en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

金丹,女,1976年出生,博士,教授。主要研究方向为金属材料的疲劳与断裂。E-mail:jindan76@163.com.

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007-9289.20230116001

参考文献 1
ZHANG Ming,WANG Weiqiang,WANG Pengfei,et al.Fatigue behavior and mechanism of FV520B-I welding seams in a very high cycle regime[J].International Journal of Fatigue,2016,87:22-37.
参考文献 2
ZHANG Ming,ZHANG Han,LI Mengli,et al.Fatigue behavior and mechanism of dog-bone-shaped specimens of FV520B-I in a very high cycle regime[J].Fatigue & Fracture of Engineering Materials & Structures,2022,45(12):3658-3676.
参考文献 3
徐滨士,方金祥,董世运,等.FV520B 不锈钢激光熔覆热影响区组织演变及其对力学性能的影响[J].金属学报,2016,52(1):1-9.XU Binshi,FANG Jinxiang,DONG Shiyun.et al.Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding FV520B stainless steel[J].Acta Metallurgica Sinica,2016,52(1):1-9.(in Chinese)
参考文献 4
WANG Jinlong,ZHANG Yuanliang,LIU Shujie,et al.Competitive giga-fatigue life analysis owing to surface defect and internal inclusion for FV520B-I[J].International Journal of Fatigue,2016,87:203-209.
参考文献 5
ZHANG Xiushuo,MA Yu,YANG Meng,et al.A comprehensive review of fatigue behavior of laser shock peened metallic materials[J].Theoretical and Applied Fracture Mechanics,2022,122:103642.
参考文献 6
ZHANG Chaoyi,DONG Yalin,YE Chang.Recent developments and novel applications of laser shock peening:A review[J].Advanced Engineering Materials,2021,23(7):2001216.
参考文献 7
钱丽艳,王艳虎,戴峰泽,等.激光冲击强化对钛合金疲劳寿命影响综述[J].中国表面工程,2022,35(2):103-112.QIAN Liyan,WANG Yanhu,DAI Fengze,et al.Laser shock processing and its effect on fatigue life of titanium alloys:A review[J].China Surface Engineering,2022,35(2):103-112.(in Chinese)
参考文献 8
SANCHEZ A G,YOU C,LEERING M,et al.Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651[J].International Journal of Fatigue,2021,143(3):106025.
参考文献 9
WANG Bohan,CHENG Li,LI Dongchun.Study on very high cycle fatigue properties of forged TC4 titanium alloy treated by laser shock peening under three-point bending[J].International Journal of Fatigue,2022,156:106668.
参考文献 10
SUN Rujian,LI Liuhe,GUO Wei,et al.Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy[J].Materials Science & Engineering A,2018,737:94-104.
参考文献 11
LI Wei,CHEN Huitao,HUANG Weiying,et al.Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel[J].International Journal of Fatigue,2021,147:106180.
参考文献 12
王强,高国强,罗学昆.激光喷丸与机械喷丸复合强化对 2124-T851 铝合金疲劳寿命的影响[J].表面技术,2021,50(4):96-102.WANG Qiang,GAO Guoqiang,LUO Xuekun.Effect of laser shot peening and shot peeing compound strengthening process on fatigue life of 2124-T851 aluminum alloy[J].Surface Technology,2021,50(4):96-102.(in Chinese)
参考文献 13
WANG Lingfeng,ZHOU Liucheng,LIU Lulu,et al.Fatigue strength improvement in Ti-6Al-4V subjected to foreign object damage by combined treatment of laser shock peening and shot peening[J].International Journal of Fatigue,2022,155:106581.
参考文献 14
李媛,何卫锋,聂祥樊,等.激光冲击TC17钛合金疲劳裂纹扩展试验[J].中国表面工程,2017,30(3):40-47.LI Yuan,HE Weifeng,NIE Xiangfan,et al.Fatigue crack growth behavior of TC17 titanium alloy with laser shock peening[J].China Surface Engineering,2017,30(3):40-47.(in Chinese)
参考文献 15
俞延庆,周留成,宫健恩,等.GH4169 高温合金激光冲击强化层微观结构和微动疲劳行为研究[J].表面技术,2022,51(10):38-48.YU Yanqing,ZHOU Liucheng,GONG Jianen,et al.Microstructure and fretting fatigue behaviour of GH4169 superalloy after laser shock peening[J].Surface Technology,2022,51(10):38-48.(in Chinese)
参考文献 16
李微,肖国源,陈辉涛,等.渗铝复合激光冲击对321不锈钢腐蚀疲劳性能的影响[J].中国表面工程,2022,35(2):140-151.LI Wei,XIAO Guoyuan,CHEN Huitao,et al.Effect of aluminizing and laser shock peening on corrosion fatigue properties of 321 stainless steel[J].China Surface Engineering,2022,35(2):140-151.(in Chinese)
参考文献 17
PRAVEENKUMAR K,MYLAVARAPU P,SARKAR A,et al.Residual stress distribution and elevated temperature fatigue behaviour of laser peened Ti-6Al-4V with a curved surface[J].International Journal of Fatigue,2021,156:106641.
参考文献 18
DWIVEDI P K,VINJAMURI R,RAI A K,et al.Effect of laser shock peening on ratcheting strain accumulation,fatigue life and bulk texture evolution in HSLA steel[J].International Journal of Fatigue,2022,163:107033.
参考文献 19
GAO Yi,YANG Wenyu,HUANG Zhouzhou,et al.Effects of residual stress and surface roughness on the fatigue life of nickel aluminium bronze alloy under laser shock peening[J].Engineering Fracture Mechanics,2021,244:107524.
参考文献 20
COFFIN Jr L F.A study of the effects of cyclic thermal stresses on a ductile metal[J].Transactions of the American Society of Mechanical Engineers,1954,76(6):931-949.
目录contents

