en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

涂传坤,男,1996年出生,硕士研究生。主要研究方向为轴瓦涂层设计及摩擦性能。E-mail:2431312282@qq.com;

曹均,男,1987年出生,博士,教授,硕士研究生导师。主要研究方向轴瓦、轴套、柱塞等表面处理工艺及摩擦机理。E-mail:caojun929@sjtu.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007-9289.20230313001

参考文献 1
KOLEV M,DRENCHEY L,STANEY L.Tribological characterization of aluminum/babbitt composites and their application to sliding bearing[J].Archives of Foundry Engineering,2020,25(3):31-36.
参考文献 2
KRZYMIEN A,KRZYMIEN P.Properties of the bearing alloys used for slide bearings of crank mechanism[J].Journal of KONES,2004,11(1-2):393-398.
参考文献 3
ALIDOKHT S A,ABDOLLAH Z A,SOLEYMANI S,et al.Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing[J].Materials and Design,2011,32(5):2727-2733.
参考文献 4
边培莹,尹恩怀.3D 打印铝合金材料的摩擦学性能[J].中国表面工程,2016,29(3):74-79.BIAN Peiying,YIN Enhuai.Tribological properties of 3D printing aluminum alloy[J].China Surface Engineering,2016,29(3):74-79.(in Chinese)
参考文献 5
UNLU B S,ATIK E,MERIC C.Effect of loading capacity(pressure–velocity)to tribological properties of CuSn10 bearings[J].Materials and Design,2007,28(7):2160-2165.
参考文献 6
MOAREF A,RABIEZADEH A.Microstructural evaluation and tribological properties of underwater friction stir processed CP-copper and its alloy[J].Transactions of Nonferrous Metals Society of China,2020,30(4):972-981.
参考文献 7
AWAD S H,QIAN H.Deposition of duplex Al2O3/TiN coatings on aluminum alloys for tribological applications using a combined microplasma oxidation(MPO)and arc ion plating(AIP)[J].Wear,2006,260(1):215-222.
参考文献 8
WANG W,PELENOVICH V O,YOUSAF M,et al.Microstructure,mechanical and tribological properties of WC/aC:H coatings deposited by cathodic arc ion-plating[J].Vacuum,2016,132:31-39.
参考文献 9
ZOU Y,ZHOU K,WU Y F,et al.Structure,mechanical and tribological properties of diamond-like carbon films on aluminum alloy by arc ion plating[J].Vacuum,2012,86(8):1141-1146.
参考文献 10
REZAEI M,JESHVAGHANI R A,SHAHVERDIH H,et al.Torkamany,formation of Ni-rich aluminide layers on an A356 aluminum alloy by a combined electroplating/laser alloying treatment:microstructure and tribological characteristics[J].Journal of Manufacturing Processes,2017,29:310-319.
参考文献 11
BHAT A,BOURELL D.Tribological properties of metal matrix composite coatings produced by electrodeposition of copper[J].Materials Science and Technology,2015,31(8):969-974.
参考文献 12
WANG H X,ZHANG Y,YANG S F,et al.Effects of slurry pack cementation temperature on microstructure and wear resistance of Ti–Al co-deposited coating on copper plated nickel layer[J].Transactions of Nonferrous Metals Society of China,2014,24(2):449-454.
参考文献 13
SUZUKI N,HIKASA A.Evaluation of the tribological property of resin coating by the addition of nylon and graphite particles[J].SAE Technical Paper,2012,4:0090.
参考文献 14
ZHANG W,QIU X,TAN F,et al.In situ synthesis of polyimide-based solid lubricating films on the surface of aluminium alloy with improved tribological performance[J].Plastics,Rubber and Composites,2020,49(1):1-9.
参考文献 15
JIANG J,ZHAO C,LI G.Tribological properties of polyether-ether-ketone-based coating under mixed and boundary aviation kerosene-lubrication condition[J].Coatings,2020,10(1):1.
参考文献 16
TU C K,CAO J,HUANG H B,et al.The investigation of microstructure and tribological properties of PTFE/PI-PAI composite coating added with VN[J].Surface and Coatings Technology,2022,432:128092.
参考文献 17
齐慧敏,胡超,李洁,等.宽温域环境中聚四氟乙烯及其复合材料摩擦学性能研究[J].摩擦学学报,2022,42(1):65-73.QI Huimi,HU Chao,LI Jie,et al.Tribological performance of PTFE and its composite in wide temperature range[J].Tribology,2022,42(1):65-73.(in Chinese)
参考文献 18
AMEER N,HUSSEIN S I.Enhanced thermal expansion,mechanical properties,and adhesion analysis of epoxy/ZrO2 nano composites[J].Journal of Physics:Conference Series,2019,1279:012026.
参考文献 19
TAKADOUM J,BENNANI H H.Influence of substrate roughness and coating thickness on adhesion,friction and wear of TiN films[J].Surface and Coatings Technology,1997,96(2):272-282.
参考文献 20
SEIDL W M,BARTOSIK M,KOLOZSVARI S,et al.Influence of coating thickness and substrate on stresses and mechanical properties of(Ti,Al,Ta)N/(Al,Cr)N multilayers[J].Surface and Coatings Technology,2018,347(4):92-98.
参考文献 21
DORNER A,SCHURER C,REISEL G,et al.Diamond-like carbon-coated Ti6Al4V:influence of the coating thickness on the structure and the abrasive wear resistance[J].Wear,2001,249(5):489-497.
参考文献 22
CHEN S,LIU L,WANG T.Investigation of the mechanical properties of thin films by nanoindentation,considering the effects of thickness and different coating–substrate combinations[J].Surface and Coatings Technology,2004,191(1):25-32.
参考文献 23
张静,单磊,苏晓磊,等.基体材料对 Cr/CrN 多层涂层在海水环境中磨蚀性能的影响[J].表面技术,2018,47(12):198-204.ZHANG Jing,SHAN Lei,SU Xioalei,et al.Effect of substrate material on tribocorrosion performance of Cr/CrN multilayer coatings in seawater[J].Surface Technology,2018,47(12):198-204.(in Chinese)
参考文献 24
CAO J,CHEN J,WANG X,et al.Tribology and anti-ablation properties of SiC-VN-MoS2/Ta composite coatings on carbon/carbon composites from 25 ℃ to 800 ℃[J].Materials,2021,14(22):6772-6772.
参考文献 25
张定军,甘明洋,贾玉龙,等.CdS 纳米粒子的合成及其对PTFE基粘结固体润滑涂层摩擦学性能的影响[J].摩擦学学报,2016,36(5):629-635.ZHANG Dingjun,GAN Mingyang,JIA Yulong,et al.Synthesis of CdS nanoparticles and the effect of their addition on the tribological behavior of bonded PTFE solid lubricant coating[J].Tribology,2016,36(5):629-635.(in Chinese)
参考文献 26
杨瑞杰,冶银平,万宏启,等.聚酰亚胺粘结 MoS2基固体润滑涂层在油介质中的摩擦学性能[J].摩擦学学报,2011,31(3):278-282.YANG Ruijie,YE Yingping,WAN Hongqi,et al.Tribological properties of polyimide bonded mos2 solid lubricant coatings in different oils[J].Tribology,2011,31(3):278-282.(in Chinese)
参考文献 27
HAO J,SONG Z Z,ZHANG X H,et al.Effect of nano-Al2O3 surface treatment on the tribological performance of phenolic composite coating[J].Surface and Coatings Technology,2006,201(6):3767-3774.
参考文献 28
LIU X,YAMAGUCHI R,UMEHARA N,et al.Effect of oil temperature and counterpart material on the wear mechanism of ta-CNx coating under base oil lubrication[J].Wear,2017,390-391:312-321.
参考文献 29
SHAH R,DATASHVILI T,CAI T,et al.Effects of functionalised reduced graphene oxide on frictional and wear properties of epoxy resin[J].Materials Research Innovations,2015,19(2):97-106.
参考文献 30
LIU D,ZHAO W J,LIU S,et al.Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene[J].Surface and Coatings Technology,2016,286:354-364.
参考文献 31
程蓓,李迎春,邱明,等.石墨烯/MoS2 复合涂层多环境下的摩擦学性能[J].润滑与密封,2021,46(1):66-73.CHENG Bei,LI Yingchun,QIU Ming,et al.Tribological properties of graphene/MoS2 composite coatings in multiple environments[J].Lubrication Engineering,2021,46(1):66-73.(in Chinese)
参考文献 32
陈颢,伍方,赵文杰,等.海水环境中环氧值对环氧树脂涂层摩擦学性能的影响研究[J].摩擦学学报,2014,34(6):601-607.CHEN Hao,WU Fang,ZHAO Wenjie,et al.Influence of epoxy value on the tribological performances of epoxy resin coatings in seawater environment[J].Triboogy,2014,34(6):601-607.(in Chinese)
参考文献 33
杨安乐.沥青基碳纤维增强环氧模塑料的摩擦磨损性能[J].机械工程材料,1998,24(6):13-14,55.YANG Anle.Friction and wear properties of carbon fiber reinforced expoxy molding plastic[J].Materials for Mechanical Engineering,1998,24(6):13-14,55.(in Chinese)
参考文献 34
赵剑波,王勇,韩彬,等.镍基金属陶瓷涂层在人工海水中的摩擦学性能[J].表面技术,2018,47(2):64-70.ZHAO Jianbo,WANG Yong,HAN Bing,et al.Tribological properties of Ni-based cermet coatings in artificial seawater[J].Surface Technology,2018,47(2):64-70.(in Chinese)
参考文献 35
赵月红,林乐耘,崔大为.铝合金和铜合金在我国东西部水系统中暴露1年的腐蚀规律[J].腐蚀科学与防护技术,2005(5):335-339.ZHAO Yuehong,LIN Luegong,CUI Dawei.Corrosion of aluminum alloys and copper alloys in water systems in the east and west of china[J].Corrosion Science and Protection Technology,2005(5):335-339.(in Chinese)
参考文献 36
黄桂桥.金属在海水中的腐蚀电位研究[J].腐蚀与防护,2000(1):8-11.HUANG Guiqiao.Study of the corrosion potential of metals in seawater[J].Corrosion and Protection,2000(1):8-11.(in Chinese)
参考文献 37
SHI W,DONG H,BELL T.Tribological behaviour and microscopic wear mechanisms of UHMWPE sliding against thermal oxida-tion-treated Ti6Al4V[J].Materials Science and Engineering A,2000,291(1):27-36.
参考文献 38
刘二勇,曾志翔,赵文杰.海水环境中金属材料腐蚀磨损及耐磨防腐一体化技术的研究进展[J].表面技术,2017,46(11):149-157.LIU Eryong,ZENG Zhixiang,ZHAO Wenjie.Corrosive wear and integrated anti-wear and anti-corrosion technology metallic materials in seawater[J].Surface Technology,2017,46(11):149-157.(in Chinese)
参考文献 39
MCCAFFERTY E,HUBLER G K,NATISHAN P M,et al.Naval Research Laboratory surface modification program:ion beam and laserprocessing of metal surface for improved corrosion resistance[J].Materials Science Engeering,1987,86:1-17.
参考文献 40
吴军,金杰,朱冬冬,等.TiC 添加量对高能激光熔覆Inconel718基陶瓷涂层显微组织和摩擦磨损性能的影响[J].表面技术,2021,50(9):225-235.WU Jun,JIN Jie,ZHU Dongdong,et al.Effect of TiC content on microstructure,friction and wear properties of incone l718 based ceramic coatings prepared by high energy laser cladding[J].Surface Technology,2021,50(9):225-235.(in Chinese)
参考文献 41
李翠霞,杨晓永,瞿学炜,等.石英与长石对搪瓷涂层组织和摩擦磨损性能的影响[J].表面技术,2021,50(10):221-229.LI Cuixia,YANG Xiaoyong,QU Xuewei,et al.Effects of quartz and feldspar on microstructure and friction and wear properties of enamel coating[J].Suface Technology,2021,50(10):221-229.(in Chinese)
参考文献 42
YE Y P,CHEN J M,ZHOU H D.Microstructure,Tribological behavior,and corrosion-resistant performance of bonded MoS2 solid lubricating film filled with nano-LaF3[J].Journal of Dispersion Science and Technology,2009,30(4):488-494.
参考文献 43
李迎春,程蓓,邱明,等.不同石墨烯添加量下 MoS2 基复合涂层的摩擦磨损及耐腐蚀性能[J].中国机械工程,2020,31(20):2437-2444.LI Yingchun,CHENG Bei,QIU Ming,et al.Tribological properties and corrosion resistance of MoS2-based composite coatings with different graphene additions[J].China Mechanical Engineering,2020,31(20):2437-2444.(in Chinese)
参考文献 44
GHOSH S K,MILLER C,CHOUDHURY D,et al.The effects of PTFE thickness on the tribological behavior of thick PDA/PTFE coatings[J].Tribology Transactions,2020,63(3):575-584.
参考文献 45
LI B,WAN H Q,YE Y P,et al.Investigating the effect of LaF3 on the tribological performances of an environment friendly hydrophilic polyamide imide resin bonded solid lubricating coating[J].Tribology International,2017,116:164-171.
参考文献 46
LI F,HU K A,LI J L,et al.The friction and wear characteristics of nanometer ZnO2 filled polytetrafluoroethylene[J].Wear,2001,249(10-11):877-882.
参考文献 47
何春霞,史丽萍,沈惠平.纳米 Al2O3 填充聚四氟乙烯摩擦磨损性能的研究[J].摩擦学学报,2000(2):153-155.HE Chunxia,SHI Liping,SHEN Huiping.Friction and wear properties of nanocrystalline Al2O3 filled PTFE composites[J].Tribology,2000(2):153-155.(in Chinese)
参考文献 48
HU D W,LIU Y,CHEN H,et al.Microstructure and wear resistance of Ni-based tungsten carbide coating by laser cladding on tunnel boring machine cutter ring[J].Surface and Coatings Technology,2020,404:126432.
目录contents

