en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王成勇,男,1964年生,教授,博士研究生导师。主要研究方向为难加工金属、非金属、高分子、复合材料等的高速高性能绿色加工理论、刀具、工艺与装备。E-mail:cywang@gdut.edu.cn

中图分类号:TG707;X781

DOI:10.11933/j.issn.1007-9289.20221017002

参考文献 1
汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):175.WANG Weihua.The nature and properties of amorphous matter[J].Progress in Physics,2013,33(5):175.(in Chinese)
参考文献 2
KHAN M M,NEMATI A,RAHMAN Z U,et al.Recent advancements in bulk metallic glasses and their applications:A review[J].Critical Review in Solid State and Materials Sciences,2017,43(3):1-36.
参考文献 3
LI H F,ZHENG Y F.Recent advances in bulk metallic glasses for biomedical applications[J].Acta Biomaterialia,2016,36:1-20.
参考文献 4
INOUE A,WANG X M,ZHANG W.Developments and applications of bulk metallic glasses[J].Reviews on Advanced Mateirals Science,2008,18(1):1-9.
参考文献 5
CHEN M W.A brief overview of bulk metallic glasses[J].NPG Asia Materials,2011,3(9):82-90.
参考文献 6
GAO K,ZHU X G,CHEN L,et al.Recent development in the application of bulk metallic glasses[J].Journal of Materials Science and Technology,2022,131:115-121.
参考文献 7
DING F,WANG C Y,ZHANG T,et al.Investigation on chip deformation behaviors of Zr-based bulk metallic glass during machining[J].Journal of Materials Processing Technology,2020,276:116404.
参考文献 8
LIU L,ZHANG T,LIU Z,et al.Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting[J].Materials,2018,11(11):2338.
参考文献 9
丁峰,王成勇,赖子健,等.锆基非晶合金冰冻切削加工特征及其无晶化加工工艺研究[J].机械工程学报,2021,57(3):235-246.DING Feng,WANG Chengyong,LAI Zijian,et al.Freezing cutting characteristics and non-crystallized processing technology of Zr-based bulk metallic glass[J].Journal of Mechanical Engineering,2021,57(3):235-246.(in Chinese)
参考文献 10
CHEN X,XIAO J F,ZHU Y,et al.Micro-machinability of bulk metallic glass in ultra-precision cutting[J].Materials and Design,2017,136:1-12.
参考文献 11
ZHANG F L,HUANG G W,LIU J M,et al.Grinding performance and wear of metal bond super-abrasive tools in grinding of Zr-based bulk metallic glass[J].International Journal of Refractory Metals and Hard Materials,2021,97(9):105501.
参考文献 12
KOZA J A,SUEPTITZ R,UHLEMANN M,et al.Electrochemical micromachining of a Zr-based bulk metallic glass using a micro-tool electrode technique[J].Intermetallics,2011,19(4):437-444.
参考文献 13
GUO C,WU B,XU B,et al.Electrochemical surface smoothing of spark erosion treated Zr-based bulk metallic glasses in NaCl-ethylene glycol electrolyte[J].The International Journal of Advanced Manufacturing Technology,2021,116:1591-1607.
参考文献 14
STANISHEVSKY V K,PARSHUTO A E,KOSOBUTSKY A A,et al.Method of electrochemical machining of articles made of conducting materials:US5028304A[P].1991-07-02.
参考文献 15
HUANG Y,WANG C Y,DING F,et al.Principle,process,and application of metal plasma electrolytic polishing:A review[J].The International Journal of Advanced Manufacturing Technology,2021,114:1893-1912.
参考文献 16
BELKIN P N,KUSMANOV S A,PARFENOV E V.Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces[J].Applied Surface Science Advances,2020,1:100016.
参考文献 17
VANA D,PODHORSKY S,SUBA R,et al.The change of surface properties on tested smooth stainless steel surfaces after plasma polishing[J].International Journal of Engineering Science,2013,2(6):7-11.
参考文献 18
段海栋,孙桓五,纪刚强,等.不锈钢电解质等离子体抛光表层元素化学形态演变及界面反应[J].表面技术,2022,51(6):346-353,389.DUAN Haidong,SUN Huanwua,JI Gangqiang,et al.Evolution of chemical speciation and interfacial reaction of elements on the surface of stainless steel during electrolytic plasma polishing[J].Surface Technology,2022,51(6):346-353,389.(in Chinese)
参考文献 19
ALIAKSEYEU Y G,KOROLYOV A Y,NISS V S,et al.Electrolyte-plasma polishing of titanium and niobium alloys[J].Science and Technique,2018,17(3):211-219.
参考文献 20
HYE-RI C,HAN-CHEOL C.Micro-scaled morphology of Ti-40Nb-xZr alloy with applied voltage via plasma electrolytic oxidation[J].Thin Solid Films,2022,751:139231.
参考文献 21
DURADJI V N,KAPUTKIN D E,DURADJI A Y.Aluminum treatment in the electrolytic plasma during the anodic process[J].Journal of Engineering Science and Technology Review,2017,10(3):81-84.
参考文献 22
SPICA A,ROCHE J,ARURAULT L,et al,Evolution of model roughness on quasi-pure aluminum during plasma electrolytic polishing[J].Surface and Coatings Technology,2021,428:127839.
参考文献 23
NESTLER K,BOTTGER-HILLER F,ADAMITZKI W,et al.Plasma electrolytic polishing—An overview of applied technologies and current challenges to extend the polishable material range[J].Procedia CIRP,2016,42:503-507.
参考文献 24
DEHGHANIAN H A,HOSSEINABADI N.The hydrogen storage capacity of Al–Cu alloy with permeable alumina hydrogen permeation barrier(HPB)applied by plasma electrolytic oxidation(PEO)[J].International Journal of Hydrogen Energy,2022,47:7339-7350.
参考文献 25
王成勇,何小琳,李乃涛,等.一种用于非晶合金的抛光液及非晶合金的抛光方法:2018107231541[P].2018-10-16.WANG Chengyong,HE Xiaolin,LI Naitao,et al.A polishing solution for amorphous alloys and a polishing method for amorphous alloys:2018107231541[P].2018-10-16.(in Chinese)
参考文献 26
何小琳.锆基非晶合金电解质等离子体抛光机理研究 [D].广州:广东工业大学,2019.HE Xiaolin.Study on the mechanism of electrolytic plasma polishing of zirconium-based metallic glasses[D].Guangzhou:Guangdong University of Technology,2019.(in Chinese)
参考文献 27
邝金勇,欧美珊.饮用水源中重金属镉去除的工艺技术试验[J].净水技术,2013,32(6):15-17.KUANG Jinyong,OU Meishan.Technological experiment of cadmium removal processing for raw water from drinking water source[J].Water Purification Technology,2013,32(6):15-17.(in Chinese)
参考文献 28
李鸿乂,李翠,张梦,等.离子交换法分离溶液中钒与铬的研究[J].钢铁钒钛,2014,35(3):5-9.LI Hongyi,LI Cui,ZHANG Meng,et al.Study on separation of vanadium and chromium by ion exchange resin[J].Iron Steel Vanadium Titanium,2014,35(3):5-9.(in Chinese)
参考文献 29
刘海波,左文武,林文周,等.化学-混凝沉淀法处理低浓度含氟废水研究[J].中国给水排水,2008,11:76-79.LIU Haibo,ZUO Wenwu,LIN Wenzhou,et al.Treatment of low-concentration fluoride wastewater by chemical/coagulation and sedimentation process[J].China Water and Wastewater,2008,11:76-79.(in Chinese)
参考文献 30
周芬,汪晓军.化学-混凝沉淀处理含氟含重金属废水研究[J].环境工程学报,2012,6(2):445-450.ZHOU Fen,WANG Xiaojun.Study on treatment of wastewater containing fluoride and heavy metals by chemical coagulation process[J].Chinese Journal of Environmental Engineering,2012,6(2):445-450.(in Chinese)
参考文献 31
ZHOU C Q,QIAN N,SU H H,et al.Effect of energy distribution on the machining efficiency and surface morphology of inconel 718 nickel-based superalloy using plasma electrolytic polishing[J].Surface and Coatings Technology,2022,441:128506.
目录contents

