en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马文彬,男,1985年出生,博士。主要研究方向为燃料电池金属双极板表面改性技术。E-mail:binwenma2008@126.com

通讯作者:

张辉,女,1978年出生,博士,研究员,博士研究生导师。主要研究方向为空间原位资源利用和储能发电技术。E-mail:hzhreach@139.com

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20230908002

参考文献 1
任德鹏,李青,彭松.月面探测器燃料电池应用的初步研究[J].深空探测学报,2017,4(6):552-556.REN Depeng,LI Qing,PENG Song.Preliminary research on the application of fuel cells on lunar probe[J].Journal of Deep Space Exploration,2017,4(6):552-556.(in Chinese)
参考文献 2
李俊超,王清,蒋锐,等.质子交换膜燃料电池双极板材料研究进展[J].材料导报,2018,32(8):2584-2600.LI Junchao,WANG Qing,JIANG Rui,et al.Research progress of bipolar plate material for proton exchange membrane fuel cells[J].Materials Reports,2018,32(8):2584-2600.(in Chinese)
参考文献 3
LIU Y,TU Z,CHAN S H.Applications of ejectors in proton exchange membrane fuel cells:A review[J].Fuel Processing Technology,2021,214:1-12.
参考文献 4
SHI J,ZHANG P,HAN Y,et al.Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC[J].International Journal of Hydrogen Energy,2020,45(16):10050-10058.
参考文献 5
WILBERFORCE T,HASSAN Z,OGUNGBEMI E,et al.A comprehensive study of the effect of bipolar plate(BP)geometry design on the performance of proton exchange membrane(PEM)fuel cells[J].Renewable and Sustainable Energy Reviews,2019,111:236-260.
参考文献 6
孙贤伟,李希超,赵经香,等.质子交换膜燃料电池双极板防护涂层研究进展[J].表面技术,2023,52(5):26-36.SUN Xianwei,LI Xichao,ZHAO Jingxiang,et al.Research progress on protective coatings for bipolar plates of proton exchange membrane fuel cells[J].Surface Technology,2023,52(5):26-36.(in Chinese)
参考文献 7
赵秋萍,钱庆一,张斌,等.质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J].材料导报,2020,34:395-399.ZHAO Qiuping,QIAN Qingyi,ZHANG Bin,et al.Research progress of carbon-based protective coatings on metallic bipolar plates in proton exchange membrane fuel cells[J].Materials Reports,2020,34:395-399.(in Chinese)
参考文献 8
XU J,HUANG H J,LI Z,et al.Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell[J].Journal of Alloys and Compounds,2016,663:718-730.
参考文献 9
ZHANG P,HAO C,HAN Y,et al.Electrochemical behavior and surface conductivity of NbC modified Ti bipolar plate for proton exchange membrane fuel cell[J].Surface and Coatings Technology,2020,397:1-7.
参考文献 10
PUGALMANI S,SRINIVASAN A,RAJENDRAN N.Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for proton exchange membrane fuel cell(PEMFC)[J].International Journal of Hydrogen Energy,2015,40(8):3359-3369.
参考文献 11
PENG S,XU J,LI Z,et al.A reactive-sputter-deposited TiSiN nanocomposite coating for the protection of metallic bipolar plates in proton exchange membrane fuel cells[J].Ceramics International,2020,46(3):2743-2757.
参考文献 12
林静,张硕,马德政,等.沉积温度对AlCrTiN涂层组织结构与性能的影响[J].中国表面工程,2021,34(6):114-123.LIN Jing,ZHANG Shuo,MA Dezheng,et al.Effects of deposition temperature on the structure and property of AlCrTiN coatings[J].China Surface Engineering,2021,34(6):114-123.(in Chinese)
参考文献 13
ZHANG D,DUAN L,GUO L,et al.TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating[J].International Journal of Hydrogen Energy,2011,36(15):9155-9161.
参考文献 14
LI T,YAN Z,LIU Z,et al.Surface microstructure and performance of TiN monolayer film on titanium bipolar plate for PEMFC[J].International Journal of Hydrogen Energy,2021,46(61):31382-31390.
参考文献 15
胡智勇,袁力,罗宏.氮气流量对质子交换膜燃料电池316L不锈钢双极板TiN涂层性能的影响[J].山东化工,2023,52(2):45-49.HU Zhiyong,YUAN Li,LUO Hong.Effect of nitrogen flow rate on the performance of TiN coating on 316L stainless steel bipolar plates for proton exchange membrane fuel cells[J].Shandong Chemical Industry,2023,52(2):45-49.(in Chinese)
参考文献 16
畅为航,蔡海潮,雷贤卿,等.磁控溅射(AlCrNbTiVCe)N 涂层的高温摩擦学机理[J].中国表面工程,2023,36(5):131-141.CHANG Weihang,CAI Haichao,LEI Xianqing,et al.High-temperature tribological mechanism of(AlCrNbTiVCe)N coating with magnetron sputtering[J].China Surface Engineering,2023,36(5):131-141.(in Chinese)
参考文献 17
BULL S J.Nanoindentation of coatings[J].Journal of Physics D:Applied Physics,2005,38(24):R393-R413.
参考文献 18
WANG L,NORTHWOOD D,NIE X,et al.Corrosion properties and contact resistance of TiN,TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments[J].Journal of Power Sources,2010,195(12):3814-3821.
参考文献 19
NGUYEN W,DUNCAN J F,DEVINE T M,et al.Electrochemical polarization and impedance of reinforced concrete and hybrid fiber-reinforced concrete under cracked matrix conditions[J].Electrochimica Acta,2018,271:319-336.
参考文献 20
JIN J,HE Z,ZHAO X.Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti-6Al-4V bipolar plates for PEMFC[J].International Journal of Hydrogen Energy,2020,45(22):12489-12500.
参考文献 21
高海洋,张斌,魏殿忠,等.脉冲频率对HiPIMS制备TiN薄膜组织和力学性能的影响[J].中国表面工程,2022,35(5):192-199.GAO Haiyang,ZHANG Bin,WEI Dianzhong,et al.Effects of pulse frequency on the microstructure and mechanical property of TiN films prepared by HiPIMS[J].China Surface Engineering,2022,35(5):192-199.(in Chinese)
参考文献 22
MEI H J,ZHAO S S,CHEN W,et al.Microstructure and residual stress of TiN films deposited at low temperature by arc ion plating[J].Transactions of Nonferrous Metals Society of China,2018,28(7):1368-1376.
参考文献 23
张向东,蔡习军,蔡飞,等.钛合金表面不同多层结构 Cr/CrAlN 涂层的制备及磨损性能[J].材料导报,2022,36(15):1-6.ZHANG Xiangdong,CAI Xijun,CAI Fei,et al.Preparation and wear properties of Cr/CrAlN coatings with different multilayer structures on the titanium alloys surface[J].Materials Reports,2022,36(15):1-6.(in Chinese)
参考文献 24
吴玉广,陈福砦.离子镀膜中的弧电流对膜层质量的影响[J].真空科学与技术,1999,19(5):392-395.WU Yuguang,CHEN Fuzhai.Influence of arc current on film properties in multi arc ion plating[J].Vacuum Science and Technology,1999,19(5):392-395.(in Chinese)
参考文献 25
ANTUNES R,RODAS A,LIMA N,et al.Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316L austenitic stainless steel for orthopedic applications[J].Surface and Coatings Technology,2010,205(7):2074-2081.
参考文献 26
王其晒,张林,李伯荣,等.电弧离子镀CrTiN涂层的结构及耐腐蚀性能[J].金属热处理,2021,46(8):219-224.WANG Qishai,ZHANG Lin,LI Borong,et al.Structure and corrosion resistance of CrTiN coating deposited by arc ion plating[J].Heat Ttreatment of Metals,2021,46(8):219-224.(in Chinese)
参考文献 27
杨红艳,韦天国,张瑞谦,等.电弧离子镀工艺参数对Cr涂层沉积及性能的影响[J].材料保护,2021,54(12):97-103.YANG Hongyan,WEI Tianguo,ZHANG Ruiqian,et al.Effect of arc ion plating technological parameters on the deposition and properties of Cr coatings[J].Materials Protection,2021,54(12):97-103.(in Chinese)
参考文献 28
OLIVER W.An improved technique for determining hardness and elastic[J].Journal of Materials Research,1992,7(6):1564-1583.
参考文献 29
FISCHER-CRIPPS A C.Illustrative analysis of load-displacement curves in nanoindentation[J].Journal of Materials Research,2007,22(11):3075-3086.
参考文献 30
冯兴国,杨拉毛草,周晖,等.温度对类富勒烯碳氮薄膜微观结构与摩擦学性能的影响[J].润滑与密封,2017,42(11):7-12.FENG Xingguo,YANG Lamaocao,ZHOU Hui,et al.Influence of depositing temperature on structure and tribological properties of fullerene-like CNx thin films[J].Lubrication Engineering,2017,42(11):7-12.(in Chinese)
参考文献 31
CUI S,YIN X,YU Q,et al.Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light[J].Corrosion Science,2015,98:471-477.
参考文献 32
JIN J,ZHU Z,ZHENG D.Influence of Ti content on the corrosion properties and contact resistance of CrTiN coating in simulated proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2017,42(16):11758-11770.
参考文献 33
YUAN L,WANG H.Corrosion behaviors of a γ-toughened Cr13Ni5Si2/Cr3Ni5Si2 multi-phase ternary metal silicide alloy in NaCl solution[J].Electrochimica Acta,2009,54(2):421-429.
参考文献 34
项燕雄,王泽松,刘贵昂,等.304 不锈钢表面单层/多层TiN基涂层制备及耐磨蚀性能研究[J].表面技术,2022,51(5):121-128.XIANG Yanxiong,WANG Zesong,LIU Guiang,et al.Preparation and antiwear and anticorrosion properties of TiN-based monolayer/multilayer coatings on 304 stainless steel[J].Surface Technology,2022,51(5):121-128.(in Chinese)
目录contents

