-
0 前言
-
近年来,腐蚀大数据联网技术在材料科学领域的应用越来越广泛,这很大程度上得益于腐蚀监测传感器技术的发展[1]。腐蚀传感器不仅可以用来监测环境、设备及材料的腐蚀状况,还解决了传统试验周期长、环境因素耦合差、数据量少、效率低等问题[2],提供了海量的实时连续的腐蚀数据。通过腐蚀数据的挖掘和分析,可以了解设备及材料的腐蚀类型,并进一步挖掘材料的腐蚀机理。其次,采用人工神经网络[3]、支持向量机[4]、贝叶斯网络[5]、灰色模型[6]等机器学习方法,能够同步获取多元环境-腐蚀规律数据,只需短期观测即可甄别出主要环境因素。结合现场挂片标定测试,可以实现腐蚀规律的定量快速评估[7],以及预测材料的腐蚀速率和使用寿命。
-
目前,常用的大气腐蚀联网观测传感器有电阻型[8-9]、电偶型[10]、电化学阻抗谱型[11]等。电阻传感器可以连续监测温度、相对湿度、大气污染物、PM2.5 和 PM10 等因素对 Q235 碳钢在大气环境下腐蚀初期的影响程度[12],还可以用来研究母材、热影响区、焊接金属等均匀焊接区域之间的腐蚀,准确反映材料的腐蚀行为[13]。FEDERICO 等[14]使用电阻传感器监测了碳钢在四种环境下的腐蚀速率,得出电阻传感器可以准确测定碳钢的腐蚀速率,其次,传感器的厚度还会影响其灵敏度。在采用薄电阻和电化学阻抗谱传感器监测碳钢在模拟工业海洋环境中的腐蚀行为时发现,在初始 72 h 内,低碳钢在混合盐和(NH4)2SO4 下的腐蚀速率高于 NaCl 的腐蚀速率,这与失重法得到的腐蚀速率一致,而在 120 h 后,监测得到的腐蚀速率与失重得到的腐蚀速率存在微小差异[15]。电偶传感器主要用于研究不同环境腐蚀的差异性与环境因素对大气腐蚀的影响[16]。然而由于使用环境的不同,电偶传感器监测结果与标准存在一定的误差,如在酸雨环境下,Pt / Zn 电极腐蚀监测误差为 21%[17]。KAINUMA 等[18]使用 Fe / Ag电偶传感器评估无涂层的结构钢板随时间变化的腐蚀深度。其测试结果受降雨和空气中海盐的影响,而使用相对湿度数据可以提高大气腐蚀监测传感器估算腐蚀速率的准确性[19]。其次,电偶传感器可用来评估微合金元素 Sn、Sb、Mn、Ni 及 Cr 对低合金钢腐蚀影响,并准确分辨出这些元素对低合金钢耐蚀性的影响[20-22]。电化学阻抗谱传感器能够实现原位分析,且具有较高的精确性[11]。通过每隔 1 h 测量一次高频阻抗和低频阻抗,并与腐蚀挂片进行对比,结果表明低频阻抗平均值与腐蚀质量损失密切相关[23]。在监测涂层下 P91 钢的腐蚀速率时,传感器监测结果表明涂层通过限制离子传输来达到减缓 P91 钢腐蚀速率的作用[24]。在腐蚀大数据环境下,大气腐蚀联网观测技术已经满足了数据量的要求,但是在精度和环境适用性上还须要进一步探究。计算腐蚀传感器监测数据与腐蚀挂片真实服役腐蚀速率之间的相关性系数值,利用响应面函数模型模拟环境因素(如温度、相对湿度、SO4 2−、Cl− 等)与相关性系数值之间的关系,从而说明环境因素对腐蚀速率的影响,是研究腐蚀传感器精度与环境适用性的常见方法之一。BOX 等[25]最早提出响应面方法,通过响应面函数拟合、迭代等得出可靠的有限元模型。响应函数可以通过大气腐蚀因子(包括时间、温度、润湿时间、SO2 浓度等)预测材料腐蚀量。相对于腐蚀损失算法,响应函数能够给出一个定量的结果,从而根据所处区域的具体大气环境进行等级划分,具有更高的适用性[26]。赵兴锋等[27]对气象数据与大气腐蚀速率进行了高精度网格化处理,利用响应函数绘制的腐蚀介质分布图能够准确反映复杂环境条件对金属腐蚀的影响。基于剂量-响应函数的电网金属材料大气腐蚀分布图,采用高精度的网格气象化数据,并考虑到腐蚀介质扩散过程,得到的金属腐蚀分布图精度高,能准确反映实际复杂环境条件对金属腐蚀速率的影响。其中,通过环境因子的剂量响应函数获取腐蚀数据源,有效补充了绘图数据不足的问题[28]。
-
本文选择碳钢腐蚀大数据采集传感器和典型城市大气环境,通过电偶传感器和电阻传感器得到腐蚀联网观测数据,并计算出材料月平均腐蚀速率,与挂片试验得到的腐蚀速率作对比。采用响应面方式对室外监测数据建模优化,并通过室内温湿度耦合试验和干湿交替模拟试验验证以上响应面模型,试图对碳钢腐蚀大数据采集传感器在城市大气环境下腐蚀过程中的数据采集机理进行室内外研究,对其环境适应性进行标定,以获得更加精确的腐蚀联网观测数据。
-
1 试验内容
-
1.1 户外暴晒试验
-
选用 Q235 碳钢作为基材,按照 GB / T14165 —2008 标准《金属和合金大气腐蚀试验现场试验的一般要求》进行现场暴晒试验[29]。一种试样尺寸为 100 mm×50 mm×4 mm,用于现场腐蚀挂片试验; 另一种用于制造电阻传感器和电偶传感器。暴晒试验地点为武汉,暴晒时间为一年,取样周期为一个月。在进行暴晒测试前,所有样品均用 SiC 砂纸逐级打磨至 2000#,并用去离子水和无水乙醇清洗,吹干备用。
-