    摘要

    电解质等离子体抛光技术在非晶合金结构件的应用仍处于探索阶段,而且会产生含较高浓度的重金属和氟离子废液。为了提高锆基非晶合金结构件的表面质量以满足其使役性能,研究抛光时间、工作电压、硫酸铵浓度、初始温度、工件入水深度、阳极挂具材料等电解质等离子体抛光工艺参数对锆基非晶合金表面粗糙度、晶化情况的影响,并利用正交试验进行参数组合优化,对比不同参数对于表面粗糙度的影响显著程度。最后针对抛光后废液污染的问题,探究并配套合适的废液处理方案。结果表明:影响抛光后材料表面质量因素的显著程度为抛光时间>工作电压>初始温度>硫酸铵浓度,最优抛光工艺参数组合为抛光时间 8 min,工作电压 220 V,初始温度 88 ℃,硫酸铵浓度为 5%,此时表面粗糙度为 0.103 μm。经化学混凝沉淀法和离子交换树脂法组合工艺处理后,出水废液中的重金属和氟离子浓度均能达国家电镀污染物排放标准。研究成果可为电解质等离子体抛光在锆基非晶合金的实际生产提供工艺指导,有助于推广锆基非晶合金结构件的产业化应用,促进锆基非晶合金的大规模工业生产。

    Abstract

    Zirconium-based bulk metallic glasses (BMGs) exhibit metal and glass properties, excellent mechanical performance, corrosion resistance, and good biocompatibility. Zr-based BMG is currently the only amorphous alloy that has been industrially produced as a structural component, and its surface quality is a key factor affecting its operational performance. Plasma electrolytic polishing, which requires low electrical conductivity, is suitable for intricate workpieces and does not have any adverse effects on multiphase alloys. Thus, this is an ideal polishing technology for Zr-based BMG structural components. This study aimed to investigate the effects of plasma electrolytic polishing on the surface quality of Zr58Cu15.46Ni12.74Al10.34Nb2.76Y0.5 BMGs and obtain the optimal process parameters and polishing quality to provide process guidance for plasma electrolytic polishing in the actual production of Zr-based BMGs. The effects of different process parameters, such as polishing time, ammonium sulfate concentration of the electrolyte, working voltage, initial temperature, immersion depth of the workpiece, and anode rack materials, on the polishing surface roughness were studied using single-factor experiments. Subsequently, based on the single-factor experiments, we conducted four orthogonally designed experiments, each with four factors and four levels, using the factors that were more influential on the surface quality. These experiments aimed to minimize the surface roughness after polishing. Range and variance analyses were conducted to study the influence of each polishing process parameter on the surface roughness during polishing and determine the primary and secondary order of influence indicators, and the optimal combination of process parameters was obtained. To address the issue of waste liquor pollution after polishing, the effects of chemical neutralization-coagulative precipitation process and ion-exchange resin method on treating the waste liquor generated after polishing Zr-based BMGs were studied. A combination technology was proposed to treat the waste liquor. The quality of the effluent based on its compliance with the "National Emission Standard for Electroplating Waste Liquor" (GB21900—2008) was measuring. The results showed that the surface roughness of the Zr-based BMGs decreased and stabilized with increasing polishing time. A working voltage that was too high or too low could not achieve good surface quality, and the lowest surface roughness was achieved at a working voltage of 210 V. Ammonium sulfate was the primary component of the electrolyte, and ammonium sulfate concentrations that were too high or too low could affect the polishing effect. A concentration of 4.5% resulted in the lowest surface roughness. As the initial temperature increases, the roughness of the polished surfaces decreases. The immersion depth of the workpiece affects its surface pressure, which in turn, affects the formation of the surface air layer, with excessive immersion depth increasing the surface roughness. Copper anode rack materials can achieve lower surface roughness than stainless-steel anode rack materials. The results of the orthogonal experiment with the minimum surface roughness as the objective showed that the significant degree of factors affecting the surface roughness after polishing were the polishing time, working voltage, initial temperature, and ammonium sulfate concentration. The optimal combination of polishing process parameters was achieved with a polishing time, a working voltage, an initial temperature, and an ammonium sulfate concentration of 8 min, 220 V, 88 ℃, and 5%, respectively. The optimal surface roughness obtained in the experiments was 0.103 μm. The chemical neutralizing-coagulative precipitation process or ion-exchange resin method alone could not meet the "National Emission Standard for Electroplating Waste Liquor" through a single waste liquor treatment process. However, a combination of the two could effectively treat heavy metals and fluoride ions in the waste liquor generated after the polishing of Zr-based BMGs and reduce the concentration of heavy metals and fluoride ions in the effluent to meet the national standard for electroplating waste liquor. The research results will be helpful for promoting the industrial application of Zr-based BMG structural components and mass production and application of Zr-based BMGs.

  • 0 前言

  • 锆基非晶合金(Zr-based bulk metallic glasses,Zr-based BMGs)兼具有金属和玻璃的优良特性,不存在位错、空穴等晶体缺陷,具有优异的力学性能、耐腐蚀性能和良好的生物相容性[1-2]等,有望应用于 3C 电子、医疗器械、汽车、航空航天和高端工业装备等领域[3-5]。此外,锆基非晶合金也是当前唯一实现结构件工业化生产的非晶合金[6]

  • 然而,锆基非晶合金是典型的难加工材料[7]。当前锆基非晶合金结构件的制备方法通常采用压铸成形的方法,近净成形出对应的毛坯零部件[8],然后利用切削、铣削等机械加工手段进一步提高零部件的形位精度[9]。CHEN 等[10]研究揭示了锆基非晶合金由于粘性流动而难以被加工成镜面状表面。表面质量是影响结构件使役性能的关键因素,例如,高的表面质量以满足装配要求(折叠手机转轴),高的表面质量以降低表面应力延长使用寿命(汽车结构件),高的表面质量以获得可观的外观(手表表壳)等。低的表面质量极大地限制了锆基非晶合金结构件在各类领域产业化的应用推广。

  • 抛光技术能有效地提高材料表面的质量,达到去除毛刺、降低表面粗糙度并提高光泽度的效果。这对提升锆基非晶合金表面质量,改善锆基非晶合金结构件的使役性能、延长其使用寿命有着重要意义。传统的抛光技术主要有机械抛光、化学抛光和电化学抛光等。然而锆基非晶合金本身具有高硬度和耐磨损等特征,以及机械抛光效率低,工具磨损严重,且复杂异形面零件抛光困难等[11]。化学、电化学腐蚀抛光通常采用高强酸等溶液作为抛光溶液才能实现锆基非晶合金表面的抛光,抛光后表面的化学残留难以清洗,同时电化学抛光还受限于非晶合金的高阻率[12-13]。现有的抛光方法已无法完全满足锆基非晶合金结构件高效高质的抛光要求。

