-
0 前言
-
钢材由于其高强度、耐热性、相对成本较低等特点广泛应用于油气采集、CO2 捕捉运输管道以及超临界 CO2火电机组等诸多部件。然而,这些钢材部件通常是在 CO2 环境中服役,导致其使用寿命容易因 CO2 腐蚀而降低,特别是在高温下,CO2可在无 H2O 等其他物质参与的情况下对钢造成腐蚀。目前,有关高温下钢的 CO2 腐蚀的研究工作重点在于评估不同钢种在不同 CO2 腐蚀环境下的腐蚀动力学及机理[1-3],这些研究工作比较零散,缺乏系统总结。
-
高温环境下,CO2 对钢的腐蚀表现为氧化与渗碳作用。具体而言,CO2会与钢表面的 Fe、Cr 元素反应生成 Cr2O3、Fe3O4、(Fe,Cr)2O3 等氧化物,这些氧化产物层通常具备对钢的保护作用。而由于 Cr2O3 对于氧化与渗碳防护性能优于 Fe3O4 [4],不同钢种的 Cr 元素含量对其耐腐蚀性能至关重要[5]。伴随氧化过程发生的渗碳作用会同时降低钢的耐腐蚀性能与力学性能[6]:碳化物的形成会消耗参与形成保护性氧化层的合金元素(如 Cr 元素)以及氧化层与金属基体界面处存在的无定形碳累积层会导致氧化层与基体的附着力降低,进而导致保护性氧化层发生剥落;渗碳后产生的碳化物会降低钢的延展性,从而削弱钢的抗疲劳与抗蠕变能力。此外,CO2 对钢的腐蚀作用受到服役环境中的诸多因素影响。其中,温度对腐蚀的影响在于能改变氧化速率或氧化层成分,而压力则主要影响渗碳作用,温度与压力的提升通常会促进 CO2对钢的腐蚀作用。当腐蚀环境中存在其他杂质气体,如 H2O、O2,钢的 CO2腐蚀行为会不同于纯 CO2 环境下[7],且它们的影响规律会随着腐蚀环境条件和钢种的变化而变化[8]。
-
准确评估高温 CO2环境下钢的腐蚀速率对设备的设计与维护十分重要:预设较低的腐蚀速率可能导致相关部件在服役过程中突然失效以及设备损坏,而过高的腐蚀速率的评估可能导致不必要的成本。然而,目前关于高温下金属材料 CO2 腐蚀行为的预测模型的研究进展较慢。部分研究人员分别针对氧化与渗碳作用进行研究,实现了对一定腐蚀时间的氧化物厚度或渗碳深度、浓度的预测计算,但尚未有研究考虑氧化与渗碳的耦合作用,从而无法准确预测钢的 CO2 腐蚀寿命。因此,高温下钢的 CO2 腐蚀预测模型亟待进一步系统研究。同时,由于高温下钢在 CO2 环境中的耐腐蚀性低于 Ni 基合金等材料[9],部分研究者试图通过优化钢的制备工艺[10] 或对钢材进行表面处理[11-13]等方式提高其耐蚀性。涂层被认为是提高钢的耐蚀性而不显著降低其力学性能的一种经济有效的解决方案[14],因此大量科研人员成功采用可提高材料耐腐蚀性能的 Ni、Al、Cr 等金属元素为主要成分制备了一系列涂层,有效提高了钢在高温环境下的抗氧化与渗碳性能。
-
鉴于以上研究背景,本文综述了高温下钢的 CO2 氧化渗碳腐蚀机理,阐述了腐蚀环境中多种因素包括温度、压力及其他杂质气体对钢的 CO2腐蚀的影响规律,归纳了目前已有 CO2腐蚀模型的发展状况及应用背景,总结了目前关于抗 CO2 腐蚀的钢材涂层类型及其防护效果,以期为高温环境中钢材的抗 CO2腐蚀防护措施的选择及其长周期安全服务寿命评价提供全面理论依据。
-
1 CO2高温氧化渗碳腐蚀机理
-
当服役温度达到 400℃及以上时,钢在 CO2 环境下的腐蚀行为通常是由氧化渗碳导致的。具体而言,CO2 首先会与钢表面的 Fe、Cr 等金属元素(N) 反应生成金属氧化物并释放 CO 或 C,而 CO 可进一步分解为 C 和 CO2 或 O。这些反应过程所产生的 C 往往积聚在氧化层与基体界面,在高温下可扩渗入钢体内部,形成碳化物。氧化渗碳相关反应式如下[15-17]:
-
在氧化渗碳作用下,钢在高温 CO2环境中腐蚀后会由外到内形成多层氧化层以及渗碳区。其中氧化层的成分与结构会强烈受到钢中 Cr 元素含量的影响[18],如图1 所示。一般而言,当 Cr 元素含量为 9 wt.%~12 wt.%以及更低时,氧化层主要由较为疏松的 Fe3O4、Fe2O3等 Fe 氧化物外层、Fe3-xCrxO4 等 FeCr 复合氧化物内层以及内部氧化区(Internal oxidation zone,IOZ)组成[19],如图1a 所示。然而,即使氧化物层的成分相同,钢成分中 Cr 元素含量更高往往会导致内层的 FeCr 氧化物层中 Cr 元素浓度更高,有效减缓钢基体中的 Fe 元素向外扩散,从而导致更低的氧化速率。当 Cr 元素含量大于 17 wt.% 时,钢的氧化产物以表面 Cr2O3 层为主,而在更高的腐蚀温度或更长的腐蚀时间下,Cr2O3 层部分区域会出现 Fe 氧化物或 FeCr 氧化物形核[2,20],如图1b 所示。表1 总结了相近腐蚀条件下不同 Cr 元素含量对钢氧化层的影响结果。对于渗碳层而言,碳往往与基体中的 Cr 元素反应产生 Cr3C、Cr7C3 和 Cr23C6 等碳化物,这一过程会阻碍 Cr 元素向外扩散,且这些脆性碳化物会使氧化层容易脱落,进而导致钢的耐腐蚀性降低。此外,在疲劳或蠕变载荷下,碳的沉积与晶间碳化物的形成会成为裂纹的潜在来源。可见,Cr 元素含量很大程度上决定了钢在高温 CO2 环境中的耐腐蚀性能:高 Cr 钢所形成的 Cr2O3 层相较于 Fe 氧化物层更加致密,对氧化及渗碳作用的防护性更好。而钢中的 Mn、Si 等其他元素是否对其耐腐蚀性能存在一定影响,有待进一步研究。
-
图1 典型钢高温 CO2 腐蚀后截面显微组织[21]
-
Fig.1 Cross-sectional microstructures of typical steels corroded in high temperature CO2 environment[21]
-
2 影响 CO2腐蚀的因素
-
通常,影响高温 CO2腐蚀的因素包括温度、压力以及服役环境中不可避免的H2O、O2等杂质气体。其中,温度和压力是影响 CO2 腐蚀最重要的参数,通常高温高压会促进氧化与渗碳作用,而 H2O 这些杂质气体在较高温下可主导 CO2腐蚀进程。然而,这些因素对钢的 CO2腐蚀的影响规律并不确定,会随着钢的种类及服役环境的变化而变化。
-
2.1 温度
-
当温度低于 400℃时,钢与纯净的 CO2 很难发生反应,只有在其他杂质参与下才会发生腐蚀。而当温度高于 400℃时,纯净的 CO2可直接腐蚀钢,且升高温度会促进腐蚀进程。例如,FURUKAWA 等[24]研究了 400~600℃下 12Cr 钢在压力为 20 MPa 的 CO2 环境中的腐蚀性能,发现尽管温度增加会加剧 12Cr 钢的氧化腐蚀程度,但是其表面氧化层结构变化甚微,主要由厚度为 50 μm 的 Fe3O4 外层、50 μm 左右厚的复合氧化物(Fe1-x,Crx)2O3内层以及厚度小于 10 μm的 IOZ 组成。可见,对于12Cr 钢而言,温度由 400℃升高至 600℃主要影响了钢的氧化速率,并未使得钢表面氧化层成分及结构发生明显改变。但有研究表明,温度对钢的 CO2腐蚀的影响规律会随着钢中 Cr 元素含量变化而变化。如 ZHU 等[22]通过研究 Cr 元素含量为 2.25 wt.%的铁素体钢 T22 与 Cr 元素含量为 8.63 wt.%的铁素体-马氏体双相钢 P92 在 550 和 600℃、15 MPa 下的 CO2 腐蚀行为,发现在不同温度下两种钢的氧化层成分相似,均由外层 Fe3O4 和内层(Fe,Cr)3O4组成。不同的是,随着温度由 550℃升高至 600℃,具有更高 Cr 元素含量的 P92 钢中,FeCr 氧化物内层的 Cr 元素会抑制 Fe 离子的扩散速度[25],降低氧化速率,表现出更好的耐蚀性能。但随着氧化时间的延长, P92 钢表面氧化层出现局部脱落,钢被再次腐蚀氧化,所生成的氧化层仍由 Fe3O4 外层与(Fe,Cr)3O4 内层组成。可见,对于主要氧化产物为 Fe 氧化物的钢,温度主要影响其腐蚀后的氧化层厚度,对其氧化层成分影响不大。而其中 Cr 元素含量相对较高的钢材受温度的影响较小,通常具备更低的腐蚀速率。同时值得注意的是,在更高的环境温度下,氧化物与基体之间较大的热膨胀系数差异会促进氧化层的脱落,进而导致钢材被再次氧化,显著增加其腐蚀程度。
-
对于高 Cr(>17 wt.%)元素含量的钢种而言,其被腐蚀后形成的氧化层以 Cr2O3 为主,温度会显著影响氧化层成分。例如,在 550℃下,316 不锈钢的氧化腐蚀表面主要被较薄(<1 μm)的单层富 Cr 氧化物覆盖,但局部区域会存在 5 μm 左右厚的 Fe 氧化物[26],而在 750℃下,316 不锈钢腐蚀程度明显加重,但其腐蚀产物主要为 3~5 μm 厚的 Fe3O4 层,且部分区域存在成分为 Fe 氧化物与 FeCr 复合氧化物的双相结构形核。因此,尽管温度对钢腐蚀的影响主要在于温度升高会加快钢的氧化速率。但对于高 Cr 钢而言,较高温度下 Fe3O4 等 Fe 氧化物生长速度通常大于 Cr2O3 生长速度,其表面氧化物会由富 Cr 向富 Fe 转变。YANG 等[23]对比研究了 500~600℃下 T91 钢与 316 钢的 CO2 腐蚀行为,发现在相同腐蚀时间下,温度升高会导致 T91 钢氧化层厚度增加以及更多孔洞和裂纹等缺陷形成,但对其氧化层成分影响不大,如图2 所示。相比之下, 316 钢在 500℃腐蚀后的表面氧化产物为 50~80 nm 厚的 Cr2O3 层,仅部分区域存在少量簇状 Fe 氧化物,而 316 钢在 600℃下的腐蚀产物是由成分为 Fe2O3与 Fe3O4的外层和含 Cr2O3的内层组成的约 2 μm 厚的双层结构。由于 Fe2O3 与 Fe3O4 等 Fe 氧化物层相较于 Cr2O3 层对基体防护作用较差,因此可根据钢在不同温度下的氧化行为决定其适用温度范围,并将钢的成分与工作温度作为参数纳入腐蚀模型以便后续研究。