将 Q235 碳钢试样除油烘干后称重,记录下原始质量 M0。将暴晒于武汉的试样每隔一个月取回试验,根据 GB / T16545—2015《金属和合金的腐蚀试样上腐蚀产物的清除》,将试样除锈、烘干后称量腐蚀后的质量 M1 [30],进而得到挂片的月平均腐蚀速率。
-
1.2 电化学试验
-
电化学试验利用传统三电极体系,其中试验用钢作为工作电极,其尺寸为 10 mm×10 mm×3 mm,选用铂片作为辅助电极,参比电极为饱和甘汞电极 (SCE)。电化学试验溶液为热带海洋大气模拟液[31],其组成为 0.1 wt.% NaCl + 0.05 wt.% CaCl2 + 0.05 wt.% Na2SO4。整个电化学试验在普林斯顿 PARSTAT3F 电化学工作站上进行。交流阻抗的频率测试范围为 100 kHz~10 mHz,交流正弦波幅值为 10 mV,试验完成后用 ZsimpWin 3.5 软件进行数据分析。动电位极化试验的扫描频率为 0.333 mV / s,电位扫描范围设置为±500 mV(相对于 OCP),随后的数据拟合由 EClab 软件完成。所有试验均在室温下进行三次以确保结果的可靠性。
-
1.3 温湿度耦合试验
-
在实际大气环境中,影响金属材料腐蚀过程的因素有很多,如污染物、相对湿度、温度、PM2.5 等。本文选择温度、相对湿度、Cl− 及 SO4 2− 四个因素来模拟武汉城市大气环境。在恒温恒湿箱内控制 Cl− 和 SO4 2− 浓度,探究温度和相对湿度对腐蚀速率的影响,试验周期为 48 h。相对应的试验参数如表1 所示。
-
Where T is temperature, H is relative humidity.
-
1.4 室内干湿交替模拟试验
-
干湿交替试验在高低温交变湿热实验箱内进行。采用 NaHSO3 和 NaCl 模拟城市大气中的 SO4 2− 和 Cl−,其组成为 0.15 mol / L NaCl+0.05 mol / L NaHSO3。干湿交替的循环周期为 3 h,其中,潮湿时间为 2 h、试验箱相对湿度 95%、温度 35℃;干燥时间为 1 h,试验箱相对湿度 65%、温度 35℃。试验周期分别为 24、48、72、96 和 120 h。
-
2 结果与讨论
-
2.1 室外监测数据分析
-
2.1.1 挂片数据分析
-
图1 为暴晒后每个月的宏观腐蚀形貌和激光共聚焦(Confocal laser scanning microscope,CLSM) 图。从宏观图看出,暴晒后锈层颜色变化不明显,且宏观形貌图难以比较碳钢在不同时间下的腐蚀形态差异。因此,采用 CLSM 来观察碳钢表面形貌。总体来看,锈层表面未出现裂纹和点蚀坑,不同暴晒周期下拓扑形貌差异不大。
-
图1 腐蚀挂片试样的宏观图像和 CLSM 图
-
Fig.1 Macroscopic image and CLSM diagram of corrosion hanging specimen
-
由于锈层形貌变化较小,后文中只对 3、6、9 和 12 个月的试验数据进行分析。图2 为碳钢腐蚀挂片锈层的 X 射线衍射(XRD)物相分析。峰标定的结果显示,锈层中的主要成分为 α-FeOOH(针铁矿)、Fe3O4(磁铁矿)和 γ-FeOOH(纤铁矿)。通过半定量分析可知,腐蚀产物中 α-FeOOH 比例最高。
-
图2 Q235 碳钢在不同周期下腐蚀产物的 XRD 谱
-
Fig.2 XRD patterns of the corrosion products of Q235 carbon steel in different periods
-
2.1.2 电化学行为分析
-
图3a 为不同暴晒周期下碳钢在城市大气模拟液中的动电位极化曲线。可以看出,四条曲线的形状基本一致,这说明四种钢的电化学机理相同,即阳极活化溶解、阴极吸氧和析氢反应的混合控制。利用外推法从 Q235 碳钢极化曲线拟合得到的腐蚀电位 Ecorr和腐蚀电流 Icorr如表2 所示。第 3 个月时腐蚀电位最负,为-748 mV。第 6 到 12 个月随着暴晒周期的延长,腐蚀电位负移,腐蚀电流逐渐增大,腐蚀电位从-611.0 mV 负移至-687.2 mV,腐蚀电流从 40.4 μA·cm−2 增大至 69.7 μA·cm−2。
-
图3 暴晒不同周期后 Q235 碳钢在城市大气模拟液中的动电位极化曲线和极化电阻 Rp
-
Fig.3 Potentiodynamic polarization curve and polarization resistance Rp of Q235 carbon steel in urban industrial atmospheric simulation solution after exposure to different periods
-
Where Ecorr is corrosion potential, Icorr is corrosion current.