    摘要

    金属 Ti 因其密度小(仅为不锈钢的 0.6 倍)和比强度高等特点,是轻量化空间燃料电池金属板材料的首要选择,但其在弱酸性环境中长时间工作容易被腐蚀。为了改善金属 Ti 双极板耐蚀性,采用多弧离子镀技术在金属 Ti 表面制备了由 Ti 过渡层及 TiN 表层构成的 Ti / TiN 复合涂层,研究制备工艺参数对 Ti / TiN 复合涂层微观结构及力学、电化学性能的影响规律。利用场发射扫描电子显微镜(SEM)分析涂层的微观形貌,利用 X 射线衍射仪分析涂层的相组成,利用纳米压痕仪评价涂层的力学性能,利用电化学工作站评价涂层在模拟质子交换膜燃料电池(PEMFC)阴极工作环境下的耐蚀性。结果表明:制备工艺参数优化后的 Ti / TiN 复合涂层具有优异的表面质量和良好的耐蚀性,腐蚀电流密度为 6.383 μA / cm2 ,是金属 Ti 腐蚀电流密度的 0.6 倍,Ti / TiN 复合涂层显著提高了金属 Ti 的耐蚀性,可为空间燃料电池金属双极板表面改性提供技术支持。

    Abstract

    Proton-exchange membrane fuel cells (PEMFCs) are currently widely investigated for the development of space power systems for future deep-space exploration and lunar research stations in China. Key technological research pertaining to PEMFCs for space applications must be conducted urgently. The bipolar plate, which is the core component of PEMFCs, significantly affects the weight and cost of the battery stack. Titanium is the preferred metal-plate material for lightweight space fuel-cells owing to its low density (only 0.6 times that of stainless steel) and high specific strength. However, they are susceptible to corrosion when used in weak acidic environments for long durations. To improve the corrosion resistance of titanium bipolar plates, a Ti / TiN composite coating composed of a Ti transition layer and a TiN surface layer is prepared on the surface of titanium via multi-arc ion plating technology, which is a physical vapor deposition technique. The effects of preparation process parameters such as the substrate temperature and arc current on the microstructure and mechanical / electrochemical properties of the Ti / TiN composite coating are investigated. The cathode sputtering target material is imported titanium metal (purity=99.995%), the sputtering gas is high-purity argon (purity=99.99%), and the reaction gas is high-purity nitrogen (purity=99.99%). The sheet of titanium was sequentially sonicated in acetone, anhydrous ethanol, and deionized water for 15 minutes to remove oil stains and attachments on the surface of the sample. Then, nitrogen flow was used to blow dry the surface moisture of the sample to ensure that there were no residual water stains on the surface. After that, the sample was placed in a drying dish for later use. When the vacuum degree of the equipment is better than 5.0 mPa, perform ion source cleaning to remove the oxide layer on the surface of the Ti substrate and activate the surface of the Ti substrate. When preparing the Ti transition layer on the titanium metal substrate, the target substrate distance is set to 23 cm, the arc current is 70 A, the substrate temperature is 150 ℃, and the deposition time is 10 min. When preparing TiN layers on the Ti transition layer, two different substrate temperatures (150, 230 ℃) and arc currents (50, 120 A) are selected. A field-emission scanning electron microscope (Carl Zeiss AG Corporation) is used to analyze the micromorphology of the Ti / TiN composite coating. An X-ray diffractometer (Rigaku Corporation) is used to analyze the phase composition of the coating. A nanoindentation instrument (Anton Paar) is used to evaluate the mechanical properties of the coating. The indentation depth is controlled to be less than 10% of the thickness of the Ti / TiN composite coating. During testing, the maximum load is increased linearly to 5 mN at a loading and unloading rate of 10 mN / min. A TalySurf CCI Lite optical interferometric surface profilometer (Taylor Hobson) is used to test the surface roughness and thickness of the Ti / TiN composite coating. An electrochemical workstation is used to evaluate the corrosion resistance of the coating under a simulated operating environment of a PEMFC cathode. The results show that the Ti / TiN composite coating prepared under a substrate temperature of 150 ℃ and an arc current of 50 A offers the best surface quality, the lowest surface roughness, and the lowest corrosion current density. The Ti / TiN composite coating with optimized preparation process parameters exhibits excellent surface quality and high corrosion resistance, with a corrosion current density of 6.383 μA / cm2 (i.e., 0.6 times the corrosion current density of titanium). Furthermore, the Ti / TiN composite coating significantly improves the corrosion resistance of titanium. This study provides technical support for the surface modification of metal bipolar plates used in space fuel-cells.

