en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨宇,男,1997年出生,硕士研究生。主要研究方向为刀具表面织构的微细加工技术。E-mail:1831299489@qq.com

通讯作者:

杨发展,男,1981年出生,教授,博士,博士研究生导师。主要研究方向为高速高效加工、刀具技术、激光加工及作用机制。E-mail:fazhany@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007-9289.20230223002

参考文献 1
SULAIMAN M H,ZAID M F S,FARAHANA R N,et al.CFD analysis of hydrodynamic lubrication effects of micro textured surface[J].IOP Conference Series:Materials Science and Engineering,2019,670:012061.
参考文献 2
ZHENG L F,TOSHIYUKI O.Cooling performance of micro-texture at the tool flank face under high pressure jet coolant assistance[J].Precision Engineering,2017,49:41-51.
参考文献 3
JIANG Y Y,YAN Z J,ZHANG S W,et al.Research on cavitation effect of microtextured array[J].Scientific Reports,2022,12(1):13455.
参考文献 4
FU H,HE Y Y,YANG J,et al.Enhancing adhesion strength of PVD AlCrN coating by novel volcano-shaped micro-textures:Experimental study and mechanism insight[J].Surface & Coatings Technology,2022,445(15):128712.
参考文献 5
FENG X G,WANG R,WEI G,et al.Effect of a micro-textured surface with deposited MoS2-Ti film on long-term wear performance in vacuum[J].Surface & Coatings Technology,2022,445(15):128722.
参考文献 6
TATSUYA S,TOSHIYUKI E.Performance of cutting tools with dimple textured surfaces:A comparative study of different texture patterns[J].Precision Engineering,2017,49:52-60
参考文献 7
Li J N,HAN K,CHEN W G,et al.An improved TEHL analysis of textured roller bearings consider various texture parameters and slip[J].Industrial Lubrication and Tribology,2020,73(2):373-380.
参考文献 8
HAN K,LI J N,WANG Q,et al.Study on oil film pressure distribution and load capacity of textured rolling bearings[J].Industrial Lubrication and Tribology,2020,72(7):961-967.
参考文献 9
GOURAV J,SANJAY S,AWASTHI P K.The dynamic performance analysis of chevron shape textured hydrodynamic bearings[J].Industrial Lubrication and Tribology,2020,72(1):1-8.
参考文献 10
胡宇,王优强,菅光霄,等.平行滑块表面不同形状复合型织构的润滑性能研究[J].表面技术,2022,51(1):43-51.HU Yu,WANG Youqiang,JIAN Guangxiao,et al.Study on lubrication properties of parallel slider surface with different shape compound texture[J].Surface Technology,2022,51(1):43-51.(in Chinese)
参考文献 11
SCHUH J K,EWOLDT R H.Asymmetric surface textures decrease friction with Newtonian fluids in full film lubricated sliding contact[J].Tribology International,2016,97:490-498.
参考文献 12
XI J H,JULIUS C P,ZHANG P Y,et al.Numerical simulation and experimental analysis of grease friction properties on textured surface[J].Iranian Journal of Science and Technology,Transactions of Mechanical Engineering,2019,43(1):357-369.
参考文献 13
HORNE J E,LAVRIK N V,TERRONES H,et al.Extrapolating dynamic leidenfrost principles to metallic nanodroplets on asymmetrically textured surfaces[J].Scientific Reports,2015,5(1):11769.
参考文献 14
YIN H Z,CHEN W G,XIA D S,et al.Friction properties of graphite coating deposited on wedge-shaped textured aluminum alloys prepared by 3D printing[J].Journal of Materials Research and Technology,2022,20:4452-4472.
参考文献 15
ZHANG N,LI Z T,HAO M M,et al.Numerical simulation and experimental investigation on tribological performance of SiC surface with squamous groove micro texture[J].Lubrication Science,2022,34(8):547-562.
参考文献 16
JONATHON K S,RANDY H E.Asymmetric surface textures decrease friction with Newtonian fluids in full film lubricated sliding contact[J].Tribology International,2016,97:490-498.
参考文献 17
PING L,ROBERT J K W,MARK G G,et al.The use of anisotropic texturing for control of directional friction[J].Tribology International,2017,113:169-181.
参考文献 18
禄晓敏,王权岱,肖继明,等.织构化表面空化效应影响润滑性能的CFD分析[J].润滑与密封,2016,41(5):70-75.LU X M,WANG Q,XIAO J,et al.CFD-analysis on the effect of cavitation of textured surface on hydrodynamic lubrication[J].Lubrication Engineering,2016,41(5):70-75.(in Chinese)
参考文献 19
WANG Y J,JACOBS G,KÖNIG F,et al.Investigation of microflow effects in textures on hydrodynamic performance of journal bearings using CFD simulations[J].Lubricants,2023,11(1):20.
参考文献 20
WANG Y L,WU J H,XU L S.Influence of turbulent cavitating flow on performance characteristics of spiral groove liquid film seal[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2022,236(1):70-79.
参考文献 21
ZHANG X M,WANG C H,GUO J Z,et al.Dynamics of bubbles in spherical liquid cavity wrapped by elastic medium[J].Acta Physica Sinica,2021,70(21):214305.
参考文献 22
朱春霞,王德全,杨晓楠,等.内部结构非对称表面织构表征及动压润滑效应分析[J].表面技术,2022,51(3):66-75.ZHU Chunxia,WANG Dequan,YANG Xiaonan,et al.Characterization of asymmetric surface texture and analysis of hydrodynamic lubrication effect[J].Surface Technology,2022,51(3):66-75.(in Chinese)
参考文献 23
GE M,ZHANG G,PETKOVEK M,et al.Intensity and regimes changing of hydrodynamic cavitation considering temperature effects[J].Journal of Cleaner Production,2022,338:130470.
参考文献 24
CHEN L P,ZHANG Y C,CUI Y H,et al Effects of snake-bioinspired surface texture on the finger-sealing performance under varied working conditions[J].Machines,2022,10(7):569.
参考文献 25
WANG Y L,WU J H,XU L S.Influence of turbulent cavitating flow on performance characteristics of spiral groove liquid film seal[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2022,236(1):70-79.
参考文献 26
ZHANG D,RANJAN B,TANAKA T,et al.Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring[J].International Journal of Extreme Manufacturing,2020,2:015001.
参考文献 27
MICHAEL R,SIEGFRIED M.A new model for textured surface lubrication based on a modified Reynolds equation including inertia effects[J].Tribology International,2018,133:55-66.
参考文献 28
JIAO C X,XU J G,ZOU D L,et al.Flow field characteristics of micro-scale textured surfaces of water-lubricated bearings using lattice Boltzmann method[J].Industrial Lubrication and Tribology,2021,73(5):736-741.
参考文献 29
KUHR M M G,LANG S R,PELZ P F.Static force characteristic of annular gaps—Experimental and simulation results[J].J.Tribol,2022,144(11):111804.
参考文献 30
WANG Y D,SHEN H J,LIU C,et al.Evolution of nanosecond laser-induced phase explosion based on a high-speed continuous imaging system[J].Results in Physics,2021,29:104782.
参考文献 31
CUI Y,GUO P,TIAN Y,et al.Influence of femtosecond-laser-induced periodic surface structures on the tribological performance of CVD nano-crystalline diamond films[J].Surface Review and Letters,2022,29(5):2250068.
参考文献 32
SONG S J,LU Q H,ZHANG P L,et al.A critical review on the simulation of ultra-short pulse laser-metal interactions based on a two-temperature model(TTM)[J].Optics and Laser Technology,2023,159:109001.
参考文献 33
RHANDER V,MILTON S F L,WISLEY F S,et al.Laser texturing of substrate of coated tools—Performance during machining and in adhesion tests[J].Surface & Coatings Technology,2015,276:485-501.
参考文献 34
FAN H J,LIU Y,Ye J W.Microstructure and mechanical properties of WC-(Ti,M)(C,N)-Co cemented carbides with different nitrogen contents[J].Rare Metals,2022,41(10):3530-3538.
参考文献 35
MATERIALS R.Laser alloying monel 400 with amorphous boron to obtain hard coatings[J].Journal of Technology,2019,12(21):3494.
参考文献 36
PENG W H,HAO S Z,CHEN J,et al.Surface composite structure and improved mechanical property of YG10X cemented carbide induced by high current pulsed electron beam[J].International Journal of Refractory Metals and Hard Materials,2018,78:233-239.
目录contents

