 双相不锈钢在高氯腐蚀液中的动力学曲线

  • Fig.6 Kinetic curves of 316L stainless steel and 2507 duplex stainless steel in highly chlorinated corrosive fluids

  • ΔWS=W2-W1S
    (5)
  • 式中,W1 为试验前试样质量(g),W2 为试验后试样质量(g),S 为试样总面积(cm 2)。

  • 从图6 可见,在高氯溶液中,随浸泡时间的延长,316L 不锈钢的质量呈指数关系变化,基本处于失重状态,说明 316L 不锈钢腐蚀严重;而 2507 双相不锈钢的质量呈先失重后增重变化,试样表面先发生金属阳极溶解,后有腐蚀产物生成,但总体质量变化轻微,说明该不锈钢腐蚀程度较轻。腐蚀 35 d 后,试样表面用化学法清洗除锈,再由式(1)计算得出,在高氯腐蚀液中,316L 不锈钢和 2507 双相不锈钢的平均腐蚀速率分别为 84、2.51 μm / a。根据国际腐蚀工程师协会 NACE RP0775—2005 标准, 2507 不锈钢的腐蚀速率小于 0.025 mm / a,属于轻度腐蚀,说明该钢的耐蚀性较好。

  • 图7 为 2507 双相不锈钢在动态腐蚀液中浸泡 35 d 后的 SEM 形貌及 EDS 谱图。如图7a~7b 所示 (图7b 是图7a 圆圈区域的放大图),试样表面部分区域观察到点蚀坑,蚀孔数量较少,孔径在 70~100 μm,孔内被腐蚀成网状结构。能谱分析表明,材料表面及孔内均覆盖了氧化物,孔外产物的氧含量高于孔内,这说明试样表面钝化膜有修复的迹象。

  • 图7 2507 双相不锈钢在高氯腐蚀液中浸泡 35 d 后的 SEM 形貌及对应 EDS 谱图

  • Fig.7 SEM morphology and corresponding EDS spectra of 2507 duplex stainless steel immersed in high chloride corrosion solution for 35 d

  • 随机取腐蚀35 d后试样表面的五个点蚀孔进行3D 显微扫描,图8 为试样表面某一位点的3D 显微形貌图,该位点的蚀孔点蚀深度为19.531 μm,其中在高氯腐蚀液中的最大点蚀深度为 26.377 μm,平均点蚀深度为 20.493 μm,数据如表5 所示。如图8 所示,试样表面形成的蚀孔孔口较圆,小孔呈斜坡状被腐蚀,坑底较平。由最大点蚀深度通过式(2)计算得到最大点蚀速度为 0.275 mm / a,根据《钢质管道及储罐腐蚀评价标准第1 部分:埋地钢质管道外腐蚀直接评价(SY / T 0087.1— 2018)》,该速度小于0.305 mm / a,属于轻度腐蚀。

  • 图8 2507 双相不锈钢在高氯腐蚀液中浸泡 35 d 后的 3D 显微形貌

  • Fig.8 3D micromorphology of 2507 duplex stainless steel after immersion in high chlorine corrosion solution for 35 d

  • 表5 2507 双相不锈钢在高氯腐蚀液中浸泡 35 d 后的不同位点下的点蚀深度(μm)

  • Table5 Pitting depth of 2507 duplex stainless steel at different sites after immersion in high chloride corrosion solution for 35 d (μm)

  • 2.3 腐蚀机理

  • 2507 双相不锈钢中的 Cr 元素含量超过合金发生自钝化的临界值(11.7 wt.%)[18],因此它在腐蚀之前会和空气中的氧或腐蚀液中的溶解氧发生反应 (化学钝化),形成保护性的钝化膜。但是腐蚀液中高浓度的 Cl 会破坏钝化膜的完整性,进而使材料表面萌生点蚀核,发生局部腐蚀现象[16]

