en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

田振岐,男,1996年出生,硕士研究生。主要研究方向为微纳加工。E-mail:tzhenqi@163.com

通讯作者:

杨光,女,1971年出生,博士,教授。主要研究方向为超精密加工和表面工程。E-mail:yangg@jmu.edu.cn

中图分类号:TG113

DOI:10.11933/j.issn.1007-9289.20230308002

参考文献 1
易培云,彭林法,来新民.光学薄膜微细结构制造方法新进展[J].科学通报,2015,60(Z2):2707-2718.YI Peiyun,PENG Linfa,LAI Xinmin.Recent progress in fabrication methods for micro structures on optical thin film[J].Chinese Science Bulletin,2015,60(Z2):2707-2718.(in Chinese)
参考文献 2
ROEDER M,GUENTHER T,ZIMMERMANN A.Review on fabrication technologies for optical mold inserts[J].Micromachines,2019,10(4):233.
参考文献 3
ZHANG S,ZHOU Y,ZHANG H,et al.Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J].International Journal of Machine Tools and Manufacture,2019,142:16-41.
参考文献 4
BARRANCO A,BORRAS A,GONZALEZ-ELIPE A R,et al.Perspectives on oblique angle deposition of thin films:From fundamentals to devices[J].Progress in Materials Science,2016,76:59-153.
参考文献 5
LIU C F,PAN C T,LIU K H,et al.Optical film for LED with triangular-pyramidal array using size-reducible embossing method[J].Journal of materials engineering and performance,2011,20:1544-1553.
参考文献 6
RIEMER O.A review on machining of micro-structured optical molds[J].Key Engineering Materials,2008,364:13-18.
参考文献 7
ZHANG S J,TO S,WANG S J,et al.A review of surface roughness generation in ultra-precision machining[J].International Journal of Machine Tools and Manufacture,2015,91:76-95.
参考文献 8
JIANG B,ZHOU M,WENG C,et al.Fabrication of nanopillar arrays by combining electroforming and injection molding[J].The International Journal of Advanced Manufacturing Technology,2016,86:1319-1328.
参考文献 9
HERBERT W G,HENDRIX L E,MAIER G J,et al.Electroforming mandrels with contoured surfaces.U.S.Patent 6,7,692[P].1999-12-28.
参考文献 10
MIMURA H,ISHIKURA H,MATSUYAMA S,et al.Electroforming for replicating nanometer-level smooth surface[J].Journal of Nanoscience and Nanotechnology,2011,11(4):2886-2889.
参考文献 11
YANG G,CHEN J,LI B,et al.Impact of Cr nanocrystalline discrete crystal nuclei on demolding strength and surface roughness of precision electroforming Ni layer on Cu substrate[J].Journal of Applied Electrochemistry,2022,52(7):1091-1100.
参考文献 12
杨光,陈菊,张玉周,等.电沉积层中 Cr-O-C 界面影响Cu/Ni复合体脱模的分子动力学模拟[J].中国有色金属学报,2023,33(2):565-576.YANG Guang,CHEN Ju,ZHANG Yuzhou,et al.Molecular dynamics simulation of effect of cr-o-c interface on the demoulding of Cu/Ni complexes in electrodeposition layers[J].The Chinese Journal of Nonferrous Metals,2023,33(2):565-576.(in Chinese)
参考文献 13
LEROY F,MÜLLER-PLATHE F.Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method[J].The Journal of chemical physics,2010,133(4):44110.
参考文献 14
HADDEMAN E F C,THIJSSE B J.Transient sputtering of silicon by argon studied by molecular dynamics simulations[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,202:161-167.
参考文献 15
SHUANG F,AIFANTIS K E.Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions:A molecular dynamics study[J].Carbon,2021,172:50-70.
参考文献 16
于会珠,崔偎偎,白子龙,等.微纳分级结构超疏水金属表面的电沉积构筑及性能[J].中国表面工程,2021,34(5):181-187.YU Huizhu,CUI Weiwei,BAI Zilong,et al.Electrodeposition and properties of micro/nanoscale hierarchical structured superhydrophobic metal surface[J].China Surface Engineering,2021,34(5):181-187.(in Chinese)
参考文献 17
KIM K S,KIM J.Elasto-plastic analysis of the peel test for thin film adhesion[J].Journal of Engineering Materials and Technology,1988,110(3):266-273.
参考文献 18
LI Y,YANG G,DENG D,et al.Effect of chromium coating thickness on surface adhesion of polyethylene terephthalate optical film[J].Surfaces and Interfaces,2021,26:101429.
参考文献 19
THOMPSON A P,AKTULGA H M,BERGER R,et al.LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic,meso,and continuum scales[J].Computer Physics Communications,2022,271:108171.
参考文献 20
ZHU X Y,LIU X J,ZONG R L,et al.Microstructure and mechanical properties of nanoscale Cu/Ni multilayers[J].Materials Science and Engineering:A,2010,527(4-5):1243-1248.
