en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

卢士航,男,1995年出生,博士研究生。主要研究方向为海洋金属材料的微生物腐蚀机理与防护。E-mail:lsh_2019@126.com

通讯作者:

窦雯雯,女,1987年出生,博士,副教授,硕士研究生导师。主要研究方向为微生物腐蚀机理与防护。E-mail:douwenwen2015@sdu.edu.cn

中图分类号:TG171

DOI:10.11933/j.issn.1007-9289.20230711002

参考文献 1
LI X,ZHANG D,LIU Z,et al.Materials science:share corrosion data[J].Nature,2015,527(7579):441-442.
参考文献 2
FLEMMING H C.Microbial deterioration of materials-fundamentals-economical and technical overview[J].Werkstoffe Und Korrosion-Materials and Corrosion,1994,45(1):5-9.
参考文献 3
LU S,HE Y,XU R,et al.Inhibition of microbial extracellular electron transfer corrosion of marine structural steel with multiple alloy elements[J].Bioelectrochemistry,2023,151:108377.
参考文献 4
GAINES R H.Bacterial activity as a corrosive influence in the soil[J].Journal of Industrial and Engineering Chemistry-Us,1910,2:128-130.
参考文献 5
GU T,JIA R,UNSAL T,et al.Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J].Journal of Materials Science & Technology,2019,35(4):631-636.
参考文献 6
DU Z,LI H,GU T.A state of the art review on microbial fuel cells:a promising technology for wastewater treatment and bioenergy[J].Biotechnology Advances,2007,25:464-482.
参考文献 7
LI Y,XU D,CHEN C,et al.Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:A review[J].Journal of Materials Science & Technology,2018,34(10):1713-1718.
参考文献 8
DOU W,PU Y,HAN X,et al.Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes[J].Bioelectrochemistry,2020,133:107478.
参考文献 9
HOU R,LU S,CHEN S,et al.The corrosion of 316L stainless steel induced by methanocossus mariplaudis through indirect electron transfer in seawater[J].Bioelectrochemistry,2023,149:108310.
参考文献 10
WANG D,LIU J,JIA R,et al.Distinguishing two different microbiologically influenced corrosion(MIC)mechanisms using an electron mediator and hydrogen evolution detection[J].Corrosion Science,2020,177:108993.
参考文献 11
JIA R,YANG D,XU J,et al.Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation[J].Corrosion Science,2017,127:1-9.
参考文献 12
DOU W,PU Y,GU T,et al.Biocorrosion of copper by nitrate reducing Pseudomonas aeruginosa with varied headspace volume[J].International Biodeterioration & Biodegradation,2022,171:105405.
参考文献 13
WANG Y,WU J,ZHANG D,et al.The inhibition effects of Cu and Ni alloying elements on corrosion of HSLA steel influenced by Halomonas titanicae[J].Bioelectrochemistry,2021,141:107884.
参考文献 14
YIN K,LIU H,CHENG Y.Microbiologically influenced corrosion of X52 pipeline steel in thin layers of solution containing sulfate-reducing bacteria trapped under disbonded coating[J].Corrosion Science,2018,145:271-282.
参考文献 15
WANG J,LIU H,MOHAMED M E S,et al.Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A[J].Journal of Materials Science & Technology,2022,107:43-51.
参考文献 16
鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Progress in research of surface protection technology of materials in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)
参考文献 17
SUN D,XU D,YANG C,et al.An investigation of the antibacterial ability and cytotoxicity of a novel Cu-bearing 317L stainless steel[J].Scientific Reports,2016,6(1):29244.
参考文献 18
LOU Y,LIN L,XU D,et al.Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater[J].International Biodeterioration & Biodegradation,2016,110:199-205.
参考文献 19
NAN L,XU D,GU T,et al.Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli[J].Materials Science & Engineering C-Materials for Biological Applications,2015,48:228-234.
参考文献 20
RAHMAN M U,GUL S,HAQ M Z U.Reduction of chromium(VI)by locally isolated Pseudomonas sp.C-171[J].Turkish Journal of Biology,2007,31(3):161-166.
参考文献 21
SNOW E T.Effects of chromium on DNA replication in vitro[J].Environ Health Perspect,1994,102:41-44.
参考文献 22
CARLOS C,JESÚS C,SILVIA D,et al.Interactions of chromium with microorganisms and plants[J].Fems Microbiology Reviews,2001,25(3):335-347.
参考文献 23
姚莹,杨柏俊,张锁德,等.铁基非晶合金和13Cr不锈钢在超临界 CO2环境的腐蚀行为[J].中国表面工程,2023,36(1):85-94.YAO Ying,YANG Bojun,ZHANG Suode,et al.Corrosion behavior of Fe-based amorphous alloys and 13Cr stainless steels under supercritical CO2 environment[J].China Surface Engineering,2023,36(1):85-94.(in Chinese)
参考文献 24
陈东旭,郭阳阳,祁继隆,等.脉冲偏压对316L不锈钢表面类金刚石薄膜腐蚀行为影响[J].中国表面工程,2022,35(5):272-278.CHEN Dongxu,GUO Yangyang,QI Jilong,et al.Effects of pulsed bias on the corrosion behavior of diamond-like carbon film prepared on the surface of 316L stainless steel[J].China Surface Engineering,2022,35(5):272-278.(in Chinese)
参考文献 25
杨小佳,刘智勇,张达威,等.工业纯钛TA2在含硫化物深海水环境中的应力腐蚀行为[J].中国表面工程,2019,32(4):17-26.YANG Xiaojia,LIU Zhiyong,ZHANG Dawei,et al.Stress corrosion cracking behavior of industrial pure titanium TA2 in sulfide containing deep seawater environment[J].China Surface Engineering,2019,32(4):17-26.(in Chinese)
参考文献 26
HU J,LUO T,HU A,et al.Electrochemical corrosion behaviors of Sn-9Zn-3Bi-xCr solder in 3.5% NaCl solution[J].Journal of Electronic Materials,2011,40(7):1556-1562.
参考文献 27
KIM J J,YOUNG Y M.Study on the passive film of type 316 stainless steel[J].International Journal of Electrochemical Science,2013,8(10):11847-11859.
参考文献 28
PARK K,AHN S,KWON H.Effects of solution temperature on the kinetic nature of passive film on Ni[J].Electrochimica Acta,2011,56(3):1662-1669.
参考文献 29
窦为学,国栋,冯捷,等.含Nb微合金化钢腐蚀规律研究与分析[J].钢铁钒钛,2019,177(3):139-143.DOU Weixue,GUO Dong,FENG Jie,et al.Study on electrochemical corrosion of Nb microalloy steel[J].Iron Steel Vanadium Titanium,2019,177(3):139-143.(in Chinese)
参考文献 30
董方,卜凡超,郄俊懋.Nb 对09CuPRe耐候钢在模拟工业大气腐蚀环境下耐蚀性的影响[J].材料保护,2014,47(7):57-59.DONG Fang,BU Fanchao,QIE Junmao.Effect of niobium on corrosion resistance of 09CuPRe weather-resistant steel in simulated industrial atmospheric environment[J].Materials Protection,2014,47(7):57-59.(in Chinese)
参考文献 31
WANG Y,ZHANG X,CHENG L,et al.Correlation between active/inactive(Ca,Mg,Al)-Ox-Sy inclusions and localised marine corrosion of EH36 steels[J].Journal of Materials Research and Technology-Jmr&T,2021,13:2419-2432.
参考文献 32
LU S,DOU W,GU T,et al.Extracellular electron transfer corrosion mechanism of two marine structural steels caused by nitrate reducing Halomonas titanicae[J].Corrosion Science,2023,217:111125.
参考文献 33
American Society for Testing and Materials.Standard practice for preparing,cleaning,and evaluating corrosion test specimens:ASTM G1-03 [S].PA:ASTM international,2003.
参考文献 34
JIA R,YANG D,LI Y,et al.Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethyl-benzylammonium chloride enhanced by D-amino acids[J].International Biodeterioration & Biodegradation,2017,117:97-104.
参考文献 35
李翔,程学群,李晓刚,等.新型热扩散法制备耐海洋环境腐蚀钢筋及其耐蚀性[J].中国表面工程,2017,30(6):43-49.LI Xiang,CHENG Xuequn,LI Xiaogang,et al.A novel thermal diffusion method to produce marine corrosion resistant steel bar and its corrosion resistance[J].China Surface Engineering,2017,30(6):43-49.(in Chinese)
参考文献 36
马菱薇,卢桃丽,张达威,等.耐候钢锈层的稳定化处理及锈层的生长机制[J].中国表面工程,2022,35(4):151-160.MA Lingwei,LU Taoli,ZHANG Dawei,et al.Stabilization treatment and growth mechanism of rust layers on weathering steel surface[J].China Surface Engineering,2022,35(4):151-160.(in Chinese)
参考文献 37
XU D,GU T,LOVLEY D R.Microbially mediated metal corrosion[J].Nature Review Microbiology,2023,21:1-14.
参考文献 38
WONG P,CHANG L.Effects of copper,chromium and nickel on growth,photosynthesis and chlorophyll a synthesis of Chlorella pyrenoidosa 251[J].Environmental Pollution,1991,72(2):127-139.
参考文献 39
ZHOU E,ZHANG M,HUANG Y,et al.Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa[J].Water Research,2022,220:118634.
参考文献 40
CHEN S,ZHANG D.Corrosion behavior of Q235 carbon steel in air-saturated seawater containing Thalassospira sp[J].Corrosion Science,2019,148:71-82.
目录contents