  • 在动电位极化曲线中,当电位大于 Eb时,点蚀会不断萌生并迅速发展;电位在 EbEp 之间时,不会产生新的点蚀孔,而已萌生的蚀孔会继续发展; 当电位小于 Ep 时,材料不会发生点蚀。随着 Cl 浓度的增大,Eb 降低,点蚀萌生和发展的几率增高,加上 Ecorr负移、Icorr增大,均表明 Cl 加速了不锈钢的腐蚀。Cl 对不锈钢表面的钝化膜主要有两种腐蚀机理,分别是吸附机理和成相膜机理[18]。吸附机理认为 Cl 被金属(Fe、Ni、Cr、Co 等)表面吸附的能力强于金属和氧分子形成钝化膜的能力。由于吸附具有选择性,因此 Cl 会优先被吸附,并和参与形成钝化膜的氧构成竞争吸附关系,导致金属的钝化受到阻碍。当 Cl 浓度增大,吸附在金属表面的 Cl 增多,钝化膜中的氧被置换的概率也相应升高,点蚀萌生的几率增加。EIS 曲线中,容抗弧半径随 Cl 浓度增大而减小,说明电荷在电极和溶液两相界面转移时受到的阻力越小,不锈钢的耐蚀性越低。加上 Cl 半径很小,穿透能力很强,成相膜机理则认为不锈钢表面钝化膜在扩散或电场作用下会被 Cl 穿透,Cl 会与溶解的金属 Fe3+形成可溶性化合物 FeCl3,进一步加速金属的阳极溶解。Cl 有时也会分散在钝化膜中形成胶态,从而改变膜的电子和离子导电性,致使钝化膜遭到破坏。等效电路拟合结果也表明,RctRp 都随 Cl 浓度的增加而减小,与极化曲线的结果相符。Mott-Schottky 曲线中存在两个电位区间,分别代表 n 型半导体和 p 型半导体。该结果表明 2507 不锈钢的钝化膜具有双层结构,内层是 Cr 的氧化物(具有 p 型半导体特性),外层是 Fe 的氧化物(具有 n 型半导体特性)。在 C−2-E 曲线中 (图4),NDNA都有随 Cl 浓度升高而增大的现象,这表明钝化膜内的点缺陷增多[16]。由 CHAO 等[19] 研究的点缺陷模型可知,Cl 在钝化膜表面吸附和穿透,导致阳离子空位的形成,这些空位扩散到金属-钝化膜界面,被溶解的金属阳离子补充。根据点缺陷模型,随 Cl 浓度增大,阳离子空位增多,当空位的浓度大于阳离子浓度时,空位则会在金属-钝化膜界面处堆积“凝结”出孔洞。

  • 在高温高氯腐蚀液中浸泡 35 d 后的试样,其表面产生的蚀孔孔内被腐蚀成网状结构(图7),推测是由于 2507 不锈钢具有双相组织结构(图5),其中α 相和γ 相约各占一半所导致。有研究表明,2507 双相不锈钢中α 相比γ 相更稳定,耐蚀性更强[20]。金相结果显示,点蚀优先发生在γ 相区域(图5),后又被α相抑制,导致腐蚀受阻[21]

  • 钝化膜被破坏的位置活性较高,称为阳极;其他区域仍处于钝化状态,称为阴极,从而构成大阴极-小阳极的腐蚀体系。阳极发生金属的氧化反应,造成阳极溶解,形成点蚀孔;阴极发生溶解氧和 H+ 的还原反应。由于 H+ 的不断消耗,因此阴极区 pH 值增加,随后与金属离子反应生成不溶性的金属氧化物或者氢氧化物,产物在孔口堆积,使蚀孔形成一个闭塞区。孔内金属不断发生离子化,为保持电中性,孔外 Cl 会向孔内迁移,进一步加速了金属的阳极溶解,形成了自催化腐蚀。

  • 3 结论

  • (1)动电位扫描、电化学阻抗谱和 Mott-Schottky 曲线的试验结果证明,2507 双相不锈钢在高温高氯废水溶液中随 Cl 浓度增加,材料的耐蚀性降低,说明高温高浓度会使 Cl 的破坏作用增强,加速点腐蚀。

  • (2)在腐蚀液中浸泡 35 d 后的金相组织中发现, 2507 不锈钢点蚀发生在α相和γ 相的边界区域或γ 相区域中,说明在该双相不锈钢中,α相比γ 相更耐蚀。

  • (3)浸泡 35 d 后,不锈钢的平均腐蚀速率为 2.51 μm / a,小于 0.025 mm / a。试样表面蚀孔数量较少,蚀孔外径为 70~100 μm,平均点蚀深度 20.493 μm,最大点蚀速度为 0.275 mm / a,小于 0.305 mm / a,属于轻度腐蚀,体现了 2507 双相不锈钢在酸性高氯环境中良好的耐蚀性。

  • 参考文献

    • [1] MA C Y,ZHOU L,ZHANG R X,et al.Enhancement in mechanical properties and corrosion resistance of 2507 duplex stainless steel via friction stir processing[J].Journal of Materials Research and Technology,2020,9(4):8296-8305.