    摘要

    船舶发动机轴瓦在受到炮弹攻击后处于极端工况,造成轴瓦失效破坏。传统的电镀镀层和磁控溅射薄膜因存在高污染、高成本等缺点,目前亟须寻求新的解决方案来提高轴瓦在极端工况下的耐磨性能。针对轴瓦因炮击而处于极端工况,设计了 ZrO2 填充 PTFE / PI-PAI 的涂层材料,采用液体喷涂工艺在 A370 铝合金和 CuPb22Sn2.5 铜合金基体表面制备三种不同厚度涂层,研究涂层在不同润滑介质下的摩擦学性能。结果表明,涂层的摩擦学性能受到涂层硬度、润滑介质及基体支撑作用影响,涂层的硬度及弹性模量随厚度的增加呈现递减的趋势。涂层越厚,基体的支持作用越小。在油润滑工况下,铜合金基体上涂层摩擦因数及磨损率均小于铝合金,润滑油是涂层摩擦性能最主要影响因素。在海水工况下,涂层主要表现为磨粒磨损,并出现明显的犁沟现象。铜合金基体上涂层的摩擦因数高于铝合金,海水腐蚀和高频往复摩擦带来的冲刷作用是摩擦性能主要影响因素。在干摩擦工况下,涂层以黏着磨损为主。涂层的硬度受到基体支撑的影响,高频往复运动中硬质对磨球与硬质基体夹击软质涂层和接触压力是摩擦性能主要影响因素。通过涂层与合金摩擦因数对比,可知 30 μm 涂层能够大幅度地降低轴瓦材料的摩擦因数,有利于提高船舶发动机轴瓦在极端工况的摩擦学性能。阐明了基体对不同厚度自润滑涂层的支撑机理,分析了涂层在极端工况下受到轰击后的摩擦学性能,确定了船舶发动机轴瓦涂层的最佳设计厚度。

    Abstract

    As ships are attacked by shells or come in contact with reefs, the engine compartment experiences extreme working conditions, such as oil lubrication, seawater corrosion, and even dry sliding wear. To improve the tribological performance of a ship's engine bearing under extreme working conditions and ensure the smooth return of the ship after damage, we designed a polymer coating consisting of PTFE / PI-PAI and ZrO2. Three different coatings of different thicknesses were prepared using liquid spraying on the surfaces of the A370 aluminum alloy and CuPb22Sn2.5 copper alloy. The tribological performance of these coatings with different lubricating media was studied. The performance of the coatings was evaluated based on their physical phase composition, microstructure morphology, element distribution, bond strength between the coating and substrate, nano-hardness, Young's modulus, and frictional wear behavior. The tribological properties of the coatings were investigated using various lubricating media. The results showed that the physical phase and solid distribution of the coatings were not influenced by variations in the coating thickness. The hardness and elastic moduli of the coatings decreased with increasing coating thickness, and the hardness of the coating on the copper alloy substrate was higher than that on the aluminum alloy substrate. The thicker the coating, the less supported the action of the hard substrate. Compared with coating under 20 μm thickness, the supporting effect of coating under 50 μm thickness on the aluminum alloy and copper alloy substrate was increased by 1297.78% and 1767.98%, respectively. The coefficients of friction (CoFs) and wear rates of the coatings on the copper alloy substrate under oil-lubricated conditions were lower than those on the aluminum alloy substrate. The wear rate of the coatings decreased with increasing coating thickness. The maximum variation in the CoFs of the coatings with different thicknesses on different substrates was only 3.33%. Oil lubrication is a key factor resulting in these frictional properties. Abrasive wear and significant plowing were observed under corrosive seawater conditions. The CoFs of the coatings on the copper alloy substrate were higher than those of the coatings on the aluminum alloy substrate. Seawater corrosion and the effect of seawater scouring during high-frequency reciprocating frictional movements were the main factors influencing frictional performance. The wear mechanism of the coating under dry sliding was primarily adhesive wear. The coating entered stable wear at 600 s under dry sliding wear, which occurred later than under seawater conditions. Adhesive wear is the main reason for this observation. The hardness of the coating was influenced by the supporting action of the substrate. The tribological performance of the copper alloy coating was better than that of the aluminum alloy coating. The pinch action from the high-frequency reciprocating motion of the hard grinding ball to the soft coating on the hard substrate and the contact pressure were the main factors. The marine engine bearing had the best tribological performance under the coating with 30 μm thickness prepared on the copper alloy substrate. Compared with the CoF of the copper substrate, the CoFs of the coatings under dry sliding wear and seawater decreased by 72.16% and 36.07%, respectively. The tribological performance of marine engine bearings under extreme conditions can be improved using this coating. In this study, the support mechanism from the substrate to self-lubricating coatings with different thicknesses was elucidated. The tribological performance of the coating under extreme conditions was analyzed, and the optimum coating thickness on a marine engine bearing was determined.