    摘要

    微生物腐蚀(MIC)严重威胁着海洋工程设施的可靠性和安全性,制约着海洋经济的发展。钢中添加合金元素是进行海洋 MIC 防护的重要策略之一。采用表面分析、失重和电化学测试等方法,以 EH36 钢为对照,探究由多合金元素组成的 S355J0W 钢对典型海洋腐蚀性微生物(脱硫弧菌和铜绿假单胞菌)腐蚀的抑制机制。结果表明,S355J0W 钢具有更优的耐 MIC 性能。在含脱硫弧菌的厌氧培养基和含铜绿假单胞菌的有氧培养基中,S355J0W 钢的 MIC 速率均明显低于 EH36 钢。在脱硫弧菌培养基中,S355J0W 钢的失重和最大点蚀深度是 EH36 钢的 56%、70%。在铜绿假单胞菌培养基中,S355J0W 钢的失重和最大点蚀深度是 EH36 钢的 54%、47%。相较于 EH36 钢,S355J0W 钢含有 Cr、Ni、Nb 元素和更多的 Cu 元素。一方面,S355J0W 钢中的合金元素使其表面的产物膜更具有保护性(更高的膜电阻值);另一方面,合金元素导致 S355J0W 钢表面固着的脱硫弧菌和铜绿假单胞菌数量仅是 EH36 钢的 22%、24%。更少的固着细菌数量直接导致更低的胞外电子传递速率,从而降低 S355J0W 钢的 MIC 速率。添加耐蚀和抑菌合金元素能够显著提高材料的耐 MIC 性能,研究结果为海洋 MIC 机理的探究提供了理论依据,为海洋结构钢 MIC 防护方法的设计与开发提供了新见解。

    Abstract

    Marine environments are extremely harsh and corrosive. Marine corrosion is mostly associated with the metabolic activity of microorganisms. Microbiologically influenced corrosion (MIC) seriously threatens the reliability and safety of marine engineering facilities and restricts the development of the marine economy. Many methods have been applied to prevent MIC in steels, such as coatings, biocides, cathodic protection, and MIC-resistant alloy steels. The development of MIC-resistant alloy steels by adding alloying elements is an important strategy for marine MIC prevention. Exploring MIC mechanisms can provide a theoretical basis for MIC prevention. Therefore, the inhibition mechanism of S355J0W steel, composed of multiple alloying elements (Cr, Ni, Nb, and Cu), on the MIC caused by typical marine corrosive microorganisms (Desulfovibrio vulgaris and Pseudomonas aeruginosa) is investigated using surface analysis, weight loss, and electrochemical tests, with EH36 steel as a control. The results show that D. vulgaris and P. aeruginosa can acquire electrons from the Fe(0) surface and promote steel corrosion through the biocatalytic reduction of sulfate and nitrate reactions by transferring the electrons harvested from steel to intracellular, respectively. Notably, in both the anaerobic medium containing D. vulgaris and the aerobic medium containing P. aeruginosa, S355J0W steel had a much lower MIC rate than EH36 steel. In the D. vulgaris medium, the weight loss and maximum pitting depth of S355J0W steel were 2.9 mg·cm−2 and 50.4 µm, respectively, whereas these values for EH36 steel were 5.2 mg·cm−2 and 71.5 µm, respectively: the weight loss and maximum pitting depth of S355J0W steel were 56% and 70% of those of EH36 steel, respectively. Meanwhile, in the enriched seawater with P. aeruginosa, the weight loss and maximum pitting depth of S355J0W steel were 2.5 mg·cm−2 and 26.3 µm, respectively, and those of EH36 steel were 4.6 mg·cm−2 and 56.2 µm, respectively: the weight loss and maximum pitting depth of S355J0W steel were 54% and 47% of those of EH36 steel, respectively. In addition, S355J0W steel exhibited higher Rp and Rct values. The weight loss, pitting depth, and electrochemical data confirmed that S355J0W steel has better MIC resistance. Compared to EH36 steel, S355J0W steel contains Cr, Ni, Nb, and additional Cu. On the one hand, the alloy elements in S355J0W steel make the corrosion product film on its surface more protective, with a higher membrane resistance value. In addition, the combined effect of alloying elements on grain refinement can improve the anti-corrosion properties of steels. This can also explain why the corrosion resistance of S355J0W steel is better than that of EH36 steel. By contrast, the sessile D. vulgaris and P. aeruginosa cell counts on the S355J0W steel surface were only 22% and 24%, respectively, of those on the EH36 steel surface, owing to the combined effect of the alloying elements. The extracellular electron transfer (EET) rate is usually the controlling step for corrosion rates; fewer sessile cells lead to a lower EET rate, which reduces the MIC rate of S355J0W steel. Notably, the planktonic cell counts of the two steels did not significantly differ, suggesting that the planktonic D. vulgaris and P. aeruginosa cell counts are not critical in contributing to the difference in corrosion rates. At present, the MIC-resistant properties of metal materials are mainly improved through the addition of Cu, and research is mainly focused on stainless steels. Few studies have been conducted on the effects of the joint action of multiple alloying elements on the MIC-resistant properties of marine structural steels. Therefore, the results of this study are expected to provide new insights into the design and development of MIC prevention strategies for marine structural steels.

  • 0 前言

  • 腐蚀每年在全球造成超 4 万亿美元的经济损失,其中由微生物腐蚀(Microbiologically influenced corrosion,MIC)直接造成的损失占总腐蚀损失的 20%以上[1-2]。MIC 早在 100 多年前就被发现,近些年来已经成为腐蚀领域的研究热点[3-4]。MIC 机理的研究涉及海洋科学、微生物学和电化学等多学科、多领域,对科研工作者来说一直是一个巨大的挑战[3]。目前有多个 MIC 机理被提出,但通常可以将它们分为两类:胞外电子传递 MIC(Extracellular electron transfer-MIC,EET-MIC)和代谢产物 MIC (Metabolite-MIC,M-MIC)[5]

  • 胞外电子传递(Extracellular electron transfer,EET)定义为微生物利用不溶性物质进行呼吸作用所进行的电子转移[5]。例如,Fe(0)可以作为微生物呼吸的电子供体[6]。Fe(0)是固体,不能扩散至细胞内,所以 Fe(0)失电子溶解发生在细胞外。微生物可以将从 Fe(0)中获取的电子转移至细胞膜内进行生物催化还原反应,如细胞内硫酸盐还原反应和硝酸盐还原反应等[7]。EET 通常有两种路径,分别是直接电子传递(Direct electron transfer,DET)和间接电子传递(Mediated electron transfer,MET)[5]。DET 是指微生物直接接触金属基体表面,通过导电鞭毛或c型细胞色素等从金属表面直接获取电子[8]。MET 是指未直接接触基体的细菌利用具有氧化还原活性的电子载体运输电子,将电子从金属表面转移至细胞内[8]