参考文献 21
HALICIO LU T,POUND G M.Calculation of potential energy parameters form crystalline state properties[J].Physica Status Solidi(A),1975,30(2):619-623.
参考文献 22
FILPPPOVA V P,KUNAVIN S A,PUGACHEV M S.Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances[J].Inorganic Materials:Applied Research,2015,6:1-4.
参考文献 23
WILHELM E,BATTIN R.Estimation of lennard-Jones(6,12)pair potential parameters from gas solubility data[J].The Journal of Chemical Physics,1971,55(8):4012-4017.
参考文献 24
RAPPÉ A K,CASEWIT C J,COLWEL K S,et al.UFF,a full periodic table force field for molecular mechanics and molecular dynamics simulations[J].Journal of the American Chemical Society,1992,114(25):10024-10035.
参考文献 25
BARBISAN L,MARZEGALLI A,MONTALENTI F.Atomic-scale insights on the formation of ordered arrays of edge dislocations in Ge/Si(001)films via molecular dynamics simulations[J].Scientific Reports,2022,12(1):3235.
参考文献 26
LI Y,ZENG X,WANG F.Investigation on the micro-mechanism of martensitic transformation in nano-polycrystalline NiTi shape memory alloys using molecular dynamics simulations[J].Journal of Alloys and Compounds,2020,821:153509.
参考文献 27
TYSON W R.Surface energies of solid metals[J].Canadian Metallurgical Quarterly,1975,14(4):307-314.
参考文献 28
WEN Y N,ZHANG J M.Surface energy calculation of the fcc metals by using the MAEAM[J].Solid State Communications,2007,144(3-4):163-167.
参考文献 29
ŁODZIANA Z,TOPSØE N Y,NØRSKOV J K.A negative surface energy for alumina[J].Nature Materials,2004,3(5):289-293.
参考文献 30
MATHUR A,SHARMA P,CAMMARATA R C.Negative surface energy—clearing up confusion[J].Nature Materials,2005,4(3):186-186.
参考文献 31
YANG G,LI Y,PI J,et al.Control of the adhesion strength between nickel replica and copper mold by electrochemical nucleation of lead[J].Journal of Applied Electrochemistry,2019,49:1003-1011.
参考文献 32
LI Y,YAN G G,WU Q,et al.Cr anti-sticking layer for improving mold release quality in electrochemical replication of PVC optical molds[J].Micromachines,2019,10(10):702-716.
参考文献 33
QIAN H,SUN J,LI Q,et al.Electrochemical mechanism of trivalent chromium reduction in ChCl-EG deep eutectic solvents containing trivalent chromium[J].Journal of the Electrochemical Society,2020,167(10):102511.
参考文献 34
翟傲霜,黄啸,王欣,等.基于位错密度理论的喷丸强化诱导7050铝合金组织细化的数值模拟[J].中国表面工程,2023,36(2):114-124.ZHAI Aoshuang,HUANG Xiao,WANG Xin,et al.Numerical simulation of surface grain refinement of 7050 aluminum alloy induced by shot peening based on dislocation density theory[J].China Surface Engineering,2023,36(2):114-124.(in Chinese)
参考文献 35
LU S,ZHAO J,HUANG M,et al.Multiscale discrete dislocation dynamics study of gradient nano-grained materials[J].International Journal of Plasticity,2022,156:103356.
参考文献 36
PUSZTAI T,TEGZE G,TÓTH G I,et al.Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation[J].Journal of Physics:Condensed Matter,2008,20(40):404205.
参考文献 37
CORAUX J,PLASA T N,BUSSE C,et al.Structure of epitaxial graphene on Ir(111)[J].New Journal of Physics,2008,10(4):43033.
参考文献 38
HUA J,HARTMAIER A.Determining Burgers vectors and geometrically necessary dislocation densities from atomistic data[J].Modelling and Simulation in Materials Science and Engineering,2010,18(4):45007.
参考文献 39
LIU T,VAUDIN M D,BUNN J R,et al.Quantifying dislocation density in Al-Cu coatings produced by cold spray deposition[J].Acta Materialia,2020,193:115-124.
参考文献 40
KVASHIN N,ANENTO N,TERENTYEV D,et al.Atomic-level study on the interaction of plastic slip with Σ3 {112} tilt grain boundary and {112} twins in bcc metals[J].Physical Review Materials,2022,6(3):33606.
参考文献 41
CHISHOLM M F,KUMAR S,HAZZLEDINE P.Dislocations in complex materials[J].Science,2005,307(5710):701-703.
参考文献 42
WANG Y F,HUANG C X,FANG X T,et al.Hetero-deformation induced(HDI)hardening does not increase linearly with strain gradient[J].Scripta Materialia,2020,174:19-23.
目录contents