-
以室外的月平均温度、月平均相对湿度数据和极化电阻 Rp [32-35]作为研究对象,Rp 的计算方法如式 (1)所示,其值与腐蚀速率成反比。
-
式中,Zl 表示低频区的阻抗值,Zh 表示高频区的阻抗值。
-
图3b 给出了不同环境状态下 Rp 值随暴晒时间变化的变化趋势。由电化学阻抗可知 Rp 值与相应月份平均温度与相对湿度的关系,即温湿度交互作用影响了腐蚀速率。其中第 9 个月份 Rp 值最大,为 908.5,此时的平均温度和平均相对湿度为 26.2℃、 65%,而第 6 个月的温度虽比第 9 个月的更低,但是其相对湿度却达到 72%,此时的腐蚀速率略有上升。
-
图4 为四种不同暴晒时间下碳钢在城市大气模拟液中的交流阻抗谱。从 Nyquist 图中可以看出,四种组织均由一个高频和一个中低频容抗弧组成,说明其具有两个时间常数。由图4a 中插图所示的电路对电化学阻抗谱的结果进行拟合,电路拟合参数如表3 所示。电路图中 Rs 表示溶液电阻,与电解质溶液的导电性有关;Qr1与 Rr1 用于表征氧化膜层的电容特性与电阻;Qr2 与 Rr2 用于表征腐蚀表面锈层或者腐蚀产物的电容特性与电阻;Qct 与 Rct 用于表征电荷转移过程和粒子扩散过程中的电容特性与电阻。正如 Rp值的规律,第 3 个月的 Rp 值最小,Rct 值也远小于第 6、9 个月的 Rct 值。而第 12 月的 Rct 值最小,此时的温度和相对湿度为 30℃、80.8%。第 3、12 个月的 Rr2 值相对较小,说明此时挂片表面的腐蚀锈层少,腐蚀进一步加深。
-
图4 不同暴晒周期下 Q235 碳钢在城市大气模拟液中的 Nyquist 和 Bode 图
-
Fig.4 Nyquist and Bode diagrams of Q235 carbon steel in urban atmospheric simulators at different exposure periods
-
根据电化学试验、能谱分析和扫描电镜(SEM) 图可以得到腐蚀机理,空气中的 H2O 由于表面张力的作用首先会在表面形成椭圆形的水滴。因为边缘位置水滴厚度薄,在此处的 O2 容易达到基体表面,导致 O2 在边缘位置的浓度高于在中心位置的浓度,进而形成氧浓差电池。中心区域氧浓度低从而发生阳极溶解反应,边缘区域氧浓度高进而发生氧去极化反应:
-
Where Rs is solution resistance; Rr1 is oxide film resistors; Rr2 is rust layer resistance; Rct is particle diffusion resistance; Yr1, Yr2, Yct, nr1, nr2, and nct represent the capacitive reactance values and coefficients of the two capacitors and charge transfer, respectively (n values range from 0 to 1) .
-
除此之外,在晶界活跃的地区优先发生反应:
-
阳极溶解后游离的 Fe2+从水滴中心向周边迁移时,与阴极氧的去极化产生的 OH−结合形成 Fe(OH)2,同时 Fe2+在从阳极到阴极的迁移过程中会水解产生 Fe(OH)2 腐蚀产物膜。同时 Fe2+在 O2 和 H2O 的作用下,在中心区形成颗粒状的沉积物 FeOOH。
-
随着腐蚀的进行,阳极区继续溶解的 Fe2+与 FeOOH 反应,在中心区域形成了胞状产物 Fe3O4, Fe3O4 氧化形成 α-FeOOH 后锈层变得稳定。
-
2.1.3 传感器监测数据分析
-
图5 所示为由传感器监测得到的电阻率、腐蚀电流、相对湿度和温度。图中四者之间没有明显的规律。因此计算每个月的平均温度、平均相对湿度和腐蚀速率作对比,如图6 所示。传感器的月平均腐蚀速率与户外挂片试样月平均腐蚀速率曲线趋势一致。年平均气温在试验初期逐渐降低,第 5 个月时达到试验最低温度 5.9℃。而初期腐蚀速率则随着相对湿度的上升呈现增大趋势,在第 6 个月时达到第一个峰值。而后随着月平均温度的升高,相对湿度降低,腐蚀速率逐步减缓。当到达第 11 个月时,由于降雨量增多,相对湿度再一次达到峰值,此时腐蚀速率也达到最大。当腐蚀发展至第 12 个月时,随着腐蚀时间的延长,同时温度再次升高,相对湿度降低,金属表面产生了致密的氧化层,从而能有效降低腐蚀速率,保护基体。
-
图5 传感器监测数据
-
Fig.5 Sensor monitoring data
-
图6 电阻传感器、电偶传感器和户外挂片试样的腐蚀速率、月平均温度以及相对湿度
-
Fig.6 Corrosion rate, monthly average temperature and relative humidity of resistance sensor, galvanic sensor and outdoor hanging specimens
-
为进一步分析温度、相对湿度对腐蚀速率的影响趋势,对温度、相对湿度和腐蚀速率使用 stata 进行 ols 回归分析。用腐蚀速率 V 和腐蚀电流 Icorr 分别对电阻传感器和电偶传感器的温度 T、相对湿度 H、温度与相对湿度的乘积 I 进行稳健标准误回归,回归结果如表4 所示。
-
为了确认函数形式,加入 T 和 H 的高次幂,构成三次项函数形式。进行稳健标准误回归,结果如表5 所示。
-
Where Robust Coef. is the regression coefficient of robust standard error, Std. Err. is the standard error, t is a statistics used to judge significance, P is used to judge significance, [95% Conf. Interval] is the confidence interval, T is temperature, H is relative humidity, I is product of temperature and relative humidity, _cons is the intercept of the regression equation.