    摘要

    为提高叶轮的使用寿命,对叶片的抗疲劳性能提出了更高的要求,激光冲击强化(LSP)处理是提高材料抗疲劳性能的重要途径。针对 FV520B 钢棒状试样进行 LSP 试验和不同应变幅值下的单轴低周疲劳试验,并进行疲劳寿命预测。结果表明,LSP 后试样的表面硬度由 330 HV 提升至 490 HV,且 LSP 后试样表面产生约−90 MPa 的残余压应力。相比于未冲击试样, LSP 试样的疲劳寿命均有所提高,±0.5%应变幅值下试样的疲劳寿命提高 132.2%。SEM 结果表明,LSP 后试样表面产生的残余压应力抑制了疲劳裂纹的萌生和扩展,裂纹萌生位置由试样表面向次表面转移,且疲劳条纹的间距和韧窝尺寸减小,从而延长了试样的疲劳寿命。采用 Manson-Coffin 方程针对光滑试样和 LSP 试样进行疲劳寿命预测,总的来说,对于光滑试样预测结果与试验结果吻合较好;对于 LSP 试样,预测的疲劳寿命偏保守。考虑残余压应力的影响针对 Manson-Coffin 方程进行修正,得到了较好的预测结果。研究结果可为 FV520B 材料 LSP 处理工艺和疲劳失效研究提供理论依据。