    摘要

    Cr-O-C 钝化层可以提高精密电铸脱模精度,但 Cr-O-C 钝化层对基底表面的钝化规律和对表层的影响尚未清楚。利用分子动力学方法,在多晶 Cu 表面沉积离散的 Cr、O 和 C 原子,获得不同比例和数量的 Cr-O-C 钝化层。计算结果表明,不同比例的 Cr、O 和 C 原子均可以大幅降低多晶 Cu 的表面能;随着原子数量的增加,多晶 Cu 的表面能呈下降趋势;Cr-O-C 钝化层增加了多晶 Cu 表层的位错密度;新增加的位错以 Shockley 位错为主;在一定沉积原子数量内,位错密度有极值。在多晶 Cu 表面电沉积不同密度的 Cr、O 和 C 原子,通过接触角测试验证了 Cr-O-C 钝化层降低多晶 Cu 表面能的结论。电沉积脱模强度和脱模表面粗糙度结果显示,随着沉积原子数的增加,脱模强度和脱模表面粗糙度均降低。研究结果可为利用离散 Cr-O-C 界面辅助精密电铸脱模提供一种解释。

    Abstract

    With the rapid development of new energy and energy-saving technologies, media, and information technology, the demand for high-end microstructure optical film materials has increased recently. Therefore, the surface roughness and shape position errors of a microstructure must be less than 10 nm. The electroforming error of the microstructure optical mold is primarily caused by plastic deformation during electroforming demolding. The Cr-O-C interface formed by the discrete Cr nuclei can assist in demolding. Because the passivation patterns of Cr, O, and C atom ratios and quantities on the substrate surface and the effect on the substrate surface layer are not fully understood, we used molecular dynamics methods to deposit discrete Cr, O, and C atoms on a polycrystalline Cu surface to obtain Cr-O-C passivation layers with different ratios and quantities of Cr, O, and C atoms. The surface energy of Cu/Cr-O-C was calculated using the classical embedded atom potential and the Lennard–Jones potential. The model utilizes the embedded atomic potential (EAM) to describe the interactions between Cu-Cu and Ni-Ni atoms, the interatomic interactions of Cr-Cr use the modified embedded atomic potential (MEAM), and the atomic potentials between Cu-Ni, Cr-Cu, Cr-Ni, O-O, O-Cu, O-Ni, O-Cr, C-C, C-Cu, C-Ni, C-Cr, and C-O use the classical Lennard–Jones potential. Before performing the calculations, an energy minimization command was employed to eliminate any structurally unsound entities during the modeling process. The relaxation time in the NVT system was 25 ps. The simulation results were subjected to visual analysis using the software OVITO. Commands, such as the dislocation extraction algorithm (DXA), were used to extract the crystal structure and dislocation changes from the models. The local crystal structures around the atoms were identified using common neighborhood analysis (CNA). Using a controlled sedimentation potential, we deposited different numbers of Cr nuclei on the surface of polycrystalline Cu via electrodeposition. Contact-angle measurements were performed on several Cu surfaces. Meanwhile, 0.5 mm-thick Ni layers were electrodeposited on Cu surfaces containing different deposition quantities of discrete Cr-O-C nuclei. After electroforming the Ni layer, the stripping strength of the Cu/Cr-O-C/Ni complex was tested and the surface roughness of the Ni layer was measured using a confocal laser microscope. The calculated results showed that different ratios of Cr, O, and C atoms significantly reduced the surface energy of polycrystalline Cu. The surface energy of polycrystalline Cu tended to decrease as the number of atoms increased, and the Cr, O, and C atoms also increased the dislocation density of the polycrystalline Cu surface layer. The newly added dislocations were dominated by Shockley dislocations, and the dislocation density exhibited extreme values for a certain number of deposited atoms. The conclusion that Cr, O, and C atoms reduced the surface energy of polycrystalline Cu was confirmed using contact angle tests. The results of the electrodeposition demolding strength and demolding surface roughness tests showed that they decreased with an increase in the number of deposited atoms. Therefore, surface modification of the original mold can reduce the plastic deformation during demolding, which is closely related to the control of the interface bonding strength. These results provide a possible explanation for the use of discrete Cr-O-C interfaces to assist in the interpretation of precision electroforming demolding. The bonding strength between the polycrystalline Cu substrate and the electroformed Ni layer involves several physical and chemical factors, and molecular dynamics methods enable us to understand the mechanism by which the anti-adhesion layer regulates the bonding force.

