en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

林宇杰,男,1998年出生,硕士研究生。主要研究方向为钢-木组合构件。E-mail:251883875@qq.com

通讯作者:

柏亚双,女,1975年出生,硕士,副教授。主要研究方向为钢筋混凝土结构地震反应分析。E-mail:baiyashuang@163.com

中图分类号:TG496

DOI:10.11933/j.issn.1007-9289.20230110001

参考文献 1
王晓宏,刘长喜,毕凤阳,等.层压板单搭接胶接结构损伤失效行为表征分析[J].天津科技大学学报,2021,36(3):39-45,59.WANG Xiaohong,LIU Changxi,BI Fengyang,et al.Characterization and analysis of the damage and failure behavior ofthe single lap bond laminates structure[J].Journal of Tianjing University of Science & Technology,2021,36(3):39-45,59.(in Chinese)
参考文献 2
HU Q B,GAO Y,MENG X M,et al.Axial compression of steel-timber composite column consisting of H-shaped steel and glulam[J].Engineering Structures,2020,216:110561.
参考文献 3
李威,高颖,孟鑫淼,等.角钢-集成材L形组合柱的受压性能研究[J].林业工程学报,2020,5(1):53-60.LI Wei,GAO Ying,MENG Xinmiao,et al.Study on compressive performance of angel steel-glued laminated timber L-shaped composite column[J].Journal of Forestry Engineering,2020,5(1):53-60.(in Chinese)
参考文献 4
陈爱国,李登辉,方超,等.H 形钢-木组合梁受弯性能试验研究[J].建筑结构学报,2016,37(S1):261-267.CHEN Aiguo,LI Denghui,FANG Chao,et al.Experimental study on flexural behavior of H-shaped steel-wood composite beams[J].Journal of Building Structures,2016,37(S1):261-267.(in Chinese)
参考文献 5
邹伟.薄壁H型钢-木组合梁受弯承载力计算分析研究 [D].绵阳:西南科技大学,2018.ZOU Wei.The analysis and analysis of the bending bearing capacity of the thin wall h steel composite beams were calculated[D].Mianyang:Southwest University of Science and Technology,2018.(in Chinese)
参考文献 6
马红霞,任海青,赵荣军.木材表面胶粘剂渗透性能研究进展[J].世界林业研究,2008,21(6):57-60.MA Hongxia,REN Haiqing,ZHAO Rongjun.Advances in the research on adhesive penetration on woody materials[J].World Forestry Research,2008,21(6):57-60.(in Chinese)
参考文献 7
KONG F,ZHANG X,CHEN H,et al.Improving interfacial strength and corrosion resistance of fiber metal laminates by phosphating magnesium substrates[J].Journal of Materials Engineering and Performance,2022:1-13.
参考文献 8
吕莹莹,纪箴,杜建华,等.表面处理对钢板与环氧树脂粘结性能的影响[J].粉末冶金技术,2016,34(3):213-217.LÜ Yingying,JI Zhen,DU Jianhua,et al.Effect of surface treatment on the shearing strength of the epoxy resin adhesion coating[J].Powder Metallurgy Technology,2016,34(3):213-217.(in Chinese)
参考文献 9
DONG L,LI Y,HUANG M,et al.Effect of anodizing surface morphology on the adhesion performance of 6061 aluminum alloy[J].International Journal of Adhesion and Adhesives,2022,113:103065.
参考文献 10
GUO L,LIU J,XIA H,et al.Effects of surface treatment and adhesive thickness on the shear strength of precision bonded joints[J].Polymer Testing,2021,94:107063.
参考文献 11
ZHANG D,HUANG Y.Influence of surface roughness and bondline thickness on the bonding performance of epoxy adhesive joints on mild steel substrates[J].Progress in Organic Coatings,2021,153:106135.
参考文献 12
LI J,LI Y,HUANG M,et al.Improvement of aluminum lithium alloy adhesion performance based on sandblasting techniques[J].International Journal of Adhesion and Adhesives,2018,84:307-316.
参考文献 13
MIN J,WAN H,CARLSON B E,et al.Application of laser ablation in adhesive bonding of metallic materials:A review[J].Optics & Laser Technology,2020,128:106188.
参考文献 14
李彦清,范海琦,朱奎名,等.激光扫描阵列结构增强不锈钢与塑料的连接强度[J].中国光学,2020,13(2):313-322.LI Yanqing,FAN Haiqi,ZHU Kuiming,et al.Enhanced bonding strength between stainless steel and plastic by using laser scanning array structure[J].Chinese Optics,2020,13(2):313-322.(in Chinese)
参考文献 15
徐艳龙,李文戈,喻忠翰,等.基于激光毛化技术的5052铝合金粘接试验研究[J].强激光与粒子束,2022,34(3):51-58.XU Yanlong,LI Wenge,YU Zhonghan,et al.Research on bonding test of 5052 aluminum alloy based on laser texturing technology[J].High Power Laser and Particle Beams,2022,34(3):51-58.(in Chinese)
参考文献 16
杨文锋,侯秋园,李绍龙,等.民机铝合金蒙皮的激光织构化处理[J].电镀与涂饰,2020,39(8):492-498.YANG Wenfeng,HOU Qiuyuan,LI Shaolong,et al.Laser texturing of aluminum alloy used as civil aircraft skin[J].Electroplating & Finishing,2020,39(8):492-498.(in Chinese)
参考文献 17
FENG Z,ZHAO H,TAN C,et al.Effect of laser texturing on the surface characteristics and bonding property of 30CrMnSiA steel adhesive joints[J].Journal of Manufacturing Processes,2019,47:219-228.
参考文献 18
MARESSA P,ANODIO L,BERNASCONI A,et al.Effect of surface texture on the adhesion performance of laser treated Ti6Al4V alloy[J].The Journal of Adhesion,2015,91(7):518-537.
参考文献 19
ANDARABI A A,SHELESH-NEZHAD K,CHAKHERLOU T N.The effect of laser surface structuring patterns on the interfacial resistance of aluminum joints bonded with epoxy adhesive[J].International Journal of Adhesion and Adhesives,2022,114:103101.
参考文献 20
TAN B,JI Y,HU Y,et al.Pretreatment using diluted epoxy adhesive resin solution for improving bond strength between steel and wood surfaces[J].International Journal of Adhesion and Adhesives,2020,98:102502.
参考文献 21
WAN H,MIN J,ZHANG J,et al.Effect of adherend deflection on lap-shear tensile strength of laser-treated adhesive-bonded joints[J].International Journal of Adhesion and Adhesives,2020,97:102481.
参考文献 22
KUMAR A,KUMAR K,GHOSH P K,et al.MWCNTs toward superior strength of epoxy adhesive joint on mild steel adherent[J].Composites Part B:Engineering,2018,143:207-216.
参考文献 23
胡志清,郑会会,徐亚男,等.表面微沟槽对 Al/CFRP 胶结性能的影响[J].吉林大学学报(工学版),2018,48(1):229-235.HU Zhiqing,ZHENG Huihui,XU Yanan,et al.Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(1):229-235.(in Chinese)
参考文献 24
赵宁,欧阳海彬,戴建京,等.内聚力模型在结构胶接强度分析中的应用[J].现代制造工程,2009(11):128-131,149.ZHAO Ning,OUYANG Haibin,DAI Jianjing,et al.The application of structure adhesive bonded strength using cohesive zone model[J].Modern Manufacturing Engineering,2009(11):128-131,149.(in Chinese)
参考文献 25
ALFANO M,LUBINEAU G,FURGIUELE F,et al.Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints[J].International Journal of Adhesion and Adhesives,2012,39:33-41.
参考文献 26
WENZEL R N.Surface roughness and contact angle[J].The Journal of Physical Chemistry,1949,53(9):1466-1467.
目录contents