    Abstract

    FV520B steel is primarily used in the manufacturing of blades for various centrifugal compressors because of its high strength, good fatigue resistance, corrosion resistance, good toughness and plasticity, and excellent welding characteristics. The service life of impellers can be increased by improving the anti-fatigue performance. Several methods have been proposed to enhance the anti-fatigue performance of materials. Laser shock peening (LSP) is an important strengthening technology that can effectively improve the fatigue, wear, and corrosion resistance of metallic materials compared to the traditional surface treatment methods. To evaluate the effectiveness of LSP, experiments were conducted on FV520B steel-bar specimens by choosing the appropriate shock energy, laser wavelength, pulse width, circular spot diameter, shock frequency, laser power density, and spot overlap ratio. Surface hardness was measured using a digital microhardness tester (HVS-1000AT) before and after LSP. The results showed that LSP increased the surface hardness of the specimens from approximately 330 HV to 490 HV; the depth of hardening was 0.25 mm. The residual stresses of the LSP specimens were measured using a Proto-LXRD high-power residual stress tester—a residual compressive stress of approximately 90 MPa was generated on the surface of the specimens. The low cycle fatigue experiments for FV520B specimens with and without LSP were conducted for different strain amplitudes ±0.5%, ±0.6%, ±0.7%, ±0.8%, and ±1.0%, respectively. The fatigue life decreased with the increasing strain amplitude for all specimens with and without LSP. The fatigue life of all specimens improved after LSP for the five strain amplitudes. For the strain amplitudes between ±0.6% to ±1.0%, it was observed that the higher the strain amplitude, the more significant the improvement in fatigue life of specimens. The strain amplitude of ±0.5% showed the most significant improvement of 132.2%. Scanning electron microscopy (SEM) experiments for fatigue fractures on smooth and LSP specimens showed that all the fractures presented three typical regions—the crack source region, crack propagation region, and transient fracture region. Moreover, an obvious fatigue strip in the crack growth region and a secondary crack perpendicular to the direction of crack propagation were observed for the smooth specimen. On the contrary, for the LSP specimen, the fatigue source became fuzzy, and the residual compressive stress generated on the surface after LSP inhibited fatigue crack initiation and propagation. This caused the location of crack initiation to transfer from the surface to the subsurface, and the fatigue strip spacing and dimple size were reduced, which improved the fatigue life of the specimens. Further, the fatigue lives of the smooth and LSP specimens were predicted using the Manson–Coffin equation. Overall, the prediction results for the smooth specimens agreed well with the experimental results. For the LSP specimens, the predicted fatigue life was the same as that predicted for the smooth specimens, and the prediction results were conservative. Furthermore, considering the effect of residual compressive stress on the inhibition of fatigue crack initiation and propagation, a new fatigue life prediction method that can be used to predict the fatigue life with residual compressive stress is proposed by modifying the Manson–Coffin equation. The predictions for the LSP specimens using this method were in good agreement with the experimental results. The comparative analysis of the fatigue life between smooth and LSP specimens for different strain amplitudes in this study can be used to select the appropriate process parameters of LSP for FV520B materials. This fatigue prediction method provides a new concept for determining the fatigue life of materials with residual stress.

  • 0 前言

  • FV520B 钢是一种低碳马氏体沉淀硬化不锈钢,具有较高的强度、良好的抗疲劳、耐腐蚀性能、良好的韧塑性及优良的焊接特性,多用于制造各种离心压缩机的叶片[1-2]。使用过程中,叶轮以极高速度旋转,通常在叶轮表面形成较大的损伤。同时它在服役过程中长期承受循环交变载荷作用,疲劳破坏成为其主要失效形式[3-4]

  • 不改变基体材料性能前提下的表面强化技术是提高材料抗疲劳性能的重要途径[5]。激光冲击强化 (LSP)技术具有强化层深度大、表面质量好和控制精度高等特点[6-8]。通过诱导表面残余压应力、改变表面显微组织或增加位错密度来改善材料的疲劳性能,达到提高疲劳寿命的目的[9-11]。王强等[12]研究表明,LSP 引入的深层残余压应力场使 2124-T851 铝合金试样的疲劳寿命提高 217%。 WANG 等[13]研究表明,LSP 后 Ti6Al-4V 合金的硬度达到 411.3 HV,比母材增加 17.5%。并产生 −667.5 MPa 的残余压应力,使疲劳强度提高约 22%。李媛等[14]研究表明,LSP 后在 TC17 钛合金试件表面产生−512 MPa 的最大残余压应力,残余应力有效抑制了疲劳裂纹扩展,使得试件经两种强化方案后的平均疲劳寿命分别提高 2.14 倍和 1.90 倍。俞延庆等[15]研究表明,在 LSP 后获得硬化层和残余应力场共同影响下,GH4169 高温合金榫试样的微动疲劳寿命提升 827%。李微等[16]研究表明,经过不同功率密度的 LSP 处理后,渗铝钢腐蚀疲劳寿命提高 100%~200%。

  • 本文针对 FV520B 钢棒材进行 LSP 处理,测得不同位置处的硬度值及残余应力值,并进行不同应变幅值下的低周单轴疲劳试验。通过对比 LSP 前后试样的疲劳寿命,结合 SEM 疲劳断口观察与分析,揭示 LSP 对 FV520B 钢的疲劳寿命的影响。最后考虑残余应力的影响针对 Manson-Coffin 方程进行修正,并进行疲劳寿命预测。