  • 电解质等离子体抛光是可用于金属材料表面处理的新型高效加工技术[14-16],其基本加工原理是,利用在金属和电解抛光液之间形成的气层,并产生等离子放电微轰击去除作用达到金属表面抛光的效果。电解质等离子体抛光的电解液一般为低浓度的盐溶液,抛光加工过程中不会产生有害气体,对材料导电性能要求低,适用于复杂形面的工件且对多相合金无不利影响,已成功应用于不锈钢[17-18]、钛合金[19-20]、铝合金[21-22]、铜合金[23-24]等常用金属部件的复杂型面抛光领域,是锆基非晶合金结构件理想的抛光技术[25]

  • 然而,目前针对锆基非晶合金电解质等离子体抛光的研究仍处于探索阶段,鲜有相关的研究报道。何小琳[26]率先开展了锆基非晶合金的电解质等离子体抛光的应用研究,自主搭建了电解质等离子体抛光装置,并研究了锆基非晶合金的稳定抛光过程,揭示了表面平滑机理,优化了适用于锆基非晶合金抛光用的电解质溶液组成比。为了进一步促进电解质等离子体抛光在锆基非晶合金大规模工业化生产中的应用,还需完善锆基非晶合金电解质等离子体抛光工艺的研究。

  • 同时,实际生产中,锆基非晶合金经电解质等离子体抛光后会产生含较高浓度的重金属和氟离子废液[26],若未处理直接排放会对环境、动植物和人体造成严重危害。这也成为制约锆基非晶合金电解质等离子体抛光技术工业化应用的关键难题之一。在当前针对水体重金属污染物处理的研究中,主要有化学沉淀法和离子交换法两种技术。邝金勇等[27] 以受镉污染的饮用水为研究对象,发现化学沉淀与强化混凝沉淀联用技术能有效地降低废水中镉的含量。李鸿乂等[28]利用离子交换法实现了沉钒废水中钒及铬分别为 72%、95%的总回收率,其终产品纯度分别为 96%、93%。而现有的研究中,针对含氟废液往往采用化学沉淀法和混凝沉淀法联用的方式来去除,刘海波等[29]通过对含氟废水处理研究发现,采用 CaCl2+PAC +PAM 药剂组合处理工艺能使出水中残余氟降至 4.6 mg / L,周芬等[30]同样采用 CaCl2+PAC+PAM 药剂组合对含氟含重金属废水进行处理,发现在最佳工艺条件下可使氟离子浓度由 163.7 mg / L 降至 8 mg / L,除氟效果显著。然而,由于非晶合金多组元、电解质等离子体复杂工况的特性,上述方法是否适用于其废液处理尚未有相关的研究报道。

  • 为此,本文研究 Zr58Cu15.46Ni12.74Al10.34Nb2.76Y0.5 锆基非晶合金电解质等离子体抛光工艺对表面质量的影响,以获得最佳工艺参数及最佳抛光质量,为电解质等离子体抛光在锆基非晶合金的实际生产提供工艺指导;同时针对锆基非晶合金抛光后废液处理技术开展研究,研究化学混凝沉淀法和离子交换树脂法组合处理工艺,获得配套的废液处理方案,实现出水废液达国家电镀物排放标准。研究成果有助于推广锆基非晶合金结构件的产业化应用,促进锆基非晶合金的大规模工业生产、应用。

  • 1 试验准备

  • 1.1 抛光工艺参数优化

  • 试验采用工件材料为东莞逸昊金属材料科技有限公司提供的 Zr58Cu15.46Ni12.74Al10.34Nb2.76Y0.5(Vit 106C)非晶合金,工件尺寸为 100 mm×10 mm× 1 mm,图1 的 XRD 检测显示了典型的馒头峰,证明了材料的非晶态。

  • 图1 106C 锆基非晶合金样品及 XRD 检测

  • Fig.1 As-cast 106C Zr-based BMG workpiece and XRD pattern

  • 试验在深圳晟启科技有限公司自研的电解质等离子体抛光机上进行,图2 所示为电解质等离子体抛光主机和抛光专用电源的实物图。抛光专用电源为 0~350 V 的连续可调的直流恒压工频电源,输出电流为 0~200 A,最大输出功率为 100 kW。电解质溶液各组分配比采用何小琳所研究获得的配方比(硫酸铵为 4.75%、氟化氢铵为 0.31%、钼酸铵为 0.1%、亚硫酸钠为 0.1%和十二烷基磺酸钠为 30 g)[26]。抛光前先用 180#的砂纸对工件表面进行磨抛预处理,以保证每个样品有一致的表面粗糙度,样品的初始表面粗糙度为 0.49 μm。

  • 图2 试验设备

  • Fig.2 Experimental setup

  • 首先通过单因素试验研究不同工艺参数如抛光时间、电解质硫酸铵浓度、工作电压、初始温度、入水深度和阳极挂具材料对抛光表面粗糙度的影响,试验方案如表1 所示。

  • 表1 单因素试验方案

  • Table1 Single factor experimental scheme

  • Note: When a parameter was changed, the others were set as U = 200 V, T = 88℃, t = 4 min, h = 4 cm,concentration of (NH4) 2SO4 was 4.75%, anode rack materials was copper alloy.

  • 借助 ET-150 台阶仪(Kosaka)对抛光前后工件的表面粗糙度进行测量,以衡量抛光表面质量;借助 X 射线衍射仪(XRD,Bruker,D8 ADVANCCM) 对抛光前后工件的微观结构进行分析,以辨别材料是否发生晶化。利用场发射电子扫描电镜(SEM, Hitach,SU8220)对工件表面的显微形貌进行观察。

  • 最后,在单因素试验的基础上,选取影响表面质量较大的四个工艺参数设计了四因素四水平的正交试验,以获得最小抛光后表面粗糙度为目标,对试验数据进行极差分析和方差分析,研究抛光过程中各抛光工艺参数对表面粗糙度影响的显著程度,确定各因素影响指标的主次顺序和最佳的工艺参数组合,以获得最优的抛光表面质量,试验方案如表2 所示。

  • 表2 正交试验因素表

  • Table2 Factor table of orthogonal experiment

  • Note: h = 4 cm, anode rack materials was copper alloy.

  • 1.2 抛光后废液处理

  • 试验样品材料为锆基非晶合金抛光 1 h 后产生的废液,如图3a 所示,图3b 显示经检测原始废液 pH 值为 4。废液中含有待处理的重金属、氟离子的浓度如表3 所示。

  • 图3 抛光后废液

  • Fig.3 Waste liquor after polishing

  • 表3 抛光后废液中离子的浓度

  • Table3 Concentration of ions in the waste liquor after polishing

  • 试验分别研究了化学混凝沉淀法和离子交换树脂法一级处理下对抛光后废液处理效果,并提出了组合工艺法对抛光后废液进行处理,以 GB21900—2008《国家电镀污染物排放标准》为依据来衡量出水废液是否达标。

  • 离子交换树脂法处理废液试验在自建试验平台 (图4)上进行。取 100 mL 的抛光废液,利用微型蠕动泵按8 BV / H的工作流速将废液输入到离子交换树脂柱(内径为 21 mm)中,树脂的装填量为 100 mL,通过离子交换作用将废液中的阳离子或阴离子吸附,从而有效地去除废液中的重金属离子和氟离子。所用的两种树脂耗材均采购于北京科海思公司,见表4,包括 CH-90 Na、CH-87 离子交换树脂。