    摘要

    织构对材料表面的减摩降磨具有积极效果,但内部结构对称织构在摩擦方向和润滑方式上较为单一。为研究内部结构非对称织构对加工润滑特性的影响以及在改善材料表面摩擦性能方面的激励机制,通过研究对称织构和两种内部结构非对称织构的正、反向摩擦行为,对比润滑油在各织构单元体的压力分布、流速和流迹线来分析织构内部结构的对称性对润滑性能的影响。利用飞秒激光以倾斜加工的工艺制备内部结构非对称织构,并进行摩擦磨损试验。结果证明:织构内部结构的对称特征直接影响润滑油的流速和流迹线状态,进而影响油膜的承载力,而流速越大空化效应越剧烈,且流迹线越向涡旋中心集中,惯性效应越强。在内部结构非对称织构正反两个方向的摩擦中,正向摩擦的润滑性能要优于反向摩擦的润滑性能,且无论是正向摩擦还是反向摩擦,织构沟槽呈现直角时的润滑性更加优异,内部结构非对称织构的加工工艺可以增加表面硬度,有利于降低摩擦因数。

    Abstract

    Microtexture has been proven to have an important role in wear reduction and lubrication of material surfaces, but the internal structure of a symmetric microtexture is more homogeneous in terms of friction direction and lubrication mode. Therefore, studying the symmetry of the internal structure of a microtexture is vital. This study investigated the effect of the internal-structure asymmetric microtexture on the process lubrication characteristics and incentive mechanism to improve the material surface friction properties. Two lubrication states, the internal-structure symmetric and asymmetric groove microtextures, were simulated using the fluid–solid coupling method. By simulating the forward and reverse friction behavior of the symmetric microtexture and two internal-structure asymmetric microtextures, we determined the microtexture parameters and friction direction when the internal-structure asymmetric microtexture reached the optimal lubrication state and analyzed the effect of the symmetry of the internal structure of the microtexture on the cavitation and inertia effects by studying the pressure distribution, flow rate, and flow traces of the lubricant in the microtexture unit. The internal structure of the asymmetric microtexture was prepared via a tilting process using a femtosecond laser, and frictional wear experiments were conducted using an MPT-20 wear tester. The results showed that the internal-structured asymmetric microtexture exhibited better lubricity and friction performance under the conditions of lubricant inertia effect and cavitation effect, and the internal-structure asymmetric microtexture had better performance in forward friction lubrication. Comparing the pressure distribution graphs, flow velocity graphs, and flow traces of the asymmetric microtextures of the two internal structures, we observed that the lubricity of the microtexture grooves was superior when the grooves had right angles, both for forward and reverse friction; the best internal-structure asymmetric microtexture had an oil-film bearing capacity of 146227 Pa and the fastest flow rate of 6.695 m / s. The inclined machining process was beneficial for improving the microhardness and wear resistance of the material surface. The average microhardness of the machined surface was 1766.70 HV, which was approximately 11.9% higher. Additionally, a significant reduction in the wear rate with multilevel bonded wear on the unprocessed surfaces was observed, whereas the laser-processed surfaces had a smaller wear area and less bonded wear, and the degree of surface strengthening increased with increasing inclination. The wear rate of the asymmetric surface microtexture of the optimal internal structure was 10.08×10−3 mm3 / (N·m) and the friction factor was 0.0932, which was a reduction of the friction factor of approximately 13.1%. The results proved that the symmetrical characteristics of the internal structure of the microtexture directly affect the flow velocity and the state of the flow traces of the lubricant, which consequently affects the bearing capacity of the oil film. The greater the flow velocity, the more intense the cavitation effect, and the more complex the flow traces, the more concentrated the vortex center, and the stronger the inertia effect. The friction factor of the surface with an internal-structure asymmetric microtexture was smaller than that of the surface with a symmetric microtexture, and the friction factor of the right-angle microtexture was the smallest. The processing of an internally structured asymmetric microtexture can increase surface hardness, and a laser-induced periodic nanostructure (LIPSS) facilitates a reduction in the friction factor. The experimental results matched the simulation results, laying the foundation for the application of internal-structure asymmetric microtextures in the manufacturing industry and enriching the types of material surface microtextures.