  • 0 前言

  • 电源系统是航天器的重要组成部分之一,其作用是为航天器的其他分系统提供可靠的电能。随着深空探测、载人航天等任务的开展,航天器对其电源系统的需求向着高效率、高比能量及高能量密度方向发展。燃料电池的能量密度较高(可达 400~1 000 W·h / kg),在航天领域应用具有明显优势[1],受到美国、日本和俄罗斯等航天大国的青睐。其中,质子交换膜燃料电池(Proton-exchange membrane fuel cell,PEMFC)具有比功率高、比能量高[2]、可靠性高、安全无污染及能与飞行器推进分系统共用氧化剂的特点[3]。PEMFC 是未来我国深空探测、月球科研站建设所需空间电源系统发展的趋势,亟须开展面向空间应用环境的 PEMFC 的关键技术研究。

  • PEMFC 的核心部件双极板占电池堆总重量的 60%~80%,占电池堆总成本的 25%~40%[4],其对电池堆的重量、成本起着决定性作用。金属 Ti 因其具有密度小(仅为不锈钢的 0.6 倍)、比强度高和耐腐蚀性强等特点,是轻量化、可靠性空间 PEMFC 金属双极板材料的首要选择,但其在弱酸性环境中长时间工作容易被腐蚀和 / 或钝化[5]。钝化膜的形成导致接触电阻增加,溶解的金属离子可能造成催化剂中毒[6]。在金属双极板表面制备导电、耐腐蚀涂层,可显著改善其在苛刻工作环境中的导电性和耐蚀性,是解决上述问题的有效途径[7]。目前,金属双极板表面常见金属基涂层主要有金属碳化物涂层(如 TiC[4]、 ZrCN[8]、NbC[9])、金属氮化物涂层(TiAlN[10]、 TiSiN[11]、AlCrTiN[12])等。金属氮化物涂层中的 TiN 涂层由于其良好的导电性及耐腐蚀性,成为金属双极板涂层的研究热点[13]。LI 等[14]采用多弧离子镀技术在纯 Ti 基体上制备了单层 TiN 涂层,其耐蚀性较纯 Ti 有所提高。胡智勇等[15]采用多弧离子镀技术,通过调控氮气流量,在 316L 不锈钢表面制备了 TiN 涂层。结果表明,随着氮气流量的增加,其耐蚀性先增强后减小。

  • 本文采用多弧离子镀技术在金属 Ti 表面制备 Ti / TiN 复合涂层,通过优化工艺参数来调控 Ti / TiN 复合涂层微观结构,并研究结构对涂层的力学及电化学性能的影响规律,为金属双极板涂层的研发提供技术基础。

  • 1 试验

  • 1.1 样品制备

  • 试验使用 LIP 1300 型多弧离子镀膜设备,在金属 Ti 基底上制备具有 Ti 过渡层和 TiN 表层的 Ti / TiN 复合涂层。图1 为多弧离子镀装置示意图,该装置有四个单质 Ti 靶作为溅射源,金属 Ti 基底悬挂在设备的旋转支架上,镀膜时支架以 5 r / min 的速度旋转。

  • 图1 多弧离子镀装置

  • Fig.1 Multi-arc ion plating device

  • 试验材料选用金属 Ti,厚度 0.1 mm,牌号为 TA1,其主要成分如表1 所示。阴极溅射靶材选用纯度为 99.995 %的进口金属 Ti 靶,溅射气体选用纯度为 99.99%的高纯氩气,反应气体选用纯度为 99.99 %的高纯氮气。

  • 表1 TA1 化学成分(质量分数 / wt.%)

  • Table1 Chemical composition of TA1 (wt.%)

  • 1.2 沉积过程

  • 镀膜前对样品进行预处理,将尺寸为 10 mm× 10 mm×0.1 mm 的金属 Ti 依次在丙酮、无水乙醇和去离子水中分别超声清洗 15 min,目的是去除样品表面的油渍和附着物,而后用氮气流吹干样品表面水份,确保样品表面无水渍残留后,将样品放入干燥皿中备用。

  • 当设备真空度优于 5.0 mPa 时,进行离子源清洗,去除金属 Ti 基底表面的氧化层,活化金属 Ti 基底表面。离子源电压设定为 2 kV,基底偏压 −800 V,通入氩气对金属 Ti 基底进行离子源刻蚀 30 min。在金属 Ti 基底上制备 Ti 过渡层时,阴极溅射靶选用四个单质 Ti 靶,设置靶基距为 23 cm,电弧弧流为 70 A,基底温度 150℃,沉积时间为 10 min。在 Ti 过渡层上制备 TiN 层时,分别选用两种基底温度(150、230℃)和两种电弧弧流(50、 120 A),具体制备工艺参数如表2 所示,四种状态的样品分别标记为 TiN-150℃、TiN-230℃、 TiN-50 A 和 TiN-120 A。

  • 表2 TiN 涂层的沉积参数

  • Table2 Deposition parameters of the TiN coating

  • 1.3 结构表征及性能测试

  • 采用 X 射线衍射仪(Rigaku D / max2500PC,日本理学公司)分析 Ti / TiN 复合涂层的相组成。选用 Cu 靶 Kα 射线,管电压和管电流分别为 40 kV、 200 mA,衍射角 2θ 的扫描范围为 30°~90°。采用场发射扫描电子显微镜(FESEM,Zeiss supra55) 观察涂层的表面形貌,加速电压 5 kV。采用 Anton Paar 纳米压痕仪测试涂层硬度,控制压入深度小于涂层厚度的 10%[16],此条件下基底对所测涂层的力学性能影响可忽略不计[817],线性加载到最大载荷 5 mN,加载和卸载速率为 10 mN / min。采用英国 Taylor Hobson 公司的 TalySurf CCI Lite 型光干涉表面轮廓仪测试涂层表面粗糙度及涂层厚度。

  • 按照 GB / T20042.6—2011《质子交换膜燃料电池第 6 部分:双极板特性测试方法》评价涂层的耐腐蚀性能。采用三电极体系,其中铂片为辅助电极,待测样品为工作电极,饱和甘汞电极为参比电极。模拟 PEMFC 阴极工作环境,向 0.5 mol / L H2SO4+ 5 mg / L HF 溶液中通入氧气,流速 20 mL / min。采用电化学工作站测试样品在 80℃的上述腐蚀液中的动电位极化曲线,扫描速率为 2 mV / s,电位扫描范围−0.5~0.9 V(相对于 SCE)。对动电位极化曲线进行塔菲尔(Tafel)拟合,Tafel 直线的交点所对应的电流即为样品的腐蚀电流。动电位极化测试中获得的极化电阻(Rp)可用于评估腐蚀防护特性,因为 Rp 与瞬时界面反应速率(即腐蚀速率)成反比[18]。样品的 Rp 采用 Stern-Geary 公式进行计算[19]