    摘要

    胶接钢-木组合构件中,受胶黏剂在钢材表面附着力弱的制约,钢材和木材的粘接强度不高。为改善胶黏剂在钢材上的粘附能力,提出采用激光在钢材表面形成微织构增加胶黏剂与钢材接触面积及嵌入深度。通过单搭接剪切试验,探究织构形状(方形凹坑、竖向沟槽、横向沟槽)对钢材和木材粘接强度的影响;借助激光共聚焦轮廓仪检测钢材表面粗糙度和织构深度,采用扫描电镜(SEM)观察激光处理后钢材表面形貌特征及断口特征,基于检测数据构建有限元模型,探究织构形状对钢材和木材间胶层应力分布影响;总结钢材表面织构对钢材和木材粘接强度影响规律和机制。结果表明:钢材表面织构能有效提升钢材和木材粘接强度;织构形状对钢材和木材粘接强度起决定性作用;在相同激光设置参数和相同织构设计参数(宽度和间距)下,沟槽织构比方形织构更有利于增加胶黏剂与钢材粘结强度;织构周围存在的激光熔融物有利于提高胶黏剂与钢材粘结强度。研究成果可为提高钢材和木材间粘接强度提供技术支撑,也为织构在胶接型钢-木组合构件中的应用与设计提供新思路。

    Abstract

    Composite components made of wood and steel glued together have the advantages of these two materials, which improve the mechanical properties of single-material components. An increasing number of steel-wood composite parts are used in buildings. However, the surface roughness of untreated steel is low, and pollutants and oxide films are present on the steel surface. These factors are not conducive to the adhesion of adhesives on steel, resulting in a low bonding strength between steel and wood in the steel-wood composite member, weakening the ability of steel and wood to bond together. This paper aims to improve the adhesive adhesion ability of steel to enhance its bonding strength with wood. The use of lasers is proposed to form microtextures on steel surfaces to increase the contact area and embedment depth of the adhesive. A single-lap shear test is conducted to evaluate the effects of the texture shape (square pits, vertical grooves, and transverse grooves) and textured steel with and without sanding treatment on the bonding strength of steel and wood. A laser confocal profilometer is used to detect the roughness of the steel surface before and after the laser treatment, the roughness of the textured steel before and after the sanding treatment, and the texture depth. The surface morphological features of the laser-treated steel, surface characteristics of the textured steel after sandpaper grinding or without sandpaper grinding, and the shear bonding fracture characteristics of the specimens are examined using scanning electron microscopy (SEM). A finite element model is constructed based on the design parameters and test data (texture width, spacing, and depth) to study the influence of the texture shape on the stress distribution of the adhesive layer between the steel and wood and the trend of the bond strength between the steel and timber. The law and mechanism of influence of the steel surface texture on the bonding strength of steel and wood are summarized. The results showed that the microtexture processed on the steel surface by the laser could effectively increase the surface roughness of the steel. The rough surface expands the contact area between the adhesive and steel. This promotes the mechanical interlocking of the adhesive and steel, thereby improving the bond strength between steel and wood. The numerical simulations and experiments showed that the texture shape affects the roughness of the steel surface and the body of the “glue nail” formed by the adhesive penetrating the micropores, which plays a controlling role in the adhesion of the bond to the steel. Under the same laser setting and texture design parameters (width and spacing), the groove texture improved the roughness more than the square texture, which was more conducive to increasing the bond strength between the adhesive and steel. The laser melts existing around the surface can increase the roughness and hinder the bond failure of the glue in the shear direction to a certain extent, which is conducive to improving the bond strength between the adhesive and steel. The research results can provide technical support for enhancing the bonding strength of steel and wood and provide a new idea for the application and design of texture in steel-wood composite components formed by gluing.