  • 目前研究发现,造成金属材料 MIC 的微生物主要包括硫酸盐还原菌(Sulfate reducing bacterium,SRB)、硝酸盐还原菌(Nitrate reducing bacteria,NRB)、产甲烷古菌、产酸菌和铁氧化菌等[9]。脱硫弧菌(一种 SRB)和铜绿假单胞菌(一种 NRB)分别是厌氧和有氧环境中导致金属腐蚀的典型海洋微生物,其 MIC 机理被广泛研究[3]。前期试验已证明脱硫弧菌对碳钢和 Cu 的腐蚀分别属于 EET-MIC 和 M-MIC,而铜绿假单胞菌对碳钢和 Cu 的腐蚀均为 EET-MIC[10-12]。由此说明,同一微生物对不同材料或不同微生物对同一材料的 MIC 机理可能完全不同。因此,不同细菌对海洋结构钢的 MIC 机理须要分别进行深入研究。

  • 探究 MIC 机理主要是为 MIC 防护提供理论基础。目前,金属材料的 MIC 防护方法主要包括涂层、杀菌剂、阴极保护和耐 MIC 合金钢等[13-15]。其中,调控合金钢中的元素种类和比例是从本质上提高材料的耐 MIC 性能,是可靠且有效的方法[16]。众所周知,钢中添加 Cu 元素能够有效抑制细菌附着。317L 不锈钢中添加 Cu 元素后,表面固着的金黄色葡萄球菌(Staphylococcus aureus)数量降低了 98.3%[17]。 2205 双相不锈钢中添加 Cu 元素后,显著抑制了铜绿假单胞菌生物膜的形成[18]。在含大肠杆菌 (Escherichia coli)的介质中,304L-Cu 不锈钢的腐蚀电流密度(Icorr)比 304L 不锈钢低了四倍,这同样归因于钢中 Cu 元素的抑菌性[19]。另外,Cr 元素溶解后进入细菌细胞膜内被还原的过程中可以产生自由基,自由基会直接破坏 DNA 从而杀死细菌[20-22]

  • 除了抗菌元素,Cr、Ni 和 Nb 是耐蚀钢中的常见元素[23-25]。Cr 和 Ni 元素可以在金属表面形成一层钝化膜保护基底金属,尤其是富 Cr 钝化膜可以使钢具有更优的耐蚀性[26-28]。Nb 元素的添加可以提高钝化膜的致密性,进一步提高钝化膜的保护性[29-30]。目前主要通过添加 Cu 元素来提高金属材料的耐 MIC 性能,且研究主要集中在不锈钢材料上,鲜有多合金元素共同作用对海洋结构钢耐 MIC 性能影响的研究。

  • EH36 钢具有优良的力学性能而被广泛使用[31]。尽管 EH36 钢中含有 0.19 wt.%的 Cu 元素,但其仍会遭受严重的 MIC[32]。相较于 EH36 钢,S355J0W 钢中含有 Cr、Ni、Nb 元素以及更多的 Cu 元素 (0.28 wt.%)。因此,本文选择 S355J0W 钢和 EH36 钢作为研究对象,利用表面分析技术、失重和电化学测试等方法研究两种钢的 MIC 性能,并进一步从热力学角度探究两种钢的耐 MIC 性能差异机理,以期为海洋 MIC 机理的探究提供数据支撑,为 MIC 防护方法的设计与开发提供新见解。

  • 1 试验准备

  • 1.1 样品制备

  • 试验使用的 S355J0W 钢和 EH36 钢的化学成分如表1 所示,样品尺寸均为 1 cm×1 cm×0.3 cm。除了一个表面积为 1 cm2 的工作面外,样品的其他表面均用环氧树脂封嵌。样品经不同粗糙度砂纸逐级打磨至 800#后,用无水乙醇冲洗,最后置于厌氧手套箱中,采用紫外灯照射 20 min。

  • 表1 S355J0W 钢和 EH36 钢的化学成分(质量分数 / wt.%)

  • Table1 Chemical compositions of S355J0W steel and EH36 steel (wt.%)

  • 1.2 细菌接种和培养

  • 脱硫弧菌(ATCC 7757)购买于美国菌种保存中心(Manassas,VA,USA)。采用 ATCC 1249 培养基(表2)对脱硫弧菌进行培养。试验所用的铜绿假单胞菌(PAO1)由浸泡在海水中的 Q235 碳钢的锈层中分离而来,采用 LB-NO3 培养基[10 g KNO3、 5 g 酵母提取物(Yeast extract)、10 g 胰蛋白胨 (Tryptone)和 1 L 过滤海水(中国,青岛,鳌山湾)] 对其进行培养。两种培养基的初始 pH 均用 1 mol / L NaOH 调至 7.0±0.1。随后,将培养基、橡胶塞、滤膜和玻璃瓶等在 121℃下灭菌 20 min。ATCC 1249 培养基灭菌完成后,用高纯 N2(>99.999%,vol.%)持续除氧 60 min,之后添加半胱氨酸母液使培养基中的半胱氨酸浓度达到 100 mg·L−1,以去除培养基中剩余的 O2。最后,每个 500 mL 的玻璃瓶中均含有300 mL ATCC 1249培养基或LB-NO3培养基、3 mL 脱硫弧菌或铜绿假单胞菌母液和三个 S355J0W 钢或 EH36 钢平行样品,在 37℃恒温培养箱中培养 10 d。试验装置如图1 所示。

  • 表2 ATCC 1249 培养基的化学成分

  • Table2 Chemical composition of ATCC 1249 medium

  • 图1 试验装置

  • Fig.1 Experimental setup

  • 1.3 失重和点蚀

  • 两种钢在不同培养基中浸泡 10 d 后,根据美国材料试验协会 ASTM G1-03[33],用酸洗液[1 000 mL HCl(1.19 g·mL−1)、20 g Sb2O3和 50 g SnCl2]去除失重样品表面的生物膜和腐蚀产物。酸洗后的样品用无水乙醇冲洗并干燥后,采用精确度为 0.1 mg 的分析天平(XSE105DU,Mettler Toledo,China)进行称重。每一个失重数据均来自一个瓶子中的三个平行样品。随后,采用 3D 表面轮廓仪(KH-8700,Hirox,China)观察样品表面 3D 形貌并对点蚀坑深度进行测量。

  • 1.4 表面观察

  • 两种钢在浸泡前,分别取三个平行样进行金相结构观察。样品经砂纸逐级打磨并抛光后,用 4% 的硝酸酒精溶液对其进行刻蚀,随后在光学显微镜 (OM,BX53,Olympus,Japan)下观察样品的微观组织形貌。

  • 取两种钢的另外三个平行样浸泡于不同培养基中,10 d 后对样品表面的固着细菌进行观察。观察前,先在暗室中用荧光染料(FilmTracer™ LIVE / DEAD® Biofilm Kit,ThermoFisher Scientific,USA) [绿色荧光染料 SYTO 9(485 / 530 nm)和红色荧光核酸染料 PI(485 / 630 nm)]将样品表面细菌染色 20 min。然后采用荧光显微镜(FM,BX53,Olympus,Japan)对固着细菌进行观察。

  • 采用扫描电镜(SEM,QUANTA 250 FEG,FEI,USA)观察浸泡后两种钢表面的生物膜和腐蚀产物形貌。在进行 SEM 观察之前,试样先在 4 wt.% 的戊二醛溶液中固定表面生物膜 2 h,再在乙醇溶液(25、50、75、90 和 100 vol.%)中进行梯度脱水(每个浓度的乙醇溶液中浸泡 10 min),随后进行空气干燥[34]。最后,为了提高样品的导电性,对其表面进行喷金处理。采用 X 射线衍射仪(XRD,D8ADVANCE,Bruker Corporation,Germany)对浸泡后样品表面腐蚀产物的成分进行分析。