  • 1 试验

  • 1.1 试验材料

  • 试验材料为 FV520B 钢,其在室温下的性能为:屈服强度 σy=1 000 MPa,抗拉强度 σb=1 066 MPa,弹性模量 E=210 GPa,泊松比 ν=0.3。试验前,材料用 500#、800#、1 000#和 1 200#砂纸进行逐级打磨、水清洗、抛光、腐蚀,腐蚀液为苦味酸 1 g、HCL5 mL 和 100 mL 乙醇(95%)的混合液。

  • 1.2 LSP 试验和硬度试验

  • 采用Extra-8高能脉冲激光器对FV520B钢标距段进行 LSP 处理,试样尺寸如图1 所示。试验环境为:温度 20~22℃、湿度≤50%、无尘,激光能量为 5.4 J,激光波长为 1 064 nm,脉宽为 15 ns,圆形光斑直径为 2 mm,最大重复频率为 2 Hz。在激光冲击时,选取光斑搭接率为 15%,用厚度约为 2 mm的去离子水作为约束层,吸收层为 150 µm 厚的黑色胶带。

  • 图1 LSP 试样

  • Fig.1 LSP specimen

  • 采用 HVS-1000AT 型精密数显显微硬度计测试 LSP 后试样沿深度方向的硬度。设置仪器相关参数,施加载荷为 25 g,加载时间为 15 s。

  • 使用 Proto-LXRD 型大功率残余应力测试仪测试 LSP 处理后试样的残余应力,用倾斜固定 ψ 法进行测量,选用 Cu-Kα 特征曲线,波长为 1.541 838× 10−10 m,衍射晶面为(213),衍射角为 142 °。测得试样表面残余应力值为−90 MPa。

  • 1.3 疲劳试验和 SEM 试验

  • 疲劳试验在电液伺服疲劳试验机上进行。试验条件为常温、大气环境。采用三角波进行轴向拉压循环载荷控制,应变比为 R=−1。对光滑试样和 LSP 试样进行±0.5%、±0.6%、±0.7%、±0.8% 和±1.0%应变幅值下的单轴低周疲劳试验。

  • 利用 JSM-5800 扫描电子显微镜,对±0.5%应变幅值下的光滑试样和 LSP 试样的疲劳断口形貌进行观测。

  • 2 结果与讨论

  • 2.1 硬度试验结果

  • FV520B 钢 LSP 后硬度值如图2 所示。由图2 可知,材料基体中心处的硬度值约为 330 HV,LSP后试样表面处硬度值约为 490 HV,提升了约 160 HV,提高幅度高达 48%。该材料表层硬度值的提高是 LSP 处理后细化了表面晶粒以及产生了较大的表面残余应力的结果。

  • 图2 LSP 后试样沿深度方向的硬度分布

  • Fig.2 Hardness distribution of the specimen along the depth direction after LSP

  • 2.2 疲劳试验结果

  • 图3 为不同应变幅值下光滑试样与 LSP 试样的疲劳寿命对比图。从图中可以看出,所有试样的疲劳寿命随着应变幅值的增加而减少。经过 LSP 处理,任意应变幅值下,试样的疲劳寿命均有提高。从± 0.6%应变幅值至±1.0%应变幅值,随着应变幅值的增加,试样的疲劳寿命的增幅随之增加。而±0.5% 应变幅值下材料的疲劳寿命提高 132.2%,提高效果最显著。

  • 图3 不同应变幅值下光滑试样和 LSP 试样的疲劳寿命

  • Fig.3 Fatigue life of smooth specimens and LSP specimens for different strain amplitudes

  • LSP 处理后,材料表层产生了塑性变形,引发材料的位错密度急剧增加,形成位错缠结,提高了变形抗力。同时,LSP 在材料表面形成了残余压应力。

  • 各应变幅下疲劳寿命的增幅不同,可能与 LSP 后材料表层晶粒位相取向不均和不同应变幅下循环变形过程中位错组态的变化,以及残余应力松弛的程度有关。

  • 2.3 疲劳断口 SEM 结果

  • ±0.5%应变幅值下的光滑试样疲劳断口的 SEM 结果如图4 所示。从图4a 和图4b 中可以看出,裂纹萌生于试样表面和次表面的夹渣处,这是低周疲劳断裂的显著特征。