  • 0 前言

  • 基于木材和钢材制作的组合构件能够结合两者的优势,提升单一材质构件的力学性能。近年来,越来越多的组合构件用于建筑中。组合构件中,钢材和木材间良好的连接是两种材料共同工作的基础,常见的连接方式有机械连接与胶接,其中,胶接具有施工方便、轻质、不引起应力集中等特点[1],广泛用于钢-木组合梁、柱等建筑构件中[2-5]

  • 木材为多孔材料,胶黏剂能够渗入孔隙中,使得胶黏剂在木材上有较强的附着力[6],而钢材表面粗糙度低,且由于氧化膜的存在,胶黏剂难以渗入,胶黏剂与钢材粘结能力弱,从而导致钢材和木材胶接构件粘接强度低。研究者提出金属表面处理以改善胶黏剂与金属的粘结强度,具体处理方法包括:磷化处理[7-8]、阳极氧化处理[9-10]、喷砂处理[11-12]等,然而,这些表面处理方式绝大多数会产生有害物质,且形成的织构形式和精度难以控制。

  • 激光表面处理作为一种非接触式加工技术,具有效率高、污染小、可循环使用等特点,且通过控制激光参数能够在金属表面制备具有特定纹理、特定深度、特定排布方式的织构[13-14],便于研究者界定织构对研究对象的影响规律。徐艳龙等[15]对铝合金表面进行激光毛化处理,使铝合金表面形成凹坑,胶黏剂得以渗透形成“胶钉”,提高了铝合金表面的粘接强度。杨文峰等[16]在铝合金表面进行激光刻蚀处理,获得了平行线、正方形和菱形 3 种织构表面,提升了环氧涂层在铝合金表面的附着力。FENG 等[17]研究了激光织构对 30CrMnSiA 钢接头粘接性能的影响,结果表明表面微织构改善了钢材表面粗糙度和润湿性,提升了接头的粘接性能。MARESSA 等[18]使用激光在钛合金表面制备圆孔、网状和混乱纹理织构,表面织构形成的凹坑使胶黏剂得以渗入、钛合金表面粗糙度提高,接头粘接强度增大。 ANDARABI 等[19]对铝材表面进行激光蚀刻处理,制备了不同形状的织构,增大了粘结面积,增强了胶黏剂和基材的机械联锁力。

  • 目前,有关钢材表面激光织构化对钢材和木材粘接强度影响的研究较少,且由于胶层部位的应力分布难以探查,研究者只能借助理论与试验现象对其进行分析,没有研究人员基于数值模拟方法对激光织构化后的钢材和木材的粘接强度以及胶层应力分布情况进行研究。因此,本文拟开展织构化钢材和木材的单搭接剪切试验,建立有限元模型,分析激光织构形状对钢材和木材粘接强度以及胶层应力分布的影响。试验与数值模拟研究成果可为提高胶黏剂在钢材和木材间粘接强度提供技术支撑,也可为织构的应用与设计提供新思路。

  • 1 试验方法

  • 1.1 材料

  • 选择 3 mm 厚 Q235-B 钢板作为钢基板,制备带有表面织构的试件和钢垫块,选用水曲柳硬木作为单搭接剪切试件的木基板和垫块,将其厚度刨削至 8 mm,胶黏剂采用环氧树脂 AB 胶,使用时按树脂和固化剂 1∶1 的体积比充分混合。

  • 1.2 钢材表面处理

  • 在进行激光处理前,先清洗钢材,以去除表面污渍,之后烘干。使用激光打标机(FLS-FB50)实现钢材表面织构化,设置激光参数:焦距 100 mm,刻蚀速度 1 m / s,输出频率 20 kHz,激光功率 50 W。在 Q235-B 钢材表面制备方形凹坑、竖向沟槽(垂直于剪切方向)和横向沟槽(沿剪切方向)型织构,织构宽度与间距均为 300 μm,织构示意图,如图1 所示,对应每种织构形状制备 6 个试样,其中 3 个试样清洗、烘干后,用于后续检测、制作单搭接剪切试件,另外 3 个试样清洗、烘干后,利用 1000 目砂纸打磨试样表面,再次清洗、烘干,用于后续检测、制作单搭接剪切试件。

  • 图1 织构示意图

  • Fig.1 Texture diagram

  • 1.3 表面粗糙度与微观形貌检测方法

  • 采用激光共聚焦轮廓仪测量激光处理后钢板的表面粗糙度 Ra,测量长度为 3.1 mm,并利用该仪器测量凹坑 / 沟槽深度。利用扫描电镜(SEM)对激光刻蚀区域进行形貌观测。

  • 1.4 单搭接剪切试件制作与加载方案

  • 参照文献[20]中的方案设计单搭接剪切试件,木材和钢材长度均为 100 mm,钢材厚 3 mm,木材厚 8 mm,搭接区面积 25 mm×25 mm,为方便试验机夹持,并保证整个试件受力在同一直线上,试件两端分别设置钢垫块和木垫块(如图2 所示)。在搭接区涂抹胶黏剂时,均匀地洒上粒径 200~300 μm 的玻璃微珠以控制胶层厚度[21]。采用电子材料万能试验机进行单搭接剪切试验,设置位移加载速率为 1 mm / min,加载至接头发生剪切破坏停止试验。