  • 0 前言

  • 超精密切削-精密电沉积-模压技术可实现微结构薄膜高性能、低成本加工[1-2],在光功能材料制造中应用前景广阔[3-4]。对于高端光学薄膜的工作模具,微结构的表面粗糙度要求在 10 nm 以下[5-7]。工作模具(Ni 沉积层)的表面精度取决于脱模塑性变形。对基底(多晶 Cu)的表面改性可以降低脱模塑性变形,提高脱模成功率。由于多晶 Cu 基底和 Ni 镀层间的结合强度既要满足在电沉积过程中沉积层不脱落的条件,又要保证脱模时基底和子模不产生过大的塑性变形。因此,通过对基底表面改性有效调控界面结合力仍然是一个挑战。

  • 表面改性的一种方法是在电沉积镀层之前对基底表面进行钝化,Cr 氧化物表现出非常出色的钝化效果。JIANG 等[8]在制备纳米柱阵列时,为确保剥离过程中纳米图案的质量,使用重铬酸钾与水的溶液处理 Au 层。用重铬酸钾浸泡基底是工业界普遍使用的电沉积辅助脱模方法,但对其辅助脱模机理的认识并非很清晰,普遍接受的解释是基底表面生成的 Cr 氧化物薄膜降低了基底的表面能,很少涉及 C 元素。另外,钝化层的连续性并不清楚,因此无法实施对界面结合力的有效调控,常导致脱模效果不稳定。为了避免重铬酸钾的毒性,HERBERT 等[9] 利用物理沉积 Cr 的方式处理基底表面,制备厚度在 8~50 μm 的涂层,明显降低了脱模力。HIDEKAZU 等[10]用电子束方法在基底制备了 Cr 涂层,讨论了 Cr 数量对电沉积过程和脱模的影响:当 Cr 原子密度低于 60×1012 / cm2 时,Ni 层在沉积过程中会与基底自动分离;当 Cr 原子密度高于 120×1012 / cm2 时,结合力太大无法实现顺利脱模;当 Cr 原子密度在 60×1012~120×1012 / cm2 时,既不发生 Ni 层在沉积过程中的自动分离现象,还能实现顺利脱模,但没有对原子数影响脱模效果的内在机理进行解释。在之前的研究中,利用电沉积还原 Cr3+在多晶 Cu 表面形成钝化层,实现光学模具顺利脱模,工艺简单而且不涉及使用重铬酸钾这类毒性大的化学品,并通过分子动力学方法,研究了包含 Cr-O-C 界面的 Cu / Ni 复合体和 Cu/Ni 双金属的拉伸变形行为[11-12]

  • 精密电沉积脱模精度与基底表面改性密切相关,分子动力学模拟方法能够提供体系表面能的信息,同时可以提供位错变化的微观结构信息[13-15]。研究 Cr-O-C 钝化层如何对多晶 Cu 表面进行改性,降低多晶 Cu 的表面能,可以提高理解钝化层调节界面结合力机制的能力。通过分子动力学仿真发现,多晶 Cu 的表面能的降低程度与 Cr、O 和 C 原子的数量有关。接触角测试[16]验证了分子动力学计算结果。另外,在研究 Cr、O 和 C 原子对多晶 Cu 表面改性的同时,发现 Cr-O-C 钝化层改变了 Cu 基底的表层位错及分布,这种变化强化了多晶 Cu 表层,这从另一个方面反映了钝化层提高脱模精度的原因,类似研究报道尚未见到。