  • 1.5 细菌计数和环境参数监测

  • 采用细胞计数板在 400 倍 OM 下对培养基中的浮游细菌和样品表面的固着细菌进行计数。浮游细菌每天计数:将盖玻片置于细胞计数板上方,取适量含菌培养基滴于盖玻片边缘,让培养基自行渗入,多余的培养基用滤纸吸取,静置 1~2 min 后,在 OM 下进行观察计数。固着细菌在培养结束后(第 10 d)进行计数:取出样品后,先用 pH 7.4 的磷酸盐缓冲液(Phosphate buffer solution,PBS)进行冲洗,去除样品表面的浮游细菌。然后,每个样品表面的生物膜都用无菌毛刷将其刮到 10 mL pH 7.4 的 PBS 溶液中。最后,将样品、毛刷以及 PBS 溶液置于试管中涡旋 30 s,使细菌分散均匀后进行计数。采用溶解氧(Dissolved oxygen,DO)测量仪(OrionTM Versa Star ProTM,Thermo Fisher Scientific,MA,USA)检测 LB-NO3 培养基中的 DO 浓度。根据《海洋监测规范第 4 部分:海水分析(GB 17378.4— 2007)》检测培养 10 d 后 LB-NO3 培养基中的铵根离子(NH4 +)浓度。

  • 1.6 电化学试验

  • 利用电化学工作站( PARSTAT4 000 A,Princeton Applied Research,TN,USA)进行开路电位 (Open circuit potential,OCP)、线性极化电阻(Linear polarization resistance,LRP)、电化学阻抗 (Electrochemical impedance spectroscopy,EIS)和动电位极化(Potentiodynamic polarization,PDP)曲线的测量。电化学试验采用三电极体系,S355J0W 钢或 EH36 钢样品作为工作电极,Ag / AgCl(3 mol / L KCl)作为参比电极,石墨为辅助电极。LPR 的扫描速率为 0.167 mV·s −1,扫描范围为-10~10 mV (vs. OCP)。EIS 的测试振幅为 10 mV(vs. OCP),频率范围为 105~10−2 Hz[35-36]。PDP 是在样品浸泡第 10 d 时以 0.167 mV·s −1 的扫描速率从-250 mV 扫描至 400 mV(vs. OCP)。

  • 2 结果与讨论

  • 2.1 腐蚀速率分析

  • 图2 显示了 S355J0W 钢和 EH36 钢在不同培养基中浸泡 10 d 后的失重数据。在无菌厌氧 ATCC 1249 培养基中,S355J0W 钢和 EH36 钢的失重分别为 0.3、0.4 mg·cm−2。在脱硫弧菌的作用下,两种钢的失重分别为 2.9、5.2 mg·cm−2。在无菌有氧 LB-NO3 培养基中,两种钢的失重分别为 1.8、 2.1 mg·cm−2。无菌条件下,两种钢在有氧培养基中的腐蚀速率明显高于在无氧培养基中的腐蚀速率,这是因为 O2 作为去极化剂加速了材料腐蚀[37]。在铜绿假单胞菌培养基中,S355J0W 钢和 EH36 钢的失重分别为 2.5、4.6 mg·cm−2,腐蚀速率被进一步促进。失重的结果表明,相较于无菌培养基,脱硫弧菌和铜绿假单胞菌均促进了 S355J0W 钢和 EH36 钢的腐蚀。但两种钢的 MIC 速率不同,在脱硫弧菌和铜绿假单胞菌的作用下,S355J0W 钢的失重大小分别为 EH36 钢 56%、54%,这表明 S355J0W 钢具有更优的耐 MIC 性能。

  • 图2 S355J0W 钢和 EH36 钢在不同培养基中浸泡 10 d 后的失重大小

  • Fig.2 Weight losses of S355J0W steel and EH36 steel in different media after 10 d immersion

  • 浸泡 10 d 后,两种钢表面的 3D 形貌和最大点蚀坑深度如图3 所示。在含菌培养基中,S355J0W 钢和 EH36 钢表面均可以观察到明显的点蚀坑。在脱硫弧菌培养基中,S355J0W 钢和 EH36 钢的最大点蚀坑深度分别为 50.4、71.5 µm。在铜绿假单胞菌的作用下,两种钢表面的最大点蚀坑深度分别为 26.3、56.2 µm。脱硫弧菌培养基和铜绿假单胞菌培养基中 S355J0W 钢的最大点蚀坑深度分别为 EH36 钢的 70%、47%。点蚀坑的测量结果同样表明 S355J0W 钢具有更低的 MIC 速率。点蚀结果与失重数据对应(图2)。

  • 图3 S355J0W 钢和 EH36 钢在不同培养基中浸泡 10 d 后的表面 3D 形貌和最大点蚀深度

  • Fig.3 3D images and maximum pitting depths on S355J0W steel and EH36 steel surfaces in different media after 10 d immersion

  • 2.2 表面分析

  • 为了进一步探究 S355J0W 钢和 EH36 钢耐 MIC 性能的差异机理,对样品进行了表面分析。图4 为浸泡前两种钢金相组织图像。可以观察到,两种钢均由铁素体和少量的珠光体组成,铁素体和珠光体的相对含量无明显差别。另外,两种钢具有相近大小的晶粒尺寸,表明 S355J0W 钢中多合金元素的添加并未显著影响其微观组织结构。

  • 图4 S355J0W 钢和 EH36 钢的微观组织结构

  • Fig.4 Microstructures of S355J0W steel and EH36 steel

  • 图5 为 S355J0W 钢和 EH36 钢在不同含菌培养基中浸泡 10 d 后表面的 FM 图像。可以发现,无论是在脱硫弧菌培养基还是铜绿假单胞菌培养基中, 10 d 后两种钢表面都附着了大量的细菌。不同的是,相较于 EH36 钢,S355J0W 钢表面死菌占比更高,活菌数量更少。这可以归因于 S355J0W 钢中含有 Cr 元素以及更高含量的 Cu 元素。Cr 和 Cu 元素的共同作用具有更高的毒性,能够杀死细菌,抑制固着细菌的生长[38]

  • 图6 为 S355J0W 钢和 EH36 钢在不同含菌培养基中浸泡 10 d 后表面腐蚀产物和生物膜的 SEM 图像。在不同培养基中浸泡 10 d 后,两种钢表面均可以观察到细菌和腐蚀产物。不同的是,在相同培养基中,S355J0W 钢表面的固着细菌和腐蚀产物数量明显少于 EH36 钢。更少的腐蚀产物意味着更低的腐蚀速率,这与失重结果对应。

  • 图5 S355J0W 钢和 EH36 钢浸泡 10 d 后表面的 FM 图像

  • Fig.5 FM images of S355J0W steel and EH36 steel surfaces after 10 d immersion

  • 图6 S355J0W 钢和 EH36 钢浸泡 10 d 后表面的 SEM 图像

  • Fig.6 SEM images of S355J0W steel and EH36 steel surfaces after 10 d immersion

  • 图7 为 S355J0W 钢和 EH36 钢在不同培养基中浸泡 10 d 后表面腐蚀产物的 XRD 谱图。两种钢在同一细菌作用下表面腐蚀产物组分相同。在脱硫弧菌培养基中,样品表面腐蚀产物为 FeS。在铜绿假单胞菌的作用下,两种钢表面的腐蚀产物为 Fe 元素的氧化物,主要包括 FeOOH、Fe3O4、Fe2O3和 FeO。 XRD 的测试结果表明,合金元素的添加并未影响样品表面的腐蚀产物组分。

  • 图7 S355J0W 钢和 EH36 钢浸泡 10 d 后表面腐蚀产物的 XRD 谱图

  • Fig.7 XRD patterns of corrosion products on S355J0W steel and EH36 steel surfaces after 10 d immersion

  • 2.3 细菌计数和环境参数监测

  • 浸泡有S355J0W 钢或EH36 钢的脱硫弧菌培养基和铜绿假单胞菌培养基中的浮游细菌数量随时间变化曲线如图8a、8b 所示。浮游脱硫弧菌和铜绿假单胞菌数量随时间逐渐增多,在浸泡第 3 d 时达到最大值,随后逐渐减少。两种细菌的数量和生长规律并没有因浸泡样品的不同而产生明显差异,这表明浮游细菌数量不是导致两种钢耐 MIC 性能差异的主要原因。