-
Where T is temperature, T2 is temperature squared, T3 is temperature to the third power, H is relative humidity, H2 is temperature squared, H3 is relative humidity to the third power, I is product of temperature and relative humidity, _cons is the intercept of the regression equation.
-
为了确认 T 和 H 的高次幂是否显著不等于零,进行沃尔德联合显著性检验(即 F 检验),结果如表6 所示。T、H 与其高次项均在 0.1%水平上高度联合显著,这说明应当采取多次项形式的回归模型 (此处最高为三次)。根据该模型的回归结果,T 和 H 对腐蚀速率的影响较为复杂,并不是简单的单调递增或递减模式。同时,T 和 H 的交互项对腐蚀速率有显著的正向影响,即温度和相对湿度的乘积越大,腐蚀速率越快。
-
Where T is temperature, T2 is temperature squared, T3 is temperature to the third power, H is relative humidity, H2 is relative humidity squared, H3 is relative humidity to the third power.
-
2.2 响应面模型建立
-
在进行响应面模拟之前,定义相关性系数 R,即大气腐蚀监测技术得到的平均腐蚀速率(rs)与传统腐蚀挂片法得到的平均腐蚀速率(rh)的比值,即式(6),式中 rs 为传感器的平均腐蚀速率,rh 为挂片的腐蚀速率。根据式(6)计算得出电阻传感器和电偶传感器的相关性系数分别为 1.295、1.084。
-
对室外腐蚀数据温湿度进行分析发现,武汉大气环境一年的温度范围为 10~40℃,相对湿度范围为 50%~90%。在高湿高温条件下相关性系数为 1.295,在低温低湿环境下,传感器几乎监测不到腐蚀信号。对温湿度范围进行编码转换,如表7 所示。
-
Where T is temperature, H is relative humidity
-
对室外电阻和电偶传感器数据进行三水平因素响应面试验设计和结果分析。通过方差分析,确定模型各因素显著性检验,通过拟合系数 R2 评估所建立的响应面模型精度,根据试验结果拟合等高线图模型,试验结果如表8 所示。
-
Where T is temperature, H is relative humidity, R is correlation coefficient.
-
对试验数据进行拟合,建立回归模型,得到相关性系数的回归方程分别为式(7)、(8)。
-
式中,T 为温度,H 为相对湿度。
-
通过响应面法分别对电阻和电偶传感器模型进行分析。计算得到的相关性系数回归模型,分析数据如表9 所示。当“P>F”的值大于 0.100 0,表示模型不显著;“P>F”值小于 0.050,表示模型显著。在这种情况下,相对湿度是一个重要的模型项。F 的不匹配度小于 0.1%,表明不匹配度相对于纯误差不显著,说明本模型对研究所需模型匹配。电阻传感器和电偶传感器的温度“P>F”值为 0.003 7、 0.000 3,小于 0.05,表示该模型显著。
-
Where T is temperature, H is relative humidity.