  • 0 前言

  • 表面织构在提高接触界面间的润滑性、减摩降磨方面效果明显,在很多领域被证实有效且已在一些场景应用。随着工业化生产对工作效率、精度、质量等要求的提高,表面几何特征尤其是表面织构的作用越来越被看重,近年来国内外学者对织构的形状、宽度、深度等规格尺寸进行了大量研究,但在织构内部结构的对称性特征对摩擦磨损的影响鲜有研究。文献[1]证明动压润滑效应是减少摩擦副摩擦因数的重要原因,合理的横截面积变化可以增强动压润滑效应,提高空化效应、惯性效应和湍流动能[2]

  • 随着研究的深入,表面微织构润滑减摩性能的研究逐渐从表面化、简单化向着内部化、复合化的趋势发展,从探究微织构的形状对润滑性能的影响逐渐深入到探究微织构的内部结构对润滑性能的影响[3-7]。HAN 等[8]将微织构模型与流体动压润滑融合,系统地研究了不同织构的尺寸、类型对轴承摩擦因数及工作寿命的影响。GOURAV 等[9]使用有限元和数值模拟的方法对滚子轴承上的“人字形”织构的深度和宽度进行探究,发现了最佳的织构内部结构和最大的承载力。胡宇等[10]将两种简单的织构进行复合,探究发现与单一类型织构相比复合型织构会产生更复杂的润滑油流迹线,具有更好的摩擦性能。另外,目前很多学者对表面微织构数值模型的研究将模型表面简化为理想光滑平面,SCHUH 等[11]对内部结构非对称表面织构进行摩擦学性能研究,将流体视为牛顿流体,发现内部结构非对称织构可以将润滑油的横向剪切力转化为径向承载力,从而提高油膜的承载力。XI 等[12]利用 MATLAB 开发数值模型来设计织构参数,探究不同深度、宽度等织构对表面摩擦因数的影响,将织构减小摩擦因数的机理归因于动压润滑效应。越来越多的学者 [13-15]开始研究织构的对称性特征,织构两边的差异性使得织构具有独特的润滑性和良好的摩擦性能,但大多数研究还是缺少相对应的试验证明。 JONATHON 等[16]在探究内部结构非对称表面织构对油膜润滑的影响时,发现织构的不对称性有利于增大法向力,同时倾斜角β=9.4°时具有最小的摩擦因数。PING 等[17]在研究织构底部不同形状对摩擦行为的影响时发现,织构横截面为内部结构非对称的直角三角形的织构比横截面为半圆形、长方形和等腰三角形的润滑效果最好。禄晓敏等[18]在不考虑惯性效应的条件下,发现空化效应可以明显提高织构的承载力,并且空化效应随着剪切速度的增加而增加,织构的深度和宽度均影响摩擦和承载的性质,通过减小深度和增加宽度可以改善流体动力润滑。大部分学者对于织构的摩擦性能的研究仅仅是对其织构本身的性能的研究,忽视了织构在加工过程中的材料表面的性能变化,如显微结构、表面硬度等。

  • 目前,在微织构内部结构的对称性的研究大多数还是仅局限于利用仿真的研究。传统的对称织构的润滑方式较为单一,而内部结构非对称织构在不同摩擦方向具有不同的性能,为润滑性能方面提供了更多的可能性,所以织构内部结构的对称性研究具有重要意义。

  • 通过建立表面织构的几何模型和采用数值分析方法分析不同的织构对动压润滑、空化效应、惯性效应的影响,同时进行系列的摩擦磨损试验,比较不同织构的摩擦性能。利用流固耦合方法,建立内部结构对称织构和内部结构非对称织构模型,探究不同织构结构对动压润滑效果的影响及作用机制,为后续内部结构非对称织构的设计提供理论依据。

  • 1 模型分析

  • 1.1 织构模型的建立

  • 如图1 所示,在三维软件中按照表1 参数分别建立微织构单元体模型,通过改变沟槽最底部与织构单元体中心线的距离,实现 63°、73°、55°、90° 和 45°入油口倾斜角,上述织构依次标记 K=1、K=2、 K=3、K=4 和 K=5,其中 K=2 和 K=3 是织构模型 M=2 的反、正摩擦方向;K=4 和 K=5 是织构模型 M=3 的反、正摩擦方向。图2 为两种内部结构非对称织构的示意图,织构的主要参数为宽度 L、深度 H 和长度 l,由于润滑油进入内部结构非对称织构的两个方向横截面积的变化是不一样的,采取润滑油从倾斜角度更小的收敛楔形[19]进入织构为正摩擦方向,另一侧为反摩擦方向。

  • 图1 单元体模型

  • Fig.1 Element model

  • 表1 表面微织构结构轮廓设计

  • Table1 Contour design of microtexture surface structure

  • 图2 内部结构非对称织构示意图

  • Fig.2 Schematic diagram of asymmetric microtexture

  • 保证织构的表面积和体积相同:

  • S=L×H2
    (1)
  • V=S×l
    (2)
  • 式中 l 为织构的长度。

  • 将建立的单元体模型导入 Workbench 中,在 Fluent 中对模块进行网格划分,采取四面体网格形式进行划分,固体模型的网格数量划分为 404 107,目标偏态系数 0.900,网格尺寸 0.010 mm;油膜模型网格数量为 399 622,目标偏态系数 0.900,网格尺寸 0.008 mm(图3)。将流体模型的下界面作为流固耦合的边界条件,将固体模型的上壁面作为固液接触面,下壁面设置为固定边界条件。

  • 图3 模型的网格划分

  • Fig.3 Meshing of the model

  • 1.2 基本控制方程

  • 润滑油在摩擦副间的状态通常为稳定的层流状态,但在流经织构的时候会发生层流-湍流的过度,此时空化效应剧烈[20]。为后续方便研究做出如下假设:将润滑油视为不可压缩的牛顿流体;润滑油的黏度和密度都是固定值;作业时不考虑温度的影响。在考虑空化效应和惯性效应的情况下建立 Reynolds 方程:

  • xph3ηpx+yph3ηpy=6x(Uρh)+y(Vρh)+2ρht
    (3)
  • 式中,ρ 为润滑油密度;h 为摩擦副间油膜厚度;η 为润滑油黏度;U 为润滑油流速;t 为时间;p 为织构油膜压力。

  • 润滑油膜形成的动压效应的压力控制方程可以简化为:

  • xph3x+yph3py=σηx(Uρh)
    (4)
  • 由于织构的空间结构不同,润滑油油膜的厚度方程分别为:

  • K=1

  • h0,xΩh0+H±xtanθ,0<x<5,xΩh0+H±xtanφ,5<x<10,xΩ
    (5)
  • K=2 和 K=3

  • h0,xΩh0+H±xtanθ,0<x<3,xΩh0+H±xtanφ,3<x<10,xΩ
    (6)
  • K=4 和 K=5

  • h0,xΩh0+H±xtanφ,xΩ
    (7)
  • 考虑空化效应对油膜承载力的影响,空化效应的大小与液体的饱和蒸汽压和润滑油的密度有关,其关系如下式:

  • dRdt=23p(R)-pρ
    (8)
  • 式中,R 为气泡半径;pR)为气泡边界压强; p 为气泡外润滑油的压强。在液体中产生气泡并稳定时,气泡边界的压强等于液体的饱和蒸汽压[21]

  • 摩擦副间润滑油承载力的来源包括油膜本身承载力和空化效应的压力两个方面:

  • P=p+p(R)
    (9)
  • 对织构表面进行积分可以得到表面的承载力:

  • FA=PdA
    (10)
  • 式中 A 为织构表面的有效承载面积。

  • 采用文献[22]的润滑油参数,润滑油密度 870 kg / m3,动力黏度为 0.01 Pa·s,入口处润滑油流速 6 m / s。默认固体模型设置为结构钢(弹性模量为 200 GPa,泊松比为 0.3,密度为 7 850 kg / m3)。忽略进出口的油压差,并将进出口油压设置为 101 kPa。

  • 2 仿真结果分析

  • 2.1 织构对称性对油膜承压能力的影响

  • 图4 为 Fluent 压力分布仿真结果,可以看出内部结构非对称织构的织构内部压力分布更加离散、杂乱,这是因为润滑油在经过凹槽织构时,发散楔形的存在使得油膜压力急剧减小而出现负压,当负压达到润滑油的空化压力值时,在负压区会产生空化效应,导致局部的压力提升[23],单元体模型最大压力值越大,油膜承载力越强[24]。从图4 中可以看出,两种内部结构非对称织构的正向摩擦的动压润滑效果比反向摩擦动压润滑效果更好。同样研究发现,除 K=2 的织构外其余内部结构非对称织构的动压润滑效果都要比对称织构的润滑效果好。

  • 图4 织构压力分布云

  • Fig.4 Texture pressure distribution cloud map

  • 根据图5 中润滑油在流经沟槽织构内部时的压力变化曲线中可以看出,4 条压力曲线在 1 至 2 段因润滑油到达织构沟槽位置,横截面积变大导致压力骤降,但因入油口倾斜角度和沟槽织构的结构不同,导致产生的湍流和空化效应强度的不同,使得压力降低量值存在一定的差异[25],但油膜承载力在油膜厚度方向上呈现一定程度的提高,表现为压力曲线有一定程度的上升。从图5 中可以看出:K=5 的压力曲线要明显优于其余三种摩擦情况的压力曲线。正向摩擦的织构内部压力要明显大于反向摩擦,即正向摩擦的空化效应更加强烈,油膜承载力更高,仿真结果与文献[22]结果相符合。

  • 由于内部结构非对称织构和对称织构的结构不同,导致初始流速相同的润滑油在摩擦副间的流动方式和受到的流速阻碍不同。同样,对比同一织构模型的正、反两个摩擦方向的最大流速可知,正摩擦方向的最大流速大于反摩擦方向,且两种内部结构非对称织构的正向摩擦最大流速都大于对称织构的最大流速。

  • 图5 内部结构非对称织构沟槽内部的压力图

  • Fig.5 Pressure diagram of the interior of an asymmetrically microtextured groove

  • 从流速图图6 和压力图图4 的对比看出,流速越大的织构结构油膜压力越大,可知流速与油膜承压能力呈正相关。流速对油膜压力的影响不仅是因为在狭小的有限的空间内,流量越大空间内部的压强越大,同时流速对空化效应的影响也是一个很重要的因素,流速越大空化效应就越剧烈[26]。在润滑油流经发散楔形时,由于横截面积的增大,油膜压力本应该持续减小,但是从图5 中可以看出,在楔形中压力的变化并不是一直减小的,而是空化效应的存在使得一定范围内楔形的压力大于周围压力,且内部结构非对称织构正向摩擦的空化效应要比反向摩擦的空化效应更加剧烈。织构单元体的最大压力值和织构内部的压力越大,表明织构的承载力和动压润滑效果越好,可以更好地改善材料表面的润滑状态。

  • 图6 织构单元体润滑油流速图

  • Fig.6 Flow rate diagram of lubricating oil in the microtextured unit body

  • 2.2 织构对称性对润滑油流迹线的影响

  • 对流惯性效应是织构润滑中不可忽略的重要因素[27],润滑油的惯性效应将直接影响到摩擦副间的压力、流速和润滑油的流动状态[28]。根据织构内部流迹线图7 可以发现,在同一种内部结构非对称织构中,正向摩擦(K=3 和 K=5)的润滑油的流迹线外圈边缘要比反向摩擦(K=2 和 K=4) 的流迹线更加离散,且正向摩擦的流迹线要比反向摩擦更加复杂且向“漩涡”的中心集中,内部结构非对称织构的结构会影响到润滑油惯性的回流方向。此现象表明内部结构非对称织构正向摩擦的惯性效应更加明显,而惯性效应会在沟槽织构内部产生环形压力差,提高油膜在油膜厚度方向上的径向承载力[29],从而提高油膜的整体承载力。上述结果表面:虽然织构结构不同,导致润滑油在内部结构非对称织构正向摩擦(K=3 和 K=5)的流动情况更加复杂且范围更大,但是由上述对润滑油流速的仿真结果可以看出,这并未减小润滑油的流速,反而还对流速有一定程度的提升。

  • 图7 织构单元体流迹线图

  • Fig.7 Flow trace diagram of the microtexture element body

  • 3 试验

  • 3.1 试验准备

  • 试样材料为 YT15 硬质合金,表2 为材料属性。规格为 16 mm×16 mm,厚度 4.5 mm。在加工前先将试样先用抛光机进行抛光,再用 JP-030 超声波清洗机清洗。图8 显示了未加工试样表面能谱图和微区元素含量。

  • 表2 YT15 硬质合金材料属性

  • Table2 YT15 cemented carbide material properties

  • 在五轴飞秒激光器 HR-Femto-50 上进行 YT15 硬质合金的激光加工,利用五轴联动加工出不同规格的内部结构非对称织构。为方便试验区分,将无织构表面定义为M=0;将对称织构表面定义为M=1; 将仿真中的K=2和K=3类型的织构在试验中定义为 M=2;将仿真中 K=4 和 K=5 类型的织构在试验中定义为 M=3。飞秒激光加工参数为:功率 30 W;频率 80 kHz;扫描次数为 20 次。将加工微织构后的试样放入 JP-030 超声波清洗机中用无水乙醇清洗,用形态轮廓测量系统(红色半导体激光 VK-X1050)测量织构的三维形貌,确保加工的织构结构与仿真模型相一致,在 CARL ZEISS Sigma300 场发射扫描电镜下观察织构沟槽的微纳结构,以及熔融物的状态和激光加工前后表面元素变化。

  • 图8 YT15 硬质合金原表面的微区能谱图和元素含量 (a)微区能谱图 (b)微区元素含量

  • Fig.8 Micro-area energy spectrum and elemental content of the original surface of YT15 cemented carbide: (a) Micro-area energy spectrum; (b) Micro-area elemental content.