  • 疲劳裂纹扩展区域如图4c 所示。在裂纹扩展区可以观察到明显的疲劳条带,同时出现了许多较深的沟槽和相互平行的垂直于裂纹扩展方向的二次裂纹。

  • 图4d 为瞬断区,可以观察到许多大小不等的凹坑。这是因为材料在发生严重撕裂变形的同时,部分夹渣和硬质仍然相对完整地保留在断口截面。同时观察到非均匀的韧窝底部均有不同程度的颗粒状第二相。

  • 图4 应变幅为±0.5%时光滑试样的疲劳断口 SEM 图像

  • Fig.4 SEM fracture morphology of smooth specimens for ±0.5% strain amplitude

  • ±0.5%应变幅值下的 LSP 试样疲劳断口的 SEM 结果如图5 所示,从图5a 和图5b 中观察到沿源区向外扩展的河流花样,可以认为裂纹萌生于距试样表面约 750 μm 处。但是,源区在交变载荷的作用下互相摩擦破坏了源区的完整性,使疲劳源的具体位置变得模糊,且展现出较大面积的疲劳裂纹。疲劳裂纹源在低周疲劳中常出现在材料表面,但经过 LSP 的试样表面产生了残余压应力层,抑制了疲劳裂纹的扩展,在残余压应力层与初始材料的交界处产生应力集中,使裂纹萌生位置向内部靠近,这是与光滑试样疲劳裂纹萌生特征显著不同之处。

  • 图5 应变幅为±0.5%时 LSP 件的疲劳断口 SEM 图像

  • Fig.5 SEM fracture morphology of LSP specimens for ±0.5% strain amplitude.

  • 图5c 中裂纹扩展区存在许多相互错开分布的疲劳条带,且出现较光滑试样沟槽更深、数量更多的相互平行的二次裂纹。与光滑试样相比,LSP 试样的疲劳条纹间距减小,这与文献[17]结果相一致。

  • 图5d 中瞬断区存在许多大小不等的凹坑和显微空洞,呈现韧窝状形貌断裂特征。对比于光滑试样,LSP 试样生成的韧窝尺寸更小、数量更多、分布更均匀。这是由于 LSP 增加了材料表层硬度的同时,材料表层的晶粒得以细化,位错密度增大,发生相同量的塑性变形需要更多的能量,即提高了材料塑性变形抗力[18-19]

  • 3 单轴疲劳寿命预测方法及结果

  • 3.1 疲劳寿命预测模型及预测结果

  • 以应变为损伤参量的 Manson-Coffin 方程[20]常用于单轴低周疲劳寿命预测,其表达式为:

  • Δεt2=Δεe2+Δεp2=σf'E2Nfb+εf'2Nfc
    (1)
  • 式中,Δεt/2Δεe/2Δεp/2分别为总应变幅、弹性应变幅和塑性应变幅,σf ′、εf ′、bc 分别为疲劳强度系数、疲劳延性系数、疲劳强度指数和疲劳延性指数,E 为材料弹性模量。由单轴疲劳数据通过线性拟合得到的材料参数为σ f ′=1 105、εf′ =0.08、 b=−0.016 6 和 c=−0.478 4。

  • 采用 Manson-Coffin 方程进行寿命预测,预测结果如图6 所示。对于光滑试样,当应变幅大于 ±0.5%时,预测结果与实际寿命吻合良好;当应变幅为±0.5%时,Manson-Coffin 方程预测的寿命是试验结果的 2.23 倍,给出了危险的预测结果。对于 LSP 试样,相同条件下预测的疲劳寿命与光滑试样寿命相同,因此预测结果偏保守。

  • 3.2 修正 Manson-Coffin 方程

  • LSP 处理后在材料表面产生了残余压应力,提高了材料塑性变形抗力,延长了疲劳寿命,在此考虑残余压应力的影响针对 Manson-Coffin 方程进行修正,得到表达式:

  • Δεt2=Δεe2+Δεp2=σf'-σ0E2Nfb+εf'2Nfc
    (2)
  • 式中σ 0 为 LSP 后材料表面的残余压应力。

  • 采用上述修正后的 Manson-Coffin 方程进行寿命预测,预测结果如图6 所示。应变幅大于±0.5% 时,预测的寿命均在 2 倍分散带内,预测结果很好; 当应变幅为±0.5%时,预测寿命较试验结果略高。但是相同条件下预测得到的 LSP 试样寿命大于预测的光滑试样寿命,证明考虑残余压应力的影响修正后的模型进行 LSP 处理后的疲劳寿命预测是可行的。