-
根据数据拟合出模型后,对相关性系数拟合面与真实结果的残差进行分析。在数学的理论架构上,误差必须是一个服从常态分配的随机变量,可以通过残差图来检查。如果残差的正态性检验服从正态分布,说明数学模型是可行的。图7 为电阻和电偶传感器残差正态分布趋势和线性分布图。电阻和电偶传感器残差正态分布趋势服从正态分布,且线性分布图表现出明显的线性趋势,说明数学模型可靠。
-
图7 残差正态分布趋势和线性分布
-
Fig.7 Residual normal distribution trend and linear distribution
-
根据式(5)、(6)以及表9 绘制电阻和电偶传感器响应面和温湿度等高线(图8)。对于电阻传感器,当相对湿度在 60%以下时,温度的变化对腐蚀监测相关性系数影响不大,此时腐蚀速率较慢。当相对湿度在 60%以上时,相关性系数随着温度的升高呈现出先升高后降低的趋势。当温度为 25℃时,相关性系数最高,数据的偏差量最大。在低温低湿环境下,相关性系数值在 1~1.1,电偶传感器得到的腐蚀速率与挂片法得到的腐蚀速率相似。而在高温高湿条件下,相关性系数值较大,传感器腐蚀速率要比腐蚀挂片的腐蚀速率高。
-
图8 响应面和温湿度等高线
-
Fig.8 Response surface and temperature and relative humidity contour
-
2.3 室内温湿度耦合试验相关性系数分析
-
根据温湿度耦合试验,获得的试验数据结果如表10 所示。
-
通过式(1)计算电阻和电偶传感器的相关性系数,如图9 所示。电阻传感器的平均相关性系数为 1.136,电偶传感器的平均相关性系数为 1.018。温度的升高对传感器的相关性系数影响不大,而相关性系数随着相对湿度的升高而升高。从 1、5、9 三组试验可以看出,当相对湿度为 65%时,相关性系数较小,相关性较差,传感器监测精准度低。当相对湿度在 65%以上时,相关性系数随着温度的升高呈现出先升高后降低的趋势。其结果与响应面模型结果一致。另外,相对湿度为 75%和 85%时,相关性系数在 1.0~1.1,电偶传感器腐蚀监测数据准确度均较高,说明电偶传感器适合用于低温低湿环境下。
-
图9 温湿度耦合试验相关性系数
-
Fig.9 Correlation coefficient of temperature and relative humidity coupling experiment
-
图10 所示为不同温湿度下 Q235 碳钢 48 h 后的腐蚀形貌。25℃、65%条件下(图10a),碳钢表面没有出现明显的腐蚀,表面存在明显的划痕。随着相对湿度的增加,碳钢表面开始出现腐蚀产物,当相对湿度再次增大时,腐蚀产物分布逐渐增多(图10b、10c)。高湿环境下,空气中的水汽分子在碳钢表面会形成连续薄液膜,腐蚀会变得更加均匀(图10e)。相同相对湿度下,随着温度的升高,碳钢表面腐蚀产物从颗粒状生长成块状(图10f)。这是由于温度升高,降低了 O2 在薄液膜中的溶解度,但提高了 O2 通过薄液膜向碳钢基体的扩散速度,同时促进了 Fe2+和 OH− 在薄液膜中的迁移速率,加快了薄液膜下阴阳极的电极过程和化学反应。
-
图10 不同温湿度下碳钢腐蚀形貌
-
Fig.10 Corrosion morphology of carbon steel under different temperature and relative humidity
-
2.4 室内干湿交替模拟试验相关性系数分析
-
图11 为室内模拟城市大气环境下腐蚀监测数据。由图11a 可以看出,腐蚀速率呈现先升高后下降的规律。这是由于在高相对湿度环境下,电偶传感器表面发生吸潮过程,表面沉积的混合盐颗粒溶于薄液膜中,为腐蚀提供了必要条件。在重复干湿交替过程中,由于表面的沉积盐离子参与了反应,导致离子在表面的浓度降低,此时的腐蚀速率也随之下降。当下一个周期开始沉积盐时,腐蚀速率再次上升,随着腐蚀的进行,腐蚀电流逐渐趋于平稳状态,说明此时表面的锈层起到了保护作用,阻碍了腐蚀的进行。对于图11b,在一个干湿交替周期内,电阻传感器腐蚀速率呈现出先上升后下降的规律。在一个周期内,腐蚀速率上升后会保持一定的时间再快速降低。这与电阻传感器监测原理有关,当腐蚀进行到能够引起仪器检测到电阻变化时,才会响应到终端。
-
图11 模拟城市大气环境下两种传感器的腐蚀监测结果
-
Fig.11 Corrosion monitoring results of two probes under simulated urban atmospheric environment
-
在模拟城市大气环境下,由电阻传感器、电偶传感器和挂片试验得到不同周期下的平均腐蚀速率 (表11),并通过式(1)计算得到电阻和电偶传感器的相关性系数,如图12 所示。
-
图12 中电阻传感器的相关性系数高于电偶传感器。其中,电阻传感器的平均相关性系数为 1.242,电偶传感器的平均相关性系数为 0.978。这与户外曝晒监测所得的相关性系数值接近。得出结论,在城市大气环境下,电阻传感器得出的腐蚀速率比传统腐蚀挂片法得到的腐蚀速率高,不适合在城市大气环境下使用;而电偶传感器与腐蚀挂片的数据近乎相同,适合在城市大气环境下使用。
-
图12 模拟城市大气环境下电阻传感器和电偶传感器的相关性系数
-
Fig.12 Correlation coefficient of resistance sensor and galvanic sensor in simulated urban atmosphere
-
图13 所示为模拟城市大气环境下碳钢腐蚀不同时间的 SEM 图,其中插图为腐蚀宏观形貌图。随着腐蚀时间的延长,碳钢表面颜色逐渐变深,由浅黄色向红褐色和棕褐色转变,腐蚀产物均匀分布在试样表面。腐蚀 72 h 时,碳钢表面锈层疏松,随着腐蚀时间的延长,锈层逐渐致密。锈层表面存在裂纹和点蚀坑,点蚀系数升高,使得传感器所得腐蚀速率相对于户外挂片所得腐蚀速率偏高。
-
图13 模拟城市大气环境下碳钢腐蚀不同时间的 SEM 图(插图为宏观图)
-
Fig.13 SEM images of carbon steel corrosion at different times in simulating urban atmospheric environment (illustration is macro picture)
-
3 结论
-