  • 1 试验及表征

  • 1.1 Cr-O-C 钝化层及电铸 Ni 层的制备

  • 试验所用六水合硫酸铬、氯化铵、硼酸、氨基磺酸镍、氯化镍、十二烷基硫酸钠均为分析纯。电镀液 1:25~30 g / L 六水合硫酸铬,220~280 g / L 氯化铵,70~90 g / L 硼酸,在水浴恒温 43℃搅拌得到三价铬溶液体系。电铸液 2:300~400 g / L 氨基磺酸镍,10~20 g / L 氯化镍,20~40 g / L 硼酸, 0.05~0.15 g / L 十二烷基硫酸钠,在水浴恒温 45℃ 搅拌至溶解。

  • 基底为 30 mm×30 mm 的铜片,须打磨至亚微米表面粗糙度,再经丙酮除油、磷酸溶液除去氧化层、超声清洗、纯水冲洗后用氮气吹干备用。电铸过程首先在水浴恒温 43℃的电镀液 1 中以不同的沉积电位电镀 2 s 得到 Cr-O-C 钝化层;再将含有 Cr-O-C 钝化层的铜片作为阴极在水浴恒温 50℃的电铸液 2 中电铸 3.5 h 得到 Ni 层,沉积参数如表1 所示。根据公式[17]计算脱模强度

  • σ=FL
    (1)
  • 式中,σ为脱模强度,F 为平均脱模力,L 为电铸件的纵向宽度。

  • 表1 电沉积参数

  • Table1 Electrodeposition parameters

  • 1.2 样品表征

  • 采用上海辰华 CHI660E 电化学工作站进行恒电位沉积试验,铜片、铂片和饱和甘汞电极(SCE) 作为工作电极、对电极和参比电极。采用 GBL-L 电子拉力试验机测量脱模力(拉伸速度为130 mm / min)。采用德国 Sigma500 场发射扫描电子显微镜对含有 Cr-O-C 钝化层的铜片表面元素和表面形貌进行表征(电压 5 kV)。采用 Theta Lite 接触角测量仪进行表面接触角测量(用纯水及二甲基亚砜作为测试液)。采用日本 VK-1000 光学共聚焦显微镜对电铸 Ni 层表面粗糙度(Ra) 进行表征。

  • 2 建模及计算方法

  • 2.1 元素类型

  • 对多晶 Cu 表面起到钝化作用的不仅是 Cr 原子,为了确定多晶 Cu 表面的元素类型,采用电沉积方法在多晶 Cu 表面获得被还原的离散 Cr 晶核,经清洗和吹干后,利用能谱仪对多晶 Cu 表面进行元素测试。多处测试结果均表明,除了 Cu、Cr 元素,表面还有 O 和 C 元素存在[1118]。图1 为多晶 Cu 表面一个位置的元素测试结果。根据测试结果建立了分子动力学模型,界面上的 Cr、O 和 C 原子占比按照能谱测试结果分配。

  • 图1 Cu / Cr-O-C 表面能谱图

  • Fig.1 EDX spectrum on Cu / Cr-O-C surface

  • 2.2 Cu / Cr-O-C 模型的建立

  • 分子动力学仿真使用 Sandia 国家实验室开发的大规模原子 / 分子大规模并行模拟器 LAMMPS [19]。如图2a 所示,多晶 Cu 仿真模型尺寸为 80 Å× 80 Å×20 Å,其中z方向0 Å到1.8 Å为固定层,1.8 Å 到 18 Å 为恒温层,18 Å 到 20 Å 为牛顿层,固定层的 Cu 原子被冻结防止其他粒子穿过;恒温层的原子的温度区别于多晶 Cu 上部和固定层的原子的温度,以除去反应所产生的部分热量。