  • 0 前言

  • 船舰受到炮击后能够在一定时间内顺利返航是船员生命健康的重要保障之一。发动机是船舰最容易受到攻击的目标,当机舱受到攻击后,发动机轴瓦处于油润滑、海水腐蚀甚至空气冲击波造成的干摩擦状态,这对船舶安全返航增加了困难。铝合金、铜合金等高摩擦因数的合金是当前发动机轴瓦使用最普遍的材料[1-2]。ALIDOKHT 等[3]研究表明,A356 铝合金在 25 N 法向载荷下的室温干滑动摩擦因数为 0.682。边培莹等[4]研究表明,ZL104 铝合金在 1.5 N 法向载荷下的平均干滑动摩擦因数为 0.588。 UNLU 等[5]研究表明,铜合金在 10 N 载荷下的室温干滑动摩擦因数为 0.79。MOAREF 等[6]研究表明,铜合金在 10 N 载荷下的室温干滑动摩擦因数为 0.813。为提高轴瓦摩擦性能,国内使用广泛的表面处理工艺是电镀技术[7-8]。ZOU 等[9]在 2024 铝合金上制备了电镀类金刚石薄膜,在2 N载荷和10 cm / s 滑动速度下镀层的平均摩擦因数相比于基体下降了 77.78%。REZAEI 等[10]在 A356 铝合金上制备了 50 μm 厚度的镍铝镀层,在 15 N 载荷和 0.1 m / s 滑动速度下,其平均摩擦因数相比基体下降了 42.86%。 BHAT 等 [11] 研究了在铜合金上制备 Cu-Graphite 镀层,在载荷为 5 N 的干滑动摩擦工况下,其平均摩擦因数相比于基体下降了 76.25%。 WANG 等[12]研究了在铜合金上制备 Ti-Al 镀层,在载荷为 7.5 N 的干滑动摩擦工况下,其平均摩擦因数相比基体下降了 62.5%。以上研究表明电镀镀层能够提高轴瓦合金的摩擦学性能,但电镀溶液是高污染源,在“十四五”绿色生活生产要求下,轴瓦亟需绿色环保型表面处理技术。目前以美国辉门、奥地利米巴及日本大丰工业为带头的轴瓦企业采用的是多聚物涂层技术,降低了轴瓦的磨损,延长了轴瓦的使用寿命。SUZUKI 等[13]在 AC8A 铝合金表面制备了聚酰胺酰亚胺(PAI)填充尼龙和石墨的涂层,在5 N 载荷和0.1 m / s 滑动速度的油润滑工况下,其最低摩擦因数为 0.022。ZHANG 等[14]利用二硫化钼和石墨填充聚酰亚胺(PI)在 LY-12 铝合金表面制备涂层,在 120 N 载荷和 200 r / min 滑动速度干摩擦工况下,其最低摩擦因数降至为 0.141。JIANG 等[15] 研究表明,在铜合金表面制备聚苯硫醚(PPS)涂层,在6.92 MPa 接触应力和2 200 r / min滑动速度的油润滑工况下,其最低摩擦因数为 0.102。

  • 上述研究表明,多聚物涂层能够有效降低铝、铜合金的摩擦因数,但现有多聚物涂层是否能够满足船舰轴瓦面临的突发极端工况下的使用要求尚不明确,最佳涂层厚度也未指明。为此,以 PI、环氧树脂(EP)、PAI 为黏结剂,以聚四氟乙烯(PTFE) 和石墨(G)作为润滑填料,并添加氧化锆(ZrO2) 硬质颗粒作为耐磨材料,设计润滑抗磨的多聚物涂层。采用液体喷涂技术,在轴瓦最常用的 A370 铝合金和 CuPb22Sn2.5 铜合金上制备三种不同厚度的涂层,并通过油润滑、海水腐蚀及干摩擦模拟极端工况考察新设计的涂层摩擦磨损性能。

  • 1 试验

  • 1.1 涂层材料和制备

  • 涂层材料详细信息如下:PI、PAI,东莞市双富塑胶有限公司;EP,广州市共赢化工有限公司; PTFE,东莞市展阳高分子材料有限公司;石墨和 ZrO2,中迈金属材料有限公司;N,N 二甲基甲酰胺,无锡市亚泰联合化工有限公司。制备多聚物涂层的溶剂为 N,N 二甲基甲酰胺、丙酮和稀释剂的混合溶液,其中 PI、PAI 和 EP 起粘结作用,PTFE 和石墨起润滑作用,ZrO2 为增强相起耐磨作用,以期涂层具有良好的润滑耐磨性能。由于研究重点在于不同厚度涂层在不同基体上,面向不同极端工况的摩擦学性能。因此,参照作者前期涂层成份设计成果,涂层具体成份如表1 所示[16]。其制备步骤如下:首先将 N,N 二甲基甲酰胺、稀释剂和丙酮按 4∶3∶ 6.8 配置溶剂;其次把 PAI、PI 和 EP 按 4.5∶5.5∶4加进盛有配置溶剂的球磨罐中,在 KE-0.4L 行星式球磨机中球磨 8 h,球磨机转速为 400 r / min;然后将石墨、PTFE、ZrO2按 3∶3∶5 加入球磨罐内球磨 8 h; 最后将助剂加入球磨罐内继续球磨 16 h 得到涂料。

  • 表1 涂料的成分及含量(质量分数)

  • Table1 Composition and Content of coating (g)

  • 首先,将基体经过丙酮清洗以去除表面油脂和杂质;其次,将干燥后的基体进行喷砂,以提高基体与涂层的结合强度,喷砂材料为 Al2O3 刚玉,喷砂压力为(0.3±0.1)MPa,得到基体的表面粗糙度 Ra=(0.9±0.2)μm;然后,通过丙酮超声波清洗去除基体表面砂砾;随后,将干净的基体预热到 90℃; 采用液体喷涂工艺制备涂层,其中喷枪型号为 JGX-502,喷涂压力为 0.3±0.1 MPa,喷涂距离为 220±20 mm,喷涂角度为 85±5°;最后,将所有试样经过 210℃保温 2 h。将铝合金基体上制备的 20±2 μm、30±2 μm 和 50±2 μm 厚度的涂层分别标记为 A-20、A-30 和 A-50;将铜合金基体上制备三种涂层厚度的涂层分别记为 C-20、C-30 和 C-50。

  • 1.2 结构表征及力学性能测试

  • 采用 XRD 衍射仪( D8 advance,Bruker,Germany)表征涂层的物相,利用 Cu 靶在线扫描模式下采集数据,电流为 40 mA,电压为 40 kV,步长为 0.02°,衍射角(2θ)扫描范围为 10 °~90 °; 将试样在 F-VD600 抛光机上进行同一工况抛光试验,然后对同一批次的试样采用扫描电镜(SU500,Hitachi,Japan)表征涂层的截面形貌;用光学显微镜对涂层磨痕表面进行观察分析;采用纳米压痕仪 (TI Premier,Hysitron,America)测试涂层的硬度,试验载荷为 1 N[17],保压时间为 2 s,随机测试 3 个数据点取平均值为最终结果。参照 GB / T9286— 1998《色漆和清漆划格法附着力试验》来测试涂层的结合强度。

  • 1.3 摩擦磨损性能表征

  • 采用高频往复摩擦磨损试验机(CMS-01,北京朝阳高科应用技术研究所有限公司)来评估涂层在不同润滑介质下的摩擦磨损性能。采用球面接触的摩擦方式进行往复摩擦运动试验。本文以 ISBE4 船用发动机为例,其轴瓦常见负载为 75 MPa。设定试验负载为 2 N,通过赫兹接触应力计算摩擦副负载接近于发动机轴瓦工况。发动机主轴的额定转速为 3 000 r / min,在摩擦试验中使用 50 Hz 的往复运动频率。为了加速磨损失效,使用了 1 mm 的往复滑动距离行程,试验具体参数见表2。利用 3D 表面轮廓仪(Rtec Instruments,Inc,America)对磨痕轮廓进行表征,磨损率(K,单位为 mm 3 ·N−1 ·m−1)由以下公式进行计算:

  • K=VFL

  • 式中,V 为磨损体积(mm 3),F 为施加的载荷(N), L 为总滑行距离(m)。在相同的预设测试条件下,以上摩擦磨损性能测试均进行 3 次并取平均值。

  • 表2 摩擦试验条件

  • Table2 Frictional test conditions

  • 2 结果与讨论

  • 2.1 涂层物相分析

  • 由于铝、铜合金基体上涂层 XRD 测试结果一致,本文仅以铝合金基体上的涂层测试结果为例。三种不同厚度涂层的 XRD 图谱如图1 所示,在 2θ 为 26.6 °和 54.8 °附件出现了明显的衍射峰,分别为润滑相石墨(111)和(222)晶面的特征衍射峰。 28.2 °和 31.5 °出现较强的特征峰,分别为 ZrO2 (−111)和(111)晶面的晶面衍射峰。分析 XRD 测试结果可知,虽然不同体量的液体涂料在成为不同厚度的固体涂层时需要经历 2 h 和 210℃高温固化过程,但固体物相并未发生改变。