(1)采用户外挂片、电阻传感器和电偶传感器技术获取 Q235 碳钢的腐蚀速率,利用响应面模型方法分析大气腐蚀监测技术与传统腐蚀挂片法得到的平均腐蚀速率的相关性系数,建立了城市大气环境下的响应面模型,进而对碳钢腐蚀大数据采集传感器在城市大气环境中的腐蚀数据采集机理和适应性进行分析,并采用温湿度耦合试验和干湿交替模拟试验进行验证。
-
(2)电阻和电偶传感器得到的腐蚀速率与挂片法得到的腐蚀速率变化趋势一致。然而由于锈层表面存在裂纹和点蚀坑,传感器所得腐蚀速率相对于户外挂片所得腐蚀速率偏高,其中电偶传感器得到的腐蚀速率与挂片法得到的腐蚀速率值更加接近。
-
(3)进一步采用温湿度耦合试验和干湿交替模拟试验验证了电偶传感器更适合于在城市大气环境下使用。室内模拟试验中,温度的升高会加速薄液膜下阴阳极的电极过程和化学反应,使表面腐蚀产物从颗粒状转化为块状,而反应时间的延长使腐蚀产物逐渐致密且均匀地分布在表面,一定程度上可以提高锈层的耐蚀性能。
-
参考文献
-
[1] 周安,刘秀波,刘庆帅,等.选区激光熔化成形过程监测技术研究进展[J].中国表面工程,2023,36(4):36-50.ZHOU An,LIU Xiubo,LIU Qingshuai,et al.Progress of in-process monitoring techniques for selective laser melting[J].China Surface Engineering,2023,36(4):36-50.(in Chinese)
-
[2] PEI Z B,CHENG X Q,YANG X J,et al.Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors[J].Materials Science and Technology,2021,64:214-221.
-
[3] SHI J B,WANG J H,MACDONALD D B,et al.Prediction of primary water stress corrosion crack growth rates in alloy 600 using artificial neural networks[J].Corrosion Science,2015,92(3):217-227.
-
[4] PAUL R,KATHERINE C,ELBERT P D,et al.Machine-learning-assisted materials discovery using failed experiments[J].Nature,2016,533(1):73-76.
-
[5] MA Y F,WANG L,ZHANG J R,et al.Closure to bridge remaining strength prediction integrated with bayesian network and in situ load testing[J].Journal of Bridge Engineering,2015,20(10):54-61.
-
[6] 严洲宇,赵弘,董潇潇.基于多因素灰色模型和遗传算法的管道内修复涂层设计[J].中国表面工程,2023,36(4):229-138.YAN Zhouyu,ZHAO Hong,DONG Xiaoxiao.Design of pipeline repair coating based on multi-factor grey model and genetic algorithm[J].China Surface Engineering,2023,36(4):229-238.(in Chinese)
-
[7] PEI Z B,XIAO K,CHEN L L,et al.Investigation of corrosion behaviors on an Fe/Cu-type ACM sensor under various environments[J].Metals-Open Access Metallurgy Journal,2020,10(7):905-912.
-
[8] DRAVNIEKS A,CATALDI H A.Industrial applications of a method for measuring small amounts of corrosion without removal of corrosion products[J].Corrosion,1954,10(7):224-230.
-
[9] FREEDMAN A J,TROSCINSKI E S,DRAVNIEKS A J.An electrical resistance method of corrosion monitoring in refinery equipment[J].Corrosion,1958,14(4):29-32.
-
[10] NICK B,KATE M N,MARIA F.Transient response analysis of steel in concrete[J].Corrosion Science,2003,45(9):1895-1902.
-
[11] LI J J,JIANG X X,KHAN F,et al.Field deployable impedance-based corrosion sensor[J].Scientific Reports,2022,12(1):1-13.
-
[12] LI Z L,FU D M,LI Y,et al.Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion[J].Materials,2019,12(7):1065.
-
[13] ZHU Y,HU B,HU T,et al.Probing and evaluating non-uniform corrosion behavior of pipe weldment using an array of coupled multi-ring form electrical resistance sensor[J].Measurement,2023,208:112479.
-
[14] FEDERICO M O,ANGST U.Monitoring corrosion rates with ER-probes-a critical assessment based on experiments and numerical modelling[J].Corrosion Engineering,Science and Technology,2022(3/4):254-268.