  • Cu 的点阵常数为 3.61 Å,晶粒的晶体随机取向,不同颜色表示不同晶粒,与晶粒取向无关,模型中一共有 30 个 Cu 晶粒,Cu 原子总数为 10 897。如图2b 所示,考虑到 Cr3+ 还原到多晶 Cu 表面变为 Cr,只在多晶 Cu 上方 50 Å 添加 z 方向电场,沉积的 Cr 原子与随机生成 O 和 C 原子构成高度为 2 Å 的 Cr-O-C 钝化层区域。设置模型的 xy 边界为周期性边界,z 边界为固定边界,为防止 O 和 C 原子逃逸,在 z 边界添加反射墙。

  • 图2 分子动力学仿真模型

  • Fig.2 Simulation models

  • 2.3 势函数

  • 计算中采用经典合金体系嵌入原子势(eam / fs) 和 Lennard-Jones 势[1320]来表达分子间的相互作用力,前者用于描述精确的原子间的力场体系,由两部分组成,在原子对势(pair)的基础上添加了电子云密度相关项,比单纯的对势精确度更高,后者适用于没有专用力场参数时方便获取参数的一种拟合方式,各元素间的 Lennard-Jones 势参数如表2 所示。

  • 表2 Lennard-Jones 势具体参数[21-24]

  • Table2 Lennard-Jones potential parameters[21-24]

  • Note: D—Depth of the potential well, α—Distance between atoms when the potential is zero.

  • 2.4 模拟方法

  • 运行仿真首先通过共轭梯度法调小能量和力的容差,加大迭代步数,对整个系统进行弛豫,在正则系综(NVT)中以 1 fs 的时间步长运行 25 000 步,消耗系统中的多余热量。沉积过程模拟结束后在系统 z 方向 20 Å 到 22 Å 处随机添加 C 和 O 原子,随后再次对系统进行能量最小化。在特定的 Cr、O 和 C 原子数、沉积电位、温度以及沉积时间对每组参数运行三次,统计数据的平均数,使结果更具有普遍性。使用 OVITO 软件进行沉积模拟后原子可视化分析,通过 DXA 对位错形态、类型以及位错密度进行统计[25]。此外,通过 CNA 对原子周围局部晶体结构进行识别[26]

  • 计算表面能通过复制镜像仿真模型,删除多晶 Cu 底部原子并且在上下两端形成一个真空层,消除上下端面之间的作用力,计算系统中所有原子配对、键、角、二面体、不当、长距离空间和固定能量的总势能 E0,能量最小化后将晶体从对称面拉伸分成两个的模型,增加两个表面,计算系统中所有原子的总势能 E1,则该表面的表面能为

  • E=E1-E02A
    (2)
  • 式中 A 为表面积[1327]

  • 3 结果及讨论

  • 3.1 表面能与接触角

  • 多晶 Cu 在 25℃时表面能的计算结果为 1 035.7 mJ / m2,与 WEN 等[28]的计算结果一致。根据能谱测试结果,计算 3 组添加不同比例 Cr、O 和 C 原子的多晶 Cu 表面能,用来评价不同比例下原子数量对多晶 Cu 表面能的影响。3 组 Cr、O 和 C 原子比例分别为 Cr∶O∶C=5∶6∶10、Cr∶O∶C=2∶ 4∶5 和 Cr∶O∶C=1∶2∶3。每一组改变 Cr、O 和C 原子数,分别计算 5 组值,结果如图3 所示。

  • 图3 不同 Cr、O 和 C 原子比例多晶 Cu 的表面能

  • Fig.3 Surface energy of polycrystalline Cu with different proportions of Cr, O and C atoms

  • 3 组 Cr-O-C 原子比例的多晶 Cu 表面相比于没有钝化的多晶 Cu 表面,表面能大幅下降,其中 Cr∶ O∶C=5∶6∶10从50个Cr原子435.0 mJ / m2 到250 个 Cr 原子 69.4 mJ / m2,Cr∶O∶C=1∶2∶3 从 50 个Cr 原子349.5 mJ / m2 到250 个Cr 原子4.8 mJ / m2, Cr∶O∶C=2∶4∶5 从 50 个 Cr 原子 435.0 mJ / m2 到 250 个 Cr 原子 69.4 mJ / m2,Cr∶O∶C=1∶2∶3 从 50 个 Cr 原子 277.2 mJ / m2 到 250 个 Cr 原子-16.9 mJ / m2,这说明 Cr-O-C 钝化层对于多晶 Cu 表面的钝化效果明显。当 Cr∶O∶C=5∶6∶10 时,多晶 Cu 的表面能高于其他两个比例的表面能,说明 O 和 C 含量对降低表面能有显著影响,这从二者和其他原子之间的 Lennard-Jones 势参数可以看出来。另外,无论哪组比例,随着 Cr、O 和 C 原子的增加,多晶 Cu 的表面能都逐渐降低,这和接触角测试结果一致。需要注意的是,在比例为 Cr∶O∶C=1∶2∶3 中 Cr 原子数增加到 250 时,表面自由能为负值,这意味着沉积 Cr 原子之后多晶 Cu 表面具有更高的吸附能,吸附了更多的 C,从另一个角度解释了多晶 Cu 表面 C 元素的占比比较高的原因[29-30]