  • 图1 涂层 X 射线衍射结果

  • Fig.1 X-ray diffraction results of coatings

  • 2.2 涂层微观组织形貌分析

  • 图2 为不同厚度涂层在不同基体上的截面形貌。可以看出,涂层与基体的结合界面紧密,涂层内部结构紧凑,未出现裂纹、孔洞等缺陷。从选取位置的局部放大图3(L0~L5)看出,陶瓷颗粒 ZrO2 粉末主要以颗粒的形式分布在涂层中。图4 为铝合金基体上不同厚度涂层的元素分布,从图中可以看出,涂层中各元素分散均匀,并未出现明显的聚集现象。根据 AMEER 研究结果可知,均匀分散的 ZrO2 能够促进树脂形成强大的聚合物网络,提高材料的吸能能力,限制环氧链的迁移率,缩短交联点之间的距离,从而提高涂层的结合性能[18]。通过图1~3 结果可知,相同 ZrO2 含量下,改变涂层厚度对涂层的微观组织结构及固体物质分布没有影响。

  • 图2 涂层的截面形貌

  • Fig.2 Cross section of coatings

  • 图3 截面选取位置局部放大微观形貌图

  • Fig.3 Local enlarged micro-photograph at the selected position of the section

  • 图4 涂层的元素分布情况

  • Fig.4 Element distribution of these coatings:

  • 2.3 涂层的力学性能分析

  • 不同基体上涂层的硬度和弹性模量随厚度的变化如图5 所示。涂层的硬度和弹性模量随着厚度增加均呈现下降的趋势。当涂层厚度为 20 μm 时,铝合金和铜合金基体上涂层的硬度和弹性模量最大,即 A-20 和 C-20 试样的硬度分别为 H=0.226 GPa 和 H=0.227 GPa,弹性模量分别为 E=5.30 GPa 和 E=5.49 GPa。而当厚度持续增加至 50 μm 时,A-50 和 C-50 试样的硬度下降至 H=0.205 GPa 和 H=0.208 GPa,弹性模量下降至 E=4.31 GPa 和 E=4.36 GPa,与厚度为 20 μm 涂层对比,铝合金和铜合金基体上涂层的硬度和弹性模量分别下降 9.29%、8.37%和 18.68、20.58%。此外,在相同厚度下,铝合金基体上涂层的硬度均小于铜合金基体上涂层。这是因为涂层的硬度受到基体支撑影响[19-21]。涂层越薄、基体越硬,基体的支持作用就越明显[22-23]

  • 图5 涂层的力学性能

  • Fig.5 Mechanical properties of these coatings

  • 为进一步验证基体对涂层硬度的影响,利用 ABAQUS 对不同基体上不同厚度涂层进行力学性能分析,采用显式动力学模拟分析球磨接触有限元模型。摩擦球与涂层表面的接触面定义为摩擦接触,摩擦因数来源于摩擦磨损试验。铝合金和铜合金基体的底面设定固定,摩擦球作为刚体以平行于涂层表面 10 mm / s 的速度移动。在模拟过程中,在位于刚性球中心的参考点上施加 2 N 集中力,使其与涂层保持接触。在求解面-面接触问题时,将机械约束公式和滑动公式分别设置为运动接触法和小滑动法。在有限元分析期间,这些涂层物理性能被视为各向同性[24]。如图6 所示,三种涂层的网格定义为八节点六面体单元,为保证计算结果精确性,在球与涂层接触的区域网格进行了细致划分。

  • 图6 摩擦副的网格模型

  • Fig.6 Mesh model of the frictional pairs

  • 不同基体支撑对不同厚度涂层变形的仿真结果如图7 所示。从图中可以看出,C-20 试样涂层的变形量较之 A-20 试样下降了 24.60%,这是由于铝合金基体的硬度低于铜合金基体,因此基体支撑作用下降。随着厚度增加至 30 μm,A-30 和 C-30 试样受到基体支撑的作用出现大幅度下降,而涂层的变形量出现递增。而涂层进一步增加至 50 μm 时,此时涂层的变形几乎不受基体支撑的影响,相较于 20 μm 厚度涂层,A-50 和 C-50 试验的变形量分别增大了 1 297.78%和 1 767.98%,且变形区域分布发生了改变,涂层受到基体的支持作用下降。通过上述分析可知,不同基体支撑下涂层变形均随着涂层厚度的增加而呈现递增的趋势,同时在铝合金基体上的变形均大于铜合金基体上的变形,而涂层变形越大,其受基体支撑的影响越小,通过纳米压痕测试的硬度也越小。这与上述分析结果一致,表明涂层的硬度受到基体支撑的影响。

  • 图7 不同涂层厚度在不同基体下的变形(mm)

  • Fig.7 Deformation of different substrate under different coating thicknesses (mm)

  • 图8 为不同基体上涂层的结合强度测试结果,从图8a 和 8b 可以看出,涂层划痕的交叉处并未出现涂层的脱落现象。对比图中的结合强度等级表明,涂层的黏附力等级达到了国标最优 0 级。因此,设计的涂层对 A370 铝合金和 Pb22.5Sn2.5 铜合金基体均具有优异的黏附性能。

  • 图8 涂层附着力测试结果与参照(a)铝合金上涂层附着力(b)铜合金上涂层附着力

  • Fig.8 Coating adhesion test results and reference: (a) Adhesion of coating on aluminum alloy; (b) Adhesion of coating on copper alloy.

  • 2.4 涂层的摩擦学性能分析

  • 2.4.1 油润滑工况下的摩擦性能

  • 船舰在正常出海作业时发动机轴瓦处于油润滑工况。因此,将设计的涂层在油润滑环境进行摩擦测试,并保持测试过程润滑油浸没整个涂层试样。图9 为不同基体上不同厚度涂层在油润滑工况下摩擦因数和磨损率变化。图9a 表明,涂层能够迅速进入动态平衡阶段,在稳定磨损阶段摩擦曲线相对平稳。在铝合金和铜合金基体上涂层摩擦因数分别稳定在 0.065~0.066 和 0.060~0.062,不同基体上不同厚度涂层的摩擦因数变化范围在 1.52%~3.33%。从图9b 可知,在不同基体上涂层的磨损率均随着厚度的增加而呈现出递减的趋势。涂层具有亲油性能,易在其表面形成稳定的润滑油膜;同时,润滑油的黏性作用使得涂层受到的实际载荷下降;此外,润滑油会带走一部分摩擦产生的热量,降低了摩擦热产生的塑性形变,也降低了涂层的磨损,从而使涂层在油润滑工况下具有较长的耐磨寿命[25-28]

  • 图9 涂层在油润滑工况下的摩擦曲线和磨损率

  • Fig.9 Frictional curves and wear rates of coatings under oil lubrication conditions

  • 2.4.2 海水腐蚀工况下的摩擦性能

  • 船舰的发动机受到炮弹攻击之后,海水的浸入使得轴瓦处于海水腐蚀工况。因此,将设计的涂层在海水介质中测试其摩擦性能,并保持测试过程海水完全浸没试样。不同基体上不同厚度涂层在海水腐蚀工况下摩擦因数和磨损率随厚度的变化规律如图10 所示。图10a 可以看出,在海水腐蚀中磨损经历了跑合阶段,而在稳定磨损阶段摩擦曲线波动较大。这是因为在高频往复摩擦过程中,海水具有一定的冲刷作用,在磨损过程中可加速磨屑和 ZrO2 颗粒从表面脱落并形成三体摩擦[29-30]。在铝合金基体上涂层的摩擦因数随厚度增加呈现先增后减的趋势,而在铜合金基体上涂层的摩擦因数随厚度增加呈现递增的趋势,且相同厚度下铝合金基体上涂层的摩擦因数更小。当厚度为 20 μm 时,A-20 和 C-20 试样的摩擦因数分别为 0.124 和 0.135;随着厚度增加至 50 μm 时,A-50 和 C-50 试样的摩擦因数上升至 0.137 和 0.151,此时摩擦因数波动最大,这是由于厚度的增加和涂层的硬度降低使得 ZrO2 颗粒更易在海水冲刷下参与到摩擦过程。由图10b 可知,当厚度为 20 μm,A-20 和 C-20 的磨损率分别为 38.89×10−6 和 16.01×10−6 mm 3 ·N−1 ·m−1,A-20 试样出现最大的磨损率,这是因为涂层被磨穿。随着厚度的增加,在铝合金基体上涂层的磨损率呈现先减后增的趋势,而在铜合金基体上涂层的磨损率呈现上升的趋势。一方面,随着厚度的增加,涂层的硬度降低,在海水的冲刷作用下使得 ZrO2 颗粒脱落参与到摩擦过程;此外,海水作为冷却剂可降低摩擦副的表面温度,破环了因摩擦温升使得涂层在对磨球挤压下发生塑性变形而形成的稳定转移膜,并最终导致了较高的磨损[31-33]。海水的腐蚀也是涂层磨损的主要因素之一,图11 为试样在同等条件下的海水腐蚀的形貌图,在铜合金基体上涂层在海水腐蚀下均出现了鼓泡现象,且随着厚度的增加,腐蚀所产生的鼓泡程度减小。在铝合金基体上涂层在 20 μm和 30 μm 也出现了鼓泡,而在 50 μm 时并未出现明显的鼓泡现象。相同条件下,铜合金基体上涂层的腐蚀比铝合金更为严重。C-30 和 C-50 的磨损率均大于 A-30 和-A-50,这是因为铝合金具有自钝化能力,在该环境中铝合金上保护膜较为稳定,导致铜合金比铝合金更容易与海水发生腐蚀反应[34-35]