  • Rp=βanode βcathode 2.303Icorr βanode +βcathode
    (1)
  • 式中,βanode 表示阳极 Tafel 曲线斜率,βcathode 表示阴极 Tafel 曲线斜率,Icorr 表示涂层的腐蚀电流密度(μA / cm2)。

  • 为进一步研究涂层的保护能力,可以计算涂层的保护效率 Pi,计算公式[20]如下:

  • Pi=1-Icorr Icorr 0×100%
    (2)
  • 式中,Icorr 0表示金属 Ti 的腐蚀电流密度(μA / cm2)。

  • 2 结果与讨论

  • 2.1 基底温度及电弧弧流对 Ti / TiN 涂层物相的影响

  • 图2 为不同基底温度和电弧弧流下制备涂层的典型 XRD 谱图。观察图2a 中 TiN-150℃涂层和 TiN-230℃涂层的 XRD 谱图,可以发现 TiN-150℃ 涂层和 TiN-230℃涂层的 XRD 谱图中除 Ti 基底的衍射峰外,出现具有面心立方晶体结构的 TiN(111)、(200)、(220)和(311)晶面特征衍射峰[18]。同时可以发现,(111)晶面衍射峰峰强高于(200)、(220)和(311)晶面,TiN-150℃涂层沿着(111)晶面择优取向生长[1421],晶面择优取向与自由能最低有关[22]。从图2b 中电弧弧流为 50 和 120 A 条件下制备涂层的 XRD 谱图中,同样可以观察到 TiN(111)、(200)、(220)和(311)晶面对应的衍射峰,表明在金属 Ti 表面成功制备了 TiN 涂层。

  • 图2 不同工艺参数下 Ti / TiN 复合涂层的 XRD 图谱

  • Fig.2 XRD spectra of the Ti / TiN composite coatings deposited at different process parameters

  • 2.2 基底温度及电弧弧流对 Ti / TiN 涂层表面粗糙度的影响

  • 图3 为 Ti / TiN 复合涂层的表面三维形貌和表示 Ti / TiN 复合涂层表面粗糙度数值的柱状图。采用均方根高度[23]的方法表征涂层表面粗糙度。基底温度 150 和 230℃、电弧弧流 50 和 120 A 四种工艺制备 Ti / TiN 复合涂层的表面粗糙度(Ra)分别为 89.94、 92.41、64.86 和 95.8 nm。分析可知,相比较于基底温度在 230℃时制备的涂层,基底温度 150℃时制备涂层的表面粗糙度更小;相比较于电弧弧流在 70 (TiN-150℃)及 120 A 时制备的涂层,电弧弧流为 50 A 时制备涂层的表面粗糙度更小,其原因为增加电弧电流,靶材整体温度将升高,涂层表面产生的颗粒会随之增多,导致涂层表面粗糙度变大[24]

  • 图3 Ti / TiN 复合涂层 3D 形貌和表面粗糙度柱状图

  • Fig.3 3D image of Ti / TiN composite coatings and histogram of surface roughness

  • 2.3 基底温度及电弧弧流对Ti / TiN 涂层形貌的影响

  • 图4 为基底温度 150 和 230℃条件下制备的 Ti / TiN 复合涂层的表面形貌及涂层表面颗粒尺寸统计柱状图。可以发现涂层表面连续、致密且无裂纹,局部表面可以观察到少量颗粒状物质和凹坑,这是多弧离子镀技术制备的涂层表面固有的典型形貌特征[25]。涂层沉积过程中由于电弧弧斑不稳定,在靶材转变为等离子体的过程中,阴极表面的中性粒子会随等离子体喷射出来,并沉积到涂层表面[26]。对比图4a、4d 可以发现,基底温度对涂层表面形貌及涂层表面颗粒大小有显著影响。基底温度为 150℃ 时,涂层表面致密,表面大颗粒数量少,颗粒平均尺寸 1.51 μm;基底温度为 230℃时,涂层表面大颗粒较多,平均尺寸 1.89 μm。由 TalySurf CCI Lite 型光干涉仪测定基底温度 150 和 230℃条件下制备 Ti / TiN 复合涂层的厚度分别约为 1.53、1.78 μm。

  • 图4 不同基底温度下制备 Ti / TiN 复合涂层的表面形貌及颗粒尺寸分布

  • Fig.4 Surface morphology of Ti / TiN composite coatings deposited at different substrate temperature and particle size distribution

  • 图5 为电弧弧流 50 和 120 A 条件下制备 Ti / TiN 复合涂层的表面形貌及涂层表面颗粒尺寸统计柱状图,其中图5b 为 5a 的局部放大图,图5e 为 5d 的局部放大图。对比分析图5a、4a 和 5d 可以发现,低电弧弧流(50 A)工艺条件下所制备涂层的表面大颗粒数目较少且颗粒平均尺寸较小为 1.39 μm,涂层的表面质量较好。电弧弧流 70(TiN-150℃)和 120 A 条件下制备涂层的表面大颗粒数目较多,颗粒平均尺寸较大。电弧弧流 120 A 时制备的涂层表面颗粒平均尺寸为 1.98 μm,主要原因是随着涂层沉积过程中电弧弧流的增加,靶材蒸发速度加快,导致沉积在金属 Ti 基底上的大颗粒数目增加[2427]。由 TalySurf CCI Lite 型光干涉仪测定电弧弧流为 50 和 120 A 下制备 Ti / TiN 复合涂层的厚度分别约为 1.68、1.39 μm。

  • 图5 不同电弧弧流下制备 Ti / TiN 复合涂层的表面形貌及颗粒尺寸分布

  • Fig.5 Surface morphology of Ti / TiN composite coatings deposited at different arc current and particle size distribution

  • 2.4 基底温度及电弧弧流对 Ti / TiN 涂层纳米硬度的影响

  • 采用 Oliver-Pharr 方法测量涂层的纳米硬度[28-29],评估涂层的力学性能。从图6 中 TiN-150℃涂层和 TiN-230℃涂层的位移-载荷曲线可以发现,相比较于 TiN-230℃涂层,TiN-150℃涂层纳米硬度数据离散程度小,测试数据重复性好。涂层的表面质量如表面粗糙度、致密度等对涂层纳米硬度有较大的影响。结合图4a、4d 可知,TiN-150℃涂层纳米硬度数据离散程度小的主要原因是涂层表面致密。 TiN-150℃和 TiN-230℃涂层的纳米硬度数值分别为 33.75、33.06 GPa,两种工艺条件制备的 Ti / TiN 复合涂层纳米硬度数值较为相近,由此可以推断该种涂层的纳米硬度受基底温度影响较小。

  • 图6 不同基底温度制备 Ti / TiN 复合涂层纳米压入硬度测试曲线

  • Fig.6 Nanoindentation hardness test curve of Ti / TiN composite coatings deposited at different substrate temperature