-
图2 不同温度下 T91 钢腐蚀 1 000 h 后的截面 SEM 与 EDS 结果[23]
-
Fig.2 SEM and EDS results of the cross section of T91 steel corroded for 1 000 h at different temperature conditions[23]
-
对于高温 CO2 腐蚀过程中的渗碳行为而言, BRITTAN 等[27]发现 P92 钢在 450℃下渗碳深度超过 200 μm,而 550℃下渗碳深度约为 100 μm。对于此,BRITTAN 等[27]提出这是因为较高温度下碳化物的析出与生长更快,从而导致碳元素难以扩散至更深位置。并且金属与氧化物界面附近的碳密度较高、碳化物粗化更明显,使得该区域容易萌生裂纹,进而导致 P92 钢力学性能明显下降。然而,由于温度对于 CO2 腐蚀的影响主要体现在改变氧化速率与氧化成分,因此目前有关温度对于渗碳行为的影响规律的相关报道较少,有待进一步展开。
-
2.2 压力
-
高温腐蚀环境的压力()对钢的 CO2 腐蚀也具有重要影响。通常,压力增加会促进渗碳作用,对氧化作用的直接影响较小[6]。例如,PINT 等[28] 对比了同一温度不同压力(0.1、30 MPa)下钢的 CO2 腐蚀行为,发现压力的改变对于氧化增重以及氧化层的厚度几乎没有影响。相比之下,通过研究 0.1、5 和 10 MPa 下 CrMoV 钢的 CO2腐蚀氧化行为, BIDABADI 等[29]发现,当环境压力从 0.1 MPa 增加到 5 MPa 时,CrMoV 钢的氧化产物成分相似,外层均为 Fe3O4,内层则为 Fe3-xCrxO4 与 Fe2-xCrxO3。但 5 MPa 条件下,CrMoV 钢表面氧化物更加均匀致密,且碳沉积行为更加明显,进而降低了氧化速率;当压力为 10 MPa 时,其表面氧化层由外层的 Fe2O3 与 Fe3O4、内层的碳单质及少量 Fe3-xCrxO4 和Fe2-xCrxO3 组成。此外,三种压力条件下 CrMoV 钢的渗碳区均存在非晶态碳,而石墨则主要存在于 5 和 10 MPa 下的渗碳区,且氧化层内积碳通过限制 Fe 元素向外扩散与氧化气体向内输运而降低氧化速率。可见,随着压力的提高,钢的渗碳作用更加明显,碳积累加强,有利于阻止进一步腐蚀。此外,在较低的压力范围内,CO2 压力提高可提供足够的氧分压,进而促进更具保护性与稳定性的氧化物生长[30]。然而,其他研究中却发现了不同结果, ROUILLARD 等[31]研究发现,随着压力从 0.1 MPa 上升到 25 MPa,550℃下 T91 钢的氧化程度变化不大,但其渗碳速率则提高了 50%~60%,进而导致氧化物层中有更多孔洞形成,如图3 所示。该研究工作认为较高的孔洞密度与 IOZ 下方较高的碳化物密度有关。可见,在较低压力范围内,CO2 压力的提升可通过促进形成保护性氧化物及基体内部少量碳累积而有效阻止氧化,但压力提高对于腐蚀的主要影响仍在于较高的 CO2 压力可促进钢基体与氧化物内部的渗碳作用,并且大量碳化物及非晶碳的累积会使得氧化层孔洞明显增加。此外,CO2 作为碳单质的重要来源,CO2 压力的增加会使氧化物/基体界面的碳积累更明显,但对渗碳深度的影响规律还有待进一步研究。
-
图3 T91 钢在不同压力条件腐蚀后氧化层截面 SEM[31]
-
Fig.3 SEM micrographs of the cross-sectional oxidation layer of T91 steel after corrosion under different pressure conditions[31]
-
此外,温度与杂质气体等其他环境因素也可能改变压力对腐蚀的影响作用。BIDABADI 等[32]研究了温度(500~600℃)和压力(0.1、10 MPa)对 CrMoV 钢渗碳行为的影响,发现在 0.1 MPa 不同温度下 CrMoV 钢的内氧化层的碳沉积浓度相差不大,而 10 MPa 下的碳沉积浓度随着温度从 500℃增加至 550℃而增加,但会随着温度继续升高至 600℃ 时而降低。这是因为在 550℃、10 MPa 条件下, CrMoV 钢腐蚀产物中含有富 Fe 的 M3C 碳化物,且氧化物 / 钢界面下的钢晶粒也会被分解为富 Fe 颗粒,而 M3C 碳化物和富 Fe 颗粒会作为 CO2分解产生碳反应的活性催化剂,促进碳沉积。总之,CO2 压力增加会导致渗碳速率提高,而尽管渗碳累积到一定程度上会通过阻碍钢内部元素扩散而进一步降低钢的氧化速率,但渗碳行为会影响钢材本身性能以及可能导致氧化层脱落,因此较高压力下钢材的使用寿命反而会被较大程度缩减。此外,在高温环境下,压力升高至 CO2的临界压力时,CO2 状态将转变为超临界 CO2,其物理性质也将发生一定改变,因此对于相关研究中所观察到的结果是否与 CO2 状态的改变有一定关联,仍有待进一步探究。
-
2.3 杂质气体
-
2.3.1 O2
-
O2 可能主导钢的 CO2腐蚀进程,但其影响规律较为复杂。通常,O2 可以促进氧化物的生成,增加氧化层厚度[33]。例如,在有无空气两种条件下, LEHMUSTO 等[34]发现尽管 316 钢表面形成的氧化层结构均为典型的 Fe 氧化物-FeCr 氧化物双层结构,但少量空气的存在会使得 316 钢的氧化增重增加。同时,在纯 CO2 环境中,316 钢的氧化内层与外层厚度比为 1∶1,而存在残余空气时,外氧化层变得更厚,内层则变得更加均匀。与之相反,SS310 钢在有无 O2 的 CO2 环境氛围下的氧化表面均覆盖较薄的 Cr2O3层,且存在少量成分为 Fe3-xCrxO4 的氧化物[35],但含 O2 环境下形成的 Cr2O3层更薄、FeCr 氧化物较少。如图4 所示,O2 的存在使得渗碳深度由 4 μm 减少至 1.5 μm,并导致氧化层与再结晶层界面处的碳层几乎消失。这是因为在纯 CO2环境下形成 Cr2O3 时,钢的晶界处存在碳偏析,进而限制了 Cr2O3 的生长,导致 Cr2O3 晶粒细化,从而有更多晶界为氧化性气体提供扩散路径,最终形成更厚的氧化层[36]。相比之下,O2 的存在会降低 O2− 空位的密度,这有利于表面均匀的 Cr2O3 形成,增加其稳定性[37],进而抑制表面氧化物形核。
-
图4 在 600℃、30 MPa 下,SS310 钢在 CO2+0.01% O2中腐蚀 1 000 h 后截面 STEM 与 EDS 分析[35]
-
Fig.4 Cross-sectional STEM and EDS results of SS310 steel corroded in CO2 and 0.01% O2 environment for 1 000 h at 600℃ and 30 MPa[35]
-
2.3.2 H2O
-
H2O 的存在往往会促进高温下钢的 CO2腐蚀进程。LI 等[35]发现,高温下 H2O 的存在会使得 SS310 钢表面的腐蚀产物 Cr2O3 转化为易挥发的 CrO2(OH)2,导致 Cr 元素损失,进而促进氧化以及渗碳,相关反应式如式(5)所示[38],但在仅含 H2O 作为杂质的 CO2 环境中,H2O 可以阻断钢表面氧化层上对 CO2 / CO 等物质的一些吸附位点,因此其对于渗碳作用存在一定抑制作用。此外,H2O 的存在会对钢表面形成的 Fe3O4 氧化层存在破坏作用[39],如式(6)所示。而当 O2与 H2O 同时存在时,钢的 CO2 腐蚀将变得更加严重[40]。例如,通过研究 9Cr 钢、12Cr 钢和 316H 钢在不同温度下(450~650℃) 含有 1% O2和 0.1% H2O 的 CO2 环境中的氧化腐蚀行为,PINT 等[41]发现 450℃下三种钢的氧化层成分与纯 CO2环境下相同,但它们的氧化层变厚、氧化增重更加明显。而当温度为 650℃时,三种钢的氧化层成分发生明显改变。其中,316H 钢表面的腐蚀产物由较薄的 Cr2O3 层转变为 Fe2O3、Fe3O4 等 Fe 氧化物层,而 9Cr 钢和 12Cr 钢表面的腐蚀产物则为内层 Fe3O4、(Fe,Cr)3O4 和最外层 Fe2O3层组成的三层氧化结构。相反,KUNG 等[42]发现在有无 O2 与 H2O 作为杂质气体的两种环境中,Grade91(Gr.91) 钢表面的氧化层均由外层 Fe3O4 和内层(Fe,Cr)3O4 组成,且内外层厚度相近,但在含杂质气体的 CO2 环境下,该氧化层总厚度约为 15 μm,而在纯 CO2 环境中腐蚀 300 h 后,Gr.91 钢氧化层总厚度增加至 30 μm,氧化增重与渗碳深度均有所增加。这是因为 O2 和 H2O 共存时,较高的氧分压有利于更多保护性氧化物的形成,进而导致氧化层厚度降低。然而,目前有关 H2O 的影响研究主要集中在 H2O 与其他杂质气体共存环境,而针对于单一 H2O 作为杂质气体存在于高温 CO2环境中的研究较少,有待进一步展开。
-
2.3.3 SO2
-