  • 图10 涂层在海水腐蚀工况下的摩擦曲线和磨损率

  • Fig.10 Frictional curves and wear rates of coatings under seawater corrosion

  • 图11 涂层在海水中的腐蚀形貌

  • Fig.11 Corrosion morphology of the coating under seawater corrosion

  • 不同基体上不同厚度涂层在海水腐蚀工况下的磨痕形貌及磨损轮廓如图12 所示。从图12a 可以看出,不同基体上不同厚度涂层磨痕均呈现出犁沟效应,且磨痕较为光滑,未出现磨屑的残留。这是因为在高频往复的摩擦环境中海水具有一定的抛光作用,在海水的冲刷之下不仅带走了磨屑,同时由于海水的浸蚀和冲刷作用下使得大颗粒的 ZrO2 脱落进入摩擦副并参与摩擦过程。此外,对磨球在海水的腐蚀作用下其表面粗糙度急剧增加,并进一步加剧了聚合物涂层的犁沟效应[36-39]。因此,在海水工况下磨损机制主要为磨粒磨损。图12b 和 12c 分别为铝合金和铜合金基体上不同厚度涂层的磨损轮廓,在铜合金基体上涂层的磨痕深度随着涂层厚度的增加而下降,而在铝合金基体上涂层的磨损深度随涂层厚度增加呈现先减后增的趋势,与涂层的磨损率相符合。

  • 图12 涂层在海水腐蚀工况下磨损形貌及磨痕轮廓

  • Fig.12 Wear morphology and wear scar profile of coatings under seawater corrosion

  • 2.4.3 干摩擦工况下的摩擦性能

  • 船舰受到炮弹攻击时,冲击波使得轴瓦处于干摩擦工况。因此,将设计的涂层在干摩擦工况下进行摩擦性能测试。不同基体上不同厚度涂层在干摩擦工况下的摩擦因数和磨损率随厚度的变化规律如图13 所示。图13a 可以看出,不同基体表面制备的不同厚度涂层均在 900 s 左右进入稳定磨损阶段,这表明磨屑的产生与转移膜的形成达到动态平衡状态,摩擦因数趋向于稳定[40-41]。相较于海水腐蚀工况,其进入稳定磨损阶段时间延长了 600 s。在厚度为 20 μm 时铝合金和铜合金基体上涂层具有最小的摩擦因数,分别为 0.162 和 0.167。结合图14 可知,在摩擦温升作用下使得涂层在局部接触区域出现软化而发生塑性变形,在对磨球的碾压之下形成稳定的转移膜[42-43]。随着厚度的增加,涂层的摩擦因数持续上升,相较于厚度为 20 μm 的涂层,在厚度为 50 μm 的涂层增长 14.19%和 11.98%。这是因为随着硬度的下降涂层磨痕出现了剥落,对磨球不能形成稳定的转移膜。由图13b 可知,随着厚度的增加,涂层的磨损率呈现下降的趋势。在厚度为 50 μm 时,涂层具有最小的磨损率,在铝合金和铜合金基体上涂层的磨损率分别为 6.63×10−6 mm 3 ·N−1 ·m−1 和 4.62× 10−6 mm 3 ·N−1 ·m−1,与厚度为 20 μm 相比,磨损率分别下降了 31.79%和 13.64%。GHOSH 等[44]研究表明,接触压力随着涂层厚度的增加而降低,接触压力随厚度变化是上述磨损变化的主要原因。结合图14a 可知,当厚度较薄时,涂层所受到的接触压力大;由于对磨球的高压和挤压作用,使得涂层中硬质颗粒凸出,从而加剧了磨料磨损[45-46]。随着厚度的逐渐增加,涂层所受的接触压力变小,涂层的磨损率也随之减小,这一趋势与 GHOSH 等研究结果一致。此外,硬度也是磨损的影响因素之一,结合图5 中的硬度变化规律可知,在相同厚度下,铝合金基体上涂层的磨损率均大于铜合金基体上涂层。

  • 图13 涂层在干摩擦工况下的摩擦曲线和磨损率

  • Fig.13 Frictional curves and wear rates of coatings under dry sliding wear

  • 不同基体上涂层在干摩擦工况下磨损形貌和磨痕轮廓如图14 所示。由图14 可以看出,当厚度为 20 μm 时,A-20 和 C-20 试样磨损的最大深度分别为 12.42 μm 和 6.22 μm,且均呈现黏着磨损的特征。这是因为涂层中 PTFE 和树脂材料被高频往复的摩擦副剪切时,剥离的磨屑在瞬时温升和球磨碾压作用下又与树脂粘连,形成了黏着磨损[47]。当厚度为 30 μm 时,A-30 和 C-30 试样磨损的最大深度下降至 9.18 μm 和 5.84 μm,塑性变形程度减弱,磨痕处出现脱落且呈现黏着磨损现象。随着厚度增加至 50 μm 时,A-50 和 C-50 试样的磨损最大深度进一步下降为 7.81 μm 和 5.57 μm,脱落现象更为严重,而磨损机制仍为黏着磨损。结合上述分析,厚度较薄时,涂层受到的接触压力大,在对摩球的高压和挤压作用下,使得磨损深度和宽度较大;随着厚度的增加,涂层受到的接触压力下降,磨损深度下降;此外,由于硬度下降,在高频往复摩擦运动过程中,涂层更加容易受到剪切力而被剥落。对比图14b 和 14c,在铝合金基体上涂层的磨损深度均大于铜合金基体上涂层的磨损深度,这一变化趋势与磨损率的变化趋势一致。

  • 图14 涂层在干摩擦工况的磨损形貌及磨痕轮廓

  • Fig.14 Wear morphology and wear scar profile of coatings under dry sliding wear

  • 为进一步分析在不同基体支持下接触压力与厚度之间的关系,分析不同厚度涂层在不同基体上沿轴向所受到的支反力,以此探讨不同厚度涂层在硬软接触界面及硬基体的支撑情况下的磨损。图15 为不同厚度涂层在铝合金和铜合金基体上沿轴向的支反力仿真计算结果。从图中可以看出,随着涂层厚度的增加,铝合金和铜合金基体上所受支反力均呈现下降的趋势,而沿轴向的支反力越大,其涂层表面受到的压力也越大,这与上述的分析结果一致。

  • 图15 涂层沿轴向的支反力(N)

  • Fig.15 Support and reaction forces along the axial direction of coatings (N)

  • 2.4.4 极端工况下摩擦因数对比

  • 由上述试验结果可知,铜合金基体上制备 30 μm 的涂层在各种极端工况下具有更全面的摩擦学性能,为进一步分析涂层轴瓦在极端工况下适应性和提高指标,对铜合金在海水及干摩擦工况经行摩擦磨损试验。测试条件设置与前面摩擦试验条件一致。摩擦因数是轴瓦寿命的主要影响因素之一[1648],为简便比对结果,仅进行摩擦因数对比。对比结果如表2 所示,在海水工况下,30 μm 厚度涂层相较于基体,其平均摩擦因数下降了 36.07%;而在干摩擦下,平均摩擦因数下降了 72.16%。结果表明涂层能够大幅度提高轴瓦材料的摩擦性能,有助于船舶在受创后返航,增加了逃生的概率。

  • 表3 涂层与具体的平均摩擦因数

  • Table3 Average CoFs of coatings and substrates

  • 3 结论

  • 通过液体喷涂工艺在船舶发动机常用 A370 铝合金和 CuPb22Sn2.5 铜合金轴瓦基体上制备了三种不同厚度 ZrO2 填充 PTFE / PI-PAI 的涂层。针对轴瓦因炮击而处于高磨损状态,研究了涂层在不同介质环境中的摩擦学性能,得到以下结论:

  • (1)随着涂层厚度的增加,涂层的硬度和弹性模量呈现下降趋势,且铜合金基体上涂层的硬度高于铝合金基体涂层硬度。涂层越薄、基体越硬,涂层受到的支撑作用越明显。

  • (2)在油润滑工况下,涂层均表现出优异的耐磨性能;在海水工况中涂层主要表现为磨粒磨损,并出现明显的犁沟现象。海水腐蚀、高频往复摩擦过程中海水冲刷作用是摩擦性能主要影响因素;在干摩擦工况中涂层以黏着磨损为主。高频往复运动的硬质对磨球与硬质基体夹击软质涂层和接触压力是摩擦性能主要影响因素。

  • (3)船舶发动机轴瓦在铜合金基体上制备 30 μm 厚度涂层具有最佳的摩擦学性能。涂层与 CuPb22Sn2.5 铜合金在干摩擦及海水工况对比,其摩擦因数分别下降了 72.16%及 36.07%,有助于提高船舶发动机在极端工况下的摩擦学性能。

  • 参考文献

    • [1] KOLEV M,DRENCHEY L,STANEY L.Tribological characterization of aluminum/babbitt composites and their application to sliding bearing[J].Archives of Foundry Engineering,2020,25(3):31-36.