  • 利用 MPT-20 磨损试验机进行摩擦磨损试验,采用单向旋转式的球-盘摩擦副,将织构化的工件下端固定,选择 304 不锈钢球作为摩擦对偶球,设置载荷压力为 80 N,摩擦时间为 1 800 s。选用运动黏度(40℃)为 11.34 mm / s2,黏度指数为 58,密度为 0.86g / cm2 的润滑油作为摩擦条件,分别进行油润滑条件下的无织构试样表面、对称织构试样表面和内部结构非对称织构试样表面摩擦磨损试验。

  • 3.2 结果与分析

  • 3.2.1 表面织构化结果与分析

  • 图9a~9c 分别是对称织构(M=1)、内部结构非对称织构(M=2)和内部结构非对称织构(M=3) 的五轴飞秒激光加工后的三维形貌图,可以看出试验加工的织构沟槽的参数与仿真所设计的长宽比例相等。

  • 图9 织构共聚焦三维形貌图

  • Fig.9 Texture confocal3D topography

  • 从图10 中可以看出:在此激光加工参数下加工的织构形貌较好,织构沟槽周围的熔融物较少,飞秒激光因脉宽极短,对加工区周围表面形貌几乎没有影响,因而加工质量高。还可以看出,M=1 织构沟槽两侧的熔融物状态大致相同,而 M=2 和 M=3 织构沟槽两侧有着不同程度的倾斜,且倾斜角度大的一侧的熔融物较少,这是由于激光能量为高斯分布,在加工内部结构非对称织构时,由于倾斜加工导致激光光束在两侧的焦距不同,较短的焦距一侧试样表面在较高的激光能量作用下在极短的时间气化,产生熔融物较少;较长的焦距一侧试样表面在较少的激光能量作用下,使得部分材料液化、溅射产生较多熔融物。

  • 图10 500 倍内部结构非对称织构 SEM 图

  • Fig.10 500× asymmetric texture SEM diagram

  • 对图10 中的部分区域进行放大,如图11 所示,从织构放大图可以看出,内部结构非对称织构沟槽两侧的熔融物的形貌有着较大差别:在倾斜较小的一侧的熔融物堆积严重且由于材料液化,发生高温液相积聚成核现象,在短脉冲激光作用下,等离子体溅射发生相爆炸[30],呈现出从沟槽底部向外的末端水滴状,在合适的激光加工参数下诱导出周期性微纳米结构(LIPSS)[31],如图 c 沟槽左侧,整体呈现条纹状光栅结构,为典型的低空间频率 LIPSS(LSFL)[32],此结构能够明显降低摩擦因数。随着试件加工时倾斜程度的增大,激光与硬质合金表面的接触面增大,使得激光热影响区增大,但从图11 可以看出表面质量并未受到太大影响。

  • 图11 1 500 倍内部结构非对称织构 SEM 图

  • Fig.11 1 500× asymmetric texture SEM diagram

  • 图12 激光热影响区的 SEM 图和 EDS 图 (a)热影响区 (b)热影响区能谱图 (c)热影响区的元素含量

  • Fig.12 SEM plot and energy spectrum of the laser heat affected zone: (a) Heat affected zone; (b) Heat affected zone energy spectrum; (c) Elemental content of the heat affected zone.

  • 激光加工后的表面能谱图和元素含量如图12 所示,与原始表面相比,W 元素含量急剧减少,O 元素含量增加。这是因为,在高温下 Si 与空气中的氧发生反应产生 SiO2,导致 O 元素含量增加。在激光能量下 W 和 Co 被熔化蒸发,但随着加工次数的增加,硬质合金内部的 Co 元素会迁移到材料表面[33],使得表面的 Co 元素没有出现明显下降的现象。

  • 选取沟槽织构靠近激光焦点的一侧黑色熔融物进行能谱分析,对比激光加工前后的微区元素,结合图8 和图13 可以看出,未加工表面不含有 N 元素,而黑色熔融物 EDS 检测出较多 N 元素,这是由于Ti元素和空气中的N元素在高温下具有强烈的较强的结合能力,因此随着激光加工进行,Ti 元素与空气中的氮气结合形成 Ti(C,N)相[34],Ti(C,N)的硬度大于 YT15 硬质合金的硬度,增强了表面硬度进一步强化了表面性能。

  • 图13 织构两侧溅射熔融物的元素含量 (a)黑色熔融物 (b)黑色熔融物的能谱图 (c)黑色熔融物的元素含量图

  • Fig.13 Elemental content of sputtered melts on both sides of the fabric: (a) Black melt; (b) Energy spectrum of black melt; (c) Elemental content graph of black melt.

  • 3.2.2 摩擦磨损试验结果与分析

  • 图14 是未加工表面、对称织构表面和两种内部结构非对称织构表面的正、反摩擦因数曲线,可以看出,织构化的硬质合金表面具有较小的摩擦因数,且内部结构非对称织构表面的摩擦因数要小于对称织构表面的摩擦因数。在摩擦初始阶段(图14a) 中由于沟槽附近存在硬度较高的熔融物堆积,使得摩擦最开始时工件表面与摩擦对偶球的接触面较小,因而摩擦因数较小,但随着摩擦运动的持续进行,熔融物被磨平,接触面增大,摩擦因数呈现上升趋势。在 400~1 100 s 处于边界摩擦和流体摩擦的混合阶段,因而摩擦因数起伏较大,曲线波动不稳。在 1 100 s 后油膜逐步形成,改变了原有的摩擦状态,使其处于动压润滑状态,摩擦因数趋于稳定。稳定阶段(图14b)的平均摩擦因数:M=0 表面的摩擦因数为 0.107 3,K=1 表面的摩擦因数为 0.105 0,K=2 的内部结构非对称织构表面的摩擦因数为 0.105 2,K=3 的内部结构非对称织构表面的摩擦因数为 0.102 1,K=4 的内部结构非对称织构表面的摩擦因数为 0.104 9,K=5 的内部结构非对称织构表面的摩擦因数为 0.093 2。

  • 图14 各表面的摩擦因数曲线

  • Fig.14 Friction factor curve of each surface: (a) Initial surface friction factor curves; (b) Friction factor curve in the stabilization phase; (c) Full range friction factor curve.