  • 图8 10 d 浸泡期间脱硫弧菌和铜绿假单胞菌培养基中浮游细菌数量和浸泡 10 d 后 S355J0W 钢和 EH36 钢表面固着细菌数量

  • Fig.8 Planktonic cell counts in D. vulgaris medium and P. aeruginosa medium during10 d immersion and sessile cell counts on S355J0W steel and EH36 steel surfaces after 10 d immersion

  • 图8c 显示了 S355J0W 钢和 EH36 钢浸泡 10 d 后表面的固着细菌数量。与浮游细菌的计数结果不同,两种钢表面的固着细菌数量存在明显差异。在脱硫弧菌培养基中,S355J0W 钢和 EH36 钢的固着细菌数量分别为 1.1×108、5.0×108 个 / cm2。两种钢表面的固着铜绿假单胞菌数量分别为 1.3×108、 5.4×108 个 / cm2。S355J0W 钢表面的固着脱硫弧菌和铜绿假单胞菌数量分别为 EH36 钢的 22%、24%。固着细菌的计数结果与 FM 图像显示的规律一致,这表明 S355J0W 钢表面固着细菌的生长受到钢中合金元素的抑制。

  • 在有氧环境中,O2 是腐蚀过程中重要的去极化剂[37]。因此,需要对 LB-NO3 培养基中的 DO 浓度进行监测。图9a 显示浸泡 10 d 期间铜绿假单胞菌培养基和无菌 LB-NO3 培养基的 DO 浓度变化。无菌培养基的 DO 浓度随浸泡时间基本维持稳定,约为 6.0 mg·L−1。在铜绿假单胞菌的作用下,DO 浓度随时间明显下降,在第 10 d 时 DO 浓度降至 0.1 mg·L−1。铜绿假单胞菌作为兼性厌氧微生物,在有氧条件下以 O2 为电子受体,进行有氧呼吸[39]。在缺氧或厌氧条件下,铜绿假单胞菌将 NO3 作为终端电子受体,在胞内进行生物催化 NO3 反应,生成 NH4 + / N2 [3]

  • 为了验证铜绿假单胞菌在浸泡后期是否发生呼吸方式的转变(由有氧呼吸转变为厌氧呼吸),对 10 d 后培养基中的 NH4 + 浓度进行了测量,如图9b 所示。铜绿假单胞菌培养基中的 NH4 + 明显高于无菌培养基,这意味着铜绿假单胞菌培养基中 NH4 +的产生。DO 浓度和 NH4 + 浓度的测量结果表明,铜绿假单胞菌有氧呼吸大幅降低了培养基中的 DO 浓度,导致其呼吸方式在浸泡后期由有氧呼吸转变为厌氧呼吸。

  • 图9 浸泡有 S355J0W 钢和 EH36 钢的铜绿假单胞菌培养基和无菌 LB-NO3 培养基的 DO 浓度和 NH4 + 浓度

  • Fig.9 DO and NH4 + concentrations in P. aeruginosa medium and sterile LB-NO3 medium immersed with S355J0W steel and EH36 steel

  • 需要注意的是,浸泡有 S355J0W 钢和 EH36 钢的铜绿假单胞菌培养基中的 DO 浓度和 NH4 + 浓度没有明显差异,表明 O2和 NH4 + 浓度不是导致两种钢在铜绿假单胞菌培养基中 MIC 速率差异的主要原因。

  • 2.4 电化学分析

  • 图10a 为浸泡 10 d 期间脱硫弧菌培养基和铜绿假单胞菌培养基中 S355J0W 钢和 EH36 钢 OCP 值的变化曲线。在两种含菌培养基中,S355J0W 钢的 OCP 值均高于 EH36 钢。通常,更高的 OCP 值意味更低的腐蚀热力学倾向[32]。OCP 的测试结果表明,S355J0W 钢的微生物腐蚀热力学倾向低于EH36 钢。

  • 图10 S355J0W钢和EH36钢在脱硫弧菌培养基和铜绿假单胞菌培养基中浸泡 10 d 期间的 OCP 和 Rp 值的变化曲线

  • Fig.10 OCP and Rp values of S355J0W steel and EH36 steel in D. vulgaris medium and P. aeruginosa medium during 10 d immersion

  • 两种钢的线性极化电阻(Rp)值的变化曲线如图10b 所示。相同浸泡时间下,S355J0W 钢 Rp值高于 EH36 钢,表明 S355J0W 钢具有更低的 MIC 速率。Rp 值的结果与失重和点蚀数据对应。

  • 图11 为 S355J0W 钢和 EH36 钢在含菌培养基中浸泡 10 d 期间的 Nyquist 和 Bode 图。在脱硫弧菌培养基中,S355J0W 钢的阻抗弧半径和阻抗模值均大于 EH36 钢。在铜绿假单胞菌培养基中,两种钢也表现出相同的腐蚀规律。这再一次证明了 S355J0W 钢的 MIC 速率低于 EH36 钢。

  • 浸泡 10 d 后,S355J0W 钢和 EH36 钢表面均观察到生物膜和腐蚀产物(图6)。因此,采用含两个时间常数(表面膜生成和电荷转移过程)的等效电路图对 EIS 数据进行拟合,如图12 所示。EIS 的拟合结果如表3 所示。RsRfRct分别为溶液电阻、表面膜电阻和电荷转移电阻。QfQdl 是常相位角电子元件 (Constant phase element,CPE),由下列公式得出:

  • ZQ=Y0-1(jω)-n
    (1)
  • 式中,ZQ是 CPE 阻抗,Y0是与电容有关的 CPE 参数, ω和 j 分别是角频率(rad / s)和虚数单位,n 是与表面均匀度有关的 CPE 参数。

  • 图11 S355J0W 钢和 EH36 钢在脱硫弧菌培养基和铜绿假单胞菌培养基中浸泡 10 d 期间的 Nyquist 和 Bode 图

  • Fig.11 Nyquist and Bode plots of S355J0W steel and EH36 steel in D. vulgaris medium and P. aeruginosa medium during 10 d immersion

  • 图12 用于拟合 S355J0W 钢和 EH36 钢 EIS 谱图的等效电路

  • Fig.12 Equivalent circuit used to fit EIS spectra of S355J0W steel and EH36 steel

  • 注意到,S355J0W 钢在铜绿假单胞菌培养基中浸泡 1 d 时的 Bode 图中低频下存在一个波谷(图11c'),这可能与浸泡前期铜绿假单胞菌有氧呼吸迅速消耗 O2 导致 S355J0W 钢的腐蚀受氧扩散控制有关(图9a)[40]。根据 EIS 拟合参数(表3)显示,相同时间下脱硫弧菌培养基和铜绿假单胞菌培养基中 S355J0W 钢的 Rct 值均大于 EH36 钢,这再一次证实了 S355J0W 钢具有更低的 MIC 速率。另外, Rf 值随浸泡时间逐渐增大,这是由样品表面腐蚀产物和生物膜的逐渐累积导致的。需要注意的是,在相同浸泡条件下,S355J0W 钢的 Rf值大于 EH36 钢。这可以归因于 S355J0W 钢中含有 Cr、Ni 和 Nb 元素,有利于其表面产生保护性产物膜[27-29]。虽然 S355J0W 钢表面的固着细菌数量低于 EH36 钢,但影响 Rf值的主要是腐蚀产物而不是生物膜[3]。更高的 Rf值意味着 S355J0W 钢的表面膜更具有保护性。

  • 表3 S355J0W 钢和 EH36 钢在脱硫弧菌培养基和铜绿假单胞菌培养基中浸泡 10 d 期间 EIS 谱图的拟合参数

  • Table3 EIS parameters of S355J0W steel and EH36 steel in D. vulgaris and P. aeruginosa media during 10 d immersion

  • Where t represents the immersion time; Rs, Rf, and Rct are the solution resistance, membrance resistance, and electron transfer resistance, respectively; Yf and Ydl are the parameters of film capacitance and double layer capacitance, respectively; nf and ndl are the dispersion exponents related to surface film and double electric layer, respectively