  • 图4 离子交换树脂法

  • Fig.4 Ion-exchange resin method

  • 表4 离子交换树脂试验耗材

  • Table4 Experimental consumables used in ion-exchange resin method

  • 化学混凝沉淀试验所用试剂及其用途见表5。取 100 mL 抛后的废液,往废液中加入氢氧化钠来调节废液的 pH 值;其次,加固体 CaCl2,用玻璃棒搅拌使充分反应;接着分别加入 PAC 和 PAM,用玻璃棒搅拌使其充分反应;静置沉降 60 min 后使废液分层;然后,取上清液并稀释 100 倍后过滤进行测试。

  • 表5 化学混凝沉淀试验所用化学试剂

  • Table5 Chemical reagents used in chemical neutralizing-coagulative precipitation process

  • 试验方案见表6,公共组试验参数 pH 为 7,PAC 投加量为 600 mg / L,CaCl2 投加量为 120 g / L,PAM 投加量为 5 mg / L。在保持其他参数不变的前提下,分别开展 pH 因素水平为 5、7、9、11,PAC 投加量因素水平为 200、400、600、800 mg / L,CaCl2 投加量因素水平为 30、60、90、120、150 g / L 的单因素试验,以处理后废液中 Zr、Cu、Ni、Fe、Cr、 F 离子浓度为衡量指标,尽可能降低各类离子的整体含量,以获得最佳的处理方案。

  • 表6 化学混凝沉淀单因素试验方案

  • Table6 Single factor experimental scheme for chemical neutralizing-coagulative precipitation process

  • Note: When a parameter was changed, the others were set as follows: pH was 7, PAC dosage was 600 mg / L, CaCl2 dosage was 120 g / L.

  • 2 抛光工艺参数优化

  • 研究表明,随着时间或者在升温和加压的条件下,非晶会晶化成晶态物质[1]。何小琳[26]前期研究表明,本试验中设置的抛光时间、工件入水深度并不会影响材料的晶化情况。故如图5 所示,针对本试验中其他主要的工艺参数如工作电压、初始温度和硫酸铵浓度在不同参数值下的抛光前后表面用 XRD 进行分析。抛光处理前后的 XRD 衍射峰均为馒头峰,无尖锐的衍射峰,因此证明在工作电压 190~240 V、初始温度 85~94℃和硫酸铵浓度在 4.25%~5.0%范围内抛光后表面仍是非晶态,故后续对表面质量的研究主要集中于工艺参数对表面粗糙度的影响。

  • 图5 不同工艺参数对抛光表面晶化的影响

  • Fig.5 Influence of different process parameters on the crystallization of the polished surface

  • 2.1 抛光时间

  • 图6 为抛光过程中锆基非晶合金工件表面粗糙度随抛光时间变化的趋势图,随着抛光时间的增加,表面粗糙度降低。同时,进一步观察发现,在 0~2 min 时间内表面粗糙度的下降速率最高,而随着抛光时间的继续增加,表面粗糙度值降低的趋势减缓,这是由于随着抛光的进行,表面粗糙度降低,表面变得越来越平整,因而工件表面电场强度降低,导致单位时间内的轰击去除速度下降,表面粗糙度下降的速率降低。

  • 图6 抛光时间对工件表面粗糙度的影响 (U = 200 V,h = 4 cm,T = 88℃,4.75%(NH42SO4,铜合金阳极挂具材料)

  • Fig.6 Influence of polishing time on the surface roughness of the workpiece (U = 200 V, h = 4 cm, T = 88℃, 4.75% (NH4) 2SO4, anode rack materials was copper alloy)

  • 2.2 工作电压

  • 随着工作电压的增加,抛光后锆基非晶合金工作表面粗糙度变化趋势为先下降后升高,抛光后的材料在工作电压为 210 V 时表面粗糙度达最低,表面粗糙度变化趋势图如图7 所示。电压越低,工件周围的电场强度越低,工件单位面积上的放电电流密度就越小,因此工件表面的微观凸起去除速率低,抛光后表面的粗糙度会稍微比较高;电压越高,工件周围的电场强度相应也越高,对表面微轰击的能量也增加,气液界面的热通量超过临界热通量,导致表面过轰击,所以抛光后表面粗糙度升高[31]

  • 图7 工作电压对工件表面粗糙度的影响 (t = 4 min,h = 4 cm,T = 88℃,4.75%(NH42SO4,铜合金阳极挂具材料)

  • Fig.7 Influence of working voltage on the surface roughness of the workpiece (t = 4 min, h = 4 cm, T = 88℃, 4.75% (NH4) 2SO4, anode rack materials was copper alloy)

  • 2.3 硫酸铵浓度

  • 硫酸铵是锆基非晶合金抛光的电解质溶液配比最主要的成分,在所有成分中其含量最高,不同硫酸铵浓度值对抛光后工件表面粗糙度的影响如图8 所示,在浓度为 4.5%时可获得最低的表面粗糙度。硫酸铵浓度对电解质溶液的电导率有重要影响,而电导率决定了电解质等离子体抛光过程中的气层是否可稳定形成,以及加载在锆基非晶合金工件单位面积上能量的大小。电解质溶液中的硫酸铵浓度越低,电解质溶液的电导率也越低,导致抛光过程中形成的气层不稳定和工件单位面积轰击能量小,抛光去除率低,因此抛光后工件表面粗糙度高;随着电解质溶液中硫酸铵浓度增加,电解质溶液的导电性变好,气层趋于稳定,抛光去除率升高,抛光后表面粗糙度降低;但随着硫酸铵浓度进一步增加,电解质溶液电导率升高,工件单位面积轰击的次数和能量增多,导致表面过轰击,抛光后表面粗糙度升高。

  • 图8 硫酸铵浓度对工件表面粗糙度的影响 (U = 200 V,t = 4 min,h = 4 cm,T = 88℃,铜合金阳极挂具材料)

  • Fig.8 Influence of ammonium sulfate concentration on the surface roughness of the workpiece (U = 200 V, t = 4 min, h = 4 cm, T = 88℃, anode rack materials was copper alloy)

  • 2.4 初始温度

  • 如图9 显示了电解质初始温度对电解质等离子体抛光后的表面粗糙度的影响趋势,可以看出,随着初始温度的升高,抛光后工件表面粗糙度总体呈下降的趋势。电解质初始温度对电解质等离子体抛光过程中的稳定气层的形成有重要影响,随着初始温度的升高,抛光过程中气层越来越稳定,形成稳定的等离子放电,因此抛光后表面粗糙度降低。

  • 图9 初始温度对工件表面粗糙度的影响 (U = 200 V,t = 4 min,h = 4 cm,4.75%(NH42SO4,铜合金阳极挂具材料)

  • Fig.9 Influence of initial temperature on the surface roughness of the workpiece (U = 200 V, t = 4 min, h = 4 cm, , 4.75% (NH4) 2SO4, anode rack materials was copper alloy)

  • 2.5 工件入水深度

  • 工件入水深度实际上是压强对工件表面形成的气层的影响,如图10 所示。随着工件入水深度由 1 cm 增加到 8 cm,抛光后工件表面粗糙度缓慢升高,但基本无变化。当工件入水深度由 8 cm 增加到 12 cm 时,可看到抛后表面粗糙度增加。这是由于入水深度越深,工件周围所受的压强也越大,而气层的形成需要工件周围的电解质分子向外扩散,产生空洞,使工件周围的电解质汽化形成气层,压强较大,分子扩散遇到更大的阻力,导致稳定气层形成的时间变长,实际产生等离子放电去除的抛光时间变短。因此,当工件入水深度达界限值 8 cm 时,抛光后表面粗糙度会增加。