    • [2] 张聪,张振远,李胜,等.含氮双相不锈钢激光成型试样的力学与腐蚀性能[J].中国表面工程,2019,32(2):163-169.ZHANG Cong,ZHANG Zhenyuan,LI Sheng,et al.Mechanical and corrosion properties of laser-formed specimens of nitrogen-containing duplex stainless steel[J].China Surface Engineering,2019,32(2):163-169.(in Chinese)

    • [3] 张兴洪.C、Si、Cr、Mo 含量对2507铸造双相不锈钢组织和性能的影响[D].哈尔滨:哈尔滨理工大学,2014.ZHANG Xinghong.Effects of C,Si,Cr and Mo contents on the organisation and properties of 2507 cast duplex stainless steel[D].Harbin:Harbin Institute of Technology,2014.(in Chinese)

    • [4] 周冬梅.316L 不锈钢在高含氯离子乙二醇溶液中的腐蚀行为[D].成都:西南石油大学,2012.ZHOU Dongmei.Corrosion behaviour of 316L stainless steel in high chloride ion ethylene glycol solution[D].Chengdu:Southwest Petroleum University,2012.(in Chinese)

    • [5] ZHU J Y,LI D P,CHANG Wei,et al.In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of western Pacific Ocean[J].Journal of Materials Research and Technology,2020,9(4):8104-8116.

    • [6] 王长罡,赵林,伍立坪,等.几种超级不锈钢在模拟低温多效海水淡化环境中的点蚀行为研究[J].腐蚀科学与防护技术,2018,30(4):339-345.WANG Changgang,ZHAO Lin,WU Liping,et al.Study on pitting behavior of several super stainless steels in simulated low temperature multi effect seawater desalination environment[J].Corrosion Science and Protection Technology,2018,30(4):339-345.(in Chinese)

    • [7] 田丰.不锈钢在脱硫环境下的耐蚀性能研究[D].北京:中国机械科学研究总院,2012.TIAN Feng.Corrosion resistance of stainless steel in desulphurisation environments[D].Beijing:General Research Institute of Mechanical Sciences,2012.(in Chinese)

    • [8] 李晗,刘元海,赵连红,等.300M 超高强度钢在模拟海洋环境中的腐蚀行为研究[J].中国腐蚀与防护学报,2023,43(1):87-94.LI Han,LIU Yuanhai,ZHAO Lianhong,et al.Research on corrosion behavior of 300M ultra high strength steel in simulated marine environment[J].Journal of Chinese Society for Corrosion and Protection,2023,43(1):87-94.(in Chinese)

    • [9] 叶超,杜楠,赵晴,等.不锈钢点蚀行为及研究方法的进展[J].腐蚀与防护,2014,35(3):271-279.YE Chao,DU Nan,ZHAO Qing,et al.Progress in pitting corrosion behavior and research methods of stainless steel[J].Corrosion & Protection,2014,35(3):271-279.(in Chinese)

    • [10] 刘新凯,韦庆朕,陈东旭,等.深海环境下静水压力与浸泡时间对304不锈钢电化学行为影响[J].辽宁科技大学学报,2022,45(3):179-182.LIU Xinkai,WEI Qingzhen,CHEN Dongxu,et al.The effect of hydrostatic pressure and immersion time on the electrochemical behavior of 304 stainless steel in deep sea environment[J].Journal of University of Science and Technology Liaoning,2022,45(3):179-182.(in Chinese)

    • [11] 程建国,刘震,赵士光,等.17-4PH 不锈钢在不同浓度HCl环境中的电化学腐蚀行为[J].材料保护,2021,54(10):29-35,72.CHENG Jianguo,LIU Zhen,ZHAO Shiguang,et al.Electrochemical corrosion behavior of 17-4PH stainless steel in different concentrations of HCl environment[J].Materials Protection,2021,54(10):29-35,72.(in Chinese)

    • [12] 瞿芳婷,李辉辉,胥聪敏.2507 双相不锈钢在不同 Cl 含量冷却水中的腐蚀行为[J].金属功能材料,2015,22(3):41-45.QU Fangting,LI Huihui,XU Congmin.Corrosion behavior of 2507 duplex stainless steel in cooling water with different Cl contents[J].Metallic Functional Materials,2015,22(3):41-45.(in Chinese)

    • [13] WANG M T,WANG L W,ZHAO K,et al.Understanding the passivation behavior and film chemistry of four corrosion-resistant alloys in the simulated flue gas condensates[J].Materials Today Communications,2022,31:103567.

    • [14] ZHU M,ZHANG Q,YUAN Y F,et al.Study on the correlation between passive film and AC corrosion behavior of 2507 super duplex stainless steel in simulated marine environment[J].Journal of Electroanalytical Chemistry,2020,864:114072.