  • 图2 单搭接剪切示意图

  • Fig.2 Single lap shear diagram

  • 2 结果与讨论

  • 2.1 激光刻蚀表面形态分析

  • 图3 显示了 3 种激光纹理(方形凹坑、竖向沟槽、横向沟槽)模式下的宏观图像及扫描电镜(SEM) 下的织构形貌,从中可以看出,激光处理形成的织构规则,排布整齐,与设计形状基本一致。图4 为经过砂纸打磨与未经砂纸打磨的方形织构SEM微观对比图(虚线为激光熔融物),从图中可以明显地观察到未经打磨的织构周围堆积了激光熔融物,这些熔融物是材料表面在激光刻蚀过程中,经历了熔化、蒸发、飞溅和凝固,被激光移除的材料重新沉积在织构周围形成的,而激光刻蚀后,再经过砂纸打磨,织构周围变得较光滑,平整,仅残留了少量的熔融物。

  • 图3 织构宏观图像与 SEM 微观图像

  • Fig.3 Texture macro image and SEM micro image

  • 图4 方形织构打磨与未打磨微观对比图

  • Fig.4 Microscopic contrast image of polished and unpolished square texture

  • 2.2 激光表面处理对表面粗糙度的影响

  • 图5 表示了所有试件的表面粗糙度 Ra,从图5 中可以发现,经过砂纸打磨的试件与未经砂纸打磨的试件在表面粗糙度的大小上表现出相同的规律,即带有方形凹坑试件<带有竖向沟槽试件≈带有横向沟槽试件,竖向沟槽和横向沟槽只在角度上发生了变化,对应试件的粗糙度本应完全相同,但受加工误差影响,仍会有较小的差异。而方形凹坑和沟槽因设计形状不同,激光刻蚀轨迹不同,得到的织构深度不相同(激光共聚焦轮廓仪测得方形凹坑深度约为 53 μm,沟槽深度约为 65 μm),如图3 所示,沟槽底部与方形凹坑底部平整度也不相同,这些差异是造成试件表面粗糙度不同的原因。对于带有同一形状织构的试件,未经砂纸打磨的试件比经过砂纸打磨的试件拥有更大的表面粗糙度,这是织构周围沉积的熔融物造成的[18]。与未处理的试件相比(Ra=1.1 μm),带有织构的试件表面粗糙度均大幅提升,这是因为带有织构的钢材表面凹凸不平。在所有试件中,表面粗糙度提升幅度最大的为带有横向沟槽的钢材(未经砂纸打磨),提升了 1 250%。

  • 图5 不同织构下的钢材表面粗糙度

  • Fig.5 Surface roughness of steel under different textures

  • 2.3 剪切粘接强度

  • 试件的单搭接剪切粘接强度测试结果如图6 所示(虚线表示未处理试样的剪切粘接强度)。从中可知,经激光处理的试件,其剪切粘接强度提高。织构形状对剪切粘接强度的提升能力表现为,方形凹坑<竖向沟槽<横向沟槽。对同一织构形式来说,砂纸打磨的试件剪切粘接强度小于未打磨的试件。在所有试件中,带有横向沟槽(未打磨)的试件剪切粘接强度提升幅度最大,与未处理试件的剪切粘接强度相比,提高了 256%,而带有方形凹坑(打磨)的试件剪切粘接强度提升幅度最小,提高了 177%。

  • 图6 不同织构下的剪切粘接强度

  • Fig.6 Shear bonding strength under different textures

  • 2.4 粘接破坏现象

  • 试样剪切面宏观破坏图像,如图7 所示,从中可以观察到断口的三种粘接破坏形式,分别是钢材端粘附破坏,钢材端粘附破坏和木材端粘附破坏组成的混合破坏(伴有少量的木材破坏)以及木材破坏。未处理试件的粘接破坏为钢材端粘附破坏(图7a),剪切面上存在大量脱落的氧化膜。结合图6 可知,带有方形织构的试件剪切粘接强度较未处理试件有所提升,这表明钢材上的方形织构对胶黏剂与钢材的粘结强度有一定的提升作用,但提升后的胶黏剂与钢材的粘结强度小于胶黏剂与木材的粘结强度,因此试件粘结破坏仍为钢材端粘附破坏。带有竖向沟槽和横向沟槽(打磨)的试件,粘接破坏为混合破坏(图7d~7f),且木材端粘附破坏面积随胶黏剂与钢材粘结强度的增大而增加。带有横向沟槽(未打磨)的试件粘接破坏为木材破坏,该粘接破坏形式被认为是最优破坏形式,对应的试件粘接强度最大,这表明胶黏剂与钢材形成了牢固的粘结作用,钢材和木材的整体粘接强度大于木材自身强度。

  • 图7 剪切粘接破坏断口宏观破坏图

  • Fig.7 Macroscopic failure diagram of bonded shear fracture

  • 2.5 粘结强度增强机理

  • 未处理的钢材表面粗糙度低(图5),且钢材表面存在薄弱的氧化层[20](氧化层附着力弱,且阻碍胶黏剂的粘附与渗透)。因此,未处理的钢材与胶黏剂粘结能力弱。大量研究表明,基材表面粗糙度的提升可扩大胶黏剂与钢材的接触面积,同时促进胶黏剂与钢材机械互锁,从而提升胶黏剂与基材的粘结强度[22]。然而,表面粗糙度只是衡量表面起伏的指标,并非引起表面变化的原因,接触面积的增加和机械互锁的形成是由原有光滑表面上形成起伏的结构所引起的。本文钢材表面激光刻蚀处理形成的织构正是这种起伏的结构。带有织构的钢材与胶黏剂粘结处截面示意图如图8 所示,图中红色部分为钢材接触面积增加的部分(即织构总侧面积 S),可通过式(1)进行计算:

  • S=bhn1n2
    (1)
  • 式中,b 为织构宽度,h 为织构深度(通过激光共聚焦轮廓仪测得),n1为织构侧面数量,n2 为织构数量。

  • 图8 钢材与胶黏剂粘结处截面示意图

  • Fig.8 Schematic diagram of the section where steel and adhesive bond

  • 利用式(1)计算本文中带有方形织构和沟槽织构的钢材增加的接触面积,它们分别增加了 17%和 21%[实际增加的面积值比计算值大,这是由于激光处理后织构侧面和底面并不平整(图3),粗糙面可提供更大的表面积]。

  • 带有方形织构试件断口 SEM 图如图9 所示,从中可以看到方形凹坑中有大量胶黏剂,表明胶黏剂已渗入凹坑中,形成了具有一定形状的“胶钉”,“胶钉”提供了胶黏剂与钢材的机械互锁力。综上,钢材表面激光刻蚀处理形成的织构能够提升钢材与胶黏剂粘结强度,从而将粘接破坏的薄弱点从界面转移到胶黏剂或木材。

  • 图9 方形凹坑织构断口 SEM 图

  • Fig.9 SEM image of square pit texture fracture

  • 激光处理后,未打磨试件的粘结强度高于打磨试件的粘结强度,这是由于织构周围激光熔融物的存在,激光熔融物增加了表面粗糙度(图5),且激光熔融物本身不规则,表面凹凸不平,有利于胶黏剂的附着。激光熔融物还改变了剪切方向上的传力路径(图10),在一定程度上阻止了剪切方向上的粘结破坏。

  • 图10 剪切方向传力路径

  • Fig.10 Shear direction force transfer path

  • 对于织构形状来说,在相同激光参数和设计参数(宽度,间距)下,沟槽织构比方形织构拥有更大的表面粗糙度(图5),因此沟槽织构在粘结性能的提升上有着更大的优势。竖向沟槽和横向沟槽在对钢材表面特性的改变上没有太大区别,主要差异表现在胶黏剂渗入沟槽中形成的“胶钉”在受剪方向上的分布不同,抵抗粘结破坏的能力上存在差异。因此,带有横向沟槽和竖向沟槽的钢材对胶黏剂与钢材粘结强度的提升程度不同。

  • 3 有限元分析

  • 由于本文接头处胶层含有大量“胶钉”,且胶层需要使用实体单元模拟,网格划分时,须指定扫略方向,工作量巨大,大量“胶钉”会给模型运算带来困难,对接头进行全尺寸模拟无法实现。胡志清等 [23] 提出使用缩尺模型模拟带有微沟槽的 Al / CFRP 单搭接剪切试件,探究沟槽深度(“胶钉” 深度)对粘接强度的影响以及对胶层应力分布的影响,获得了较好的分析效果。因此,本文探究织构形状(“胶钉”形状)对钢材和木材粘接强度以及胶层应力分布的影响时,对模型进行缩尺化,以提高模型运算效率。

  • 3.1 模型建立

  • 钢材参数:弹性模量 210 GPa,泊松比 0.3,屈服强度 235 MPa,密度 7.85 g / cm3;采用工程常数定义木材参数(表1);胶黏剂采用环氧树脂 AB 胶,按文献[24]建议设置参数。建立缩尺模型需要注意:单搭接试件只在厚度方向产生弯矩,因此模型厚度定义为材料实际厚度,木材和钢材分别为 8 mm 和 3 mm。在长度和宽度上适度缩小尺寸,钢材和木材长度均为 8.4 mm,宽度均为 2.1 mm。本模拟重点关注胶层设置,搭接区胶层长度和宽度均为 2.1 mm,厚度为 0.2 mm,“胶钉” 宽度和间距为织构的宽度和间距,均设置为 300 μm,在研究织构对整体试件粘接强度影响时, “胶钉”深度按照凹坑 / 沟槽测试深度分别设置为 53 μm 和 65 μm,当研究织构形状对胶层应力分布的影响时,设定“胶钉”深度一致,为 65 μm,胶层单元为 COH3D8 八节点三维粘结单元,使用扫略(sweep)方式划分网格,并对该区域网格进行细化处理,构件整体网格划分与胶层部位网格划分如图11 所示。边界条件设置为木材端全约束,钢材约束 YZ 方向上的自由度,在右端面沿 X 方向施加位移。

  • 表1 木材参数

  • Table1 Parameters of wood

  • 图11 整体网格划分与胶层部位网格划分图

  • Fig.11 Meshing diagram of whole and adhesive parts

  • 3.2 有限元模型分析与验证

  • 图12a~12c 所示分别为带有方形凹坑、横向沟槽与竖向沟槽的试件,在剪切受力时,胶层部位 Mises 应力图。从图中可以看出,方形“胶钉”与条形“胶钉”(横向沟槽)的应力分布均表现为,远离剥离端数值稍小于剥离端,且 9 个方形“胶钉” / 3 段条形“胶钉”受力均匀。这表明所有“胶钉”均在抵抗剪切粘接破坏。而图12b 中条形“胶钉”的受力表现为剥离端远大于远端,这种情况下,3 段条形“胶钉”并没有充分发挥作用。从提升表面粗糙度的能力来看,横向沟槽和竖向沟槽几乎相同,方形凹坑最小,但从受力角度来讲,横向沟槽和方形凹坑对应的“胶钉”更有利于抵抗粘接破坏,而方形“胶钉”因为与钢材的接触面积较小,对剪切粘接强度的提升有限。