  • 图10 工件入水深度对工件表面粗糙度的影响 (U = 200 V,T = 88℃,t = 4 min,4.75%(NH42SO4,铜合金阳极挂具材料)

  • Fig.10 Influence of the soaking depth of workpiece on the surface roughness of the workpiece (U = 200 V, T = 88℃, t = 4 min, 4.75% (NH4) 2SO4, anode rack materials was copper alloy)

  • 2.6 阳极挂具材料

  • 图11 显示了电解质等离子体抛光中不同阳极挂具材料对抛光后表面粗糙度的影响。

  • 图11 不同阳极挂具材料对工件表面粗糙度的影响 (U = 200 V,h = 4 cm,T = 88℃,t = 4 min,4.75%(NH42SO4

  • Fig.11 Influence of different anode rack materials on the surface roughness of the workpiece (U = 200 V, h = 4 cm, T = 88℃, t = 4 min, 4.75% (NH4) 2SO4

  • 铜材料本身的电阻小于不锈钢材料,因此相比于不锈钢阳极挂具材料,在铜阳极挂具材料条件下的抛光过程中电流密度更高,产生的电场强度较高,工件表面微轰击等离子放电去除速率更高,在相同的时间内更快达到表面平整。所以铜合金阳极挂具材料抛光后工件表面粗糙度比不锈钢阳极挂具材料低。

  • 2.7 工艺参数组合优化

  • 锆基非晶合金电解质等离子体抛光工艺优化试验采用 L16(45)正交试验表,测量结果如表7 所示。由试验结果可以直观地看出,在试验号为 15 时,即硫酸铵浓度为 5%、初始温度为 91℃、工作电压为 210 V 和抛光时间为 8 min 条件下,抛光后的工件表面粗糙度最低,为 0.107 μm。

  • 由平均表面粗糙度的极差分析结果(表8)及直观趋势图(图12)可以看出,各因素对表面粗糙度影响显著程度为:时间>电压>初始温度>硫酸铵浓度,同时根据极差分析的结果可得出最佳工艺参数组合为 D4C3B2A4

  • 为了进一步准确地分析硫酸铵浓度、初始温度、电压和抛光时间对表面平均粗糙度的影响程度,进行方差分析,并选用 F 统计量检验来判断各抛光工艺参数对于表面平均粗糙度影响的显著性,结果如表9 所示,本试验的统计量 F 服从自由度为(3,3),通过方差分析的结果可知,影响抛光后表面粗糙度的因素的主次顺序为:时间 D>电压 C>初始温度 B>硫酸铵浓度 A。

  • 表7 正交试验方案及试验结果

  • Table7 Orthogonal experiment scheme and experimental results

  • Note: h = 4 cm, anode rack materials was copper alloy.

  • 表8 表面粗糙度极差分析

  • Table8 Range analysis of surface roughness

  • Note: h = 4 cm, anode rack materials was copper alloy.

  • 综合极差分析和方差分析结果可得,各类结果均对抛光后表面粗糙度有影响,工艺参数对抛光后表面粗糙度的影响显著程度为:时间>电压>初始温度>硫酸铵浓度,以最小表面粗糙度为优化目标的最优方案为 D4C3B2A4,对应的工艺参数组合为:抛光时间 t = 8 min,工作电压 U = 220 V,初始温度 T = 88℃,硫酸铵浓度为 5%。进一步地,利用该参数进行试验验证,获得最佳表面粗糙度,为 0.103 μm,也验证了正交试验与分析的正确性。

  • 图12 抛光后表面粗糙度的极差趋势图(h = 4 cm,铜合金阳极挂具材料)

  • Fig.12 Range analysis trend of surface roughness after polishing (h = 4 cm, anode rack materials was copper alloy)

  • 表9 表面粗糙度方差分析

  • Table9 The variance analysis of surface roughness

  • Note: h = 4 cm, anode rack materials was copper alloy.

  • 3 抛光后废液处理

  • 3.1 工艺参数组合优化

  • 3.1.1 重金属离子的处理

  • 图13 显示了经 CH-90Na 处理前后的各重金属离子浓度变化,经 CH-90Na 处理后的废液中的各重金属离子浓度明显降低。根据国家电镀污染物排放标准(GB 21900—2008)要求可知,经处理后的废液中的 Fe、Ni 和 Zr 离子浓度达国家电镀污染物排放标准,但 Cu 和 Cr 离子浓度分别为 0.508、 1.446 mg / L,仍高于国家电镀污染物的排放标准。通过检测处理前后的 pH 值变化,发现 pH 值由初始的 4 转变成 13,即酸性废液经处理后变为碱性,这可能是经 CH-90Na 树脂交换后有 OH析出,导致处理后的废液 pH 值上升。

  • 图13 CH-90Na 树脂处理前后废液中的离子浓度

  • Fig.13 Various ion concentration in waste liquor before and after CH-90Na resin treatment

  • 3.1.2 氟离子的处理

  • 图14 显示了废液经 CH-87 树脂处理前后的氟离子浓度变化,可以看出废液中氟离子浓度由 4 792.6 mg / L 降低至 754.1 mg / L,虽然得到大幅降低,但仍远高于国家要求的电镀污染物排放标准(氟化物≤10 mg / L),其 pH 值基本保持不变。

  • 图14 CH-87 树脂处理前后废液中的氟离子浓度

  • Fig.14 Fluoride ion concentration in waste liquor before and after CH-87 resin treatment

  • 虽然离子交换树脂处理法对含高浓度重金属、氟离子的废液处理效果明显,但仍无法通过一级离子交换法处理使处理后的废液达国家电镀污染物排放标准,此外由于废液中含重金属和氟离子的浓度很高,实际使用中树脂消耗量巨大,成本较高。为此,本文进一步研究化学混凝沉淀法对废液的处理效果。

  • 3.2 化学混凝沉淀法

  • 3.2.1 pH 值对处理后废液离子浓度影响

  • 如图15 所示,处理后的 Fe 和 Cr 金属离子浓度变化趋势为先下降后趋于平缓,即在 pH 值为 5 时处理效果较差,在 pH 值为中性及以上处理效果较好,而其他离子如 Zr、Cu、Ni 的离子浓度受 pH 值变化的趋势不明显。由于原液 pH 值低,废液中的 H+ 远大于 OH,金属离子不能很好地和 OH 形成氢氧化物絮状胶体,随着 pH 值的升高,OH 的数量逐渐增加,废液中更多的金属离子继续与 OH 反应,形成絮状沉淀,因此在废液 pH 为中性及以上的处理金属效果更好。F 跟 Fe 和 Cr 金属离子浓度变化趋势类似,处理后的浓度变化趋势也是先下降后慢慢趋于平缓。由于废液中 F 离子存在形式有 F、HF 和 HF2−,同时试验主要是以氯化钙作为沉淀剂处理含氟废水,随着 pH 值升高,H减少,HF 和 HF2− 中的 F 离子被释放出来,有更多的 F 与 CaCl2发生反应生成 CaF2 沉淀,因此随着 pH 值升高废液处理后的 F 离子浓度减低。废液 pH 值大于 9 开始后 F 离子浓度逐渐趋于平缓,当 pH 过高时,Ca2+会与 OH 生成 Ca(OH)2 沉淀,使 Ca2+浓度降低,对 CaF2 沉淀生成物的溶解度造成影响,所以处理后的 F 离子浓度不再降低。综上,为能获得较好的重金属和氟离子去除效果,废液 pH 值需调节至 7 以上,此时,各类重金属离子都可以得到很好的去除,Zr 和 Cr 离子浓度可达国家电镀污染物的排放标准,而其他重金属离子和 F 离子虽然仍未达到排放标准,但浓度大幅降低。