-
[15] 刘鑫宇,张艳,蔡吴敏,等.(CrNbTiMoZr)C 薄膜在人工海水环境中的摩擦腐蚀性能[J].中国表面工程,2022,35(2):35-44.LIU Xinyu,ZHANG Yan,CAI Wumin,et al.Friction and corrosion properties of(CrNbTiMoZr)C coating in artificial seawater[J].China Surface Engineering,2022,35(2):35-44.(in Chinese)
-
[16] 李晓刚,李清,裴梓博,等.钢铁大气腐蚀监测技术研究进展[J].鞍钢技术,2020(6):1-8.LI Xiaogang,LI Qing,PEI Zibo,et al.Latest developments on atmospheric corrosion monitoring technologies for steels[J].Angang Technology,2020(6):1-8.(in Chinese)
-
[17] 宋木清.对酸雨敏感的大气腐蚀型监测器(ACM)的研究[J].材料保护,1998(9):1-6.SONG Muqing.Research on atmospheric corrosion type monitor(ACM)sensitive to acid rain[J].Materials Protection,1998(9):1-6.(in Chinese)
-
[18] KAINUMA S,YAMAMOTO Y,ITOH Y,et al.Prediction method for mean corrosion depth of uncoated carbon steel plate subjected to rainfall effect using Fe/Ag galvanic couple ACM-type corrosion sensor[J].Zairyo-to-Kankyo,2011,60(11):497-503.
-
[19] NAGANUMA A,TANI J,FUSE N.In monitoring of corrosion rate and evaluation of deposited sea salt distribution inside steel pipes of transmission tower located in coastal environment[C]//Corrosion Conference and Exposition,March 6-10,2016,Vancouver,Canada,2016.
-
[20] YANG X J,YANG Y,SUN M H,et al.A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology[J].Journal of Materials Science & Technology,2022,104:67-80.
-
[21] YANG X J,YANG J K,YANG Y,et al.Data-mining and atmospheric corrosion resistance evaluation of Sn-and Sb-additional low alloy steel based on big data technology[J].International Journal of Minerals,Metallurgy and Materials,2022,29(4):825-835.
-
[22] YANG X J,JIA J H,LI Q,et al.Stress-assisted corrosion mechanism study of 3Ni steel based on gradient boosting decision tree machining-learning method[J/OL].International Journal of Minerals,Metallurgy and Materials,2023.[2023-04-22].https://doi.org/10.1007/s12613-023-2661-2.
-
[23] NISHIKATA A,ZHU Q J,Tada E.Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method[J].Corrosion Science,2014,87(1):80-88.
-
[24] ENCINAS-SÁNCHEZ V,MACÍAS-GARCÍA A,DE MIGUEL M T,et al.Electrochemical impedance analysis for corrosion rate monitoring of Sol-Gel protective coatings in contact with nitrate molten salts for CSP applications[J].Materials,2023,16(2):546-558.
-
[25] BOX G,WILSON K.On the experimental attainment of optimum conditions[J].Journal of the Royal Statistical Society,1951,13(1):1-45.
-
[26] 李光茂,莫文雄,朱晨,等.基于剂量-响应函数的电网金属材料大气腐蚀分布图绘制方法[J].环境技术,2022,40(3):9-15.LI Guangmao,MO Wenxiong,ZHU Chen,et al.Drawing method of atmospheric corrosion distribution map of metal materials in power grid based on dose-response function[J].Environmental Technology,2022,40(3):9-15.(in Chinese)
-
[27] 赵兴锋,付冬梅,裴梓博,等.分段式剂量响应函数优化及碳钢腐蚀等级判别方法[J].腐蚀与防护,2018,39(10):805-809.ZHAO Xingfeng,FU Dongmei,PEI Zibo,et al.Optimization of sectional dose-response function and determination method of corrosion category for carbon steel[J].Corrosion & Protection,2018,39(10):805-809.(in Chinese)
-
[28] 樊志彬,李辛庚,王晓明,等.区域性大气腐蚀图绘制技术研究进展[J].中国腐蚀与防护学报,2023,43(1):29-37.FAN Zhibin,LI Xingeng,WANG Xiaoming,et al.Review of regional atmospheric corrosion mapping technology[J].Journal of Chinese Society for Corrosion and Protection,2023,43(1):29-37.(in Chinese)
-
[29] 中国科学院金属研究所,冶金工业信息标准研究院,国家材料环境腐蚀野外科学研究试验站网综合研究中心.金属和合金的腐蚀钢铁户外大气加速腐蚀试:GB/T 25834—2010 [S].北京:国家标准化管理委员会,2010.Institute of Metal Research,China metallurgical Information and Standardization Institute;National Field Scientific Research and Test Station Network on Environmental Corrosion of Materials.Corrosion of metals and alloys-accelerate corrosion testing of iron and steel in outdoor atmospheres:GB/T 25834—2010[S].Beijing:Standardization Administration.2010.(in Chinese)
-
[30] 田旭,刘欣,裴锋,等.镀锌钢在模拟大气腐蚀环境的初期腐蚀行为研究[J].应用化工,2020,49(2):406-409.TIAN Xu,LIU Xin,PEI Feng,et al.Study on initial corroison behavior of galvanized steel in simulated atmosphere corrosion environment[J].Applied Chemical Industry,2020,49(2):406-409.(in Chinese)
-
[31] DONG C F,LUO H,XIAO K,et al.Electrochemical behavior of 304 stainless steel in marine atmosphere and its simulated solution[J].Analytical Letters,2013,46(1):142-155.