  • 从图15 磨损痕迹可以看出,织构化的硬质合金表面磨痕较浅,且内部结构非对称织构的磨痕要比对称织构磨痕浅。未加工表面在磨损后有较大程度的粘结磨损且磨损层次多,表面起伏程度剧烈;对称织构表面粘结磨损明显减少,表现单一层次磨损为,有少量的材料堆积;内部结构非对称织构表面的磨损痕迹较浅,表面平坦。激光的热影响区会改变材料的微观组织性能,增大显微硬度[35]。经过 HV-1000 显微硬度计的测量,未加工的材料表面三次硬度测试结果分别为 1 592.40、 1 571.36、 1 570.69,平均显微硬度为 1 578.15 HV,加工后的表面的三次硬度测试结果为 1 780.13、1 754.44、 1 765.53 HV,平均显微硬度为 1 766.70 HV。分析其原因:经过激光加工后会增大硬质合金表面热影响区的硬度,而内部结构非对称织构在加工工艺上由于倾斜的原因,会增大激光与工件表面的接触面积,导致热影响区增大,材料表面局部显微硬度提高,增强了耐磨性[36]

  • 图15 摩擦磨损痕迹

  • Fig.15 Friction and wear marks

  • 耐磨性通过磨损率的大小来衡量,磨损率的计算公式为:

  • W=VNS
    (11)
  • 式中,W 为磨损率(mm 3 /(mN·m)),V 为磨损体积(10−4 mm 3),N 为摩擦磨损时的载荷(N),S 为摩擦磨损行程(m)。

  • 利用 Keyence Laser Microscopic 观察的各表面的摩擦磨损轮廓图如图16 所示,可以看出内部结构非对称织构表面的的磨痕范围更小、深度更浅。在三维形貌中随机取 10 个横截面计算各表面的磨损率见表3,可以看出内部结构非对称织构表面的磨损率较未加工表面和对称织构表面有很大程度的减小。

  • 图16 不同表面摩擦磨损轮廓图

  • Fig.16 Contour diagram of friction and wear of different surfaces

  • 表3 不同表面的磨损率

  • Table3 Wear rates on different surfaces

  • 4 结论

  • 通过 Fluent 有限元仿真和对比试验分析,对比内部结构非对称织构和对称织构的动压润滑效应及其作用机理,研究了沟槽织构对称性对润滑油流速、空化效应和惯性效应的影响和倾斜加工工艺对材料表面摩擦性能的影响。获得结论如下:

  • (1)内部结构非对称织构较对称织构相比更有利于增大空化效应、增强动压润滑效果,且合理的内部结构非对称性织构结构会使润滑油对流惯性效应增强,增大油膜的承载力。

  • (2)内部结构非对称织构在单向摩擦方向上具有各向异性,随着入油口倾斜角度的减小,润滑油在摩擦副间的流速增大,且在织构沟槽中存在的涡旋现象更为明显,有利于增大油膜承载力,提高织构表面的润滑性。

  • (3)内部结构非对称织构在激光加工工艺上可以增大激光光束与硬质合金表面的接触面,提高热影响区的硬度,同时沟槽两边出现的周期性纳米结构一定程度上降低了摩擦因数,增强了材料表面的耐磨性。

  • (4)内部结构非对称织构由于其独有的摩擦方向和润滑各向异性的特点,可以应用到单向摩擦运动的摩擦副间或对于摩擦方向不同具有不同要求的摩擦表面。

  • 参考文献

    • [1] SULAIMAN M H,ZAID M F S,FARAHANA R N,et al.CFD analysis of hydrodynamic lubrication effects of micro textured surface[J].IOP Conference Series:Materials Science and Engineering,2019,670:012061.

    • [2] ZHENG L F,TOSHIYUKI O.Cooling performance of micro-texture at the tool flank face under high pressure jet coolant assistance[J].Precision Engineering,2017,49:41-51.

    • [3] JIANG Y Y,YAN Z J,ZHANG S W,et al.Research on cavitation effect of microtextured array[J].Scientific Reports,2022,12(1):13455.

    • [4] FU H,HE Y Y,YANG J,et al.Enhancing adhesion strength of PVD AlCrN coating by novel volcano-shaped micro-textures:Experimental study and mechanism insight[J].Surface & Coatings Technology,2022,445(15):128712.

    • [5] FENG X G,WANG R,WEI G,et al.Effect of a micro-textured surface with deposited MoS2-Ti film on long-term wear performance in vacuum[J].Surface & Coatings Technology,2022,445(15):128722.

    • [6] TATSUYA S,TOSHIYUKI E.Performance of cutting tools with dimple textured surfaces:A comparative study of different texture patterns[J].Precision Engineering,2017,49:52-60

    • [7] Li J N,HAN K,CHEN W G,et al.An improved TEHL analysis of textured roller bearings consider various texture parameters and slip[J].Industrial Lubrication and Tribology,2020,73(2):373-380.

    • [8] HAN K,LI J N,WANG Q,et al.Study on oil film pressure distribution and load capacity of textured rolling bearings[J].Industrial Lubrication and Tribology,2020,72(7):961-967.

    • [9] GOURAV J,SANJAY S,AWASTHI P K.The dynamic performance analysis of chevron shape textured hydrodynamic bearings[J].Industrial Lubrication and Tribology,2020,72(1):1-8.

    • [10] 胡宇,王优强,菅光霄,等.平行滑块表面不同形状复合型织构的润滑性能研究[J].表面技术,2022,51(1):43-51.HU Yu,WANG Youqiang,JIAN Guangxiao,et al.Study on lubrication properties of parallel slider surface with different shape compound texture[J].Surface Technology,2022,51(1):43-51.(in Chinese)

    • [11] SCHUH J K,EWOLDT R H.Asymmetric surface textures decrease friction with Newtonian fluids in full film lubricated sliding contact[J].Tribology International,2016,97:490-498.

    • [12] XI J H,JULIUS C P,ZHANG P Y,et al.Numerical simulation and experimental analysis of grease friction properties on textured surface[J].Iranian Journal of Science and Technology,Transactions of Mechanical Engineering,2019,43(1):357-369.

    • [13] HORNE J E,LAVRIK N V,TERRONES H,et al.Extrapolating dynamic leidenfrost principles to metallic nanodroplets on asymmetrically textured surfaces[J].Scientific Reports,2015,5(1):11769.