  • 图15 不同 pH 值对处理后废液离子浓度的影响

  • Fig.15 Influence of different pH values on the ion concentration of the treated waste liquor (CaCl2 = 120 g / L,PAC = 600 mg / L,PAM = 5 mg / L)

  • 3.2.2 CaCl2投加量对处理后废液离子浓度影响

  • 化学混凝沉淀试验中采用 CaCl2,主要依据 Ca2+与 F 会生成 CaF2 沉淀,其反应方程式如式(1) 所示。

  • Ca2++2F-=CaF2
    (1)
  • CaF2 在常温条件下呈白色固态,在水中的溶解度小,18℃时水中的溶解度为 16.3 mg / L,而氟离子积为 7.9 mg / L,当离子积大于该溶解度时,CaF2 会变为沉淀物,因此 CaCl2 实际用量应比理论用量多 1 倍,投加的 Ca2+和水中的 F 摩尔比至少需达 2 倍 [29]。由于初始废液中的 F 离子浓度为 4 796.6 mg / L,本试验选取 n(Ca)n(F) =(1∶1)~(5∶1)。图16 为不同 CaCl2投加量对处理后废液中各离子浓度的影响曲线图。处理后的 F 离子浓度曲线规律是先下降后趋于平稳,即 CaCl2 投加量从 30 g / L 增加到 60 g / L,处理后的 F 离子浓度迅速下降,而 CaCl2投加量从 60 g / L 增加到 150 g / L,可以看到处理后的 F 离子浓度变化曲线较为平缓,这符合 CaCl2 实际用量至少为理论用量的 2 倍的推论。处理后的其他金属离子浓度随 CaCl2 投加量的增加基本变化不大,变化曲线较为平缓,可认为 CaCl2 投加量对处理后的 Zr、Fe、Cu、Ni 和 Cr 离子基本无影响。

  • 图16 不同 CaCl2投加量对处理后废液离子浓度的影响 (pH = 7,PAC = 600 mg / L,PAM = 5 mg / L)

  • Fig.16 Influence of different CaCl2 dosage on the ion concentration of the treated waste liquor

  • 3.2.3 PAC 投加量对处理后废液离子浓度影响

  • 图17 为随 PAC 投加量增加,处理后废液离子浓度变化的曲线,处理后废液的 Fe 离子浓度变化趋势是先下降再趋于平稳后上升,而其他重金属离子浓度基本没有变化。推测这是因为,PAC 投加量为 200 mg / L 时便能满足废液中其他重金属离子的高效去除,继续增加 PAC 投加量对其他重金属离子去除效果基本无影响,而原废液中 Fe 离子浓度为 3 225 mg / L,远高于其他金属离子浓度,需更多的 PAC 投加量才能保证 Fe 离子得到高效地去除。因此,投加量增加到 400 mg / L 时才能达到最优的处理效果,但随着 PAC 投加量增加到 800 mg / L,处理后的 Fe 离子浓度升高,推测是过量 PAC 的投入发生水解,使废液中的 pH 值下降,OH 减少,能形成的 Fe(OH)3 沉淀减少,因而此时 Fe 离子浓度急剧升高。

  • 从PAC 投加量对处理后F离子的影响曲线可以看出,随着 PAC 投加量的增加,处理后出水 F 离子浓度变化趋势为先下降后上升,在投加量为 400 mg / L 时除氟效果最好。原因是,在 PAC 投加量从 200 mg / L 增加到 400 mg / L 时,废液中 Al3+ 增多,有利于聚合氯化铝的有效成分 Al13O4(OH)24 7+ 及其水解形成的 Al(OH)3(am)凝胶的产生,其中的 OH 配位体可与 F 交换而起到去除 F 离子的作用,反应过程如式(2)、(3)所示,因此这时候随着 PAC 投加量增加,出水 F 离子浓度降低;随着 PAC 投加量继续加大,氟的出水浓度升高,处理效果变差。推测是,过量 PAC 发生水解消耗了废液中 OH,使废液的 pH 值下降,阻碍了 Al13O4(OH)24 7+及其水解形成的 Al(OH)3(am)凝胶的产生,因而除氟效果变差。

  • Al13O4(OH)247++xF-=Al13O4(OH)24-xFx7++xOH-
    (2)
  • Al(OH)3(am)+xF-=Al(OH)3-xFx+xOH-
    (3)
  • 图17 不同 PAC 投加量对处理后废液离子浓度的影响 (pH = 7,CaCl2 = 120 g / L,PAM = 5 mg / L)

  • Fig.17 Influence of different PAC dosage on the ion concentration of the treated waste liquor

  • 遗憾的是,与离子交换树脂处理法类似,化学混凝沉淀法也无法通过一级处理使处理后的废液达国家电镀污染物排放标准。不过上述研究发现,离子交换树脂处理法对重金属离子的处理表现出优异的性能,而化学混凝沉淀法对氟离子的去除表现出同样优异的性能,故本文进一步研究了组合工艺下的废液处理工艺。

  • 3.3 化学混凝沉淀法和离子交换树脂法组合工艺

  • 前面的试验研究发现,单一采用离子交换树脂处理法或化学混凝沉淀法处理后的抛光废液均未能达到国家电镀污染物排放标准,因此采用组合工艺处理法来实现对抛后废液的处理,即初始废液先用化学混凝沉淀法处理得到一次废液,然后将所得一次废液再用离子交换树脂法处理。表10 所示为锆基非晶合金抛光废液经组合工艺处理后的出水废液中的 Fe、Cr、Cu、Ni、Zr、F 离子浓度,均达到国家电镀物排放标准。

  • 表10 组合处理试验后各离子的浓度

  • Table10 Various ion concentration after the combined treatment experiment

  • Note: Technological parameters of chemical neutralizing-coagulative precipitation method were as follows pH = 7, CaCl2 = 120 g / L, PAM = 5 mg / L, PAC = 600 mg / L. The process parameters of ion-exchange resin method were as follows: the waste liquor passed through CH-90Na and CH-87 resins at a flow rate of 8 BV / H.

  • 4 结论

  • (1)由电解质等离子体抛光试验获得最佳表面粗糙度为 0.103 μm 的锆基非晶合金。以最小表面粗糙度为目标的正交试验结果及分析表明,影响抛光后表面粗糙度的因素的显著程度为:抛光时间>工作电压>初始温度>硫酸铵浓度。

  • (2)化学混凝沉淀法和离子交换树脂法组合工艺能有效处理锆基非晶合金抛后废液中的重金属和氟离子,并使出水废液的重金属和氟离子浓度达国家电镀污染物排放标准。

  • (3)电解质等离子体抛光技术适用于复杂形面的工件,且对多相合金无不利影响。

  • (4)研究成果有助于推广锆基非晶合金结构件的产业化应用,促进锆基非晶合金的大规模工业生产、应用。

  • 参考文献

    • [1] 汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):175.WANG Weihua.The nature and properties of amorphous matter[J].Progress in Physics,2013,33(5):175.(in Chinese)

    • [2] KHAN M M,NEMATI A,RAHMAN Z U,et al.Recent advancements in bulk metallic glasses and their applications:A review[J].Critical Review in Solid State and Materials Sciences,2017,43(3):1-36.

    • [3] LI H F,ZHENG Y F.Recent advances in bulk metallic glasses for biomedical applications[J].Acta Biomaterialia,2016,36:1-20.