  • 图7 为电弧弧流分别为 50 和 120 A 条件下制备 Ti / TiN 复合涂层的位移-载荷曲线。从图7 中TiN-50 A 和 TiN-120 A 涂层的位移-载荷曲线可以发现, TiN-50 A 涂层纳米硬度数据与 TiN-120 A 涂层纳米硬度数据离散程度接近。TiN-50 A 和 TiN-120 A 涂层的纳米硬度数值分别为 29.4、28.0 GPa。结合图5a、5d 可知,TiN-50 A 涂层表面致密,致密的涂层可能会阻碍位错的运动,从而提高其硬度[30]

  • 图7 不同电弧弧流制备 Ti / TiN 复合涂层纳米压入硬度测试曲线

  • Fig.7 Nanoindentation hardness test curve of Ti / TiN composite coatings deposited at different arc current

  • 2.5 基底温度及电弧弧流对 Ti / TiN 涂层耐腐蚀性能的影响

  • 图8a 为金属 Ti 样品、TiN-150℃涂层和 TiN-230℃涂层样品在80℃下模拟PEMFC阴极工作环境中浸泡 30 min 后,进行测试得到的动电位极化曲线。图8b 为金属 Ti 样品、TiN-50 A 涂层和 TiN-120 A 涂层样品在 80℃下模拟 PEMFC 阴极工作环境中浸泡 30 min 后,进行测试得到的动电位极化曲线。采用 Tafel 外推法计算腐蚀电位(Ecorr)和腐蚀电流密度(Icorr)的数值,具体如表3 所示。

  • 图8 基体与涂层的动电位极化曲线

  • Fig.8 Potentiodynamic polarization curve of substrate and coating

  • 表3 金属 Ti 及 Ti / TiN 复合涂层从动电位极化曲线获得的电化学数据

  • Table3 Electrochemical parameters obtained from potentiodynamic polarization curves of bare Ti and the Ti / TiN composite coating

  • Where Ecorr is corrosion potential, Icorr is corrosion current densit, ßanode is slope of anode Tafel curve, ßcathode is slope of cathode Tafel curve, Rp is polarization resistance, Pi is protection efficiency.

  • 由图8a 可知,TiN-150℃涂层和 TiN-230℃涂层在 0.4~0.8 V 范围内存在较宽的钝化区。金属 Ti、TiN-150℃涂层和 TiN-230℃涂层的 Ecorr 分别为 0.048、0.138 和 0.123 V。一般来说,Ecorr 反映了样品的耐腐蚀程度,较正的 Ecorr 表现出较好的耐腐蚀性[31],由此可知,TiN-150℃涂层、 TiN-230℃涂层耐蚀性优于金属 Ti。TiN-150℃和 TiN-230℃涂层的 Icorr分别为 6.462、7.316 μA / cm2,均低于金属 Ti 样品的 Icorr。从 EcorrIcorr的数据可以判断出,两种涂层样品的耐蚀性均优于金属 Ti 样品,并且 TiN-150℃涂层耐蚀性优于 TiN-230℃涂层。由式(1)计算得到 TiN-150℃和 TiN-230℃ 涂层的 Rp 分别为 472.79、411.73 kΩ·cm 2。由式(2) 计算得到 TiN-150℃和 TiN-230℃涂层的 Pi 分别为 37.63%、29.38%。RpPi 数值同样表明, TiN-150℃涂层的耐蚀性优于 TiN-230℃涂层。结合图4a、4d,分析其原因为 TiN-150℃涂层表面质量优于 TiN-230℃涂层,良好的表面质量可以更加有效地阻止腐蚀性离子向金属 Ti 基底表面扩散。

  • 由表3 可知,电弧弧流分别为 50(TiN-50 A)、 70(TiN-150℃)及 120 A(TiN-120 A)三种涂层的 Ecorr分别为 0.115、0.138 和 0.135 V,均高于金属 Ti样品的Ecorr,且三种涂层的Icorr分别为6.383、6.462 和 8.961 μA / cm2 ,分别为金属 Ti Icorr的 61.2%、 62.37%和 86.5%。由 EcorrIcorr数据可知,电弧弧流分别为 50(TiN-50 A)、70(TiN-150℃)及 120 A (TiN-120 A)三种涂层样品的耐蚀性均优于金属 Ti 样品,且 TiN-50 A 涂层耐蚀性最优。电弧弧流分别为 50(TiN-50A)、70(TiN-150℃)及 120 A (TiN-120 A)三种涂层的 Rp 分别为 482.83、472.79 和 422.89 kΩ·cm 2,涂层的 Pi 分别为 38.39%、 37.63%和 13.51%。从 RpPi 数据可知,电弧弧流为 50 A 制备的涂层耐蚀性优于电弧弧流为 70 和 120 A 制备的涂层。电弧弧流会影响涂层的耐蚀性,较低电弧弧流(50 A)条件下制备涂层的耐蚀性优于较高电弧弧流(70、120 A)下制备涂层的耐蚀性,其原因为较低电弧弧流(50 A)条件下制备的 Ti / TiN 复合涂层的表面更加致密,表面质量更好。

  • 采用电化学阻抗谱(Electrochemical impedance spectroscopy,EIS)分析金属 Ti 及 Ti / TiN 复合涂层样品的腐蚀机理,金属 Ti 和 Ti / TiN 复合涂层样品分别选用 RQR)和 RQRQR)))型等效电路,如图9 所示。等效电路图中元件主要包括:工作电极与参比电极之间的溶液电阻(Rs)、涂层电容 (Ccoat)、孔电阻(Rpore)、涂层与基底界面间的电荷转移电阻(Rct)、涂层与基底界面间的双电层电容(Cdl)。

  • 图9 基体与涂层的等效电路图模型[32]

  • Fig.9 Equivalent circuit diagram model of substrate and coating[32]

  • 图10 为金属 Ti、不同基底温度及电弧弧流下制备的涂层在 80℃下模拟 PEMFC 阴极工作环境的溶液中浸泡 30 min 后,进行电化学阻抗测试得到的 Nyquist 图。由图10 可知,所有样品从高频到低频均呈现出单一容抗弧特征。一般情况下, Nyquist 图中的容抗弧半径大小和阻抗值呈正相关特性,且容抗弧半径越大,材料的耐腐蚀能力越好[33-34]。由图10a 可知,不同基底温度涂层样品的容抗弧半径明显大于金属 Ti 的容抗弧半径,因此基底温度分别为 150 和 230℃条件下制备的 Ti / TiN 复合涂层均提高了金属 Ti 的耐腐蚀性,同时由图10a 可知,TiN-150℃涂层的耐腐蚀性能优于 TiN-230℃涂层。同样,由图10b 可知,TiN-50 A 涂层及 TiN-120 A 涂层的容抗弧半径均大于金属 Ti 的容抗弧半径。由此可知,不同电弧弧流下制备涂层的耐腐蚀性优于金属 Ti。同时由 TiN-50 A 涂层的容抗弧半径大于 TiN-120 A 涂层的容抗弧半径可知, TiN-50 A 涂层的耐腐蚀性优于 TiN-120 A 涂层。

  • 图10 基体与涂层的 Nyquist 图

  • Fig.10 Nyquist diagram of substrate and coating

  • 采用ZsimpWin软件对金属Ti样品、TiN-150℃ 涂层、TiN-230℃涂层、TiN-50 A 涂层和 TiN-120 A 涂层在模拟 PEMFC 阴极工作环境中的电化学过程进行拟合,拟合后的数据如表4 所示。可知,四种涂层样品的 Rs 值较为相近,表明样品在模拟溶液中具有相近的离子电导率。

  • 表4 金属 Ti 及 Ti / TiN 复合涂层样品的 EIS 拟合结果

  • Table4 EIS fitted results for the bare Ti and Ti / TiN coating sample

  • Where Rs is solution resistance, Ccoat is capacitance of the coating, Rpore is pore resistance, Cdl is capacitance of the double layer, Rct is charge transfer resistance of coating / substrate interface.