  • 为了考察不同 Cr、O 和 C 原子数对多晶 Cu 表面能的影响,通过电化学沉积方式在多晶 Cu 表面沉积了不同数量的 Cr 核[31-33]。接触角测量结果如图4 所示,随着 Cr 核数的增加,多晶 Cu 的表面能逐渐降低。其中 Cu 表面的接触角平均值为 60.73º,沉积 3.10×1011、4.65×1011、6.68×1011 和 10.12× 1011 / cm2 密度 Cr 核的多晶 Cu 的接触角平均值分别为 83.98º、85.32º、99.50º 和 103.57º。与 Cu 表面相比,沉积 10.12×1011 / cm2 的 Cr 核使多晶 Cu 的表面接触角增加了 70.54%。

  • 图4 不同 Cr 核密度对应接触角测试结果

  • Fig.4 Results of copper surface contact angle tests for different density of Cr nuclei

  • 3.2 脱模强度

  • 多晶 Cu 基底的表面能对精密电铸脱模强度的影响如图5 所示。沉积不同数量 Cr 核时的 Cu / Ni 复合体的脱模强度。在多晶 Cu 基底沉积 5 组 Cr 核,密度分别为 2.23×1011、4.29×1011、5.08×1011、 10.34×1011和 15.80×1011 / cm2。可以看出,脱模强度随着界面沉积 Cr 核数的减少而增加,当密度为 15.80×1011 / cm2 时,脱模强度为 0.23 N / cm,比密度为 2.23×1011 / cm2 时脱模强度减少了 30.03%。因此,可以通过控制沉积 Cr 核的密度控制脱模力,而 Cr 原子可以通过电化学沉积方式得到,通过控制沉积参数,可以有效控制 Cr 核密度。

  • 图5 不同 Cr 核密度对应 Cu / Ni 复合体的脱模强度

  • Fig.5 Demolding strength of Cu / Ni complexes deposited with different density of Cr nuclei

  • 3.3 多晶 Cu 的表层位错

  • 材料强度和其内部的位错密度密不可分[34],电沉积脱模断裂面最终由 Cu / Ni 复合体薄弱面的位置决定。在计算中发现,Cr、O 和 C 原子沉积会影响到多晶 Cu 的表层位错。为了观察沉积 Cr、O 和 C 原子对多晶 Cu 内部位错的影响,采用 DXA 方法辨别晶体结构和位错,用银灰色标识晶体,深蓝色标识 Perfect 全位错,绿色标识 Shockley 不全位错,浅蓝色标识 Frank 不全位错,红色标识其他位错。图6a 为多晶 Cu 内部初始位错分布,包括 Shockley 不全位错和个别 Perfect 全位错,位错均分布在较大晶粒的晶界处,产生这种现象的原因在于,沉积前多晶 Cu 基底中较大的晶粒具有较长的位错源长度,激活应力较低[35]。初始位错较少,表明多晶 Cu 模型较合理,经过充分的弛豫后,内部应力处于较低状态。

  • 图6 初始与沉积后的位错分布

  • Fig.6 Initial dislocation distribution and post-deposition dislocation distribution