    • [4] INOUE A,WANG X M,ZHANG W.Developments and applications of bulk metallic glasses[J].Reviews on Advanced Mateirals Science,2008,18(1):1-9.

    • [5] CHEN M W.A brief overview of bulk metallic glasses[J].NPG Asia Materials,2011,3(9):82-90.

    • [6] GAO K,ZHU X G,CHEN L,et al.Recent development in the application of bulk metallic glasses[J].Journal of Materials Science and Technology,2022,131:115-121.

    • [7] DING F,WANG C Y,ZHANG T,et al.Investigation on chip deformation behaviors of Zr-based bulk metallic glass during machining[J].Journal of Materials Processing Technology,2020,276:116404.

    • [8] LIU L,ZHANG T,LIU Z,et al.Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting[J].Materials,2018,11(11):2338.

    • [9] 丁峰,王成勇,赖子健,等.锆基非晶合金冰冻切削加工特征及其无晶化加工工艺研究[J].机械工程学报,2021,57(3):235-246.DING Feng,WANG Chengyong,LAI Zijian,et al.Freezing cutting characteristics and non-crystallized processing technology of Zr-based bulk metallic glass[J].Journal of Mechanical Engineering,2021,57(3):235-246.(in Chinese)

    • [10] CHEN X,XIAO J F,ZHU Y,et al.Micro-machinability of bulk metallic glass in ultra-precision cutting[J].Materials and Design,2017,136:1-12.

    • [11] ZHANG F L,HUANG G W,LIU J M,et al.Grinding performance and wear of metal bond super-abrasive tools in grinding of Zr-based bulk metallic glass[J].International Journal of Refractory Metals and Hard Materials,2021,97(9):105501.

    • [12] KOZA J A,SUEPTITZ R,UHLEMANN M,et al.Electrochemical micromachining of a Zr-based bulk metallic glass using a micro-tool electrode technique[J].Intermetallics,2011,19(4):437-444.

    • [13] GUO C,WU B,XU B,et al.Electrochemical surface smoothing of spark erosion treated Zr-based bulk metallic glasses in NaCl-ethylene glycol electrolyte[J].The International Journal of Advanced Manufacturing Technology,2021,116:1591-1607.

    • [14] STANISHEVSKY V K,PARSHUTO A E,KOSOBUTSKY A A,et al.Method of electrochemical machining of articles made of conducting materials:US5028304A[P].1991-07-02.

    • [15] HUANG Y,WANG C Y,DING F,et al.Principle,process,and application of metal plasma electrolytic polishing:A review[J].The International Journal of Advanced Manufacturing Technology,2021,114:1893-1912.

    • [16] BELKIN P N,KUSMANOV S A,PARFENOV E V.Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces[J].Applied Surface Science Advances,2020,1:100016.

    • [17] VANA D,PODHORSKY S,SUBA R,et al.The change of surface properties on tested smooth stainless steel surfaces after plasma polishing[J].International Journal of Engineering Science,2013,2(6):7-11.

    • [18] 段海栋,孙桓五,纪刚强,等.不锈钢电解质等离子体抛光表层元素化学形态演变及界面反应[J].表面技术,2022,51(6):346-353,389.DUAN Haidong,SUN Huanwua,JI Gangqiang,et al.Evolution of chemical speciation and interfacial reaction of elements on the surface of stainless steel during electrolytic plasma polishing[J].Surface Technology,2022,51(6):346-353,389.(in Chinese)

    • [19] ALIAKSEYEU Y G,KOROLYOV A Y,NISS V S,et al.Electrolyte-plasma polishing of titanium and niobium alloys[J].Science and Technique,2018,17(3):211-219.

    • [20] HYE-RI C,HAN-CHEOL C.Micro-scaled morphology of Ti-40Nb-xZr alloy with applied voltage via plasma electrolytic oxidation[J].Thin Solid Films,2022,751:139231.

    • [21] DURADJI V N,KAPUTKIN D E,DURADJI A Y.Aluminum treatment in the electrolytic plasma during the anodic process[J].Journal of Engineering Science and Technology Review,2017,10(3):81-84.

    • [22] SPICA A,ROCHE J,ARURAULT L,et al,Evolution of model roughness on quasi-pure aluminum during plasma electrolytic polishing[J].Surface and Coatings Technology,2021,428:127839.

    • [23] NESTLER K,BOTTGER-HILLER F,ADAMITZKI W,et al.Plasma electrolytic polishing—An overview of applied technologies and current challenges to extend the polishable material range[J].Procedia CIRP,2016,42:503-507.

    • [24] DEHGHANIAN H A,HOSSEINABADI N.The hydrogen storage capacity of Al–Cu alloy with permeable alumina hydrogen permeation barrier(HPB)applied by plasma electrolytic oxidation(PEO)[J].International Journal of Hydrogen Energy,2022,47:7339-7350.

    • [25] 王成勇,何小琳,李乃涛,等.一种用于非晶合金的抛光液及非晶合金的抛光方法:2018107231541[P].2018-10-16.WANG Chengyong,HE Xiaolin,LI Naitao,et al.A polishing solution for amorphous alloys and a polishing method for amorphous alloys:2018107231541[P].2018-10-16.(in Chinese)

    • [26] 何小琳.锆基非晶合金电解质等离子体抛光机理研究 [D].广州:广东工业大学,2019.HE Xiaolin.Study on the mechanism of electrolytic plasma polishing of zirconium-based metallic glasses[D].Guangzhou:Guangdong University of Technology,2019.(in Chinese)

    • [27] 邝金勇,欧美珊.饮用水源中重金属镉去除的工艺技术试验[J].净水技术,2013,32(6):15-17.KUANG Jinyong,OU Meishan.Technological experiment of cadmium removal processing for raw water from drinking water source[J].Water Purification Technology,2013,32(6):15-17.(in Chinese)

    • [28] 李鸿乂,李翠,张梦,等.离子交换法分离溶液中钒与铬的研究[J].钢铁钒钛,2014,35(3):5-9.LI Hongyi,LI Cui,ZHANG Meng,et al.Study on separation of vanadium and chromium by ion exchange resin[J].Iron Steel Vanadium Titanium,2014,35(3):5-9.(in Chinese)

    • [29] 刘海波,左文武,林文周,等.化学-混凝沉淀法处理低浓度含氟废水研究[J].中国给水排水,2008,11:76-79.LIU Haibo,ZUO Wenwu,LIN Wenzhou,et al.Treatment of low-concentration fluoride wastewater by chemical/coagulation and sedimentation process[J].China Water and Wastewater,2008,11:76-79.(in Chinese)

    • [30] 周芬,汪晓军.化学-混凝沉淀处理含氟含重金属废水研究[J].环境工程学报,2012,6(2):445-450.ZHOU Fen,WANG Xiaojun.Study on treatment of wastewater containing fluoride and heavy metals by chemical coagulation process[J].Chinese Journal of Environmental Engineering,2012,6(2):445-450.(in Chinese)

    • [31] ZHOU C Q,QIAN N,SU H H,et al.Effect of energy distribution on the machining efficiency and surface morphology of inconel 718 nickel-based superalloy using plasma electrolytic polishing[J].Surface and Coatings Technology,2022,441:128506.

  • 参考文献

    • [1] 汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):175.WANG Weihua.The nature and properties of amorphous matter[J].Progress in Physics,2013,33(5):175.(in Chinese)

    • [2] KHAN M M,NEMATI A,RAHMAN Z U,et al.Recent advancements in bulk metallic glasses and their applications:A review[J].Critical Review in Solid State and Materials Sciences,2017,43(3):1-36.