SO2 的存在对钢的 CO2 腐蚀也有重要影响。 OLEKSAK 等[43]通过在含 H2O、O2的 CO2 环境中添加 0.1% SO2,研究了 SO2 对钢腐蚀的影响规律,发现SO2的影响机理会随着钢中Cr元素含量变化而变化。对于 Cr 元素含量低于 9 wt.%的 Gr.91 钢而言,其表面氧化层在有无 SO2 条件下均由外层 Fe2O3 / Fe3O4 和内层 Fe3-xCrxO4 组成,而 SO2的存在会使得氧化层内部存在少量硫化物,导致与 H2O 和 CO2 相关的腐蚀剥落、氧化以及渗碳行为程度有所降低,但其氧化速率并无显著变化。而对于 Cr 元素含量高于 9 wt.%的 347H 钢与 310S 钢而言,二者在不含 SO2 的腐蚀环境中会形成薄的 Cr2O3 层,而 SO2 的存在会导致S 元素通过氧化物的局部渗透 Cr2O3层,进而促进 Fe3O4 等富 Fe 氧化物的形成,如图5 所示。此外,通过对比不同 SO2 浓度下 FeCr 合金在 CO2-H2O 环境中的腐蚀行为,YU 等[44]发现在不含 SO2 环境下,FeCr 合金内部较深处有晶间碳化物形成,并渗透到整个试样,而 0.1% SO2 的存在则会对合金渗碳行为有着明显抑制作用,但随着 SO2浓度从 0.1%增加至 1%,FeCr 合金氧化物层下的晶间渗碳速率略有增加,这是由于增加的硫化物-氧化物相界为碳扩散提供了更多路径。表2 总结了部分钢在不同杂质气体环境中的氧化增重速率。
-
图5 310S 钢在 550℃、0.1 MPa 下暴露于不同气体环境中腐蚀后表面与截面 SEM 组织[43]
-
Fig.5 Surface and cross-sectional SEM micrographs of 310S steel corroded in different gas environments at 550℃ and 0.1 MPa after corrosion[43]
-
2.3.4 多种杂质气体环境
-
如前所述,O2、H2O、SO2 作为 CO2 高温腐蚀环境中主要存在的杂质气体,对腐蚀进程的影响并不相同。其中,O2 主要作为氧化过程中 O 元素的直接来源,能促进钢表面氧化层形成,但其作用会因温度升高而变化。将 H2O 作为单独的杂质气体进行讨论则较少,通常是将其与 O2 或 SO2共同讨论。如式(6)所示,H2O 对 Fe3O4 保护层可能存在破坏作用,并且 QUADAKKERS 等[45]研究中提到,H2O 对保护性 Cr2O3 氧化层形成的不利影响相较于 CO2更为明显。同时,由于 H2O 气体分子在 Cr2O3上的吸附趋势高于 CO2 [46-47],H2O 作为杂质气体对渗碳作用存在抑制效果。相比之下,SO2 对 CO2 腐蚀进程的影响主要体现在其对高 Cr 钢表面 Cr2O3氧化层形成的阻碍作用:SO2 的存在可促使氧化物由富 Cr 向富 Fe 转变,且在杂质气体含量较低的情况下,SO2 对于钢的 CO2 腐蚀程度影响相较于 H2O 与 O2更加明显。例如,OLEKSAK 等[48]发现在 95% CO2、4% H2O、1% O2、0.1% SO2的环境下,尽管 SO2 含量更低,但由于 S 元素推动氧化物由富 Cr 向富 Fe 转变,显著提升了奥氏体钢的氧化速率,而 H2O 和 O2 对所有 Fe 合金氧化行为的影响相对较小。
-
事实上,在 CO2 腐蚀环境中,杂质气体往往多种并存,且由于气体间相互协同效应,其影响作用可能发生改变,甚至相反。如前所述,H2O 与 O2 同时存在时可能发生式(5)代表的反应,进而破坏 Cr2O3 氧化层。类似地,YU 等[49]发现在 CO2 环境中单独添加 H2O 或 SO2 作为杂质气体,FeCr 合金腐蚀程度均更为严重,而当加入 H2O 与 SO2 的混合气体时,FeCr 合金表层的氧化层不再分离脱落,说明混合气体对其具备一定保护作用。这是因为当 SO2 作为杂质气体时,S 元素容易吸附于氧化层,晶界处 CrSx的形成促进 Cr 元素向外扩散,加速氧化物层的形成,铬化物生长无法持续下去,进而造成铬化物氧化层分离。而气体环境中同时含有 H2O 和 SO2时, H2O 会与 CO2 和 SO2 竞争合金表面与氧化物晶界内的吸附位点,同时 H2O 的衍生物将进入氧化层,改变 S 元素在氧化层中的化学性质,降低了 S 元素的吸收程度。在此情况下,相应的 CrSx形成水平会大幅降低,导致 Cr 元素向外扩散的增强作用非常小,因此氧化物生长较慢,合金元素的扩散可以支持氧化物的持续生长。但值得注意的是,该研究在对 H2O 与 SO2 的协同效应进行探究时,H2O 含量高达 20%,因此较低的 H2O 含量与 SO2气体是否仍存在较为明显的协同效应有待进一步研究。对于三种气体共存作为杂质气体环境时,目前相关研究认为 H2O 与 O2 对 CO2 腐蚀进程具有一定促进作用,而 SO2 的加入则会导致氧化层中形成硫化物,从而阻碍腐蚀氧化进程及氧化层的脱落。
-
2.4 多条件综合影响因素
-
尽管 O2、H2O、SO2 对钢腐蚀过程中的渗碳行为均存在一定的抑制作用,但这三种杂质气体对钢腐蚀的影响主要表现在作为钢的氧化过程中的部分 O 元素来源,特别在杂质气体含量较低的条件下。例如,ROUILLARD 等[50]在 550℃、25 MPa 的 CO2 环境中对 T91 钢进行氧化试验时发现,环境中含有 0.6×10−3 % H2O 与 0.2×10−3 % O2,而在 T91 钢表面形成的 20 µm 厚的氧化层中,仅有约 0.25 µm 厚的氧化物中的 O 元素来源于 O2 与 H2O。此外,由于钢的氧化速率与表面氧化物生成速率在不同温度下差异较大,不同温度下杂质气体的影响作用可能完全不同。例如,在两种温度(350、650℃)与两种气体环境[研究级 CO2(RG-CO2,>99.999%)、工业级 CO2(IG-CO2,>99.98%)]下对多种钢材进行的腐蚀试验中,WALKER 等[51]发现多种钢在两种温度条件下所得的氧化增重结果完全相反:350℃下钢在 IG-CO2 中质量变化略大于 RG-CO2 环境,而 650℃下钢在 RG-CO2 中质量变化反而略大于 IG-CO2 环境。这可能是因为较低温度下杂质气体对钢腐蚀进程的促进作用更为明显,同时表明不同温度下杂质气体对钢的 CO2 腐蚀的影响与其含量也密切相关。此外,QUADAKKERS 等[45]发现在没有添加 O2 的 CO2-H2O 气氛中,310N 奥氏体钢在 550~700℃下腐蚀时均会有极薄且粘附良好的富 Cr 氧化层形成,而当加入 3%的 O2后,550 与 600℃下 310N 钢的腐蚀产物仍为富 Cr 氧化层,但其在 650~700℃下的腐蚀产物则出现了局部富 Fe 氧化层。可见,即使杂质气体成分相同,由于气体间交互协同作用,多种气体共存情况下温度改变对钢腐蚀进程造成的影响也会存在差异。
-
如前所述,在纯 CO2环境中,压力对钢腐蚀过程中的氧化行为影响较小,而当环境中存在较高含量的杂质气体时,压力对钢的氧化过程影响会变得更为明显[52],并且此时压力的影响也会随温度与钢材种类变化而变化[53-54]。例如,在杂质气体含量较低的 RG-CO2 与 IG-CO2环境中,PINT 等[55-56]发现 304H、310H 等多种钢的腐蚀速率与腐蚀产物随着环境压力从 0.1 MPa 增加至 30 MPa 并无明显变化,而在含有 1% O2、0.25% H2O 的 CO2 环境中,30 MPa 的环境压力下 304H、310H 等钢材的腐蚀速率明显高于 RG-CO2 与 IG-CO2两种环境。此外,研究发现环境压力不仅能改变杂质气体对钢腐蚀过程中氧化行为的影响[57],较高的压力还会促进 H2O 与 O2 存在时 Cr2O3 的挥发行为,从而破坏致密的 Cr2O3 氧化层,这可能导致 Cr2O3 层无法有效阻碍 CO2 等气体渗入钢材内部,进而促进钢腐蚀过程中的氧化与渗碳行为[58]。类似地,当环境压力达到 CO2 的临界压力,即在超临界 CO2环境中,高温下部分杂质气体一定程度上能溶于 CO2 流体中,进而导致杂质气体对钢腐蚀进程的影响发生变化,而目前关于超临界环境或其他压力条件下杂质气体对钢的 CO2腐蚀的影响研究仍然较少。综上所述,在多种杂质气体共存的高温 CO2 环境中,温度、压力和杂质气体含量等诸多因素对钢的 CO2 腐蚀的影响规律及机理仍不明晰,亟待进一步研究。
-
3 CO2氧化渗碳腐蚀模型
-
事实上,高温下钢的 CO2 腐蚀行为会涉及到氧化与渗碳同时发生。基于大量试验数据,科研工作者观察到氧化物生长速率与渗碳速率符合抛物线动力学,进而建立了高温氧化模型和渗碳模型等数学模型来预测钢的氧化与渗碳行为。
-
3.1 高温氧化模型
-
如前所述,高温下钢的 CO2 腐蚀过程中氧化行为通常是钢中的 Fe 和 Cr 元素被氧化,其氧化增重速率符合抛物线动力学。因此,通过在 400~600℃下对 9Cr 钢和 12Cr 钢进行了长达 8 000 h 的氧化增重试验,FURUKAWA 等[59-60]将试验所得的增重数据与根据抛物线方程计算得出的近似曲线进行对比,观察到良好的一致性,相关抛物线方程如下:
-
式中,∆W 为增重(g / m2),Kp 为氧化系数(g /(m2 ·s −1/2)),t 为时间(s)。氧化系数主要与温度有关,与压力无关:
-
式中,K0 为常数,Q 为表观活化能(J / mol),R 为气体系数(J /(K·mol)),T 为绝对温度(K)。
-
基于模型和试验结果,FURUKAWA 等[59]认为 9Cr 钢与 12Cr 钢表面的双层氧化层的外层是由金属元素向外扩散形成,而内层是由 O2向内扩散形成,且体积扩散比为 1∶1。由于 O2 向内部扩散的腐蚀效果等同于钢表面氧化前的金属损失,因此认为可通过所测得的氧化增重来计算钢表面腐蚀量 Lm,计算公式如下:
-
式中,Cp 为增重与氧化物厚度之间的比例常数,Rc 为金属损失厚度与氧化物厚度比值。
-
虽然这一计算无法包括表面氧化层的渗碳与剥落引起的性能退化,但预测结果可作为初步设计的参考指标。值得注意的是,由于这一模型是基于试验中所观察到的增重数据符合抛物线方程的现象而建立的,因此当腐蚀环境中存在较高含量杂质气体影响腐蚀进程时,其预测结果可能存在偏差。此外,如前所述,当碳累积于氧化物层中,基体合金元素向外扩散的行为会受到阻碍,其氧化速率进而降低,而该模型中并未将这一因素考虑在内,模型准确性有待提高。