  • S355J0W 钢和 EH36 钢在不同培养基中浸泡第 10 d 时的 PDP 曲线如图13 所示。可以观察到,不论是在何种培养基中,S355J0W 钢的阳极分支电流密度均小于 EH36 钢。相较于无菌培养基,脱硫弧菌和铜绿假单胞菌均降低了两种钢的腐蚀电位 (Ecorr)。PDP 曲线的拟合参数如表4 所示,babc 分别为阳极和阴极曲线的 Tafel 斜率。在脱硫弧菌培养基中,S355J0W 钢和 EH36 钢的 Icorr分别为 14.3、 17.2 µA·cm−2,明显高于它们在无菌 ATCC 1249 培养基中的 Icorr(1.0、1.8 µA·cm−2)。在铜绿假单胞菌的作用下,S355J0W 钢和 EH36 钢的 Icorr分别为 8.3、12.2 µA·cm−2,同样高于两种钢在无菌 LB-NO3 培养基中的 Icorr(4.5、6.9 µA·cm−2 )。PDP 曲线的拟合结果再一次表明,脱硫弧菌和铜绿假单胞菌均能够加速两种钢的腐蚀,但对 S355J0W 钢的腐蚀性弱于 EH36 钢。

  • 图13 S355J0W 钢和 EH36 钢在不同培养基中浸泡 10 d 后的 PDP 曲线

  • Fig.13 PDP curves of S355J0W steel and EH36 steel in different media after 10 d immersion

  • 表4 S355J0W 钢和 EH36 钢在不同培养基中浸泡 10 d 后的 PDP 曲线的电化学参数

  • Table4 Electrochemical parameters of PDP curves of S355J0W steel and EH36 steel after 10 d immersion in different media

  • Where ba and bc are the Tafel slopes of the anodic and cathodic curves, respectively; Icorr and Ecorr are the corrosion current density and corrosion potential, respectively.

  • 2.5 S355J0W 钢的耐 MIC 机理

  • 失重、点蚀和电化学数据表明,相较于 EH36 钢,S355J0W 钢具有更优的耐 MIC 性能,其在脱硫弧菌培养基和铜绿假单胞菌培养基的 MIC 速率均小于 EH36 钢。这主要可以归为两方面原因,如图14 所示。

  • (1)失重和 PDP 曲线表明,在无菌条件下, S355J0W 钢具有更优的耐蚀性(图1、13)。相较于 EH36 钢,S355J0W 钢中多添加了 Cr、Ni、Nb 元素和更多的 Cu 元素。多合金元素的添加没有显著影响材料的微观组织结构,但能够使 S355J0W 钢具有更高的 Rf值,提高了其表面产物膜的保护性(表4)。

  • (2)脱硫弧菌和铜绿假单胞菌可以以钢为电子供体,从钢表面获取电子,为自身生长呼吸提供能量,随后将获取的电子转移至胞内进行生物催化硫酸盐和硝酸盐还原反应,从而加速腐蚀[5]。这一过程可以如下列公式所示[3]

  • FeFe2++2e-
    (2a)
  • SO42-+9H++8e-HS-+4H2O
    (3a)
  • NO3-+10e-+12H+N2+6H2O
    (4a)
  • NO3-+8e-+10H+NH4++3H2O
    (5a)
  • EeFe2+/Fe=-0.447V+RT2FlnFe2+ (vs. SHE)
    (2b)
  • EeSO42-/HS-=0.249V-2.591RTFpH+RT8FlnSO42+HS-(vs. SHE)
    (3b)
  • Ee2NO3-/N2=1.246V-2.764RTFpH+RT10FlnNO3-2PN2 (vs. SHE)
    (4b)
  • Ee2NO3-/NH4+=0.875V-2.879RTFpH+RT8FlnNO3-NH4+(vs. SHE)
    (5b)
  • 式中,Ee 是电池电位(V),R 是通用气体常数,T 是绝对温度(K),F 是法拉第常数, PN2N2 的气体分压(kPa),SHE 是标准氢电极。

  • 在 pH 7、25℃、1 mol·L−1 溶质或 100 kPa 气体条件下,Fe2+ / Fe、SO4 2- / HS、NO3- / N2和 NO3- / NH4 + 的氧化还原电位(Eo')分别为−447、−217、+749 和+358 mV。因此,反应式(2a)和(3a),(2a) 和(4a),(2a)和(5a)的 Ee分别是+230、+119 6 和+805 mV。正的 Ee表明上述腐蚀反应在热力学上是有利的[32]

  • 热力学数据分析证明,脱硫弧菌和铜绿假单胞菌能够通过 EET 方式,以 Fe(0)为电子供体为自身呼吸提供能量的代谢路径。在金属的 EET-MIC 过程中,EET 速率通常是腐蚀速率的控制步骤[7]。由于 S355J0W 钢中 Cr、Cu 元素的溶解释放,导致其表面固着脱硫弧菌和铜绿假单胞菌数量仅为 EH36 钢的 24%、22%。更低的固着细菌数量意味着更低的 EET 速率,从而导致了更低的 MIC 速率。

  • 图14 S355J0W 钢在脱硫弧菌培养基和铜绿假单胞菌培养基中的耐 MIC 机理

  • Fig.14 MIC resistance mechanism of S355J0W steel in D. vulgaris medium and P. aeruginosa medium

  • 3 结论

  • 以 EH36 和 S355J0W 两种海洋结构钢为研究对象,通过表面分析技术和电化学测试方法对其表面形貌、细菌代谢参数和腐蚀速率进行分析,探究两种钢耐 MIC 性能的差异机理。主要结论如下:

  • (1)在厌氧脱硫弧菌培养基中,S355J0W 钢的失重和点蚀深度是 EH36 钢的 56%、70%。在好氧铜绿假单胞菌培养基中,S355J0W 钢的失重和点蚀深度是 EH36 钢的 54%、47%。S355J0W 钢中合金元素的共同作用导致其耐 MIC 性能明显优于 EH36 钢。

  • (2)相较于 EH36 钢,S355J0W 钢含有 Cr、Ni、 Nb 元素和更多的 Cu 元素。合金元素的共同作用促使 S355J0W 钢表面形成了更具有保护性的产物膜。

  • (3)S355J0W 钢中合金元素的作用导致其表面固着的脱硫弧菌和铜绿假单胞菌数量仅是 EH36 钢的 22%、24%,更少的固着细菌数量导致更低的 EET 速率,从而造成了更低的 MIC 速率。

  • (4)研究结果为海洋金属材料的腐蚀防护提供了新见解。未来应进一步探究钢中合金元素的种类和比例对耐 MIC 性能的影响。

  • 参考文献

    • [1] LI X,ZHANG D,LIU Z,et al.Materials science:share corrosion data[J].Nature,2015,527(7579):441-442.

    • [2] FLEMMING H C.Microbial deterioration of materials-fundamentals-economical and technical overview[J].Werkstoffe Und Korrosion-Materials and Corrosion,1994,45(1):5-9.

    • [3] LU S,HE Y,XU R,et al.Inhibition of microbial extracellular electron transfer corrosion of marine structural steel with multiple alloy elements[J].Bioelectrochemistry,2023,151:108377.

    • [4] GAINES R H.Bacterial activity as a corrosive influence in the soil[J].Journal of Industrial and Engineering Chemistry-Us,1910,2:128-130.

    • [5] GU T,JIA R,UNSAL T,et al.Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J].Journal of Materials Science & Technology,2019,35(4):631-636.

    • [6] DU Z,LI H,GU T.A state of the art review on microbial fuel cells:a promising technology for wastewater treatment and bioenergy[J].Biotechnology Advances,2007,25:464-482.

    • [7] LI Y,XU D,CHEN C,et al.Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:A review[J].Journal of Materials Science & Technology,2018,34(10):1713-1718.

    • [8] DOU W,PU Y,HAN X,et al.Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes[J].Bioelectrochemistry,2020,133:107478.

    • [9] HOU R,LU S,CHEN S,et al.The corrosion of 316L stainless steel induced by methanocossus mariplaudis through indirect electron transfer in seawater[J].Bioelectrochemistry,2023,149:108310.