    • [3] LI H F,ZHENG Y F.Recent advances in bulk metallic glasses for biomedical applications[J].Acta Biomaterialia,2016,36:1-20.

    • [4] INOUE A,WANG X M,ZHANG W.Developments and applications of bulk metallic glasses[J].Reviews on Advanced Mateirals Science,2008,18(1):1-9.

    • [5] CHEN M W.A brief overview of bulk metallic glasses[J].NPG Asia Materials,2011,3(9):82-90.

    • [6] GAO K,ZHU X G,CHEN L,et al.Recent development in the application of bulk metallic glasses[J].Journal of Materials Science and Technology,2022,131:115-121.

    • [7] DING F,WANG C Y,ZHANG T,et al.Investigation on chip deformation behaviors of Zr-based bulk metallic glass during machining[J].Journal of Materials Processing Technology,2020,276:116404.

    • [8] LIU L,ZHANG T,LIU Z,et al.Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting[J].Materials,2018,11(11):2338.

    • [9] 丁峰,王成勇,赖子健,等.锆基非晶合金冰冻切削加工特征及其无晶化加工工艺研究[J].机械工程学报,2021,57(3):235-246.DING Feng,WANG Chengyong,LAI Zijian,et al.Freezing cutting characteristics and non-crystallized processing technology of Zr-based bulk metallic glass[J].Journal of Mechanical Engineering,2021,57(3):235-246.(in Chinese)

    • [10] CHEN X,XIAO J F,ZHU Y,et al.Micro-machinability of bulk metallic glass in ultra-precision cutting[J].Materials and Design,2017,136:1-12.

    • [11] ZHANG F L,HUANG G W,LIU J M,et al.Grinding performance and wear of metal bond super-abrasive tools in grinding of Zr-based bulk metallic glass[J].International Journal of Refractory Metals and Hard Materials,2021,97(9):105501.

    • [12] KOZA J A,SUEPTITZ R,UHLEMANN M,et al.Electrochemical micromachining of a Zr-based bulk metallic glass using a micro-tool electrode technique[J].Intermetallics,2011,19(4):437-444.

    • [13] GUO C,WU B,XU B,et al.Electrochemical surface smoothing of spark erosion treated Zr-based bulk metallic glasses in NaCl-ethylene glycol electrolyte[J].The International Journal of Advanced Manufacturing Technology,2021,116:1591-1607.

    • [14] STANISHEVSKY V K,PARSHUTO A E,KOSOBUTSKY A A,et al.Method of electrochemical machining of articles made of conducting materials:US5028304A[P].1991-07-02.

    • [15] HUANG Y,WANG C Y,DING F,et al.Principle,process,and application of metal plasma electrolytic polishing:A review[J].The International Journal of Advanced Manufacturing Technology,2021,114:1893-1912.

    • [16] BELKIN P N,KUSMANOV S A,PARFENOV E V.Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces[J].Applied Surface Science Advances,2020,1:100016.

    • [17] VANA D,PODHORSKY S,SUBA R,et al.The change of surface properties on tested smooth stainless steel surfaces after plasma polishing[J].International Journal of Engineering Science,2013,2(6):7-11.

    • [18] 段海栋,孙桓五,纪刚强,等.不锈钢电解质等离子体抛光表层元素化学形态演变及界面反应[J].表面技术,2022,51(6):346-353,389.DUAN Haidong,SUN Huanwua,JI Gangqiang,et al.Evolution of chemical speciation and interfacial reaction of elements on the surface of stainless steel during electrolytic plasma polishing[J].Surface Technology,2022,51(6):346-353,389.(in Chinese)

    • [19] ALIAKSEYEU Y G,KOROLYOV A Y,NISS V S,et al.Electrolyte-plasma polishing of titanium and niobium alloys[J].Science and Technique,2018,17(3):211-219.

    • [20] HYE-RI C,HAN-CHEOL C.Micro-scaled morphology of Ti-40Nb-xZr alloy with applied voltage via plasma electrolytic oxidation[J].Thin Solid Films,2022,751:139231.

    • [21] DURADJI V N,KAPUTKIN D E,DURADJI A Y.Aluminum treatment in the electrolytic plasma during the anodic process[J].Journal of Engineering Science and Technology Review,2017,10(3):81-84.

    • [22] SPICA A,ROCHE J,ARURAULT L,et al,Evolution of model roughness on quasi-pure aluminum during plasma electrolytic polishing[J].Surface and Coatings Technology,2021,428:127839.

    • [23] NESTLER K,BOTTGER-HILLER F,ADAMITZKI W,et al.Plasma electrolytic polishing—An overview of applied technologies and current challenges to extend the polishable material range[J].Procedia CIRP,2016,42:503-507.

    • [24] DEHGHANIAN H A,HOSSEINABADI N.The hydrogen storage capacity of Al–Cu alloy with permeable alumina hydrogen permeation barrier(HPB)applied by plasma electrolytic oxidation(PEO)[J].International Journal of Hydrogen Energy,2022,47:7339-7350.

    • [25] 王成勇,何小琳,李乃涛,等.一种用于非晶合金的抛光液及非晶合金的抛光方法:2018107231541[P].2018-10-16.WANG Chengyong,HE Xiaolin,LI Naitao,et al.A polishing solution for amorphous alloys and a polishing method for amorphous alloys:2018107231541[P].2018-10-16.(in Chinese)

    • [26] 何小琳.锆基非晶合金电解质等离子体抛光机理研究 [D].广州:广东工业大学,2019.HE Xiaolin.Study on the mechanism of electrolytic plasma polishing of zirconium-based metallic glasses[D].Guangzhou:Guangdong University of Technology,2019.(in Chinese)

    • [27] 邝金勇,欧美珊.饮用水源中重金属镉去除的工艺技术试验[J].净水技术,2013,32(6):15-17.KUANG Jinyong,OU Meishan.Technological experiment of cadmium removal processing for raw water from drinking water source[J].Water Purification Technology,2013,32(6):15-17.(in Chinese)

    • [28] 李鸿乂,李翠,张梦,等.离子交换法分离溶液中钒与铬的研究[J].钢铁钒钛,2014,35(3):5-9.LI Hongyi,LI Cui,ZHANG Meng,et al.Study on separation of vanadium and chromium by ion exchange resin[J].Iron Steel Vanadium Titanium,2014,35(3):5-9.(in Chinese)

    • [29] 刘海波,左文武,林文周,等.化学-混凝沉淀法处理低浓度含氟废水研究[J].中国给水排水,2008,11:76-79.LIU Haibo,ZUO Wenwu,LIN Wenzhou,et al.Treatment of low-concentration fluoride wastewater by chemical/coagulation and sedimentation process[J].China Water and Wastewater,2008,11:76-79.(in Chinese)

    • [30] 周芬,汪晓军.化学-混凝沉淀处理含氟含重金属废水研究[J].环境工程学报,2012,6(2):445-450.ZHOU Fen,WANG Xiaojun.Study on treatment of wastewater containing fluoride and heavy metals by chemical coagulation process[J].Chinese Journal of Environmental Engineering,2012,6(2):445-450.(in Chinese)

    • [31] ZHOU C Q,QIAN N,SU H H,et al.Effect of energy distribution on the machining efficiency and surface morphology of inconel 718 nickel-based superalloy using plasma electrolytic polishing[J].Surface and Coatings Technology,2022,441:128506.

  • 手机扫一扫看