    • [15] 金松.超级双相不锈钢2507腐蚀与钝化行为研究[D].天津:天津大学,2015.JIN Song.Study on corrosion and passivation behavior of super duplex stainless steel 2507[D].Tianjin:Tianjin University,2015.(in Chinese)

    • [16] 贺志豪,贾建文,李阳,等.超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J].中国腐蚀与防护学报,2023,43(2):408-414.HE Zhihao,JIA Jianwen,LI Yang,et al.Study on passivation behavior of super austenitic stainless steel in simulated flue gas desulfurization condensate[J].Journal of Chinese Society for Corrosion and Protection,2023,43(2):408-414.(in Chinese)

    • [17] 余翠兰,张钰柱,宋斌杰.2507 双相不锈钢在海水脱硫环境中的腐蚀行为[J].材料热处理学报,2023,44(1):95-107.YU Cuilan,ZHANG Yuzhu,SONG Binjie.Corrosion behavior of 2507 duplex stainless steel in seawater desulfurization environment[J].Transactions of Materials and Heat Treatment,2023,44(1):95-107.(in Chinese)

    • [18] 刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社,2006.LIU Daoxin.Corrosion and protection of materials[M].Xi’ an:Northwestern Polytechnical University Press,2006.(in Chinese)

    • [19] CHAO C Y,LIN L F,MACDONALD D D.A point defect model for anodic passive films I.film growth kinetics[J].Journal of the Electrochemical Society,1981,128(6):1187-1194.

    • [20] HUTTUNEN-SAARIVIRTA E,ISOTAHDON E,QUE Z,et al.Pitting corrosion on highly alloyed stainless steels in dilute sulphuric acid containing sodium chloride[J].Electrochimica Acta,2023,457:142404.

    • [21] 邓博,蒋益明,龚佳,等.双相不锈钢临界点蚀温度和再钝化温度[J].中国有色金属学报,2007,17(1):47-53.DENG Bo,JIANG Yiming,GONG Jia,et al.Critical pitting temperature and repassivation temperature of duplex stainless steel[J].The Chinese Journal of Nonferrous Metals,2007,17(1):47-53.(in Chinese)

  • 参考文献

    • [1] MA C Y,ZHOU L,ZHANG R X,et al.Enhancement in mechanical properties and corrosion resistance of 2507 duplex stainless steel via friction stir processing[J].Journal of Materials Research and Technology,2020,9(4):8296-8305.

    • [2] 张聪,张振远,李胜,等.含氮双相不锈钢激光成型试样的力学与腐蚀性能[J].中国表面工程,2019,32(2):163-169.ZHANG Cong,ZHANG Zhenyuan,LI Sheng,et al.Mechanical and corrosion properties of laser-formed specimens of nitrogen-containing duplex stainless steel[J].China Surface Engineering,2019,32(2):163-169.(in Chinese)

    • [3] 张兴洪.C、Si、Cr、Mo 含量对2507铸造双相不锈钢组织和性能的影响[D].哈尔滨:哈尔滨理工大学,2014.ZHANG Xinghong.Effects of C,Si,Cr and Mo contents on the organisation and properties of 2507 cast duplex stainless steel[D].Harbin:Harbin Institute of Technology,2014.(in Chinese)

    • [4] 周冬梅.316L 不锈钢在高含氯离子乙二醇溶液中的腐蚀行为[D].成都:西南石油大学,2012.ZHOU Dongmei.Corrosion behaviour of 316L stainless steel in high chloride ion ethylene glycol solution[D].Chengdu:Southwest Petroleum University,2012.(in Chinese)

    • [5] ZHU J Y,LI D P,CHANG Wei,et al.In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of western Pacific Ocean[J].Journal of Materials Research and Technology,2020,9(4):8104-8116.

    • [6] 王长罡,赵林,伍立坪,等.几种超级不锈钢在模拟低温多效海水淡化环境中的点蚀行为研究[J].腐蚀科学与防护技术,2018,30(4):339-345.WANG Changgang,ZHAO Lin,WU Liping,et al.Study on pitting behavior of several super stainless steels in simulated low temperature multi effect seawater desalination environment[J].Corrosion Science and Protection Technology,2018,30(4):339-345.(in Chinese)

    • [7] 田丰.不锈钢在脱硫环境下的耐蚀性能研究[D].北京:中国机械科学研究总院,2012.TIAN Feng.Corrosion resistance of stainless steel in desulphurisation environments[D].Beijing:General Research Institute of Mechanical Sciences,2012.(in Chinese)