  • 3 结论

  • (1)利用多弧离子镀技术在金属 Ti 表面成功制备了 Ti / TiN 复合涂层。多弧离子镀制备工艺中的基底温度对涂层表面质量、表面大颗粒的尺寸及表面粗糙度有较大影响。较低基底温度(150℃)制备的涂层表面致密,表面粗糙度小,大颗粒平均尺寸为 1.51 μm。

  • (2)多弧离子镀制备工艺中的电弧弧流对涂层表面质量、表面大颗粒的尺寸及表面粗糙度有较大影响。较低电弧弧流(50 A)制备的涂层表面致密,表面粗糙度小,大颗粒平均尺寸为 1.39 μm。

  • (3)由 Tafel 曲线获得的四种 Ti / TiN 复合涂层的 Icorr均小于金属 Ti 的 Icorr,Ti / TiN 复合涂层可以对金属 Ti 基底起到良好的保护作用。金属 Ti 及四种 Ti / TiN 复合涂层的 Nyquist 图均呈现出典型的单容抗弧特征,四种涂层样品的容抗弧半径均大于金属 Ti 的容抗弧半径,同样表明 Ti / TiN 复合涂层可以提高金属 Ti 的耐蚀性。

  • (4)涂层耐蚀性与涂层表面质量密切相关,较低基底温度(150℃)及较低电弧弧流(50 A)条件下制备的 Ti / TiN 复合涂层 Icorr小,耐蚀性好,其主要原因是较低基底温度、电弧弧流条件下制备的涂层表面致密,表面质量好,涂层的耐蚀性与其表面粗糙度密切相关。

  • 参考文献

    • [1] 任德鹏,李青,彭松.月面探测器燃料电池应用的初步研究[J].深空探测学报,2017,4(6):552-556.REN Depeng,LI Qing,PENG Song.Preliminary research on the application of fuel cells on lunar probe[J].Journal of Deep Space Exploration,2017,4(6):552-556.(in Chinese)

    • [2] 李俊超,王清,蒋锐,等.质子交换膜燃料电池双极板材料研究进展[J].材料导报,2018,32(8):2584-2600.LI Junchao,WANG Qing,JIANG Rui,et al.Research progress of bipolar plate material for proton exchange membrane fuel cells[J].Materials Reports,2018,32(8):2584-2600.(in Chinese)

    • [3] LIU Y,TU Z,CHAN S H.Applications of ejectors in proton exchange membrane fuel cells:A review[J].Fuel Processing Technology,2021,214:1-12.

    • [4] SHI J,ZHANG P,HAN Y,et al.Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC[J].International Journal of Hydrogen Energy,2020,45(16):10050-10058.

    • [5] WILBERFORCE T,HASSAN Z,OGUNGBEMI E,et al.A comprehensive study of the effect of bipolar plate(BP)geometry design on the performance of proton exchange membrane(PEM)fuel cells[J].Renewable and Sustainable Energy Reviews,2019,111:236-260.

    • [6] 孙贤伟,李希超,赵经香,等.质子交换膜燃料电池双极板防护涂层研究进展[J].表面技术,2023,52(5):26-36.SUN Xianwei,LI Xichao,ZHAO Jingxiang,et al.Research progress on protective coatings for bipolar plates of proton exchange membrane fuel cells[J].Surface Technology,2023,52(5):26-36.(in Chinese)

    • [7] 赵秋萍,钱庆一,张斌,等.质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J].材料导报,2020,34:395-399.ZHAO Qiuping,QIAN Qingyi,ZHANG Bin,et al.Research progress of carbon-based protective coatings on metallic bipolar plates in proton exchange membrane fuel cells[J].Materials Reports,2020,34:395-399.(in Chinese)

    • [8] XU J,HUANG H J,LI Z,et al.Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell[J].Journal of Alloys and Compounds,2016,663:718-730.

    • [9] ZHANG P,HAO C,HAN Y,et al.Electrochemical behavior and surface conductivity of NbC modified Ti bipolar plate for proton exchange membrane fuel cell[J].Surface and Coatings Technology,2020,397:1-7.

    • [10] PUGALMANI S,SRINIVASAN A,RAJENDRAN N.Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for proton exchange membrane fuel cell(PEMFC)[J].International Journal of Hydrogen Energy,2015,40(8):3359-3369.

    • [11] PENG S,XU J,LI Z,et al.A reactive-sputter-deposited TiSiN nanocomposite coating for the protection of metallic bipolar plates in proton exchange membrane fuel cells[J].Ceramics International,2020,46(3):2743-2757.

    • [12] 林静,张硕,马德政,等.沉积温度对AlCrTiN涂层组织结构与性能的影响[J].中国表面工程,2021,34(6):114-123.LIN Jing,ZHANG Shuo,MA Dezheng,et al.Effects of deposition temperature on the structure and property of AlCrTiN coatings[J].China Surface Engineering,2021,34(6):114-123.(in Chinese)

    • [13] ZHANG D,DUAN L,GUO L,et al.TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating[J].International Journal of Hydrogen Energy,2011,36(15):9155-9161.

    • [14] LI T,YAN Z,LIU Z,et al.Surface microstructure and performance of TiN monolayer film on titanium bipolar plate for PEMFC[J].International Journal of Hydrogen Energy,2021,46(61):31382-31390.

    • [15] 胡智勇,袁力,罗宏.氮气流量对质子交换膜燃料电池316L不锈钢双极板TiN涂层性能的影响[J].山东化工,2023,52(2):45-49.HU Zhiyong,YUAN Li,LUO Hong.Effect of nitrogen flow rate on the performance of TiN coating on 316L stainless steel bipolar plates for proton exchange membrane fuel cells[J].Shandong Chemical Industry,2023,52(2):45-49.(in Chinese)

    • [16] 畅为航,蔡海潮,雷贤卿,等.磁控溅射(AlCrNbTiVCe)N 涂层的高温摩擦学机理[J].中国表面工程,2023,36(5):131-141.CHANG Weihang,CAI Haichao,LEI Xianqing,et al.High-temperature tribological mechanism of(AlCrNbTiVCe)N coating with magnetron sputtering[J].China Surface Engineering,2023,36(5):131-141.(in Chinese)

    • [17] BULL S J.Nanoindentation of coatings[J].Journal of Physics D:Applied Physics,2005,38(24):R393-R413.

    • [18] WANG L,NORTHWOOD D,NIE X,et al.Corrosion properties and contact resistance of TiN,TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments[J].Journal of Power Sources,2010,195(12):3814-3821.