  • 图12 织构形状对胶层受力影响

  • Fig.12 Effect of texture shape on force of adhesive layer

  • 钢材表面微织构形状与搭接接头粘接强度的关系曲线如图13 所示。从中可以看出,基于数值模拟得到的关系曲线与试验曲线整体趋势一致,剪切粘接强度大小均为带有方形凹坑试件<带有竖向沟槽试件<带有横向沟槽试件,但数值模拟得到的曲线斜率比试验曲线斜率小,即织构形状对粘接强度的影响较弱,该差异主要由以下 3 方面因素引起。

  • (1)由于模拟时,默认“胶钉”完全渗入凹坑 / 沟槽中,实际上,带有不同织构的钢材表面粗糙度不同,润湿性也存在差异,根据 ALFANO 等[25]与 WENZEL[26]的研究可知,钢材作为亲水材料,表面粗糙度的增加会促进液体在固体表面的铺展,因此在 3 种织构形式中,胶黏剂渗入方形凹坑的深度应该最浅。

  • 图13 织构形状对剪切粘接强度的影响

  • Fig.13 Effect of texture shape on shear bonding strength

  • (2)实际试件含有大量“胶钉”,而受尺寸因素影响,模型中“胶钉”数量较少,不同数量的“胶钉”产生的整体效应在对粘接强度的提升能力上存在差异。

  • (3)试验中熔融物在打磨时,并未完全去除,而数值模拟中并没有考虑这一点。

  • 4 结论

  • 利用试验与数值模拟分析钢材表面激光织构化对钢材和木材粘接强度的影响,得出以下结论:

  • (1)通过激光刻蚀在钢材表面上加工出微织构,可有效增加钢材表面粗糙度,粗糙的表面扩大了胶黏剂与钢材接触面积,促进了胶黏剂与钢材产生机械互锁,从而提升钢材和木材粘接强度。

  • (2)数值模拟和试验表明,织构形状不仅影响钢材表面的粗糙度,还影响胶黏剂渗入微孔中形成的“胶钉”形状,对胶黏剂在钢材上的附着能力起控制性作用。

  • (3)在相同激光设置参数和相同织构设计参数 (宽度和间距)下,相比于方形织构,沟槽织构对粗糙度的提升更大,更有利于胶黏剂与钢材粘结强度的增加。

  • (4)织构周围存在的激光熔融物不仅能够增加表面粗糙度,还能在一定程度阻碍胶黏剂在剪切方向上的粘结破坏,有利于胶黏剂与钢材粘结强度的提升。

  • 参考文献

    • [1] 王晓宏,刘长喜,毕凤阳,等.层压板单搭接胶接结构损伤失效行为表征分析[J].天津科技大学学报,2021,36(3):39-45,59.WANG Xiaohong,LIU Changxi,BI Fengyang,et al.Characterization and analysis of the damage and failure behavior ofthe single lap bond laminates structure[J].Journal of Tianjing University of Science & Technology,2021,36(3):39-45,59.(in Chinese)

    • [2] HU Q B,GAO Y,MENG X M,et al.Axial compression of steel-timber composite column consisting of H-shaped steel and glulam[J].Engineering Structures,2020,216:110561.

    • [3] 李威,高颖,孟鑫淼,等.角钢-集成材L形组合柱的受压性能研究[J].林业工程学报,2020,5(1):53-60.LI Wei,GAO Ying,MENG Xinmiao,et al.Study on compressive performance of angel steel-glued laminated timber L-shaped composite column[J].Journal of Forestry Engineering,2020,5(1):53-60.(in Chinese)

    • [4] 陈爱国,李登辉,方超,等.H 形钢-木组合梁受弯性能试验研究[J].建筑结构学报,2016,37(S1):261-267.CHEN Aiguo,LI Denghui,FANG Chao,et al.Experimental study on flexural behavior of H-shaped steel-wood composite beams[J].Journal of Building Structures,2016,37(S1):261-267.(in Chinese)

    • [5] 邹伟.薄壁H型钢-木组合梁受弯承载力计算分析研究 [D].绵阳:西南科技大学,2018.ZOU Wei.The analysis and analysis of the bending bearing capacity of the thin wall h steel composite beams were calculated[D].Mianyang:Southwest University of Science and Technology,2018.(in Chinese)

    • [6] 马红霞,任海青,赵荣军.木材表面胶粘剂渗透性能研究进展[J].世界林业研究,2008,21(6):57-60.MA Hongxia,REN Haiqing,ZHAO Rongjun.Advances in the research on adhesive penetration on woody materials[J].World Forestry Research,2008,21(6):57-60.(in Chinese)

    • [7] KONG F,ZHANG X,CHEN H,et al.Improving interfacial strength and corrosion resistance of fiber metal laminates by phosphating magnesium substrates[J].Journal of Materials Engineering and Performance,2022:1-13.

    • [8] 吕莹莹,纪箴,杜建华,等.表面处理对钢板与环氧树脂粘结性能的影响[J].粉末冶金技术,2016,34(3):213-217.LÜ Yingying,JI Zhen,DU Jianhua,et al.Effect of surface treatment on the shearing strength of the epoxy resin adhesion coating[J].Powder Metallurgy Technology,2016,34(3):213-217.(in Chinese)

    • [9] DONG L,LI Y,HUANG M,et al.Effect of anodizing surface morphology on the adhesion performance of 6061 aluminum alloy[J].International Journal of Adhesion and Adhesives,2022,113:103065.

    • [10] GUO L,LIU J,XIA H,et al.Effects of surface treatment and adhesive thickness on the shear strength of precision bonded joints[J].Polymer Testing,2021,94:107063.

    • [11] ZHANG D,HUANG Y.Influence of surface roughness and bondline thickness on the bonding performance of epoxy adhesive joints on mild steel substrates[J].Progress in Organic Coatings,2021,153:106135.