    • [10] WANG D,LIU J,JIA R,et al.Distinguishing two different microbiologically influenced corrosion(MIC)mechanisms using an electron mediator and hydrogen evolution detection[J].Corrosion Science,2020,177:108993.

    • [11] JIA R,YANG D,XU J,et al.Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation[J].Corrosion Science,2017,127:1-9.

    • [12] DOU W,PU Y,GU T,et al.Biocorrosion of copper by nitrate reducing Pseudomonas aeruginosa with varied headspace volume[J].International Biodeterioration & Biodegradation,2022,171:105405.

    • [13] WANG Y,WU J,ZHANG D,et al.The inhibition effects of Cu and Ni alloying elements on corrosion of HSLA steel influenced by Halomonas titanicae[J].Bioelectrochemistry,2021,141:107884.

    • [14] YIN K,LIU H,CHENG Y.Microbiologically influenced corrosion of X52 pipeline steel in thin layers of solution containing sulfate-reducing bacteria trapped under disbonded coating[J].Corrosion Science,2018,145:271-282.

    • [15] WANG J,LIU H,MOHAMED M E S,et al.Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A[J].Journal of Materials Science & Technology,2022,107:43-51.

    • [16] 鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Progress in research of surface protection technology of materials in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)

    • [17] SUN D,XU D,YANG C,et al.An investigation of the antibacterial ability and cytotoxicity of a novel Cu-bearing 317L stainless steel[J].Scientific Reports,2016,6(1):29244.

    • [18] LOU Y,LIN L,XU D,et al.Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater[J].International Biodeterioration & Biodegradation,2016,110:199-205.

    • [19] NAN L,XU D,GU T,et al.Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli[J].Materials Science & Engineering C-Materials for Biological Applications,2015,48:228-234.

    • [20] RAHMAN M U,GUL S,HAQ M Z U.Reduction of chromium(VI)by locally isolated Pseudomonas sp.C-171[J].Turkish Journal of Biology,2007,31(3):161-166.

    • [21] SNOW E T.Effects of chromium on DNA replication in vitro[J].Environ Health Perspect,1994,102:41-44.

    • [22] CARLOS C,JESÚS C,SILVIA D,et al.Interactions of chromium with microorganisms and plants[J].Fems Microbiology Reviews,2001,25(3):335-347.

    • [23] 姚莹,杨柏俊,张锁德,等.铁基非晶合金和13Cr不锈钢在超临界 CO2环境的腐蚀行为[J].中国表面工程,2023,36(1):85-94.YAO Ying,YANG Bojun,ZHANG Suode,et al.Corrosion behavior of Fe-based amorphous alloys and 13Cr stainless steels under supercritical CO2 environment[J].China Surface Engineering,2023,36(1):85-94.(in Chinese)

    • [24] 陈东旭,郭阳阳,祁继隆,等.脉冲偏压对316L不锈钢表面类金刚石薄膜腐蚀行为影响[J].中国表面工程,2022,35(5):272-278.CHEN Dongxu,GUO Yangyang,QI Jilong,et al.Effects of pulsed bias on the corrosion behavior of diamond-like carbon film prepared on the surface of 316L stainless steel[J].China Surface Engineering,2022,35(5):272-278.(in Chinese)

    • [25] 杨小佳,刘智勇,张达威,等.工业纯钛TA2在含硫化物深海水环境中的应力腐蚀行为[J].中国表面工程,2019,32(4):17-26.YANG Xiaojia,LIU Zhiyong,ZHANG Dawei,et al.Stress corrosion cracking behavior of industrial pure titanium TA2 in sulfide containing deep seawater environment[J].China Surface Engineering,2019,32(4):17-26.(in Chinese)

    • [26] HU J,LUO T,HU A,et al.Electrochemical corrosion behaviors of Sn-9Zn-3Bi-xCr solder in 3.5% NaCl solution[J].Journal of Electronic Materials,2011,40(7):1556-1562.

    • [27] KIM J J,YOUNG Y M.Study on the passive film of type 316 stainless steel[J].International Journal of Electrochemical Science,2013,8(10):11847-11859.

    • [28] PARK K,AHN S,KWON H.Effects of solution temperature on the kinetic nature of passive film on Ni[J].Electrochimica Acta,2011,56(3):1662-1669.

    • [29] 窦为学,国栋,冯捷,等.含Nb微合金化钢腐蚀规律研究与分析[J].钢铁钒钛,2019,177(3):139-143.DOU Weixue,GUO Dong,FENG Jie,et al.Study on electrochemical corrosion of Nb microalloy steel[J].Iron Steel Vanadium Titanium,2019,177(3):139-143.(in Chinese)

    • [30] 董方,卜凡超,郄俊懋.Nb 对09CuPRe耐候钢在模拟工业大气腐蚀环境下耐蚀性的影响[J].材料保护,2014,47(7):57-59.DONG Fang,BU Fanchao,QIE Junmao.Effect of niobium on corrosion resistance of 09CuPRe weather-resistant steel in simulated industrial atmospheric environment[J].Materials Protection,2014,47(7):57-59.(in Chinese)

    • [31] WANG Y,ZHANG X,CHENG L,et al.Correlation between active/inactive(Ca,Mg,Al)-Ox-Sy inclusions and localised marine corrosion of EH36 steels[J].Journal of Materials Research and Technology-Jmr&T,2021,13:2419-2432.

    • [32] LU S,DOU W,GU T,et al.Extracellular electron transfer corrosion mechanism of two marine structural steels caused by nitrate reducing Halomonas titanicae[J].Corrosion Science,2023,217:111125.

    • [33] American Society for Testing and Materials.Standard practice for preparing,cleaning,and evaluating corrosion test specimens:ASTM G1-03 [S].PA:ASTM international,2003.

    • [34] JIA R,YANG D,LI Y,et al.Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethyl-benzylammonium chloride enhanced by D-amino acids[J].International Biodeterioration & Biodegradation,2017,117:97-104.

    • [35] 李翔,程学群,李晓刚,等.新型热扩散法制备耐海洋环境腐蚀钢筋及其耐蚀性[J].中国表面工程,2017,30(6):43-49.LI Xiang,CHENG Xuequn,LI Xiaogang,et al.A novel thermal diffusion method to produce marine corrosion resistant steel bar and its corrosion resistance[J].China Surface Engineering,2017,30(6):43-49.(in Chinese)

    • [36] 马菱薇,卢桃丽,张达威,等.耐候钢锈层的稳定化处理及锈层的生长机制[J].中国表面工程,2022,35(4):151-160.MA Lingwei,LU Taoli,ZHANG Dawei,et al.Stabilization treatment and growth mechanism of rust layers on weathering steel surface[J].China Surface Engineering,2022,35(4):151-160.(in Chinese)

    • [37] XU D,GU T,LOVLEY D R.Microbially mediated metal corrosion[J].Nature Review Microbiology,2023,21:1-14.

    • [38] WONG P,CHANG L.Effects of copper,chromium and nickel on growth,photosynthesis and chlorophyll a synthesis of Chlorella pyrenoidosa 251[J].Environmental Pollution,1991,72(2):127-139.

    • [39] ZHOU E,ZHANG M,HUANG Y,et al.Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa[J].Water Research,2022,220:118634.

    • [40] CHEN S,ZHANG D.Corrosion behavior of Q235 carbon steel in air-saturated seawater containing Thalassospira sp[J].Corrosion Science,2019,148:71-82.

  • 参考文献

    • [1] LI X,ZHANG D,LIU Z,et al.Materials science:share corrosion data[J].Nature,2015,527(7579):441-442.

    • [2] FLEMMING H C.Microbial deterioration of materials-fundamentals-economical and technical overview[J].Werkstoffe Und Korrosion-Materials and Corrosion,1994,45(1):5-9.

    • [3] LU S,HE Y,XU R,et al.Inhibition of microbial extracellular electron transfer corrosion of marine structural steel with multiple alloy elements[J].Bioelectrochemistry,2023,151:108377.

    • [4] GAINES R H.Bacterial activity as a corrosive influence in the soil[J].Journal of Industrial and Engineering Chemistry-Us,1910,2:128-130.

    • [5] GU T,JIA R,UNSAL T,et al.Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J].Journal of Materials Science & Technology,2019,35(4):631-636.