-
对于氧化产物主要为 Cr2O3 氧化层的钢种,腐蚀寿命预测可以通过分离氧化时间 tB评估,即 Cr 元素耗尽界面达到钢一半厚度界面的时间[61],GUI 等[62] 认为可通过计算 Cr 元素的体积扩散系数和抛物线生长速率常数来计算分离氧化时间。在抛物线型氧化层生长动力学的前提下,可根据菲克第二定律推导出 t 时刻在氧化物与基体界面下 z 深度处的 Cr 元素浓度 C(t,z),计算公式为[63-64]:
-
式中,CC为试样一半厚度处 Cr 元素的浓度(wt.%), MCr为 Cr 的原子质量(kg),Ma为原子质量(kg), Vs 为氧化物占合金的体积比,KC为氧化物生长速率 (g /(m2 ·s −1/2)),DCr为 Cr 元素的扩散系数,n 为常数,z 为深度(cm),w 为试样厚度的一半(cm)。
-
GUI 等[62]利用该模型对两种钢中不同深度的 Cr 元素浓度进行拟合并计算腐蚀量,拟合结果与试验结果误差较小,进而判断此模型可将分离氧化时间作为预估寿命进行预测。然而,由于较高温度下高 Cr 钢的表面氧化物可能由富 Cr 向富 Fe 转变,因此该模型仅限于一定温度范围内使用。此外,即使钢表面主要形成氧化物为 Cr2O3,但当其 Cr 元素含量较低时,Fe 氧化物形成后同样具备一定保护性,而该模型仅考虑材料中 Cr 元素含量对于基体的防护作用,这将导致模型预测结果与实际寿命相差较大,仅可作为寿命极限的保守估计。
-
GONG 等[65]提出了如图6 所示的氧化物生长模型(Oxide growth model,OGM)。图中,υmag、υsp 为 Magnetite、Spine 氧化物层界面相对于原始合金 / 气体界面的速度,C 表示图中 Fe、Cr、O 元素的浓度。该模型认为 Fe 元素向外扩散形成外层 Fe3O4 层,O2 向基体扩散形成内层尖晶石层,但由于 O2 分压较低,因此,CO2 将替代 O2 在这一过程发挥作用。各氧化层厚度计算公式如下:
-
式中,和 分别是 i 元素在相态 k 的体积固定参照系中的界面浓度(wt.%)与界面通量(kg / s),且 sp 代表 Spine 层,mag 代表 Magnetite 层,为 i 元素对应 k 界面的化学势(J / mol),A 代表图中 Spine 氧化物层与合金界面,B 代表气体与 Magnetite 层界面,Xmag、Xsp 分别为 Magnetite、Spine 氧化物层厚度(µm)。MO、MFe 为对应元素的相对原子质量,t 为时间(s)。
-
同时,由于观察到的内层是多孔的,GONG 等[65] 进一步提出气相分子输运可作为可用空间模型的一部分,且 CO2 通过气孔与分离气孔的氧化物晶界传输。该模型计算得到的氧化层厚度与试验结果较吻合,且由模型图可看出,该模型适用于形成双层 Fe 氧化物层的低 Cr 钢。
-
图6 氧化物生长模型(OGM)(mag / sp 表示 Magnetite 层和 Spine 层交界面) [65]
-
Fig.6 Oxide growth model (OGM) (mag / sp is the interface of Magnetite and Spine) [65]
-
针对涉及到氧化物剥落的腐蚀行为,KUNG等[53] 进一步优化了已有的电力研究协会(Electric Power Research Institute,EPRI)氧化剥落模型[66-68],进而成功将用于 S-CO2 布雷顿功率循环的热交换器设计中常见参数作为模型的相关参数。这些参数包括额外的材料特性、流动通道的物理构型、相关的传热和流体流动标准。KUNG 等[53]通过模型成功预测了氧化膜脱落质量,进而认为在 S-CO2热交换器流道表面生长的氧化层是无应力的,但合金基体与氧化层之间的热膨胀系数差异会导致低温下二者之间存在应力。此外,合金几何特征引起的机械约束和系统压力变化也会导致应力产生。而当产生的应力超过某个临界值且氧化产物足够厚时,氧化产物可能被破坏[69],进而发生剥落。目前,针对钢在高温 CO2 环境中的氧化模型主要是基于对其他环境中已有模型进行优化而得,较为依赖试验所得数据,因此后续相关研究中有待将温度、压力等环境参数与材料成分等因素纳入模型,以理论基础结合实际所得数据综合评估钢在高温 CO2 环境下腐蚀情况,进而较准确地进行寿命预测。
-
3.2 渗碳模型
-
ROUILLARD等[70]提出高温下钢的CO2腐蚀过程中渗碳行为是由元素扩散控制的,通常发生在氧化物与金属界面,具体是由 CO2 / CO 通过氧化物层的扩散速率和 CO2 与金属的反应速率共同控制。基于此,GHENO 等[71]采用局部平衡模型来描述碳氧活性,并将这一模型应用于氧势较低的氧化物/合金界面,成功预测出了足够高的碳活度值,进而提出 CO2 分子在氧化层的任意点存在热力学平衡。而内部渗碳深度可用稳态抛物线动力学描述:
-
式中,XC 为渗碳深度(cm),为内部渗碳速率 (cm 2 / s),t 为时间(s)。其中的评估是基于所有 Cr 元素不进行扩散而均以碳化物形式析出的前提计算得到的,其计算公式如下:
-
式中,DC为碳扩散系数(cm 2 / s),为合金表面溶质碳的摩尔分数,为原始合金 Cr 元素的摩尔分数,v 为碳化物 CrCv的化学计量系数,ε为扩散阻塞因子。而在外部氧化物层存在时,合金表面溶质碳的摩尔分数 被界面分数所替代。
-
然而,YOUNG 等[72]发现上述模型计算的低温下碳活度相较于试验测得数据高几个数量级,因此认为上述的热力学平衡并不存在。YOUNG 等[72]进而在氧化物-金属界面处增加了一个有限的碳注入速率,即碳注入金属的速率与平衡浓度和实际碳溶质浓度之间的差成正比,用来描述将碳的扩散考虑为碳化物析出时造成的损失,进一步作出结论:由于碳向金属相的转移相对缓慢,渗碳反应是一种非稳态行为。YOUNG 等[72]利用溶质碳在金属相内的正常扩散、碳化物的快速析出以及碳在金属相和析出相之间的平衡分配等规律,成功解释了观察到的碳渗透的抛物线动力学和碳转移的线性动力学:
-
式中,为溶质碳的浓度(wt.%),t 为时间(s), D 为扩散系数(cm 2 / s),XC为渗碳深度(cm),β 为常数。
-
虽然该模型可根据氧化物/金属界面碳活度对形成碳化物数量进行一定准确度预测,但并未涉及对于渗碳深度的预测以及渗碳程度对钢性能的影响。目前针对 S-CO2 环境下渗碳的相关讨论较少,且大多数研究者关注点在于渗碳环境的产生以及碳转移通道等方面[73-74],因此,有关渗碳模型的相关研究亟待进一步展开,并且研究重点应在于渗碳程度对于钢材力学性能的影响以及由于渗碳导致氧化层脱落的临界点,进而打破由于渗碳作用而无法准确评估钢在高温 CO2环境下腐蚀寿命的限制。
-
表3 总结了上述高温下钢的 CO2腐蚀氧化与渗碳模型及应用条件。可见,目前相关工作往往只建立了单一的氧化或渗碳模型。虽然这些模型可对氧化物层厚度、渗碳深度等进行预测,但由于腐蚀过程中氧化与渗碳同时发生,这些模型未能较为准确地预测高温 CO2 腐蚀环境中钢材的腐蚀寿命,因此建立同时涵盖氧化与渗碳共同作用的模型亟待进一步展开。
-
4 CO2腐蚀防护
-
涂层是提高钢在高温 CO2 腐蚀环境中服役寿命的有效途径。科研工作者对金属涂层的成分和制备工艺等因素进行了充分研究,并同时制备了复合涂层以达到更好的防护效果。由于 Cr、Al 等元素在高温下形成的氧化物层可有效提高基体耐蚀性能,这些元素因而常被用作涂层的主要成分。
-
4.1 Al 涂层
-
镀 Al 是最常用的金属涂层之一。制备镀 Al 涂层过程中产生的 Al2O3 熔点高达 2 054℃,具备很好的高温稳定性,因此具有良好的抗高温腐蚀性能[75-76]。例如,SCHULZ 等[77]采用溶胶-凝胶法在 X20 钢表面制备了 Al2O3层,并分别在 CO2-H2O-O2 与空气环境下对其进行腐蚀测试,发现 Al2O3 层表现出良好的耐腐蚀性。然而,朱明等[78]研究表明溶胶-凝胶法制备的防护涂层与基体的热膨胀系数不匹配,进而容易发生剥落和开裂,因此涂层与基体连接的紧密性也应作为涂层性能的重点因素进行研究。基于此,SCHULZ 等[77]提出可以考虑通过浸涂或喷涂的方式制备涂层。
-
KIM 等[79]采用磁控溅射法在一种氧化物分散强化铁素体-马氏体双相钢( Oxide dispersion strengthened ferritic-martensitic,ODS-FM)表面沉积 Al 与 Ni-Al 两种涂层,并进行扩散热处理,发现两种涂层表面的 Al2O3 层均表现出良好的耐蚀性。其中 Al 涂层的氧化增重低于 Ni-Al 涂层,但 Al 涂层表面比较疏松且存在较多孔洞,导致 Al2O3 层易剥落,而 Ni-Al 涂层的表面较均匀,能够有效抑制 Al 元素向基体的扩散。KIM 等[80]在 316 不锈钢表面制备 Al 涂层与 Ni-Al 涂层过程中也发现类似结果,但由于 650℃下形成 Al2O3 为过渡 Al2O3,不能有效阻止渗碳反应的发生,导致碳可以穿透 Al2O3 层形成含碳层[81],如图7 所示。基于此,KIM 等[80]对涂层进行了 900℃的预氧化处理,使涂层内部在预氧化后形成更具保护性的α-Al2O3,进而获得耐腐蚀性能与防渗碳性能更优的涂层。相对于 Al 涂层,Ni-Al 涂层中的 Ni 元素一定程度上可作为有效屏障而抑制 Al 元素向基体扩散,进而使得表面 Al2O3 更加稳定,显著提升涂层耐腐蚀性能,但有研究者认为通过在 Ni-Al 层与基体间添加中间层而制备的双层涂层可更加有效阻碍 Al 元素扩散。
-
图7 不同晶型 Al2O3抗渗碳机理[81]
-
Fig.7 Anti-carburization mechanism of Al2O3 with different crystal structures[81]