    • [12] LI J,LI Y,HUANG M,et al.Improvement of aluminum lithium alloy adhesion performance based on sandblasting techniques[J].International Journal of Adhesion and Adhesives,2018,84:307-316.

    • [13] MIN J,WAN H,CARLSON B E,et al.Application of laser ablation in adhesive bonding of metallic materials:A review[J].Optics & Laser Technology,2020,128:106188.

    • [14] 李彦清,范海琦,朱奎名,等.激光扫描阵列结构增强不锈钢与塑料的连接强度[J].中国光学,2020,13(2):313-322.LI Yanqing,FAN Haiqi,ZHU Kuiming,et al.Enhanced bonding strength between stainless steel and plastic by using laser scanning array structure[J].Chinese Optics,2020,13(2):313-322.(in Chinese)

    • [15] 徐艳龙,李文戈,喻忠翰,等.基于激光毛化技术的5052铝合金粘接试验研究[J].强激光与粒子束,2022,34(3):51-58.XU Yanlong,LI Wenge,YU Zhonghan,et al.Research on bonding test of 5052 aluminum alloy based on laser texturing technology[J].High Power Laser and Particle Beams,2022,34(3):51-58.(in Chinese)

    • [16] 杨文锋,侯秋园,李绍龙,等.民机铝合金蒙皮的激光织构化处理[J].电镀与涂饰,2020,39(8):492-498.YANG Wenfeng,HOU Qiuyuan,LI Shaolong,et al.Laser texturing of aluminum alloy used as civil aircraft skin[J].Electroplating & Finishing,2020,39(8):492-498.(in Chinese)

    • [17] FENG Z,ZHAO H,TAN C,et al.Effect of laser texturing on the surface characteristics and bonding property of 30CrMnSiA steel adhesive joints[J].Journal of Manufacturing Processes,2019,47:219-228.

    • [18] MARESSA P,ANODIO L,BERNASCONI A,et al.Effect of surface texture on the adhesion performance of laser treated Ti6Al4V alloy[J].The Journal of Adhesion,2015,91(7):518-537.

    • [19] ANDARABI A A,SHELESH-NEZHAD K,CHAKHERLOU T N.The effect of laser surface structuring patterns on the interfacial resistance of aluminum joints bonded with epoxy adhesive[J].International Journal of Adhesion and Adhesives,2022,114:103101.

    • [20] TAN B,JI Y,HU Y,et al.Pretreatment using diluted epoxy adhesive resin solution for improving bond strength between steel and wood surfaces[J].International Journal of Adhesion and Adhesives,2020,98:102502.

    • [21] WAN H,MIN J,ZHANG J,et al.Effect of adherend deflection on lap-shear tensile strength of laser-treated adhesive-bonded joints[J].International Journal of Adhesion and Adhesives,2020,97:102481.

    • [22] KUMAR A,KUMAR K,GHOSH P K,et al.MWCNTs toward superior strength of epoxy adhesive joint on mild steel adherent[J].Composites Part B:Engineering,2018,143:207-216.

    • [23] 胡志清,郑会会,徐亚男,等.表面微沟槽对 Al/CFRP 胶结性能的影响[J].吉林大学学报(工学版),2018,48(1):229-235.HU Zhiqing,ZHENG Huihui,XU Yanan,et al.Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(1):229-235.(in Chinese)

    • [24] 赵宁,欧阳海彬,戴建京,等.内聚力模型在结构胶接强度分析中的应用[J].现代制造工程,2009(11):128-131,149.ZHAO Ning,OUYANG Haibin,DAI Jianjing,et al.The application of structure adhesive bonded strength using cohesive zone model[J].Modern Manufacturing Engineering,2009(11):128-131,149.(in Chinese)

    • [25] ALFANO M,LUBINEAU G,FURGIUELE F,et al.Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints[J].International Journal of Adhesion and Adhesives,2012,39:33-41.

    • [26] WENZEL R N.Surface roughness and contact angle[J].The Journal of Physical Chemistry,1949,53(9):1466-1467.

  • 参考文献

    • [1] 王晓宏,刘长喜,毕凤阳,等.层压板单搭接胶接结构损伤失效行为表征分析[J].天津科技大学学报,2021,36(3):39-45,59.WANG Xiaohong,LIU Changxi,BI Fengyang,et al.Characterization and analysis of the damage and failure behavior ofthe single lap bond laminates structure[J].Journal of Tianjing University of Science & Technology,2021,36(3):39-45,59.(in Chinese)

    • [2] HU Q B,GAO Y,MENG X M,et al.Axial compression of steel-timber composite column consisting of H-shaped steel and glulam[J].Engineering Structures,2020,216:110561.

    • [3] 李威,高颖,孟鑫淼,等.角钢-集成材L形组合柱的受压性能研究[J].林业工程学报,2020,5(1):53-60.LI Wei,GAO Ying,MENG Xinmiao,et al.Study on compressive performance of angel steel-glued laminated timber L-shaped composite column[J].Journal of Forestry Engineering,2020,5(1):53-60.(in Chinese)

    • [4] 陈爱国,李登辉,方超,等.H 形钢-木组合梁受弯性能试验研究[J].建筑结构学报,2016,37(S1):261-267.CHEN Aiguo,LI Denghui,FANG Chao,et al.Experimental study on flexural behavior of H-shaped steel-wood composite beams[J].Journal of Building Structures,2016,37(S1):261-267.(in Chinese)

    • [5] 邹伟.薄壁H型钢-木组合梁受弯承载力计算分析研究 [D].绵阳:西南科技大学,2018.ZOU Wei.The analysis and analysis of the bending bearing capacity of the thin wall h steel composite beams were calculated[D].Mianyang:Southwest University of Science and Technology,2018.(in Chinese)

    • [6] 马红霞,任海青,赵荣军.木材表面胶粘剂渗透性能研究进展[J].世界林业研究,2008,21(6):57-60.MA Hongxia,REN Haiqing,ZHAO Rongjun.Advances in the research on adhesive penetration on woody materials[J].World Forestry Research,2008,21(6):57-60.(in Chinese)

    • [7] KONG F,ZHANG X,CHEN H,et al.Improving interfacial strength and corrosion resistance of fiber metal laminates by phosphating magnesium substrates[J].Journal of Materials Engineering and Performance,2022:1-13.