    • [2] KRZYMIEN A,KRZYMIEN P.Properties of the bearing alloys used for slide bearings of crank mechanism[J].Journal of KONES,2004,11(1-2):393-398.

    • [3] ALIDOKHT S A,ABDOLLAH Z A,SOLEYMANI S,et al.Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing[J].Materials and Design,2011,32(5):2727-2733.

    • [4] 边培莹,尹恩怀.3D 打印铝合金材料的摩擦学性能[J].中国表面工程,2016,29(3):74-79.BIAN Peiying,YIN Enhuai.Tribological properties of 3D printing aluminum alloy[J].China Surface Engineering,2016,29(3):74-79.(in Chinese)

    • [5] UNLU B S,ATIK E,MERIC C.Effect of loading capacity(pressure–velocity)to tribological properties of CuSn10 bearings[J].Materials and Design,2007,28(7):2160-2165.

    • [6] MOAREF A,RABIEZADEH A.Microstructural evaluation and tribological properties of underwater friction stir processed CP-copper and its alloy[J].Transactions of Nonferrous Metals Society of China,2020,30(4):972-981.

    • [7] AWAD S H,QIAN H.Deposition of duplex Al2O3/TiN coatings on aluminum alloys for tribological applications using a combined microplasma oxidation(MPO)and arc ion plating(AIP)[J].Wear,2006,260(1):215-222.

    • [8] WANG W,PELENOVICH V O,YOUSAF M,et al.Microstructure,mechanical and tribological properties of WC/aC:H coatings deposited by cathodic arc ion-plating[J].Vacuum,2016,132:31-39.

    • [9] ZOU Y,ZHOU K,WU Y F,et al.Structure,mechanical and tribological properties of diamond-like carbon films on aluminum alloy by arc ion plating[J].Vacuum,2012,86(8):1141-1146.

    • [10] REZAEI M,JESHVAGHANI R A,SHAHVERDIH H,et al.Torkamany,formation of Ni-rich aluminide layers on an A356 aluminum alloy by a combined electroplating/laser alloying treatment:microstructure and tribological characteristics[J].Journal of Manufacturing Processes,2017,29:310-319.

    • [11] BHAT A,BOURELL D.Tribological properties of metal matrix composite coatings produced by electrodeposition of copper[J].Materials Science and Technology,2015,31(8):969-974.

    • [12] WANG H X,ZHANG Y,YANG S F,et al.Effects of slurry pack cementation temperature on microstructure and wear resistance of Ti–Al co-deposited coating on copper plated nickel layer[J].Transactions of Nonferrous Metals Society of China,2014,24(2):449-454.

    • [13] SUZUKI N,HIKASA A.Evaluation of the tribological property of resin coating by the addition of nylon and graphite particles[J].SAE Technical Paper,2012,4:0090.

    • [14] ZHANG W,QIU X,TAN F,et al.In situ synthesis of polyimide-based solid lubricating films on the surface of aluminium alloy with improved tribological performance[J].Plastics,Rubber and Composites,2020,49(1):1-9.

    • [15] JIANG J,ZHAO C,LI G.Tribological properties of polyether-ether-ketone-based coating under mixed and boundary aviation kerosene-lubrication condition[J].Coatings,2020,10(1):1.

    • [16] TU C K,CAO J,HUANG H B,et al.The investigation of microstructure and tribological properties of PTFE/PI-PAI composite coating added with VN[J].Surface and Coatings Technology,2022,432:128092.

    • [17] 齐慧敏,胡超,李洁,等.宽温域环境中聚四氟乙烯及其复合材料摩擦学性能研究[J].摩擦学学报,2022,42(1):65-73.QI Huimi,HU Chao,LI Jie,et al.Tribological performance of PTFE and its composite in wide temperature range[J].Tribology,2022,42(1):65-73.(in Chinese)

    • [18] AMEER N,HUSSEIN S I.Enhanced thermal expansion,mechanical properties,and adhesion analysis of epoxy/ZrO2 nano composites[J].Journal of Physics:Conference Series,2019,1279:012026.

    • [19] TAKADOUM J,BENNANI H H.Influence of substrate roughness and coating thickness on adhesion,friction and wear of TiN films[J].Surface and Coatings Technology,1997,96(2):272-282.

    • [20] SEIDL W M,BARTOSIK M,KOLOZSVARI S,et al.Influence of coating thickness and substrate on stresses and mechanical properties of(Ti,Al,Ta)N/(Al,Cr)N multilayers[J].Surface and Coatings Technology,2018,347(4):92-98.

    • [21] DORNER A,SCHURER C,REISEL G,et al.Diamond-like carbon-coated Ti6Al4V:influence of the coating thickness on the structure and the abrasive wear resistance[J].Wear,2001,249(5):489-497.

    • [22] CHEN S,LIU L,WANG T.Investigation of the mechanical properties of thin films by nanoindentation,considering the effects of thickness and different coating–substrate combinations[J].Surface and Coatings Technology,2004,191(1):25-32.

    • [23] 张静,单磊,苏晓磊,等.基体材料对 Cr/CrN 多层涂层在海水环境中磨蚀性能的影响[J].表面技术,2018,47(12):198-204.ZHANG Jing,SHAN Lei,SU Xioalei,et al.Effect of substrate material on tribocorrosion performance of Cr/CrN multilayer coatings in seawater[J].Surface Technology,2018,47(12):198-204.(in Chinese)

    • [24] CAO J,CHEN J,WANG X,et al.Tribology and anti-ablation properties of SiC-VN-MoS2/Ta composite coatings on carbon/carbon composites from 25 ℃ to 800 ℃[J].Materials,2021,14(22):6772-6772.

    • [25] 张定军,甘明洋,贾玉龙,等.CdS 纳米粒子的合成及其对PTFE基粘结固体润滑涂层摩擦学性能的影响[J].摩擦学学报,2016,36(5):629-635.ZHANG Dingjun,GAN Mingyang,JIA Yulong,et al.Synthesis of CdS nanoparticles and the effect of their addition on the tribological behavior of bonded PTFE solid lubricant coating[J].Tribology,2016,36(5):629-635.(in Chinese)

    • [26] 杨瑞杰,冶银平,万宏启,等.聚酰亚胺粘结 MoS2基固体润滑涂层在油介质中的摩擦学性能[J].摩擦学学报,2011,31(3):278-282.YANG Ruijie,YE Yingping,WAN Hongqi,et al.Tribological properties of polyimide bonded mos2 solid lubricant coatings in different oils[J].Tribology,2011,31(3):278-282.(in Chinese)

    • [27] HAO J,SONG Z Z,ZHANG X H,et al.Effect of nano-Al2O3 surface treatment on the tribological performance of phenolic composite coating[J].Surface and Coatings Technology,2006,201(6):3767-3774.

    • [28] LIU X,YAMAGUCHI R,UMEHARA N,et al.Effect of oil temperature and counterpart material on the wear mechanism of ta-CNx coating under base oil lubrication[J].Wear,2017,390-391:312-321.

    • [29] SHAH R,DATASHVILI T,CAI T,et al.Effects of functionalised reduced graphene oxide on frictional and wear properties of epoxy resin[J].Materials Research Innovations,2015,19(2):97-106.

    • [30] LIU D,ZHAO W J,LIU S,et al.Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene[J].Surface and Coatings Technology,2016,286:354-364.