-
ZHAO 等[82]和 LI 等[83-84]采用电镀制备 Ni-Al 涂层,并添加一层 Ni-Re 层作为基体与涂层之间的中间层,以期抑制高温下 Ni-Al 层与基体之间相互扩散形成互扩散区(Interdiffusion zone,IDZ),进而避免涂层因 Al 元素含量过低而失效。在 650℃下 CO2 环境中进行氧化试验后发现,无 Ni-Re 中间层的 Ni-Al 涂层中 Cr 和 Fe 元素的存在提高了 Ni2Al3 层与扩散区(Diffusion zone,DZ)界面处 Al 元素的活性,导致内部 Al2O3 析出,同时脆性相(Cr,Al)、 (Fe,Al)加速了裂纹与孔洞的形核和生长,从而加剧了扩散区内部氧化的发生,导致涂层出现水平裂纹与断裂。而 Ni-Re 中间层起到了扩散屏障的作用,有效延缓了涂层与基体之间的相互扩散,减少了内部氧化物的形成,同时 Ni-Re 中间层的添加导致 Ni-Al 层与钢基体之间形成(NiAl)-Re 结构,显著抑制了渗碳,如图8 所示。因此,通过制备 Ni-Al / Ni-Re 涂层并进行预氧化处理,Al 涂层的耐腐蚀性能有望进一步提高,但这种涂层与基体连接是否良好仍有待探究,同时可探究不同制备方式对涂层性能的影响。
-
图8 不同涂层在 650℃、CO2环境中腐蚀 660 h 后的 SEM 截面图像与 EDS 元素线扫描结果[83]
-
Fig.8 Cross-sectional SEM images and EDS line scanning results of different coatings corroded for 660 h in 650℃, CO2 environment[83]
-
4.2 Cr 涂层
-
镀 Cr 过程中产生的 Cr2O3具有与 Al2O3 类似的性能特点,从而也广泛用作金属涂层制备工艺。 NGUYEN 等[85]通过胶结充填法在 T91 钢表面分别制备了 Cr、Ni / Cr、Al 和 Ni / Al 四种涂层,发现 Cr2O3或Al2O3氧化层均能显著提高T91钢的抗氧化性,且在 650℃下 CO2-H2O 环境中腐蚀 1 000 h 后, Cr 涂层与 Al 涂层增重相近,但 Ni / Cr 涂层耐腐蚀性远远低于 Cr 涂层,而 Al / Ni 涂层性能则优于 Al 涂层。这是因为 Ni / Cr 涂层由外到内是由 Ni-(Cr)、 Ni-(Fe,Cr)、Fe-(Ni,Cr)等多层组成,而 Ni-(Cr)层中的 Cr 元素浓度会随着腐蚀时间延长降低到维持 Cr2O3 保护层增长所需的临界值以下,导致其性能相较于 Cr 涂层更差。相比之下,Al 涂层中 Al 元素含量较高,提供于形成 Al2O3层的 Al 元素损失可忽略不计,使得其与钢基体的相互扩散决定了反应过程中 Al 元素的浓度,而 Ni / Al 涂层中的 Ni 中间层有效阻止了元素扩散,导致其性能优于 Al 涂层。此外,由于 Al2O3 的碳溶解度非常低,因此镀 Al 涂层抗渗碳作用明显优于镀 Cr 涂层。
-
利用磁控溅射法,KIM 等[86]在 ODS-FM 钢表面沉积制备了 Cr 涂层,发现其在进行热扩散处理后会形成一层约4 μm厚的富Cr碳化物层及约20 μm厚的扩散区。在650℃、20 MPa下CO2环境中腐蚀500 h 后,无涂层的钢表面形成约 100 μm 厚的氧化层,而涂层试样的氧化层仅为 0.2 μm,其扫描投射电子显微镜分析(STEM)如图9 所示。同时,无涂层试样的氧化层下存在约 370 μm 厚的渗碳区,导致钢完全失去延性,而 Cr 涂层钢中并未观察到碳化物,可见 Cr 扩散涂层可以有效减少基体的渗碳。
-
图9 Cr 沉积涂层在 650℃、20 MPa 的 CO2环境中腐蚀 500 h 后 STEM 分析[86]
-
Fig.9 STEM analysis of Cr deposited coating after corrosion for 500 h in CO2 environment at 650℃, 20 MPa[86]
-
4.3 其他涂层
-
除上述涂层外,其他涂层也可明显提高钢在 CO2 环境中的耐腐蚀性能。其中,通过在 SS316LN 不锈钢表面沉积 Si 涂层并在 900℃对其进行热处理后,KIM 等[87]发现 Si 涂层在热处理过程中会与基体相互扩散,形成Fe5Ni3Si2相这一热力学稳定相,同时基体元素向 Si 涂层的快速扩散导致 Si 涂层中存在孔洞,而孔洞附近能观察到 Mo 元素的富集,但 Si 沉积涂层在 S-CO2 环境下形成了较厚的富 Cr 氧化内层与较薄的富 Si 氧化外层,二者仍能有效提高涂层耐腐蚀性。而针对钢在高温超临界 CO2环境下的渗碳行为,BRITTAN 等[88]在 316LN 钢表面制备了不同厚度的 Cu 涂层,发现氧化腐蚀作用随涂层厚度增加而减弱,其中 100 μm 以上的涂层可使得 316L 钢氧化增重与 Ni 基高温合金相似,而连续完整的 Cu 涂层能将初始氧化行为转变为氧通过涂层的扩散行为,进而延迟了 CO2 对钢的氧化,最终减少碳沉积总量。
-
可见,有关钢在高温 CO2 环境中腐蚀的研究工作仍集中于不同钢种及涂层的耐腐蚀性表现,但在实际服役过程中,涂层的其他性能同样至关重要。因此有关涂层力学性能及其对钢基体力学性能的影响研究有待展开,同时可通过理论计算与模拟优化涂层结构[89],为复合涂层制备提供一种新思路。
-
5 结论与展望
-
CO2 腐蚀是钢质结构件服役环境中较为常见的一种腐蚀失效方式。目前,钢在高温 CO2 环境中的腐蚀机理已较为明晰,但不同环境下或不同种类钢材的腐蚀程度或产物通常存在差异。针对此,科研工作者试图建立相关模型预测钢的 CO2 腐蚀行为,同时研究了不同涂层的制备工艺及防腐效果。综述了高温下钢的 CO2 腐蚀的相关研究进展,并得出以下结论:
-
(1)温度与压力升高通常会加重钢的 CO2腐蚀。其中,温度升高主要使氧化层更厚和高 Cr 钢氧化层成分发生改变,而压力主要影响渗碳行为。钢的服役环境中存在的 O2、H2O、SO2 等气体杂质对其 CO2 腐蚀均存在不同程度影响,且这些因素的影响规律会随着钢的种类及服役环境的变化而变化。
-
(2)目前关于钢的 CO2腐蚀过程中氧化与渗碳行为的腐蚀模型研究较少,且大多数模型是基于单一的氧化或渗碳动力学符合抛物线变化趋势的现象而建立的。虽然这些模型可对氧化物层厚度、渗碳深度等进行预测,但由于腐蚀过程中氧化与渗碳同时发生,这些模型未能较为准确地预测钢材的腐蚀寿命,因此建立同时涵盖氧化与渗碳共同作用的模型亟待进一步展开。此外,实际工况中的 CO2可能处于流动状态,这将导致钢的腐蚀速率加快并促进氧化层脱落,因此未来的腐蚀模型须进一步考虑CO2 流动状态(特别是含氧化物颗粒的 CO2 流)造成的侵蚀作用。
-
基于以上总结,为进一步提高钢在高温 CO2环境中耐腐蚀性,针对目前已有防护涂层研究作出如下展望:
-
(1)目前已有 Al、Cr 等涂层可有效提高钢在高温 CO2 环境中的抗氧化与抗渗碳性能,但钢材及涂层在腐蚀环境中的力学性能变化规律也将对其腐蚀行为有着重要影响,亟须深入研究。此外,相比于其他金属,Ni 基合金往往表现出更优异的耐腐蚀性能,但其较为昂贵的成本限制了 Ni 基合金的大规模应用。因此,在对钢的涂层进行成分设计时,可选择 Ni 基合金为涂层主要成分。而引入纳米颗粒,并基于模拟计算,对涂层成分及结构进行有效调控以改善涂层力学性能与耐蚀性的方法同样可作为涂层成分选择的一种研究方向。
-
(2)除改变涂层成分外,有关钢涂层防护的研究重点还在于提高涂层与钢材之间的附着强度和界面稳定性,进而确保涂层可牢固地附着于耐热钢表面,不易剥落,这离不开对更有效提高涂层的均匀性和致密性的制备工艺的探索。此外,开发可实时监测涂层损伤的系统方法有利于研究人员在合适时机采取恰当的维护措施。
-
参考文献
-
[1] GUI Y,LIANG Z,WANG S,et al.Corrosion behavior of T91 tubing in high temperature supercritical carbon dioxide environment[J].Corrosion Science,2023,211:110857.
-
[2] CHEN H,KIM S H,KIM C,et al.Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650 ℃[J].Corrosion Science,2019,156:16-31.
-
[3] 梁志远,桂雍,赵钦新.超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究[J].西安交通大学学报,2019,53(7):23-29.LIANG Zhiyuan,GUI Yong,ZHAO Qinxin.High-temperature corrosion behavior of three heat-resistant steels under supercritical carbon dioxide condition[J].Journal of Xi'an Jiaotong University,2019,53(7):23-29.(in Chinese)
-
[4] FIROUZDOR V,SRIDHARAN K,CAO G,et al.Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment[J].Corrosion Science,2013,69:281-291.
-