    • [6] DU Z,LI H,GU T.A state of the art review on microbial fuel cells:a promising technology for wastewater treatment and bioenergy[J].Biotechnology Advances,2007,25:464-482.

    • [7] LI Y,XU D,CHEN C,et al.Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:A review[J].Journal of Materials Science & Technology,2018,34(10):1713-1718.

    • [8] DOU W,PU Y,HAN X,et al.Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes[J].Bioelectrochemistry,2020,133:107478.

    • [9] HOU R,LU S,CHEN S,et al.The corrosion of 316L stainless steel induced by methanocossus mariplaudis through indirect electron transfer in seawater[J].Bioelectrochemistry,2023,149:108310.

    • [10] WANG D,LIU J,JIA R,et al.Distinguishing two different microbiologically influenced corrosion(MIC)mechanisms using an electron mediator and hydrogen evolution detection[J].Corrosion Science,2020,177:108993.

    • [11] JIA R,YANG D,XU J,et al.Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation[J].Corrosion Science,2017,127:1-9.

    • [12] DOU W,PU Y,GU T,et al.Biocorrosion of copper by nitrate reducing Pseudomonas aeruginosa with varied headspace volume[J].International Biodeterioration & Biodegradation,2022,171:105405.

    • [13] WANG Y,WU J,ZHANG D,et al.The inhibition effects of Cu and Ni alloying elements on corrosion of HSLA steel influenced by Halomonas titanicae[J].Bioelectrochemistry,2021,141:107884.

    • [14] YIN K,LIU H,CHENG Y.Microbiologically influenced corrosion of X52 pipeline steel in thin layers of solution containing sulfate-reducing bacteria trapped under disbonded coating[J].Corrosion Science,2018,145:271-282.

    • [15] WANG J,LIU H,MOHAMED M E S,et al.Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A[J].Journal of Materials Science & Technology,2022,107:43-51.

    • [16] 鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Progress in research of surface protection technology of materials in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)

    • [17] SUN D,XU D,YANG C,et al.An investigation of the antibacterial ability and cytotoxicity of a novel Cu-bearing 317L stainless steel[J].Scientific Reports,2016,6(1):29244.

    • [18] LOU Y,LIN L,XU D,et al.Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater[J].International Biodeterioration & Biodegradation,2016,110:199-205.

    • [19] NAN L,XU D,GU T,et al.Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli[J].Materials Science & Engineering C-Materials for Biological Applications,2015,48:228-234.

    • [20] RAHMAN M U,GUL S,HAQ M Z U.Reduction of chromium(VI)by locally isolated Pseudomonas sp.C-171[J].Turkish Journal of Biology,2007,31(3):161-166.

    • [21] SNOW E T.Effects of chromium on DNA replication in vitro[J].Environ Health Perspect,1994,102:41-44.

    • [22] CARLOS C,JESÚS C,SILVIA D,et al.Interactions of chromium with microorganisms and plants[J].Fems Microbiology Reviews,2001,25(3):335-347.

    • [23] 姚莹,杨柏俊,张锁德,等.铁基非晶合金和13Cr不锈钢在超临界 CO2环境的腐蚀行为[J].中国表面工程,2023,36(1):85-94.YAO Ying,YANG Bojun,ZHANG Suode,et al.Corrosion behavior of Fe-based amorphous alloys and 13Cr stainless steels under supercritical CO2 environment[J].China Surface Engineering,2023,36(1):85-94.(in Chinese)

    • [24] 陈东旭,郭阳阳,祁继隆,等.脉冲偏压对316L不锈钢表面类金刚石薄膜腐蚀行为影响[J].中国表面工程,2022,35(5):272-278.CHEN Dongxu,GUO Yangyang,QI Jilong,et al.Effects of pulsed bias on the corrosion behavior of diamond-like carbon film prepared on the surface of 316L stainless steel[J].China Surface Engineering,2022,35(5):272-278.(in Chinese)

    • [25] 杨小佳,刘智勇,张达威,等.工业纯钛TA2在含硫化物深海水环境中的应力腐蚀行为[J].中国表面工程,2019,32(4):17-26.YANG Xiaojia,LIU Zhiyong,ZHANG Dawei,et al.Stress corrosion cracking behavior of industrial pure titanium TA2 in sulfide containing deep seawater environment[J].China Surface Engineering,2019,32(4):17-26.(in Chinese)

    • [26] HU J,LUO T,HU A,et al.Electrochemical corrosion behaviors of Sn-9Zn-3Bi-xCr solder in 3.5% NaCl solution[J].Journal of Electronic Materials,2011,40(7):1556-1562.

    • [27] KIM J J,YOUNG Y M.Study on the passive film of type 316 stainless steel[J].International Journal of Electrochemical Science,2013,8(10):11847-11859.

    • [28] PARK K,AHN S,KWON H.Effects of solution temperature on the kinetic nature of passive film on Ni[J].Electrochimica Acta,2011,56(3):1662-1669.

    • [29] 窦为学,国栋,冯捷,等.含Nb微合金化钢腐蚀规律研究与分析[J].钢铁钒钛,2019,177(3):139-143.DOU Weixue,GUO Dong,FENG Jie,et al.Study on electrochemical corrosion of Nb microalloy steel[J].Iron Steel Vanadium Titanium,2019,177(3):139-143.(in Chinese)

    • [30] 董方,卜凡超,郄俊懋.Nb 对09CuPRe耐候钢在模拟工业大气腐蚀环境下耐蚀性的影响[J].材料保护,2014,47(7):57-59.DONG Fang,BU Fanchao,QIE Junmao.Effect of niobium on corrosion resistance of 09CuPRe weather-resistant steel in simulated industrial atmospheric environment[J].Materials Protection,2014,47(7):57-59.(in Chinese)

    • [31] WANG Y,ZHANG X,CHENG L,et al.Correlation between active/inactive(Ca,Mg,Al)-Ox-Sy inclusions and localised marine corrosion of EH36 steels[J].Journal of Materials Research and Technology-Jmr&T,2021,13:2419-2432.

    • [32] LU S,DOU W,GU T,et al.Extracellular electron transfer corrosion mechanism of two marine structural steels caused by nitrate reducing Halomonas titanicae[J].Corrosion Science,2023,217:111125.

    • [33] American Society for Testing and Materials.Standard practice for preparing,cleaning,and evaluating corrosion test specimens:ASTM G1-03 [S].PA:ASTM international,2003.

    • [34] JIA R,YANG D,LI Y,et al.Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethyl-benzylammonium chloride enhanced by D-amino acids[J].International Biodeterioration & Biodegradation,2017,117:97-104.

    • [35] 李翔,程学群,李晓刚,等.新型热扩散法制备耐海洋环境腐蚀钢筋及其耐蚀性[J].中国表面工程,2017,30(6):43-49.LI Xiang,CHENG Xuequn,LI Xiaogang,et al.A novel thermal diffusion method to produce marine corrosion resistant steel bar and its corrosion resistance[J].China Surface Engineering,2017,30(6):43-49.(in Chinese)

    • [36] 马菱薇,卢桃丽,张达威,等.耐候钢锈层的稳定化处理及锈层的生长机制[J].中国表面工程,2022,35(4):151-160.MA Lingwei,LU Taoli,ZHANG Dawei,et al.Stabilization treatment and growth mechanism of rust layers on weathering steel surface[J].China Surface Engineering,2022,35(4):151-160.(in Chinese)

    • [37] XU D,GU T,LOVLEY D R.Microbially mediated metal corrosion[J].Nature Review Microbiology,2023,21:1-14.

    • [38] WONG P,CHANG L.Effects of copper,chromium and nickel on growth,photosynthesis and chlorophyll a synthesis of Chlorella pyrenoidosa 251[J].Environmental Pollution,1991,72(2):127-139.

    • [39] ZHOU E,ZHANG M,HUANG Y,et al.Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa[J].Water Research,2022,220:118634.

    • [40] CHEN S,ZHANG D.Corrosion behavior of Q235 carbon steel in air-saturated seawater containing Thalassospira sp[J].Corrosion Science,2019,148:71-82.

  • 手机扫一扫看