  • 图6 光滑试样和 LSP 试样疲劳寿命预测结果

  • Fig.6 Fatigue life prediction results for smooth specimens and LSP specimens

  • 4 结论

  • 针对 FV520B 钢进行 LSP 试验、硬度试验以及低周疲劳试验和 SEM 试验,并进行疲劳寿命预测。得到如下结论:

  • (1)FV520B 钢经过 LSP 处理后,其表面硬度由 330 HV 提升至 490 HV,提高幅度达 48%;表面产生−90 MPa 的残余压应力。针对 FV520B 钢光滑试样和 LSP 试样进行不同应变幅值下的低周疲劳试验。疲劳试验结果表明,LSP 处理有效提高了 FV520B 钢的疲劳寿命,与光滑试样相比±0.5%应变幅值下疲劳寿命提高 132.2%。

  • (2)疲劳断口的 SEM 结果揭示了 LSP 处理后疲劳寿命得以延长的原因在于 LSP 处理后产生的残余压应力,抑制了表面疲劳裂纹的萌生和扩展;同时 LSP 处理使得疲劳裂纹在距试样表面约 750 μm 处萌生,且疲劳条纹间距减小。

  • (3)采用 Manson-Coffin 方程针对光滑试样和 LSP 试样进行疲劳寿命预测,总的来说对于光滑试样预测结果与试验结果吻合较好,但对于 LSP 试样,预测结果偏于保守。考虑残余压应力的影响,针对 Manson-Coffin 方程进行修正,得到了较好的预测结果。该方法可用于带有残余应力试样的疲劳寿命预测。

  • 参考文献

    • [1] ZHANG Ming,WANG Weiqiang,WANG Pengfei,et al.Fatigue behavior and mechanism of FV520B-I welding seams in a very high cycle regime[J].International Journal of Fatigue,2016,87:22-37.

    • [2] ZHANG Ming,ZHANG Han,LI Mengli,et al.Fatigue behavior and mechanism of dog-bone-shaped specimens of FV520B-I in a very high cycle regime[J].Fatigue & Fracture of Engineering Materials & Structures,2022,45(12):3658-3676.

    • [3] 徐滨士,方金祥,董世运,等.FV520B 不锈钢激光熔覆热影响区组织演变及其对力学性能的影响[J].金属学报,2016,52(1):1-9.XU Binshi,FANG Jinxiang,DONG Shiyun.et al.Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding FV520B stainless steel[J].Acta Metallurgica Sinica,2016,52(1):1-9.(in Chinese)

    • [4] WANG Jinlong,ZHANG Yuanliang,LIU Shujie,et al.Competitive giga-fatigue life analysis owing to surface defect and internal inclusion for FV520B-I[J].International Journal of Fatigue,2016,87:203-209.

    • [5] ZHANG Xiushuo,MA Yu,YANG Meng,et al.A comprehensive review of fatigue behavior of laser shock peened metallic materials[J].Theoretical and Applied Fracture Mechanics,2022,122:103642.

    • [6] ZHANG Chaoyi,DONG Yalin,YE Chang.Recent developments and novel applications of laser shock peening:A review[J].Advanced Engineering Materials,2021,23(7):2001216.

    • [7] 钱丽艳,王艳虎,戴峰泽,等.激光冲击强化对钛合金疲劳寿命影响综述[J].中国表面工程,2022,35(2):103-112.QIAN Liyan,WANG Yanhu,DAI Fengze,et al.Laser shock processing and its effect on fatigue life of titanium alloys:A review[J].China Surface Engineering,2022,35(2):103-112.(in Chinese)

    • [8] SANCHEZ A G,YOU C,LEERING M,et al.Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651[J].International Journal of Fatigue,2021,143(3):106025.

    • [9] WANG Bohan,CHENG Li,LI Dongchun.Study on very high cycle fatigue properties of forged TC4 titanium alloy treated by laser shock peening under three-point bending[J].International Journal of Fatigue,2022,156:106668.

    • [10] SUN Rujian,LI Liuhe,GUO Wei,et al.Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy[J].Materials Science & Engineering A,2018,737:94-104.

    • [11] LI Wei,CHEN Huitao,HUANG Weiying,et al.Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel[J].International Journal of Fatigue,2021,147:106180.