    • [31] 程蓓,李迎春,邱明,等.石墨烯/MoS2 复合涂层多环境下的摩擦学性能[J].润滑与密封,2021,46(1):66-73.CHENG Bei,LI Yingchun,QIU Ming,et al.Tribological properties of graphene/MoS2 composite coatings in multiple environments[J].Lubrication Engineering,2021,46(1):66-73.(in Chinese)

    • [32] 陈颢,伍方,赵文杰,等.海水环境中环氧值对环氧树脂涂层摩擦学性能的影响研究[J].摩擦学学报,2014,34(6):601-607.CHEN Hao,WU Fang,ZHAO Wenjie,et al.Influence of epoxy value on the tribological performances of epoxy resin coatings in seawater environment[J].Triboogy,2014,34(6):601-607.(in Chinese)

    • [33] 杨安乐.沥青基碳纤维增强环氧模塑料的摩擦磨损性能[J].机械工程材料,1998,24(6):13-14,55.YANG Anle.Friction and wear properties of carbon fiber reinforced expoxy molding plastic[J].Materials for Mechanical Engineering,1998,24(6):13-14,55.(in Chinese)

    • [34] 赵剑波,王勇,韩彬,等.镍基金属陶瓷涂层在人工海水中的摩擦学性能[J].表面技术,2018,47(2):64-70.ZHAO Jianbo,WANG Yong,HAN Bing,et al.Tribological properties of Ni-based cermet coatings in artificial seawater[J].Surface Technology,2018,47(2):64-70.(in Chinese)

    • [35] 赵月红,林乐耘,崔大为.铝合金和铜合金在我国东西部水系统中暴露1年的腐蚀规律[J].腐蚀科学与防护技术,2005(5):335-339.ZHAO Yuehong,LIN Luegong,CUI Dawei.Corrosion of aluminum alloys and copper alloys in water systems in the east and west of china[J].Corrosion Science and Protection Technology,2005(5):335-339.(in Chinese)

    • [36] 黄桂桥.金属在海水中的腐蚀电位研究[J].腐蚀与防护,2000(1):8-11.HUANG Guiqiao.Study of the corrosion potential of metals in seawater[J].Corrosion and Protection,2000(1):8-11.(in Chinese)

    • [37] SHI W,DONG H,BELL T.Tribological behaviour and microscopic wear mechanisms of UHMWPE sliding against thermal oxida-tion-treated Ti6Al4V[J].Materials Science and Engineering A,2000,291(1):27-36.

    • [38] 刘二勇,曾志翔,赵文杰.海水环境中金属材料腐蚀磨损及耐磨防腐一体化技术的研究进展[J].表面技术,2017,46(11):149-157.LIU Eryong,ZENG Zhixiang,ZHAO Wenjie.Corrosive wear and integrated anti-wear and anti-corrosion technology metallic materials in seawater[J].Surface Technology,2017,46(11):149-157.(in Chinese)

    • [39] MCCAFFERTY E,HUBLER G K,NATISHAN P M,et al.Naval Research Laboratory surface modification program:ion beam and laserprocessing of metal surface for improved corrosion resistance[J].Materials Science Engeering,1987,86:1-17.

    • [40] 吴军,金杰,朱冬冬,等.TiC 添加量对高能激光熔覆Inconel718基陶瓷涂层显微组织和摩擦磨损性能的影响[J].表面技术,2021,50(9):225-235.WU Jun,JIN Jie,ZHU Dongdong,et al.Effect of TiC content on microstructure,friction and wear properties of incone l718 based ceramic coatings prepared by high energy laser cladding[J].Surface Technology,2021,50(9):225-235.(in Chinese)

    • [41] 李翠霞,杨晓永,瞿学炜,等.石英与长石对搪瓷涂层组织和摩擦磨损性能的影响[J].表面技术,2021,50(10):221-229.LI Cuixia,YANG Xiaoyong,QU Xuewei,et al.Effects of quartz and feldspar on microstructure and friction and wear properties of enamel coating[J].Suface Technology,2021,50(10):221-229.(in Chinese)

    • [42] YE Y P,CHEN J M,ZHOU H D.Microstructure,Tribological behavior,and corrosion-resistant performance of bonded MoS2 solid lubricating film filled with nano-LaF3[J].Journal of Dispersion Science and Technology,2009,30(4):488-494.

    • [43] 李迎春,程蓓,邱明,等.不同石墨烯添加量下 MoS2 基复合涂层的摩擦磨损及耐腐蚀性能[J].中国机械工程,2020,31(20):2437-2444.LI Yingchun,CHENG Bei,QIU Ming,et al.Tribological properties and corrosion resistance of MoS2-based composite coatings with different graphene additions[J].China Mechanical Engineering,2020,31(20):2437-2444.(in Chinese)

    • [44] GHOSH S K,MILLER C,CHOUDHURY D,et al.The effects of PTFE thickness on the tribological behavior of thick PDA/PTFE coatings[J].Tribology Transactions,2020,63(3):575-584.

    • [45] LI B,WAN H Q,YE Y P,et al.Investigating the effect of LaF3 on the tribological performances of an environment friendly hydrophilic polyamide imide resin bonded solid lubricating coating[J].Tribology International,2017,116:164-171.

    • [46] LI F,HU K A,LI J L,et al.The friction and wear characteristics of nanometer ZnO2 filled polytetrafluoroethylene[J].Wear,2001,249(10-11):877-882.

    • [47] 何春霞,史丽萍,沈惠平.纳米 Al2O3 填充聚四氟乙烯摩擦磨损性能的研究[J].摩擦学学报,2000(2):153-155.HE Chunxia,SHI Liping,SHEN Huiping.Friction and wear properties of nanocrystalline Al2O3 filled PTFE composites[J].Tribology,2000(2):153-155.(in Chinese)

    • [48] HU D W,LIU Y,CHEN H,et al.Microstructure and wear resistance of Ni-based tungsten carbide coating by laser cladding on tunnel boring machine cutter ring[J].Surface and Coatings Technology,2020,404:126432.

  • 参考文献

    • [1] KOLEV M,DRENCHEY L,STANEY L.Tribological characterization of aluminum/babbitt composites and their application to sliding bearing[J].Archives of Foundry Engineering,2020,25(3):31-36.

    • [2] KRZYMIEN A,KRZYMIEN P.Properties of the bearing alloys used for slide bearings of crank mechanism[J].Journal of KONES,2004,11(1-2):393-398.

    • [3] ALIDOKHT S A,ABDOLLAH Z A,SOLEYMANI S,et al.Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing[J].Materials and Design,2011,32(5):2727-2733.

    • [4] 边培莹,尹恩怀.3D 打印铝合金材料的摩擦学性能[J].中国表面工程,2016,29(3):74-79.BIAN Peiying,YIN Enhuai.Tribological properties of 3D printing aluminum alloy[J].China Surface Engineering,2016,29(3):74-79.(in Chinese)

    • [5] UNLU B S,ATIK E,MERIC C.Effect of loading capacity(pressure–velocity)to tribological properties of CuSn10 bearings[J].Materials and Design,2007,28(7):2160-2165.

    • [6] MOAREF A,RABIEZADEH A.Microstructural evaluation and tribological properties of underwater friction stir processed CP-copper and its alloy[J].Transactions of Nonferrous Metals Society of China,2020,30(4):972-981.

    • [7] AWAD S H,QIAN H.Deposition of duplex Al2O3/TiN coatings on aluminum alloys for tribological applications using a combined microplasma oxidation(MPO)and arc ion plating(AIP)[J].Wear,2006,260(1):215-222.

    • [8] WANG W,PELENOVICH V O,YOUSAF M,et al.Microstructure,mechanical and tribological properties of WC/aC:H coatings deposited by cathodic arc ion-plating[J].Vacuum,2016,132:31-39.

    • [9] ZOU Y,ZHOU K,WU Y F,et al.Structure,mechanical and tribological properties of diamond-like carbon films on aluminum alloy by arc ion plating[J].Vacuum,2012,86(8):1141-1146.

    • [10] REZAEI M,JESHVAGHANI R A,SHAHVERDIH H,et al.Torkamany,formation of Ni-rich aluminide layers on an A356 aluminum alloy by a combined electroplating/laser alloying treatment:microstructure and tribological characteristics[J].Journal of Manufacturing Processes,2017,29:310-319.

    • [11] BHAT A,BOURELL D.Tribological properties of metal matrix composite coatings produced by electrodeposition of copper[J].Materials Science and Technology,2015,31(8):969-974.

    • [12] WANG H X,ZHANG Y,YANG S F,et al.Effects of slurry pack cementation temperature on microstructure and wear resistance of Ti–Al co-deposited coating on copper plated nickel layer[J].Transactions of Nonferrous Metals Society of China,2014,24(2):449-454.

    • [13] SUZUKI N,HIKASA A.Evaluation of the tribological property of resin coating by the addition of nylon and graphite particles[J].SAE Technical Paper,2012,4:0090.

    • [14] ZHANG W,QIU X,TAN F,et al.In situ synthesis of polyimide-based solid lubricating films on the surface of aluminium alloy with improved tribological performance[J].Plastics,Rubber and Composites,2020,49(1):1-9.

    • [15] JIANG J,ZHAO C,LI G.Tribological properties of polyether-ether-ketone-based coating under mixed and boundary aviation kerosene-lubrication condition[J].Coatings,2020,10(1):1.

    • [16] TU C K,CAO J,HUANG H B,et al.The investigation of microstructure and tribological properties of PTFE/PI-PAI composite coating added with VN[J].Surface and Coatings Technology,2022,432:128092.

    • [17] 齐慧敏,胡超,李洁,等.宽温域环境中聚四氟乙烯及其复合材料摩擦学性能研究[J].摩擦学学报,2022,42(1):65-73.QI Huimi,HU Chao,LI Jie,et al.Tribological performance of PTFE and its composite in wide temperature range[J].Tribology,2022,42(1):65-73.(in Chinese)

    • [18] AMEER N,HUSSEIN S I.Enhanced thermal expansion,mechanical properties,and adhesion analysis of epoxy/ZrO2 nano composites[J].Journal of Physics:Conference Series,2019,1279:012026.

    • [19] TAKADOUM J,BENNANI H H.Influence of substrate roughness and coating thickness on adhesion,friction and wear of TiN films[J].Surface and Coatings Technology,1997,96(2):272-282.