-
[32] 李成保,周关明.用极化电阻 Rp 评价土壤对铅腐蚀性研究[J].材料保护,1981(3):9-17.LI Chengbao,ZHOU Guanming.Evaluation of soil corrosion to lead by polarization resistance Rp[J].Materials Protection,1981(3):9-17.(in Chinse)
-
[33] CHEN Y Y,CHUNG S C,SHIH H C.Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride[J].Corrosion Science,2006,48:3547-3564.
-
[34] LIU Y J,WANG Z Y,KE W.Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al[J].Corrosion Science,2014,80:169-176.
-
[35] YADVA A P,NISHIKATA A,TSURU T.Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness[J].Corrosion Science,2004,46:169-181.
-
摘要
传统的腐蚀监测方法和腐蚀评估方法已经无法满足对数据量以及数据连续性的需要。大气腐蚀在线监测技术由于具有数据量大、数据连续及实时性等特点,已被广泛应用。然而,所得数据的准确性和适用性还须通过试验来做进一步验证。采用户外挂片以及电阻传感器和电偶传感器监测 Q235 碳钢在城市大气环境下的腐蚀速率,建立响应面模型,并采用温湿度耦合试验和干湿交替模拟试验进行验证。温湿度耦合试验和干湿交替模拟试验与户外挂片及响应面模型的腐蚀速率变化趋势一致,而温湿度耦合试验得到的腐蚀速率更接近于挂片得到的腐蚀速率。其中,电偶传感器得到的腐蚀速率值更接近于挂片的腐蚀速率值,说明城市大气环境下更适合使用电偶传感器。室内模拟试验中,温度升高会加速薄液膜下阴阳极的电极过程和化学反应,延长反应时间,表面腐蚀产物逐渐致密且均匀,一定程度上可以提高锈层的耐蚀性能。通过碳钢腐蚀传感器在城市大气环境中的适应性标定,可以深入探究大气环境中金属材料的腐蚀机理和过程,并准确评估腐蚀传感器在大气环境中的腐蚀行为,为研究者提供定量描述和分析腐蚀行为的基础数据。
Abstract
Traditional methods for monitoring and evaluating corrosion are affected by the extended experimental period and slow pace; thus, they fail to satisfy the demands for data quantity and data continuity. Techniques for online monitoring of atmospheric corrosion require large amounts of continuous and real-time data, and the obtained big data can be effectively simulated, calculated and modeled using computer software to clarify the metal corrosion process and achieve data sharing. Various techniques for detecting atmospheric corrosion have been widely used. However, the accuracy and validation of the data require further experimental verification. In this study, the corrosion rate of Q235 carbon steel in the urban atmosphere was monitored using an outdoor hanging plate, a resistance sensor, and a galvanic sensor. Subsequently, the response surface model was established, and its validity was confirmed via coupled temperature-humidity experiments and alternate drying-wetting simulation experiments. Confocal laser scanning microscope (CLSM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical testing were performed to investigate the effects of outdoor exposure and indoor simulation experiment on the surface rust layer of Q235 carbon steel. The results show that the corrosion rates of the resistance and galvanic sensors are 1.295 and 1.084 times the corrosion rate of the hanging plate, respectively. The variation trends of the corrosion rate of the sensor in the coupled temperature-humidity experiments and alternate drying-wetting simulation experiments are consistent with those of the outdoor hanging and response surface model. In the coupled temperature-humidity experiments, the corrosion rates recorded by the resistance and galvanic sensors are 1.136 and 1.018 times that of the hanging plate, respectively. In the low-temperature low-humidity environment, the corrosion rate of the galvanic sensor is similar to that of the hanging plate method. However, in the high-temperature high-humidity environment, the corrosion rate of the sensor is higher than that of the hanging plate. In the alternate drying-wetting simulation experiment, the corrosion rates of the resistance and galvanic sensors are 1.242 and 0.978 times that of the hanging plate sensor, respectively. The corrosion rate of the galvanic sensor initially increases and subsequently decreases because the salt deposited onto the surface participates during the reaction, whereas that of the resistance sensor first increases and then decreases in an alternate period. X-ray photoelectron spectroscopy analysis show that the main components of the rust layer are α-FeOOH, Fe3O4 and γ-FeOOH, with α-FeOOH being the most abundant. Indoor simulation experiments show that with an increase in temperature, the corrosion products on the carbon steel surface change from granular to massive. This is because oxygen solubility in the thin-film liquid decreases, coupled with an increase in the rate of oxygen diffusion through the thin-film liquid to the carbon steel matrix. These factors facilitate the migration rates of Fe2+ and OH− in thin-film liquids and accelerates the electrode process and chemical reaction of the anode and cathode under the thin-film liquid. With the prolongation of corrosion time, the color of the carbon steel surface darkens gradually, transitioning from light yellow to reddish-brown and brown, and the corrosion products become dense and evenly distributed on the surface of the sample, relatively protecting the matrix. Because of the appearance of cracks and pits on rust layer surface, the corrosion rate determined using the sensor are higher than those obtained using the outdoor hanging plate. However, the corrosion rate of the galvanic sensor is closer to that of the hanging plate, indicating that the galvanic sensor is more suitable for use than the hanging plate in urban atmospheric environments.