    • [12] 王强,高国强,罗学昆.激光喷丸与机械喷丸复合强化对 2124-T851 铝合金疲劳寿命的影响[J].表面技术,2021,50(4):96-102.WANG Qiang,GAO Guoqiang,LUO Xuekun.Effect of laser shot peening and shot peeing compound strengthening process on fatigue life of 2124-T851 aluminum alloy[J].Surface Technology,2021,50(4):96-102.(in Chinese)

    • [13] WANG Lingfeng,ZHOU Liucheng,LIU Lulu,et al.Fatigue strength improvement in Ti-6Al-4V subjected to foreign object damage by combined treatment of laser shock peening and shot peening[J].International Journal of Fatigue,2022,155:106581.

    • [14] 李媛,何卫锋,聂祥樊,等.激光冲击TC17钛合金疲劳裂纹扩展试验[J].中国表面工程,2017,30(3):40-47.LI Yuan,HE Weifeng,NIE Xiangfan,et al.Fatigue crack growth behavior of TC17 titanium alloy with laser shock peening[J].China Surface Engineering,2017,30(3):40-47.(in Chinese)

    • [15] 俞延庆,周留成,宫健恩,等.GH4169 高温合金激光冲击强化层微观结构和微动疲劳行为研究[J].表面技术,2022,51(10):38-48.YU Yanqing,ZHOU Liucheng,GONG Jianen,et al.Microstructure and fretting fatigue behaviour of GH4169 superalloy after laser shock peening[J].Surface Technology,2022,51(10):38-48.(in Chinese)

    • [16] 李微,肖国源,陈辉涛,等.渗铝复合激光冲击对321不锈钢腐蚀疲劳性能的影响[J].中国表面工程,2022,35(2):140-151.LI Wei,XIAO Guoyuan,CHEN Huitao,et al.Effect of aluminizing and laser shock peening on corrosion fatigue properties of 321 stainless steel[J].China Surface Engineering,2022,35(2):140-151.(in Chinese)

    • [17] PRAVEENKUMAR K,MYLAVARAPU P,SARKAR A,et al.Residual stress distribution and elevated temperature fatigue behaviour of laser peened Ti-6Al-4V with a curved surface[J].International Journal of Fatigue,2021,156:106641.

    • [18] DWIVEDI P K,VINJAMURI R,RAI A K,et al.Effect of laser shock peening on ratcheting strain accumulation,fatigue life and bulk texture evolution in HSLA steel[J].International Journal of Fatigue,2022,163:107033.

    • [19] GAO Yi,YANG Wenyu,HUANG Zhouzhou,et al.Effects of residual stress and surface roughness on the fatigue life of nickel aluminium bronze alloy under laser shock peening[J].Engineering Fracture Mechanics,2021,244:107524.

    • [20] COFFIN Jr L F.A study of the effects of cyclic thermal stresses on a ductile metal[J].Transactions of the American Society of Mechanical Engineers,1954,76(6):931-949.

  • 参考文献

    • [1] ZHANG Ming,WANG Weiqiang,WANG Pengfei,et al.Fatigue behavior and mechanism of FV520B-I welding seams in a very high cycle regime[J].International Journal of Fatigue,2016,87:22-37.

    • [2] ZHANG Ming,ZHANG Han,LI Mengli,et al.Fatigue behavior and mechanism of dog-bone-shaped specimens of FV520B-I in a very high cycle regime[J].Fatigue & Fracture of Engineering Materials & Structures,2022,45(12):3658-3676.

    • [3] 徐滨士,方金祥,董世运,等.FV520B 不锈钢激光熔覆热影响区组织演变及其对力学性能的影响[J].金属学报,2016,52(1):1-9.XU Binshi,FANG Jinxiang,DONG Shiyun.et al.Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding FV520B stainless steel[J].Acta Metallurgica Sinica,2016,52(1):1-9.(in Chinese)

    • [4] WANG Jinlong,ZHANG Yuanliang,LIU Shujie,et al.Competitive giga-fatigue life analysis owing to surface defect and internal inclusion for FV520B-I[J].International Journal of Fatigue,2016,87:203-209.

    • [5] ZHANG Xiushuo,MA Yu,YANG Meng,et al.A comprehensive review of fatigue behavior of laser shock peened metallic materials[J].Theoretical and Applied Fracture Mechanics,2022,122:103642.