    • [19] NGUYEN W,DUNCAN J F,DEVINE T M,et al.Electrochemical polarization and impedance of reinforced concrete and hybrid fiber-reinforced concrete under cracked matrix conditions[J].Electrochimica Acta,2018,271:319-336.

    • [20] JIN J,HE Z,ZHAO X.Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti-6Al-4V bipolar plates for PEMFC[J].International Journal of Hydrogen Energy,2020,45(22):12489-12500.

    • [21] 高海洋,张斌,魏殿忠,等.脉冲频率对HiPIMS制备TiN薄膜组织和力学性能的影响[J].中国表面工程,2022,35(5):192-199.GAO Haiyang,ZHANG Bin,WEI Dianzhong,et al.Effects of pulse frequency on the microstructure and mechanical property of TiN films prepared by HiPIMS[J].China Surface Engineering,2022,35(5):192-199.(in Chinese)

    • [22] MEI H J,ZHAO S S,CHEN W,et al.Microstructure and residual stress of TiN films deposited at low temperature by arc ion plating[J].Transactions of Nonferrous Metals Society of China,2018,28(7):1368-1376.

    • [23] 张向东,蔡习军,蔡飞,等.钛合金表面不同多层结构 Cr/CrAlN 涂层的制备及磨损性能[J].材料导报,2022,36(15):1-6.ZHANG Xiangdong,CAI Xijun,CAI Fei,et al.Preparation and wear properties of Cr/CrAlN coatings with different multilayer structures on the titanium alloys surface[J].Materials Reports,2022,36(15):1-6.(in Chinese)

    • [24] 吴玉广,陈福砦.离子镀膜中的弧电流对膜层质量的影响[J].真空科学与技术,1999,19(5):392-395.WU Yuguang,CHEN Fuzhai.Influence of arc current on film properties in multi arc ion plating[J].Vacuum Science and Technology,1999,19(5):392-395.(in Chinese)

    • [25] ANTUNES R,RODAS A,LIMA N,et al.Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316L austenitic stainless steel for orthopedic applications[J].Surface and Coatings Technology,2010,205(7):2074-2081.

    • [26] 王其晒,张林,李伯荣,等.电弧离子镀CrTiN涂层的结构及耐腐蚀性能[J].金属热处理,2021,46(8):219-224.WANG Qishai,ZHANG Lin,LI Borong,et al.Structure and corrosion resistance of CrTiN coating deposited by arc ion plating[J].Heat Ttreatment of Metals,2021,46(8):219-224.(in Chinese)

    • [27] 杨红艳,韦天国,张瑞谦,等.电弧离子镀工艺参数对Cr涂层沉积及性能的影响[J].材料保护,2021,54(12):97-103.YANG Hongyan,WEI Tianguo,ZHANG Ruiqian,et al.Effect of arc ion plating technological parameters on the deposition and properties of Cr coatings[J].Materials Protection,2021,54(12):97-103.(in Chinese)

    • [28] OLIVER W.An improved technique for determining hardness and elastic[J].Journal of Materials Research,1992,7(6):1564-1583.

    • [29] FISCHER-CRIPPS A C.Illustrative analysis of load-displacement curves in nanoindentation[J].Journal of Materials Research,2007,22(11):3075-3086.

    • [30] 冯兴国,杨拉毛草,周晖,等.温度对类富勒烯碳氮薄膜微观结构与摩擦学性能的影响[J].润滑与密封,2017,42(11):7-12.FENG Xingguo,YANG Lamaocao,ZHOU Hui,et al.Influence of depositing temperature on structure and tribological properties of fullerene-like CNx thin films[J].Lubrication Engineering,2017,42(11):7-12.(in Chinese)

    • [31] CUI S,YIN X,YU Q,et al.Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light[J].Corrosion Science,2015,98:471-477.

    • [32] JIN J,ZHU Z,ZHENG D.Influence of Ti content on the corrosion properties and contact resistance of CrTiN coating in simulated proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2017,42(16):11758-11770.

    • [33] YUAN L,WANG H.Corrosion behaviors of a γ-toughened Cr13Ni5Si2/Cr3Ni5Si2 multi-phase ternary metal silicide alloy in NaCl solution[J].Electrochimica Acta,2009,54(2):421-429.

    • [34] 项燕雄,王泽松,刘贵昂,等.304 不锈钢表面单层/多层TiN基涂层制备及耐磨蚀性能研究[J].表面技术,2022,51(5):121-128.XIANG Yanxiong,WANG Zesong,LIU Guiang,et al.Preparation and antiwear and anticorrosion properties of TiN-based monolayer/multilayer coatings on 304 stainless steel[J].Surface Technology,2022,51(5):121-128.(in Chinese)

  • 参考文献

    • [1] 任德鹏,李青,彭松.月面探测器燃料电池应用的初步研究[J].深空探测学报,2017,4(6):552-556.REN Depeng,LI Qing,PENG Song.Preliminary research on the application of fuel cells on lunar probe[J].Journal of Deep Space Exploration,2017,4(6):552-556.(in Chinese)

    • [2] 李俊超,王清,蒋锐,等.质子交换膜燃料电池双极板材料研究进展[J].材料导报,2018,32(8):2584-2600.LI Junchao,WANG Qing,JIANG Rui,et al.Research progress of bipolar plate material for proton exchange membrane fuel cells[J].Materials Reports,2018,32(8):2584-2600.(in Chinese)

    • [3] LIU Y,TU Z,CHAN S H.Applications of ejectors in proton exchange membrane fuel cells:A review[J].Fuel Processing Technology,2021,214:1-12.

    • [4] SHI J,ZHANG P,HAN Y,et al.Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC[J].International Journal of Hydrogen Energy,2020,45(16):10050-10058.

    • [5] WILBERFORCE T,HASSAN Z,OGUNGBEMI E,et al.A comprehensive study of the effect of bipolar plate(BP)geometry design on the performance of proton exchange membrane(PEM)fuel cells[J].Renewable and Sustainable Energy Reviews,2019,111:236-260.

    • [6] 孙贤伟,李希超,赵经香,等.质子交换膜燃料电池双极板防护涂层研究进展[J].表面技术,2023,52(5):26-36.SUN Xianwei,LI Xichao,ZHAO Jingxiang,et al.Research progress on protective coatings for bipolar plates of proton exchange membrane fuel cells[J].Surface Technology,2023,52(5):26-36.(in Chinese)

    • [7] 赵秋萍,钱庆一,张斌,等.质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J].材料导报,2020,34:395-399.ZHAO Qiuping,QIAN Qingyi,ZHANG Bin,et al.Research progress of carbon-based protective coatings on metallic bipolar plates in proton exchange membrane fuel cells[J].Materials Reports,2020,34:395-399.(in Chinese)

    • [8] XU J,HUANG H J,LI Z,et al.Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell[J].Journal of Alloys and Compounds,2016,663:718-730.

    • [9] ZHANG P,HAO C,HAN Y,et al.Electrochemical behavior and surface conductivity of NbC modified Ti bipolar plate for proton exchange membrane fuel cell[J].Surface and Coatings Technology,2020,397:1-7.