[5] LEE H J,KIM H,KIM S H,et al.Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment[J].Corrosion Science,2015,99:227-239.
-
[6] VAMSHI M,SINGH S K,SATEESH N,et al.A review on influence of carburizing on ferritic stainless steel[J].Materials Today:Proceedings,2020,26:937-943.
-
[7] OLEKSAK R P,TYLCZAK J H,DOĞAN Ö N.High-temperature oxidation of steels in direct-fired CO2 power cycle environments[J].JOM,2021,73(12):3965-3973.
-
[8] OLEKSAK R P,TYLCZAK J H,DOĞAN Ö N.Temperature-dependence of oxidation and carburization of Grade 91 steel in CO2 containing impurities[J].Corrosion Science,2022,198:110147.
-
[9] GUO T,WANG M,LIANG Z,et al.High-temperature corrosion behavior of T92,TP347HFG and IN625 with surface sratching in carbon dioxide at 600 ℃ [J].Oxidation of Metals,2022,97(1):97-121.
-
[10] MELIA M A,ROSENBERG S G,KOTULA P G,et al.Initial stages of oxide growth on AM stainless steel exposed to a supercritical CO2 environment[J].Corrosion Science,2022,201:110259.
-
[11] GUI Y,ZHAO Q,WANG S,et al.Effect of shot-peening on corrosion behavior of austenitic steel in supercritical carbon dioxide at 700 ℃[J].Corrosion Science,2022,199:110180.
-
[12] OLEKSAK R P,HOLCOMB G R,CARNEY C S,et al.Effect of surface finish on high-temperature oxidation of steels in CO2,supercritical CO2,and air[J].Oxidation of Metals,2019,92(5):525-540.
-
[13] LIU Z,ZHOU Q,CONG S,et al.Corrosion behavior of a new alumina-forming duplex stainless steel with different surface treatment in supercritical carbon dioxide[J].Surface and Coatings Technology,2023,466:129619.
-
[14] 黄春林,朱明,鲁金涛,等.T92 钢表面铝化物涂层的组织演化[J].中国表面工程,2022,35(4):213-222.HUANG Chunlin,ZHU Ming,LU Jintao,et al.Microstructure evolution of aluminide coating on T92 steel[J].China Surface Engineering,2022,35(4):213-222.(in Chinese)
-
[15] ROUILLARD F,MOINE G,TABARANT M,et al.Corrosion of 9Cr steel in CO2 at intermediate temperature II:mechanism of carburization[J].Oxidation of Metals,2012,77(1):57-70.
-
[16] GLARBORG P,BENTZEN L L B.Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane[J].Energy & Fuels,2008,22(1):291-296.
-
[17] MÜLLER-LORENZ E,GRABKE H.Coking by metal dusting of steels[J].Materials and Corrosion,1999,50(11):614-621.
-
[18] LEE H J,KIM S H,JANG C.Characterization of alloy 600 joints exposed to a high-temperature supercritical-carbon dioxide environment[J].Materials Characterization,2018,138:245-254.
-
[19] CAO G,FIROUZDOR V,SRIDHARAN K,et al.Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J].Corrosion Science,2012,60:246-255.
-
[20] GUI Y,LIANG Z,ZHAO Q.Corrosion and carburization behavior of heat-resistant steels in a high-temperature supercritical carbon dioxide environment[J].Oxidation of Metals,2019,92:123-136.
-
[21] YANG L,QIAN H,KUANG W J M.Corrosion behaviors of heat-resisting alloys in high temperature carbon dioxide[J].Materials,2022,15(4):1331.
-
[22] ZHU Z,CHENG Y,XIAO B,et al.Corrosion behavior of ferritic and ferritic-martensitic steels in supercritical carbon dioxide[J].Energy,2019,175:1075-1084.
-
[23] YANG H,LIU W,GONG B,et al.Corrosion behavior of typical structural steels in 500 ℃,600 ℃ and high pressure supercritical carbon dioxide conditions[J].Corrosion Science,2021,192:109801.
-
[24] FURUKAWA T,INAGAKI Y,ARITOMI M.Corrosion behavior of FBR structural materials in high temperature supercritical CO2[C]//Nuclear Engineering Division.Proceedings of the 17th International Conference on Nuclear Engineering,July 12-16,2009,Brussels,Belgium:ICONE,2009:307-312.
-
[25] TÖPFER J,AGGARWAL S,DIECKMANN R.Point defects and cation tracer diffusion in(CrxFe1-x)3-δO4 spinels[J].Solid State Ionics,1995,81(3):251-266.
-
[26] BRITTAN A,MAHAFFEY J,ADAM D,et al.Mechanical and corrosion response of 316SS in supercritical CO2[J].Oxidation of Metals,2021,95(5):409-425.
-
[27] BRITTAN A,MAHAFFEY J,ANDERSON M.Corrosion and mechanical performance of grade 92 ferritic-martensitic steel after exposure to supercritical carbon dioxide[J].Metallurgical and Materials Transactions A,2020,51:2564-2572.
-
[28] PINT B A,BRESE R G,KEISER J R.Effect of pressure on supercritical CO2 compatibility of structural alloys at 750 ℃[J].Materials and Corrosion,2017,68(2):151-158.