    • [14] YIN H Z,CHEN W G,XIA D S,et al.Friction properties of graphite coating deposited on wedge-shaped textured aluminum alloys prepared by 3D printing[J].Journal of Materials Research and Technology,2022,20:4452-4472.

    • [15] ZHANG N,LI Z T,HAO M M,et al.Numerical simulation and experimental investigation on tribological performance of SiC surface with squamous groove micro texture[J].Lubrication Science,2022,34(8):547-562.

    • [16] JONATHON K S,RANDY H E.Asymmetric surface textures decrease friction with Newtonian fluids in full film lubricated sliding contact[J].Tribology International,2016,97:490-498.

    • [17] PING L,ROBERT J K W,MARK G G,et al.The use of anisotropic texturing for control of directional friction[J].Tribology International,2017,113:169-181.

    • [18] 禄晓敏,王权岱,肖继明,等.织构化表面空化效应影响润滑性能的CFD分析[J].润滑与密封,2016,41(5):70-75.LU X M,WANG Q,XIAO J,et al.CFD-analysis on the effect of cavitation of textured surface on hydrodynamic lubrication[J].Lubrication Engineering,2016,41(5):70-75.(in Chinese)

    • [19] WANG Y J,JACOBS G,KÖNIG F,et al.Investigation of microflow effects in textures on hydrodynamic performance of journal bearings using CFD simulations[J].Lubricants,2023,11(1):20.

    • [20] WANG Y L,WU J H,XU L S.Influence of turbulent cavitating flow on performance characteristics of spiral groove liquid film seal[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2022,236(1):70-79.

    • [21] ZHANG X M,WANG C H,GUO J Z,et al.Dynamics of bubbles in spherical liquid cavity wrapped by elastic medium[J].Acta Physica Sinica,2021,70(21):214305.

    • [22] 朱春霞,王德全,杨晓楠,等.内部结构非对称表面织构表征及动压润滑效应分析[J].表面技术,2022,51(3):66-75.ZHU Chunxia,WANG Dequan,YANG Xiaonan,et al.Characterization of asymmetric surface texture and analysis of hydrodynamic lubrication effect[J].Surface Technology,2022,51(3):66-75.(in Chinese)

    • [23] GE M,ZHANG G,PETKOVEK M,et al.Intensity and regimes changing of hydrodynamic cavitation considering temperature effects[J].Journal of Cleaner Production,2022,338:130470.

    • [24] CHEN L P,ZHANG Y C,CUI Y H,et al Effects of snake-bioinspired surface texture on the finger-sealing performance under varied working conditions[J].Machines,2022,10(7):569.

    • [25] WANG Y L,WU J H,XU L S.Influence of turbulent cavitating flow on performance characteristics of spiral groove liquid film seal[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2022,236(1):70-79.

    • [26] ZHANG D,RANJAN B,TANAKA T,et al.Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring[J].International Journal of Extreme Manufacturing,2020,2:015001.

    • [27] MICHAEL R,SIEGFRIED M.A new model for textured surface lubrication based on a modified Reynolds equation including inertia effects[J].Tribology International,2018,133:55-66.

    • [28] JIAO C X,XU J G,ZOU D L,et al.Flow field characteristics of micro-scale textured surfaces of water-lubricated bearings using lattice Boltzmann method[J].Industrial Lubrication and Tribology,2021,73(5):736-741.

    • [29] KUHR M M G,LANG S R,PELZ P F.Static force characteristic of annular gaps—Experimental and simulation results[J].J.Tribol,2022,144(11):111804.

    • [30] WANG Y D,SHEN H J,LIU C,et al.Evolution of nanosecond laser-induced phase explosion based on a high-speed continuous imaging system[J].Results in Physics,2021,29:104782.

    • [31] CUI Y,GUO P,TIAN Y,et al.Influence of femtosecond-laser-induced periodic surface structures on the tribological performance of CVD nano-crystalline diamond films[J].Surface Review and Letters,2022,29(5):2250068.

    • [32] SONG S J,LU Q H,ZHANG P L,et al.A critical review on the simulation of ultra-short pulse laser-metal interactions based on a two-temperature model(TTM)[J].Optics and Laser Technology,2023,159:109001.

    • [33] RHANDER V,MILTON S F L,WISLEY F S,et al.Laser texturing of substrate of coated tools—Performance during machining and in adhesion tests[J].Surface & Coatings Technology,2015,276:485-501.

    • [34] FAN H J,LIU Y,Ye J W.Microstructure and mechanical properties of WC-(Ti,M)(C,N)-Co cemented carbides with different nitrogen contents[J].Rare Metals,2022,41(10):3530-3538.

    • [35] MATERIALS R.Laser alloying monel 400 with amorphous boron to obtain hard coatings[J].Journal of Technology,2019,12(21):3494.

    • [36] PENG W H,HAO S Z,CHEN J,et al.Surface composite structure and improved mechanical property of YG10X cemented carbide induced by high current pulsed electron beam[J].International Journal of Refractory Metals and Hard Materials,2018,78:233-239.

  • 参考文献

    • [1] SULAIMAN M H,ZAID M F S,FARAHANA R N,et al.CFD analysis of hydrodynamic lubrication effects of micro textured surface[J].IOP Conference Series:Materials Science and Engineering,2019,670:012061.

    • [2] ZHENG L F,TOSHIYUKI O.Cooling performance of micro-texture at the tool flank face under high pressure jet coolant assistance[J].Precision Engineering,2017,49:41-51.

    • [3] JIANG Y Y,YAN Z J,ZHANG S W,et al.Research on cavitation effect of microtextured array[J].Scientific Reports,2022,12(1):13455.

    • [4] FU H,HE Y Y,YANG J,et al.Enhancing adhesion strength of PVD AlCrN coating by novel volcano-shaped micro-textures:Experimental study and mechanism insight[J].Surface & Coatings Technology,2022,445(15):128712.

    • [5] FENG X G,WANG R,WEI G,et al.Effect of a micro-textured surface with deposited MoS2-Ti film on long-term wear performance in vacuum[J].Surface & Coatings Technology,2022,445(15):128722.

    • [6] TATSUYA S,TOSHIYUKI E.Performance of cutting tools with dimple textured surfaces:A comparative study of different texture patterns[J].Precision Engineering,2017,49:52-60

    • [7] Li J N,HAN K,CHEN W G,et al.An improved TEHL analysis of textured roller bearings consider various texture parameters and slip[J].Industrial Lubrication and Tribology,2020,73(2):373-380.