    • [8] 李晗,刘元海,赵连红,等.300M 超高强度钢在模拟海洋环境中的腐蚀行为研究[J].中国腐蚀与防护学报,2023,43(1):87-94.LI Han,LIU Yuanhai,ZHAO Lianhong,et al.Research on corrosion behavior of 300M ultra high strength steel in simulated marine environment[J].Journal of Chinese Society for Corrosion and Protection,2023,43(1):87-94.(in Chinese)

    • [9] 叶超,杜楠,赵晴,等.不锈钢点蚀行为及研究方法的进展[J].腐蚀与防护,2014,35(3):271-279.YE Chao,DU Nan,ZHAO Qing,et al.Progress in pitting corrosion behavior and research methods of stainless steel[J].Corrosion & Protection,2014,35(3):271-279.(in Chinese)

    • [10] 刘新凯,韦庆朕,陈东旭,等.深海环境下静水压力与浸泡时间对304不锈钢电化学行为影响[J].辽宁科技大学学报,2022,45(3):179-182.LIU Xinkai,WEI Qingzhen,CHEN Dongxu,et al.The effect of hydrostatic pressure and immersion time on the electrochemical behavior of 304 stainless steel in deep sea environment[J].Journal of University of Science and Technology Liaoning,2022,45(3):179-182.(in Chinese)

    • [11] 程建国,刘震,赵士光,等.17-4PH 不锈钢在不同浓度HCl环境中的电化学腐蚀行为[J].材料保护,2021,54(10):29-35,72.CHENG Jianguo,LIU Zhen,ZHAO Shiguang,et al.Electrochemical corrosion behavior of 17-4PH stainless steel in different concentrations of HCl environment[J].Materials Protection,2021,54(10):29-35,72.(in Chinese)

    • [12] 瞿芳婷,李辉辉,胥聪敏.2507 双相不锈钢在不同 Cl 含量冷却水中的腐蚀行为[J].金属功能材料,2015,22(3):41-45.QU Fangting,LI Huihui,XU Congmin.Corrosion behavior of 2507 duplex stainless steel in cooling water with different Cl contents[J].Metallic Functional Materials,2015,22(3):41-45.(in Chinese)

    • [13] WANG M T,WANG L W,ZHAO K,et al.Understanding the passivation behavior and film chemistry of four corrosion-resistant alloys in the simulated flue gas condensates[J].Materials Today Communications,2022,31:103567.

    • [14] ZHU M,ZHANG Q,YUAN Y F,et al.Study on the correlation between passive film and AC corrosion behavior of 2507 super duplex stainless steel in simulated marine environment[J].Journal of Electroanalytical Chemistry,2020,864:114072.

    • [15] 金松.超级双相不锈钢2507腐蚀与钝化行为研究[D].天津:天津大学,2015.JIN Song.Study on corrosion and passivation behavior of super duplex stainless steel 2507[D].Tianjin:Tianjin University,2015.(in Chinese)

    • [16] 贺志豪,贾建文,李阳,等.超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J].中国腐蚀与防护学报,2023,43(2):408-414.HE Zhihao,JIA Jianwen,LI Yang,et al.Study on passivation behavior of super austenitic stainless steel in simulated flue gas desulfurization condensate[J].Journal of Chinese Society for Corrosion and Protection,2023,43(2):408-414.(in Chinese)

    • [17] 余翠兰,张钰柱,宋斌杰.2507 双相不锈钢在海水脱硫环境中的腐蚀行为[J].材料热处理学报,2023,44(1):95-107.YU Cuilan,ZHANG Yuzhu,SONG Binjie.Corrosion behavior of 2507 duplex stainless steel in seawater desulfurization environment[J].Transactions of Materials and Heat Treatment,2023,44(1):95-107.(in Chinese)

    • [18] 刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社,2006.LIU Daoxin.Corrosion and protection of materials[M].Xi’ an:Northwestern Polytechnical University Press,2006.(in Chinese)

    • [19] CHAO C Y,LIN L F,MACDONALD D D.A point defect model for anodic passive films I.film growth kinetics[J].Journal of the Electrochemical Society,1981,128(6):1187-1194.

    • [20] HUTTUNEN-SAARIVIRTA E,ISOTAHDON E,QUE Z,et al.Pitting corrosion on highly alloyed stainless steels in dilute sulphuric acid containing sodium chloride[J].Electrochimica Acta,2023,457:142404.

    • [21] 邓博,蒋益明,龚佳,等.双相不锈钢临界点蚀温度和再钝化温度[J].中国有色金属学报,2007,17(1):47-53.DENG Bo,JIANG Yiming,GONG Jia,et al.Critical pitting temperature and repassivation temperature of duplex stainless steel[J].The Chinese Journal of Nonferrous Metals,2007,17(1):47-53.(in Chinese)

  • 手机扫一扫看