-
[29] BIDABADI M H S,CHANDRA-AMBHORN S,REHMAN A,et al.Carbon depositions within the oxide scale and its effect on the oxidation behavior of low alloy steel in low(0.1 MPa),sub-(5 MPa)and supercritical(10 MPa)CO2 at 550 ℃[J].Corrosion Science,2020,177:108950.
-
[30] BIDABADI M H S,ZHENG Y,REHMAN A,et al.Effect of CO2 gas pressure on composition,growth rate,and structure of duplex oxide formed on 9Cr steel at 550 ℃[J].Corrosion Science,2020,163:108252.
-
[31] ROUILLARD F,FURUKAWA T.Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2[J].Corrosion Science,2016,105:120-132.
-
[32] BIDABADI M H S,ZHANG C,CHEN H,et al.Temperature dependence of carbon deposits within oxide scale on CrMoV steel in atmospheric and supercritical CO2[J].Corrosion Science,2022,195:109979.
-
[33] MAHAFFEY J,ADAM D,BRITTAN A,et al.Corrosion of alloy Haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions[J].Oxidation of Metals,2016,86:567-580.
-
[34] LEHMUSTO J,KURLEY J M,LANCE M J,et al.The impact of impurities on alloy behavior in supercritical CO2 at 700 ℃[J].Oxidation of Metals,2020,94:95-111.
-
[35] LI K,ZENG Y,LUO J L.Corrosion of SS310 and alloy 740 in high temperature supercritical CO2 with impurities H2O and O2[J].Corrosion Science,2021,184:109350.
-
[36] YOUNG D J,NGUYEN T D,FELFER P,et al.Penetration of protective chromia scales by carbon[J].Scripta Materialia,2014,77:29-32.
-
[37] BIRKS N,MEIER G H,PETTIT F S.Introduction to the high temperature oxidation of metals[M].Cambridge:Cambridge University Press,2006.
-
[38] ZHANG N,CAO Q,GUI J,et al.Oxidation and chromia evaporation of austenitic steel TP347HFG in supercritical water[J].Materials at High Temperatures,2018,35(5):461-468.
-
[39] EHLERS J,YOUNG D,SMAARDIJK E,et al.Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments[J].Corrosion Science,2006,48(11):3428-3454.
-
[40] PINT B A,KEISER J R.The effect of impurities on oxidation in supercritical CO2 at 750 ℃[C]//USDOE Office of Fossil Energy.USDOE Office of Energy Efficiency and Renewable Energy.The 6th International Supercritical CO2 Power Cycles Symposium,March 27-29,2018,Pittsburgh,Pennsylvania,America,OSTI,2018:1-12.
-
[41] PINT B A,LANCE M J,PILLAI R,et al.Compatibility of steels at 450-650 ℃ in supercritical CO2 with O2 and H2O additions [C]//The AMPP Annual Conference + Expo,March 03-06,2022,San Antonio,Texas,America,AMPP,2022:18018.
-
[42] KUNG S,SHINGLEDECKER J P,THIMSEN D,et al.Oxidation/corrosion in materials for supercritical CO2 power cycles[C]//Office of Fossil Energy.Proceedings of the 5th International Symposium on Supercritical CO2 Power Cycles,March 28-31,2016,San Antonio,Texas,America:OSTI,2016.
-
[43] OLEKSAK R P,TYLCZAK J H,HOLCOMB G R,et al.High temperature oxidation of steels in CO2 containing impurities[J].Corrosion Science,2020,164:108316.
-
[44] YU C,NGUYEN T D,ZHANG J,et al.Corrosion of Fe-9Cr-(Mn,Si)alloys in CO2-H2O-SO2 gases[J].Corrosion Science,2015,98:516-529.
-
[45] QUADAKKERS W J,OLSZEWSKI T,PIRON-ABELLAN J,et al.Oxidation of metallic materials in simulated CO2/H2O-rich service environments relevant to an oxyfuel plant[J].Materials Science Forum,2011,696:194-199.
-
[46] ZHENG X,YOUNG D.High-temperature corrosion of Cr2O3-forming alloys in CO-CO2-N2 atmospheres[J].Oxidation of Metals,1994,42:163-190.
-
[47] ANGHEL C,HÖRNLUND E,HULTQUIST G,et al.Gas phase analysis of CO interactions with solid surfaces at high temperatures[J].Applied Surface Science,2004,233(1-4):392-401.
-
[48] OLEKSAK R P,TYLCZAK J H,CARNEY C S,et al.High-temperature oxidation of commercial alloys in supercritical CO2 and related power cycle environments[J].Jom,2018,70:1527-1534.
-
[49] YU C,ZHANG J,YOUNG D J.Corrosion behaviour of Fe-Cr-(Mn,Si)ferritic alloys in wet and dry CO2-SO2 atmospheres at 650 ℃[J].Oxidation of Metals,2018,90(1):97-118.
-
[50] ROUILLARD F,CHARTON F,MOINE G.Corrosion behavior of different metallic materials in supercritical carbon dioxide at 550 ℃ and 250 bars[J].Corrosion,the Journal of Science and Engineering,2011,67(9):095001-095001,7.
-
[51] WALKER M,WITHEY E A.Influence of CO2 purity on the corrosion of structural alloys for supercritical CO2 power cycles[C]//USDOE Office of Nuclear Energy.The 6th International Supercritical CO2 Power Cycles Symposium,March 27-29,2018,Pittsburgh,Pennsylvania,America,OSTI,2018.
-
[52] LI K,ZHU Z,XIAO B,et al.State of the art overview material degradation in high-temperature supercritical CO2 environments[J].Progress in Materials Science,2023,136:101107.
-
[53] KUNG S,SHINGLEDECKER J,WRIGHT I,et al.Corrosion of heat exchanger alloys in open-fired sCO2 power cycles[C]//USDOE Office of Fossil Energy.USDOE Office of Energy Efficiency and Renewable.The 6th International Supercritical CO2 Power Cycles Symposium,March 27-29,2018,Pittsburgh,Pennsylvania,America,OSTI,2018.
-
[54] MAHAFFEY J,SCHROEDER A,ADAM D,et al.Effects of CO and O2 impurities on supercritical CO2 corrosion of alloy 625[J].Metallurgical and Materials Transactions A,2018,49(8):3703-3714.
-
[55] PINT B A,PILLAI R,LANCE M J,et al.Effect of pressure and thermal cycling on long-term oxidation in CO2 and supercritical CO2[J].Oxidation of Metals,2020,94:505-526.
-
[56] PINT B A,LEHMUSTO J,LANCE M J,et al.Effect of pressure and impurities on oxidation in supercritical CO2[J].Materials and Corrosion,2019,70(8):1400-1409.
-
[57] OLEKSAK R P,CARNEY C S,DOĞAN Ö N.Effect of pressure on high-temperature oxidation of Ni alloys in supercritical CO2 containing impurities[J].Corrosion Science,2023,215:111055.
-
[58] PINT B A,SU Y F,LANCE M J,et al.Internal carburization and scale formation on austenitic steels in supercritical carbon dioxide[J].Materials at High Temperatures,2023,40(4):308-317.
-
[59] FURUKAWA T,INAGAKI Y,ARITOMI M.Compatibility of FBR structural materials with supercritical carbon dioxide[J].Progress in Nuclear Energy,2011,53(7):1050-1055.
-
[60] FURUKAWA T,INAGAKI Y,ARITOMI M.Corrosion behavior of FBR structural materials in high temperature supercritical carbon dioxide[J].Journal of Power and Energy Systems,2010,4(1):252-261.
-
[61] DUAN R,JALOWICKA A,UNOCIC K,et al.Predicting oxidation-limited lifetime of thin-walled components of NiCrW alloy 230[J].Oxidation of Metals,2017,87(1):11-38.
-
[62] GUI Y,LIANG Z,SHAO H,et al.Corrosion behavior and lifetime prediction of VM12,Sanicro 25 and Inconel 617 in supercritical carbon dioxide at 600 ℃[J].Corrosion Science,2020,175:108870.
-
[63] DUAN R,JALOWICKA A,UNOCIC K,et al.Predicting oxidation-limited lifetime of thin-walled components of NiCrW alloy 230[J].Oxidation of Metals,2017,87:11-38.
-
[64] YOUNG D,CHYRKIN A,QUADAKKERS W.A simple expression for predicting the oxidation limited life of thin components manufactured from FCC high temperature alloys[J].Oxidation of Metals,2012,77:253-264.
-
[65] GONG Y,YOUNG D J,KONTIS P,et al.On the breakaway oxidation of Fe9Cr1Mo steel in high pressure CO2[J].Acta Materialia,2017,130:361-374.
-
[66] SABAU A S,WRIGHT I G,SHINGLEDECKER J P.Oxide scale exfoliation and regrowth in TP347H superheater tubes[J].Materials and Corrosion,2012,63(10):896-908.
-
[67] SHINGLEDECKER J P,PINT B A,SABAU A S,et al.Managing steam-side oxidation and exfoliation in USC boiler tubes[J].Advanced Materials & Processes,2013,171(1):23-26.
-
[68] SABAU A S,WRIGHT I G,SHINGLEDECKER J P,et al.Managing oxide scale exfoliation in boilers with TP347H superheater tubes[C]//Electric power research institute,7th International Conference on Advances in Materials Technology for Fossil Power Plants,October 22-25,2013,Waikoloa,Hawaii,USA:OSTI,2014.
-
[69] SCHÜTZE M,MALESSA M,RENUSCH D,et al.Mechanical properties and adherence of oxide scales[J].Materials Science Forum,2006,522:393-400.
-
[70] ROUILLARD F,MOINE G,MARTINELLI L,et al.Corrosion of 9Cr steel in CO2 at intermediate temperature I:mechanism of void-induced duplex oxide formation[J].Oxidation of Metals,2012,77(1-2):27-55.