    • [8] HAN K,LI J N,WANG Q,et al.Study on oil film pressure distribution and load capacity of textured rolling bearings[J].Industrial Lubrication and Tribology,2020,72(7):961-967.

    • [9] GOURAV J,SANJAY S,AWASTHI P K.The dynamic performance analysis of chevron shape textured hydrodynamic bearings[J].Industrial Lubrication and Tribology,2020,72(1):1-8.

    • [10] 胡宇,王优强,菅光霄,等.平行滑块表面不同形状复合型织构的润滑性能研究[J].表面技术,2022,51(1):43-51.HU Yu,WANG Youqiang,JIAN Guangxiao,et al.Study on lubrication properties of parallel slider surface with different shape compound texture[J].Surface Technology,2022,51(1):43-51.(in Chinese)

    • [11] SCHUH J K,EWOLDT R H.Asymmetric surface textures decrease friction with Newtonian fluids in full film lubricated sliding contact[J].Tribology International,2016,97:490-498.

    • [12] XI J H,JULIUS C P,ZHANG P Y,et al.Numerical simulation and experimental analysis of grease friction properties on textured surface[J].Iranian Journal of Science and Technology,Transactions of Mechanical Engineering,2019,43(1):357-369.

    • [13] HORNE J E,LAVRIK N V,TERRONES H,et al.Extrapolating dynamic leidenfrost principles to metallic nanodroplets on asymmetrically textured surfaces[J].Scientific Reports,2015,5(1):11769.

    • [14] YIN H Z,CHEN W G,XIA D S,et al.Friction properties of graphite coating deposited on wedge-shaped textured aluminum alloys prepared by 3D printing[J].Journal of Materials Research and Technology,2022,20:4452-4472.

    • [15] ZHANG N,LI Z T,HAO M M,et al.Numerical simulation and experimental investigation on tribological performance of SiC surface with squamous groove micro texture[J].Lubrication Science,2022,34(8):547-562.

    • [16] JONATHON K S,RANDY H E.Asymmetric surface textures decrease friction with Newtonian fluids in full film lubricated sliding contact[J].Tribology International,2016,97:490-498.

    • [17] PING L,ROBERT J K W,MARK G G,et al.The use of anisotropic texturing for control of directional friction[J].Tribology International,2017,113:169-181.

    • [18] 禄晓敏,王权岱,肖继明,等.织构化表面空化效应影响润滑性能的CFD分析[J].润滑与密封,2016,41(5):70-75.LU X M,WANG Q,XIAO J,et al.CFD-analysis on the effect of cavitation of textured surface on hydrodynamic lubrication[J].Lubrication Engineering,2016,41(5):70-75.(in Chinese)

    • [19] WANG Y J,JACOBS G,KÖNIG F,et al.Investigation of microflow effects in textures on hydrodynamic performance of journal bearings using CFD simulations[J].Lubricants,2023,11(1):20.

    • [20] WANG Y L,WU J H,XU L S.Influence of turbulent cavitating flow on performance characteristics of spiral groove liquid film seal[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2022,236(1):70-79.

    • [21] ZHANG X M,WANG C H,GUO J Z,et al.Dynamics of bubbles in spherical liquid cavity wrapped by elastic medium[J].Acta Physica Sinica,2021,70(21):214305.

    • [22] 朱春霞,王德全,杨晓楠,等.内部结构非对称表面织构表征及动压润滑效应分析[J].表面技术,2022,51(3):66-75.ZHU Chunxia,WANG Dequan,YANG Xiaonan,et al.Characterization of asymmetric surface texture and analysis of hydrodynamic lubrication effect[J].Surface Technology,2022,51(3):66-75.(in Chinese)

    • [23] GE M,ZHANG G,PETKOVEK M,et al.Intensity and regimes changing of hydrodynamic cavitation considering temperature effects[J].Journal of Cleaner Production,2022,338:130470.

    • [24] CHEN L P,ZHANG Y C,CUI Y H,et al Effects of snake-bioinspired surface texture on the finger-sealing performance under varied working conditions[J].Machines,2022,10(7):569.

    • [25] WANG Y L,WU J H,XU L S.Influence of turbulent cavitating flow on performance characteristics of spiral groove liquid film seal[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2022,236(1):70-79.

    • [26] ZHANG D,RANJAN B,TANAKA T,et al.Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring[J].International Journal of Extreme Manufacturing,2020,2:015001.

    • [27] MICHAEL R,SIEGFRIED M.A new model for textured surface lubrication based on a modified Reynolds equation including inertia effects[J].Tribology International,2018,133:55-66.

    • [28] JIAO C X,XU J G,ZOU D L,et al.Flow field characteristics of micro-scale textured surfaces of water-lubricated bearings using lattice Boltzmann method[J].Industrial Lubrication and Tribology,2021,73(5):736-741.

    • [29] KUHR M M G,LANG S R,PELZ P F.Static force characteristic of annular gaps—Experimental and simulation results[J].J.Tribol,2022,144(11):111804.

    • [30] WANG Y D,SHEN H J,LIU C,et al.Evolution of nanosecond laser-induced phase explosion based on a high-speed continuous imaging system[J].Results in Physics,2021,29:104782.

    • [31] CUI Y,GUO P,TIAN Y,et al.Influence of femtosecond-laser-induced periodic surface structures on the tribological performance of CVD nano-crystalline diamond films[J].Surface Review and Letters,2022,29(5):2250068.

    • [32] SONG S J,LU Q H,ZHANG P L,et al.A critical review on the simulation of ultra-short pulse laser-metal interactions based on a two-temperature model(TTM)[J].Optics and Laser Technology,2023,159:109001.

    • [33] RHANDER V,MILTON S F L,WISLEY F S,et al.Laser texturing of substrate of coated tools—Performance during machining and in adhesion tests[J].Surface & Coatings Technology,2015,276:485-501.

    • [34] FAN H J,LIU Y,Ye J W.Microstructure and mechanical properties of WC-(Ti,M)(C,N)-Co cemented carbides with different nitrogen contents[J].Rare Metals,2022,41(10):3530-3538.

    • [35] MATERIALS R.Laser alloying monel 400 with amorphous boron to obtain hard coatings[J].Journal of Technology,2019,12(21):3494.

    • [36] PENG W H,HAO S Z,CHEN J,et al.Surface composite structure and improved mechanical property of YG10X cemented carbide induced by high current pulsed electron beam[J].International Journal of Refractory Metals and Hard Materials,2018,78:233-239.

  • 手机扫一扫看