    • [8] 吕莹莹,纪箴,杜建华,等.表面处理对钢板与环氧树脂粘结性能的影响[J].粉末冶金技术,2016,34(3):213-217.LÜ Yingying,JI Zhen,DU Jianhua,et al.Effect of surface treatment on the shearing strength of the epoxy resin adhesion coating[J].Powder Metallurgy Technology,2016,34(3):213-217.(in Chinese)

    • [9] DONG L,LI Y,HUANG M,et al.Effect of anodizing surface morphology on the adhesion performance of 6061 aluminum alloy[J].International Journal of Adhesion and Adhesives,2022,113:103065.

    • [10] GUO L,LIU J,XIA H,et al.Effects of surface treatment and adhesive thickness on the shear strength of precision bonded joints[J].Polymer Testing,2021,94:107063.

    • [11] ZHANG D,HUANG Y.Influence of surface roughness and bondline thickness on the bonding performance of epoxy adhesive joints on mild steel substrates[J].Progress in Organic Coatings,2021,153:106135.

    • [12] LI J,LI Y,HUANG M,et al.Improvement of aluminum lithium alloy adhesion performance based on sandblasting techniques[J].International Journal of Adhesion and Adhesives,2018,84:307-316.

    • [13] MIN J,WAN H,CARLSON B E,et al.Application of laser ablation in adhesive bonding of metallic materials:A review[J].Optics & Laser Technology,2020,128:106188.

    • [14] 李彦清,范海琦,朱奎名,等.激光扫描阵列结构增强不锈钢与塑料的连接强度[J].中国光学,2020,13(2):313-322.LI Yanqing,FAN Haiqi,ZHU Kuiming,et al.Enhanced bonding strength between stainless steel and plastic by using laser scanning array structure[J].Chinese Optics,2020,13(2):313-322.(in Chinese)

    • [15] 徐艳龙,李文戈,喻忠翰,等.基于激光毛化技术的5052铝合金粘接试验研究[J].强激光与粒子束,2022,34(3):51-58.XU Yanlong,LI Wenge,YU Zhonghan,et al.Research on bonding test of 5052 aluminum alloy based on laser texturing technology[J].High Power Laser and Particle Beams,2022,34(3):51-58.(in Chinese)

    • [16] 杨文锋,侯秋园,李绍龙,等.民机铝合金蒙皮的激光织构化处理[J].电镀与涂饰,2020,39(8):492-498.YANG Wenfeng,HOU Qiuyuan,LI Shaolong,et al.Laser texturing of aluminum alloy used as civil aircraft skin[J].Electroplating & Finishing,2020,39(8):492-498.(in Chinese)

    • [17] FENG Z,ZHAO H,TAN C,et al.Effect of laser texturing on the surface characteristics and bonding property of 30CrMnSiA steel adhesive joints[J].Journal of Manufacturing Processes,2019,47:219-228.

    • [18] MARESSA P,ANODIO L,BERNASCONI A,et al.Effect of surface texture on the adhesion performance of laser treated Ti6Al4V alloy[J].The Journal of Adhesion,2015,91(7):518-537.

    • [19] ANDARABI A A,SHELESH-NEZHAD K,CHAKHERLOU T N.The effect of laser surface structuring patterns on the interfacial resistance of aluminum joints bonded with epoxy adhesive[J].International Journal of Adhesion and Adhesives,2022,114:103101.

    • [20] TAN B,JI Y,HU Y,et al.Pretreatment using diluted epoxy adhesive resin solution for improving bond strength between steel and wood surfaces[J].International Journal of Adhesion and Adhesives,2020,98:102502.

    • [21] WAN H,MIN J,ZHANG J,et al.Effect of adherend deflection on lap-shear tensile strength of laser-treated adhesive-bonded joints[J].International Journal of Adhesion and Adhesives,2020,97:102481.

    • [22] KUMAR A,KUMAR K,GHOSH P K,et al.MWCNTs toward superior strength of epoxy adhesive joint on mild steel adherent[J].Composites Part B:Engineering,2018,143:207-216.

    • [23] 胡志清,郑会会,徐亚男,等.表面微沟槽对 Al/CFRP 胶结性能的影响[J].吉林大学学报(工学版),2018,48(1):229-235.HU Zhiqing,ZHENG Huihui,XU Yanan,et al.Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(1):229-235.(in Chinese)

    • [24] 赵宁,欧阳海彬,戴建京,等.内聚力模型在结构胶接强度分析中的应用[J].现代制造工程,2009(11):128-131,149.ZHAO Ning,OUYANG Haibin,DAI Jianjing,et al.The application of structure adhesive bonded strength using cohesive zone model[J].Modern Manufacturing Engineering,2009(11):128-131,149.(in Chinese)

    • [25] ALFANO M,LUBINEAU G,FURGIUELE F,et al.Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints[J].International Journal of Adhesion and Adhesives,2012,39:33-41.

    • [26] WENZEL R N.Surface roughness and contact angle[J].The Journal of Physical Chemistry,1949,53(9):1466-1467.

  • 手机扫一扫看