    • [20] SEIDL W M,BARTOSIK M,KOLOZSVARI S,et al.Influence of coating thickness and substrate on stresses and mechanical properties of(Ti,Al,Ta)N/(Al,Cr)N multilayers[J].Surface and Coatings Technology,2018,347(4):92-98.

    • [21] DORNER A,SCHURER C,REISEL G,et al.Diamond-like carbon-coated Ti6Al4V:influence of the coating thickness on the structure and the abrasive wear resistance[J].Wear,2001,249(5):489-497.

    • [22] CHEN S,LIU L,WANG T.Investigation of the mechanical properties of thin films by nanoindentation,considering the effects of thickness and different coating–substrate combinations[J].Surface and Coatings Technology,2004,191(1):25-32.

    • [23] 张静,单磊,苏晓磊,等.基体材料对 Cr/CrN 多层涂层在海水环境中磨蚀性能的影响[J].表面技术,2018,47(12):198-204.ZHANG Jing,SHAN Lei,SU Xioalei,et al.Effect of substrate material on tribocorrosion performance of Cr/CrN multilayer coatings in seawater[J].Surface Technology,2018,47(12):198-204.(in Chinese)

    • [24] CAO J,CHEN J,WANG X,et al.Tribology and anti-ablation properties of SiC-VN-MoS2/Ta composite coatings on carbon/carbon composites from 25 ℃ to 800 ℃[J].Materials,2021,14(22):6772-6772.

    • [25] 张定军,甘明洋,贾玉龙,等.CdS 纳米粒子的合成及其对PTFE基粘结固体润滑涂层摩擦学性能的影响[J].摩擦学学报,2016,36(5):629-635.ZHANG Dingjun,GAN Mingyang,JIA Yulong,et al.Synthesis of CdS nanoparticles and the effect of their addition on the tribological behavior of bonded PTFE solid lubricant coating[J].Tribology,2016,36(5):629-635.(in Chinese)

    • [26] 杨瑞杰,冶银平,万宏启,等.聚酰亚胺粘结 MoS2基固体润滑涂层在油介质中的摩擦学性能[J].摩擦学学报,2011,31(3):278-282.YANG Ruijie,YE Yingping,WAN Hongqi,et al.Tribological properties of polyimide bonded mos2 solid lubricant coatings in different oils[J].Tribology,2011,31(3):278-282.(in Chinese)

    • [27] HAO J,SONG Z Z,ZHANG X H,et al.Effect of nano-Al2O3 surface treatment on the tribological performance of phenolic composite coating[J].Surface and Coatings Technology,2006,201(6):3767-3774.

    • [28] LIU X,YAMAGUCHI R,UMEHARA N,et al.Effect of oil temperature and counterpart material on the wear mechanism of ta-CNx coating under base oil lubrication[J].Wear,2017,390-391:312-321.

    • [29] SHAH R,DATASHVILI T,CAI T,et al.Effects of functionalised reduced graphene oxide on frictional and wear properties of epoxy resin[J].Materials Research Innovations,2015,19(2):97-106.

    • [30] LIU D,ZHAO W J,LIU S,et al.Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene[J].Surface and Coatings Technology,2016,286:354-364.

    • [31] 程蓓,李迎春,邱明,等.石墨烯/MoS2 复合涂层多环境下的摩擦学性能[J].润滑与密封,2021,46(1):66-73.CHENG Bei,LI Yingchun,QIU Ming,et al.Tribological properties of graphene/MoS2 composite coatings in multiple environments[J].Lubrication Engineering,2021,46(1):66-73.(in Chinese)

    • [32] 陈颢,伍方,赵文杰,等.海水环境中环氧值对环氧树脂涂层摩擦学性能的影响研究[J].摩擦学学报,2014,34(6):601-607.CHEN Hao,WU Fang,ZHAO Wenjie,et al.Influence of epoxy value on the tribological performances of epoxy resin coatings in seawater environment[J].Triboogy,2014,34(6):601-607.(in Chinese)

    • [33] 杨安乐.沥青基碳纤维增强环氧模塑料的摩擦磨损性能[J].机械工程材料,1998,24(6):13-14,55.YANG Anle.Friction and wear properties of carbon fiber reinforced expoxy molding plastic[J].Materials for Mechanical Engineering,1998,24(6):13-14,55.(in Chinese)

    • [34] 赵剑波,王勇,韩彬,等.镍基金属陶瓷涂层在人工海水中的摩擦学性能[J].表面技术,2018,47(2):64-70.ZHAO Jianbo,WANG Yong,HAN Bing,et al.Tribological properties of Ni-based cermet coatings in artificial seawater[J].Surface Technology,2018,47(2):64-70.(in Chinese)

    • [35] 赵月红,林乐耘,崔大为.铝合金和铜合金在我国东西部水系统中暴露1年的腐蚀规律[J].腐蚀科学与防护技术,2005(5):335-339.ZHAO Yuehong,LIN Luegong,CUI Dawei.Corrosion of aluminum alloys and copper alloys in water systems in the east and west of china[J].Corrosion Science and Protection Technology,2005(5):335-339.(in Chinese)

    • [36] 黄桂桥.金属在海水中的腐蚀电位研究[J].腐蚀与防护,2000(1):8-11.HUANG Guiqiao.Study of the corrosion potential of metals in seawater[J].Corrosion and Protection,2000(1):8-11.(in Chinese)

    • [37] SHI W,DONG H,BELL T.Tribological behaviour and microscopic wear mechanisms of UHMWPE sliding against thermal oxida-tion-treated Ti6Al4V[J].Materials Science and Engineering A,2000,291(1):27-36.

    • [38] 刘二勇,曾志翔,赵文杰.海水环境中金属材料腐蚀磨损及耐磨防腐一体化技术的研究进展[J].表面技术,2017,46(11):149-157.LIU Eryong,ZENG Zhixiang,ZHAO Wenjie.Corrosive wear and integrated anti-wear and anti-corrosion technology metallic materials in seawater[J].Surface Technology,2017,46(11):149-157.(in Chinese)

    • [39] MCCAFFERTY E,HUBLER G K,NATISHAN P M,et al.Naval Research Laboratory surface modification program:ion beam and laserprocessing of metal surface for improved corrosion resistance[J].Materials Science Engeering,1987,86:1-17.

    • [40] 吴军,金杰,朱冬冬,等.TiC 添加量对高能激光熔覆Inconel718基陶瓷涂层显微组织和摩擦磨损性能的影响[J].表面技术,2021,50(9):225-235.WU Jun,JIN Jie,ZHU Dongdong,et al.Effect of TiC content on microstructure,friction and wear properties of incone l718 based ceramic coatings prepared by high energy laser cladding[J].Surface Technology,2021,50(9):225-235.(in Chinese)

    • [41] 李翠霞,杨晓永,瞿学炜,等.石英与长石对搪瓷涂层组织和摩擦磨损性能的影响[J].表面技术,2021,50(10):221-229.LI Cuixia,YANG Xiaoyong,QU Xuewei,et al.Effects of quartz and feldspar on microstructure and friction and wear properties of enamel coating[J].Suface Technology,2021,50(10):221-229.(in Chinese)

    • [42] YE Y P,CHEN J M,ZHOU H D.Microstructure,Tribological behavior,and corrosion-resistant performance of bonded MoS2 solid lubricating film filled with nano-LaF3[J].Journal of Dispersion Science and Technology,2009,30(4):488-494.

    • [43] 李迎春,程蓓,邱明,等.不同石墨烯添加量下 MoS2 基复合涂层的摩擦磨损及耐腐蚀性能[J].中国机械工程,2020,31(20):2437-2444.LI Yingchun,CHENG Bei,QIU Ming,et al.Tribological properties and corrosion resistance of MoS2-based composite coatings with different graphene additions[J].China Mechanical Engineering,2020,31(20):2437-2444.(in Chinese)

    • [44] GHOSH S K,MILLER C,CHOUDHURY D,et al.The effects of PTFE thickness on the tribological behavior of thick PDA/PTFE coatings[J].Tribology Transactions,2020,63(3):575-584.

    • [45] LI B,WAN H Q,YE Y P,et al.Investigating the effect of LaF3 on the tribological performances of an environment friendly hydrophilic polyamide imide resin bonded solid lubricating coating[J].Tribology International,2017,116:164-171.

    • [46] LI F,HU K A,LI J L,et al.The friction and wear characteristics of nanometer ZnO2 filled polytetrafluoroethylene[J].Wear,2001,249(10-11):877-882.

    • [47] 何春霞,史丽萍,沈惠平.纳米 Al2O3 填充聚四氟乙烯摩擦磨损性能的研究[J].摩擦学学报,2000(2):153-155.HE Chunxia,SHI Liping,SHEN Huiping.Friction and wear properties of nanocrystalline Al2O3 filled PTFE composites[J].Tribology,2000(2):153-155.(in Chinese)

    • [48] HU D W,LIU Y,CHEN H,et al.Microstructure and wear resistance of Ni-based tungsten carbide coating by laser cladding on tunnel boring machine cutter ring[J].Surface and Coatings Technology,2020,404:126432.

  • 手机扫一扫看