-
[71] GHENO T,MONCEAU D,ZHANG J,et al.Carburisation of ferritic Fe-Cr alloys by low carbon activity gases[J].Corrosion Science,2011,53(9):2767-2777.
-
[72] YOUNG D,HUCZKOWSKI P,OLSZEWSKI T,et al.Non-steady state carburisation of martensitic 9-12% Cr steels in CO2 rich gases at 550 ℃[J].Corrosion Science,2014,88:161-169.
-
[73] FUJII C,MEUSSNER R.Carburization of Fe-Cr alloys during oxidation in dry carbon dioxide[J].Journal of the Electrochemical Society,1967,114(5):435-441.
-
[74] YOUNG D.Simultaneous oxidation and carburisation of chromia forming alloys[J].International Journal of Hydrogen Energy,2007,32(16):3763-3769.
-
[75] BOULESTEIX C,GRÉGOIRE B,PEDRAZA F.Oxidation performance of repaired aluminide coatings on austenitic steel substrates[J].Surface and Coatings Technology,2017,326:224-237.
-
[76] ZHU X,SCHOENITZ M,DREIZIN E L.Aluminum powder oxidation in CO2 and mixed CO2/O2 environments[J].The Journal of Physical Chemistry C,2009,113(16):6768-6773.
-
[77] SCHULZ W,NOFZ M,FEIGL M,et al.Corrosion of uncoated and alumina coated steel X20CrMoV12-1 in H2O-CO2-O2 and air at 600 ℃[J].Corrosion Science,2013,68:44-50.
-
[78] 朱明,李美栓,李亚利,等.溶胶-凝胶高温氧化防护涂层[J].腐蚀科学与防护技术,2004,16(1):33-37.ZHU Ming,LI Meishuan,LI Yali,et al.A review on high temperature oxidation resistant coatings prepared by Sol-Gel process[J].Corrosion Science and Protection Technology,2004,16(1):33-37.(in Chinese).
-
[79] KIM C,CHA J H,KIM S H,et al.Development of aluminide diffusion coatings on ODS ferritic-martensitic steel for corrosion resistance in high temperature super critical-carbon dioxide environment[J].Applied Surface Science,2020,509:145387.
-
[80] KIM S H,SUBRAMANIAN G O,KIM C,et al.Surface modification of austenitic stainless steel for corrosion resistance in high temperature supercritical-carbon dioxide environment[J].Surface and Coatings Technology,2018,349:415-425.
-
[81] DONG J,JIANG W,ZHONG W,et al.Corrosion behavior and deuterium permeability of aluminide coating in high-temperature carbon dioxide atmosphere[J].Surface and Coatings Technology,2022,443:128642.
-
[82] ZHAO X,LI X,LI M,et al.Comparison of the corrosion resistance of Ni2Al3 coating with and without Ni-Re interlayer in dry and wet CO2 gas[J].Corrosion Science,2019,159:108121.
-
[83] LI M,KONG C,ZHANG J,et al.Oxidation behavior of Ni-Al coating with and without a Ni-Re diffusion barrier in dry CO2 gas at 650 ℃[J].Corrosion Science,2019,149:236-243.
-
[84] LI M,LI N,ZHANG J,et al.Inhibiting effect of Ni-Re interlayer between Ni-Al coating and steel substrate on interdiffusion and carburization[J].Surface and Coatings Technology,2018,337:68-74.
-
[85] NGUYEN T D,PENG X,ZHANG J,et al.Corrosion resistance of chromised and aluminised coatings in wet CO2 gas at 650 ℃[J].Surface and Coatings Technology,2017,316:226-238.
-
[86] KIM C,KIM S H,CHA J H,et al.Cr diffusion coating to improve the corrosion resistance of an ODS steel in super-critical carbon dioxide environment[J].Surface and Coatings Technology,2019,374:666-673.
-
[87] KIM S H,KIM C,CHA J H,et al.Corrosion behavior of Si diffusion coating on an austenitic Fe-base alloy in high temperature supercritical-carbon dioxide and steam environment[J].Coatings,2020,10(5):493-505.
-
[88] BRITTAN A M,MAHAFFEY J T,COLGAN N E,et al.Carburization resistance of cu-coated stainless steel in supercritical carbon dioxide environments[J].Corrosion Science,2020,169:108639.
-
[89] 王晓明,韩国峰,尹轶川,等.基于相平衡计算的Hf掺杂NiCoCrAlY高温涂层设计及强化机理[J].中国表面工程,2022,35(3):132-145.WANG Xiaoming,HAN Guofeng,YIN Yichuan,et al.Design and strengthening mechanism of the Hf-doped NiCoCrAlY coatings based on phase equilibrium calculation[J].China Surface Engineering,2022,35(3):132-145.(in Chinese)
-
摘要
钢材由于具有高强度和耐热性等优异性能而广泛应用于各种零构件,在服役过程中通常面临较为严重的腐蚀问题。CO2 腐蚀是钢材应用领域中较为常见的一种腐蚀失效方式。通常,CO2 对钢的腐蚀行为表现为其溶于水后产生的碳酸腐蚀,但在高温环境中,CO2 可直接使钢表面氧化,同时伴随渗碳现象发生,钢的力学性能与耐腐蚀性能均会因此大幅下降。然而,目前关于钢在高温 CO2 环境中的腐蚀行为研究缺乏相关系统总结。综述有关高温 CO2环境下钢的腐蚀机理,总结高温 CO2环境中温度、压力以及环境中存在的其他杂质气体对腐蚀方式及机理的影响规律,归纳已有的高温 CO2氧化与渗碳腐蚀模型的发展状况,概述目前关于抗高温 CO2 腐蚀的钢材涂层类型及其防护效果。研究表明,由于含 Cr 钢在高温 CO2环境中形成的 Cr2O3 层相较于 Fe 氧化物层更加致密,Cr 元素的存在通常有利于钢的耐腐蚀性能。而环境中,温度与压力的升高以及杂质气体的存在往往会加重钢的 CO2 腐蚀,但这些因素的影响规律会随着钢的种类及服役环境的变化而变化。目前关于钢的 CO2腐蚀模型主要为单一的高温氧化模型或者渗碳模型,可预测氧化物层厚度或渗碳深度,但无法准确预测同时发生氧化和渗碳行为的钢的腐蚀寿命。综述相关研究现状不仅能指出现有研究的不足及未来研究的展开方向,还可为高温环境中钢材抗 CO2腐蚀防护措施的选择及其长周期安全服务寿命评价提供全面理论依据。
Abstract
Steel is widely used as various structural components owing to its excellent properties, such as high strength and heat resistance; however, it usually faces severe corrosion problems during service. CO2 corrosion is a common cause of corrosion failure in steel applications. However, a systematic summary of the corrosion behavior of steel in high-temperature CO2 environments is lacking. Therefore, in this study, the current oxidation and carburization mechanisms of steel in high-temperature CO2 environments are summarized, and the effects of temperature, pressure, and other gas impurities in the service environment on the corrosion mode and mechanisms are reviewed. Typically, the CO2 corrosion behavior of steel manifests as carbonation corrosion generated after it is dissolved in water. However, in high-temperature environments, CO2 can directly oxidize the steel surface, which is generally accompanied by carburization, significantly decreasing the mechanical and corrosion resistance of steel. In this case, the composition and structure of the oxide layer are strongly affected by the Cr content in the steel; thus, the corrosion resistance of steel is generally determined by the Cr content. Naturally, Cr2O3 oxide layers are formed in steels with a Cr content higher than 12 wt.% during oxidation, resulting in better resistance to oxidation and carburizing. Increased temperature and pressure can generally aggravate the CO2 corrosion of steel. Therefore, an increased temperature can increase the thickness of the Cr2O3 layer, and the increased pressure mainly affects the carburizing behavior of steels. However, the influence of gas impurities, such as O2, H2O, and SO2, on the CO2 corrosion of steel changes with the type of steel and the service environment. Meanwhile, the development of existing CO2 corrosion models, types of coatings resistant to CO2 corrosion, and their protective effects are discussed. Most models were developed based on experimental results in which the oxidation or carburizing kinetics showed a parabolic trend. Although these models can predict the thickness of the oxide layer and the depth of carburizing, they fail to accurately predict the corrosion life of steel subjected to simultaneous oxidation and carburizing. In addition, CO2 in a flowing state under actual working conditions accelerates the corrosion rate of the steel and causes the oxidation layer to fall off. Therefore, developing models that simultaneously cover the interaction of oxidation and carburizing or consider the erosion caused by the CO2 flow, especially the CO2 flow containing oxide particles, is necessary in the future. To improve the service life of steel in high-temperature CO2 environments, Al, Cr, and other coatings are often prepared to improve the oxidation and carburizing resistance of steel. However, the mechanical properties of coated steels and coatings in a corrosive environment also significantly impact their corrosion behavior, and further study is required. In addition, Ni-based coatings often exhibit better corrosion resistance than other coatings. Therefore, Ni-based alloys are generally used as the main component of steel coatings. However, the high cost of Ni-based coatings limits their widespread applications. For this purpose, the introduction of nanoparticles and effective control of the coating composition and structure based on simulation calculations to improve the mechanical properties and corrosion resistance of coatings hold great promise in coating composition selection. Moreover, improving the adhesion strength and interface stability between the coating and the steel matrix is important to ensure the protective effect of the coatings. This requires the exploration of preparation techniques to improve the uniformity and density of the coating effectively. In such case, this study can not only point out the shortcomings of existing studies and the development direction of future studies, but also provide a comprehensive theoretical basis for the selection of anti-CO2 corrosion protection techniques in high temperature environment and the evaluation of long-term safety service life for steel.
Keywords
CO2 corrosion ; corrosion mechanism ; influence factor ; prediction model ; coating protection