    • [10] PUGALMANI S,SRINIVASAN A,RAJENDRAN N.Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for proton exchange membrane fuel cell(PEMFC)[J].International Journal of Hydrogen Energy,2015,40(8):3359-3369.

    • [11] PENG S,XU J,LI Z,et al.A reactive-sputter-deposited TiSiN nanocomposite coating for the protection of metallic bipolar plates in proton exchange membrane fuel cells[J].Ceramics International,2020,46(3):2743-2757.

    • [12] 林静,张硕,马德政,等.沉积温度对AlCrTiN涂层组织结构与性能的影响[J].中国表面工程,2021,34(6):114-123.LIN Jing,ZHANG Shuo,MA Dezheng,et al.Effects of deposition temperature on the structure and property of AlCrTiN coatings[J].China Surface Engineering,2021,34(6):114-123.(in Chinese)

    • [13] ZHANG D,DUAN L,GUO L,et al.TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating[J].International Journal of Hydrogen Energy,2011,36(15):9155-9161.

    • [14] LI T,YAN Z,LIU Z,et al.Surface microstructure and performance of TiN monolayer film on titanium bipolar plate for PEMFC[J].International Journal of Hydrogen Energy,2021,46(61):31382-31390.

    • [15] 胡智勇,袁力,罗宏.氮气流量对质子交换膜燃料电池316L不锈钢双极板TiN涂层性能的影响[J].山东化工,2023,52(2):45-49.HU Zhiyong,YUAN Li,LUO Hong.Effect of nitrogen flow rate on the performance of TiN coating on 316L stainless steel bipolar plates for proton exchange membrane fuel cells[J].Shandong Chemical Industry,2023,52(2):45-49.(in Chinese)

    • [16] 畅为航,蔡海潮,雷贤卿,等.磁控溅射(AlCrNbTiVCe)N 涂层的高温摩擦学机理[J].中国表面工程,2023,36(5):131-141.CHANG Weihang,CAI Haichao,LEI Xianqing,et al.High-temperature tribological mechanism of(AlCrNbTiVCe)N coating with magnetron sputtering[J].China Surface Engineering,2023,36(5):131-141.(in Chinese)

    • [17] BULL S J.Nanoindentation of coatings[J].Journal of Physics D:Applied Physics,2005,38(24):R393-R413.

    • [18] WANG L,NORTHWOOD D,NIE X,et al.Corrosion properties and contact resistance of TiN,TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments[J].Journal of Power Sources,2010,195(12):3814-3821.

    • [19] NGUYEN W,DUNCAN J F,DEVINE T M,et al.Electrochemical polarization and impedance of reinforced concrete and hybrid fiber-reinforced concrete under cracked matrix conditions[J].Electrochimica Acta,2018,271:319-336.

    • [20] JIN J,HE Z,ZHAO X.Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti-6Al-4V bipolar plates for PEMFC[J].International Journal of Hydrogen Energy,2020,45(22):12489-12500.

    • [21] 高海洋,张斌,魏殿忠,等.脉冲频率对HiPIMS制备TiN薄膜组织和力学性能的影响[J].中国表面工程,2022,35(5):192-199.GAO Haiyang,ZHANG Bin,WEI Dianzhong,et al.Effects of pulse frequency on the microstructure and mechanical property of TiN films prepared by HiPIMS[J].China Surface Engineering,2022,35(5):192-199.(in Chinese)

    • [22] MEI H J,ZHAO S S,CHEN W,et al.Microstructure and residual stress of TiN films deposited at low temperature by arc ion plating[J].Transactions of Nonferrous Metals Society of China,2018,28(7):1368-1376.

    • [23] 张向东,蔡习军,蔡飞,等.钛合金表面不同多层结构 Cr/CrAlN 涂层的制备及磨损性能[J].材料导报,2022,36(15):1-6.ZHANG Xiangdong,CAI Xijun,CAI Fei,et al.Preparation and wear properties of Cr/CrAlN coatings with different multilayer structures on the titanium alloys surface[J].Materials Reports,2022,36(15):1-6.(in Chinese)

    • [24] 吴玉广,陈福砦.离子镀膜中的弧电流对膜层质量的影响[J].真空科学与技术,1999,19(5):392-395.WU Yuguang,CHEN Fuzhai.Influence of arc current on film properties in multi arc ion plating[J].Vacuum Science and Technology,1999,19(5):392-395.(in Chinese)

    • [25] ANTUNES R,RODAS A,LIMA N,et al.Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316L austenitic stainless steel for orthopedic applications[J].Surface and Coatings Technology,2010,205(7):2074-2081.

    • [26] 王其晒,张林,李伯荣,等.电弧离子镀CrTiN涂层的结构及耐腐蚀性能[J].金属热处理,2021,46(8):219-224.WANG Qishai,ZHANG Lin,LI Borong,et al.Structure and corrosion resistance of CrTiN coating deposited by arc ion plating[J].Heat Ttreatment of Metals,2021,46(8):219-224.(in Chinese)

    • [27] 杨红艳,韦天国,张瑞谦,等.电弧离子镀工艺参数对Cr涂层沉积及性能的影响[J].材料保护,2021,54(12):97-103.YANG Hongyan,WEI Tianguo,ZHANG Ruiqian,et al.Effect of arc ion plating technological parameters on the deposition and properties of Cr coatings[J].Materials Protection,2021,54(12):97-103.(in Chinese)

    • [28] OLIVER W.An improved technique for determining hardness and elastic[J].Journal of Materials Research,1992,7(6):1564-1583.

    • [29] FISCHER-CRIPPS A C.Illustrative analysis of load-displacement curves in nanoindentation[J].Journal of Materials Research,2007,22(11):3075-3086.

    • [30] 冯兴国,杨拉毛草,周晖,等.温度对类富勒烯碳氮薄膜微观结构与摩擦学性能的影响[J].润滑与密封,2017,42(11):7-12.FENG Xingguo,YANG Lamaocao,ZHOU Hui,et al.Influence of depositing temperature on structure and tribological properties of fullerene-like CNx thin films[J].Lubrication Engineering,2017,42(11):7-12.(in Chinese)

    • [31] CUI S,YIN X,YU Q,et al.Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light[J].Corrosion Science,2015,98:471-477.

    • [32] JIN J,ZHU Z,ZHENG D.Influence of Ti content on the corrosion properties and contact resistance of CrTiN coating in simulated proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2017,42(16):11758-11770.

    • [33] YUAN L,WANG H.Corrosion behaviors of a γ-toughened Cr13Ni5Si2/Cr3Ni5Si2 multi-phase ternary metal silicide alloy in NaCl solution[J].Electrochimica Acta,2009,54(2):421-429.

    • [34] 项燕雄,王泽松,刘贵昂,等.304 不锈钢表面单层/多层TiN基涂层制备及耐磨蚀性能研究[J].表面技术,2022,51(5):121-128.XIANG Yanxiong,WANG Zesong,LIU Guiang,et al.Preparation and antiwear and anticorrosion properties of TiN-based monolayer/multilayer coatings on 304 stainless steel[J].Surface Technology,2022,51(5):121-128.(in Chinese)

  • 手机扫一扫看