    • [6] ZHANG Chaoyi,DONG Yalin,YE Chang.Recent developments and novel applications of laser shock peening:A review[J].Advanced Engineering Materials,2021,23(7):2001216.

    • [7] 钱丽艳,王艳虎,戴峰泽,等.激光冲击强化对钛合金疲劳寿命影响综述[J].中国表面工程,2022,35(2):103-112.QIAN Liyan,WANG Yanhu,DAI Fengze,et al.Laser shock processing and its effect on fatigue life of titanium alloys:A review[J].China Surface Engineering,2022,35(2):103-112.(in Chinese)

    • [8] SANCHEZ A G,YOU C,LEERING M,et al.Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651[J].International Journal of Fatigue,2021,143(3):106025.

    • [9] WANG Bohan,CHENG Li,LI Dongchun.Study on very high cycle fatigue properties of forged TC4 titanium alloy treated by laser shock peening under three-point bending[J].International Journal of Fatigue,2022,156:106668.

    • [10] SUN Rujian,LI Liuhe,GUO Wei,et al.Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy[J].Materials Science & Engineering A,2018,737:94-104.

    • [11] LI Wei,CHEN Huitao,HUANG Weiying,et al.Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel[J].International Journal of Fatigue,2021,147:106180.

    • [12] 王强,高国强,罗学昆.激光喷丸与机械喷丸复合强化对 2124-T851 铝合金疲劳寿命的影响[J].表面技术,2021,50(4):96-102.WANG Qiang,GAO Guoqiang,LUO Xuekun.Effect of laser shot peening and shot peeing compound strengthening process on fatigue life of 2124-T851 aluminum alloy[J].Surface Technology,2021,50(4):96-102.(in Chinese)

    • [13] WANG Lingfeng,ZHOU Liucheng,LIU Lulu,et al.Fatigue strength improvement in Ti-6Al-4V subjected to foreign object damage by combined treatment of laser shock peening and shot peening[J].International Journal of Fatigue,2022,155:106581.

    • [14] 李媛,何卫锋,聂祥樊,等.激光冲击TC17钛合金疲劳裂纹扩展试验[J].中国表面工程,2017,30(3):40-47.LI Yuan,HE Weifeng,NIE Xiangfan,et al.Fatigue crack growth behavior of TC17 titanium alloy with laser shock peening[J].China Surface Engineering,2017,30(3):40-47.(in Chinese)

    • [15] 俞延庆,周留成,宫健恩,等.GH4169 高温合金激光冲击强化层微观结构和微动疲劳行为研究[J].表面技术,2022,51(10):38-48.YU Yanqing,ZHOU Liucheng,GONG Jianen,et al.Microstructure and fretting fatigue behaviour of GH4169 superalloy after laser shock peening[J].Surface Technology,2022,51(10):38-48.(in Chinese)

    • [16] 李微,肖国源,陈辉涛,等.渗铝复合激光冲击对321不锈钢腐蚀疲劳性能的影响[J].中国表面工程,2022,35(2):140-151.LI Wei,XIAO Guoyuan,CHEN Huitao,et al.Effect of aluminizing and laser shock peening on corrosion fatigue properties of 321 stainless steel[J].China Surface Engineering,2022,35(2):140-151.(in Chinese)

    • [17] PRAVEENKUMAR K,MYLAVARAPU P,SARKAR A,et al.Residual stress distribution and elevated temperature fatigue behaviour of laser peened Ti-6Al-4V with a curved surface[J].International Journal of Fatigue,2021,156:106641.

    • [18] DWIVEDI P K,VINJAMURI R,RAI A K,et al.Effect of laser shock peening on ratcheting strain accumulation,fatigue life and bulk texture evolution in HSLA steel[J].International Journal of Fatigue,2022,163:107033.

    • [19] GAO Yi,YANG Wenyu,HUANG Zhouzhou,et al.Effects of residual stress and surface roughness on the fatigue life of nickel aluminium bronze alloy under laser shock peening[J].Engineering Fracture Mechanics,2021,244:107524.

    • [20] COFFIN Jr L F.A study of the effects of cyclic thermal stresses on a ductile metal[J].Transactions of the American Society of Mechanical Engineers,1954,76(6):931-949.

  • 手机扫一扫看