  • 诱发位错的主要因素有应力、晶界、杂质和过冷度,关于超薄薄膜与基底表面体系中无法形成完全共格的公度态,而表现为基底表面局部区域共格形成形态各异的界面位错网络的报道较多[36-37],而关于沉积离散原子对基底位错的影响鲜见报道。沉积 Cr、O 和 C 原子后,多晶 Cu 表层的位错发生了变化,沉积 50 个 Cr 原子、60 个 O 原子和 100 个 C 原子的多晶 Cu 位错如图6b。对比图6a 和图6b 可以看出,多晶 Cu 表层出现了位错湮灭与位错激活现象,这可能是由于沉积的原子和多晶 Cu 的表面原子之间的化学键导致多晶 Cu 内部的微变形,从而产生新的几何必要位错。此外,由于位错难以穿越晶界,在晶界处会产生位错堆积或位错转变。如图7,在晶界处,Shockley 不全位错与 Perfect 全位错转变为 Frank 不全位错,即

  • (3)
  • 图7 中的矢量方向表明,Frank 不全位错方向指向多晶 Cu 的表面。

  • 为探究不同沉积条件下多晶 Cu 表面及内部位错变化,利用下式分析多晶 Cu 表面及内部的位错密度[3538]

  • ρ=i=1n libiV
    (4)
  • 式中,V 是模型体积,n 是位错段数量,li 是该段位错的线矢量,bi 是该段位错的柏氏矢量,符号||表示矢量的大小。

  • 图7 晶界处的位错转变

  • Fig.7 Dislocation transition at grain boundaries

  • 图8 表示沉积不同比例及不同 Cr 原子多晶 Cu 表层的位错密度分布,多晶 Cu 的初始位错密度为 5.4×1016 / m2。沉积原子Cr∶O∶C的比例为5∶6∶ 10 和 2∶4∶5 的位错密度在沉积开始后逐渐增加,并在沉积 100 个 Cr 原子时分别达到 12.9×1016 / m2 和 12.3×1016 / m2,随着 Cr 原子的继续增加,两种比例的位错密度都有不同程度的降低,其中,Cr∶ O∶C=5∶6∶10 时,位错密度降低到 9.7×1016 / m2 后趋于稳定,沉积 Cr∶O∶C=1∶2∶3 时,多晶 Cu 表层位错密度在沉积开始后逐渐增加,在沉积 100 个 Cr 原子后逐渐稳定在 9.5×1016 / m2,发生这种情况的原因可能是,位错湮灭的速度和位错激活速度相当,到达一定程度后位错密度达到动态平衡[39]

  • 图8 不同 Cr、O 和 C 原子比例及数量下多晶 Cu 表层的位错密度

  • Fig.8 Dislocation density of polycrystalline Cu surface layers deposited with different proportions and quantities of Cr, O and C atoms

  • 应力产生位错,位错一旦形成又会产生自己的应力场,两者相互影响[40]。图8 说明沉积 Cr、O 和 C 原子增加了多晶 Cu 表层的位错密度,提高了多晶 Cu 的内应力与表层强度,而多晶 Cu 表层强度的提高会提高电沉积脱模精度[11]

  • 多晶 Cu 表层位错主要包括 4 种,分别是 Shockley 不全位错和、Perfect 全位错、Frank 不全位错和其他位错。图9~11 分别显示了 3 种 Cr、O 和 C 原子比例下,4 种位错随沉积原子数量的变化。

  • 图9a~9e 表示沉积 Cr∶O∶C=5∶6∶10 时多晶 Cu 表层位错的变化,其中 Shockley 不全位错和 Perfect 位错密度梯度较大,其他位错密度稳定在 1.5×1016 / m2。Frank 不全位错占比较小,位错密度在沉积 100 个 Cr 原子达到峰值0.6×1016 / m2。Perfect 位错密度在沉积 100 个 Cr 原子达到峰值 3.1× 1016 / m2 ,之后会逐渐降低。Shockley 不全位错在所有位错中占比最高,沉积开始之后,Shockley 不全位错的位错密度从沉积前的 2.9×1016 / m2 增长到沉积 100 个 Cr 原子后的 8.1×1016 / m2。而随着沉积 Cr 原子数量的增加,Shockley 不全位错密度降低之后再逐渐升高,部分 Shockley 不全位错发生湮灭,部分 Shockley 不全位错与 Perfect 位错转变为其他位错。

  • 图9 原子比例 Cr∶O∶C=5∶6∶10 时多晶 Cu 的表层位错

  • Fig.9 Surface layer dislocations in polycrystalline Cu at Cr : O : C=5 : 6 : 10

  • 图10a~10e 表示沉积 Cr∶O∶C=2∶4∶5 时多晶 Cu 表层位错的变化,其中 Shockley 不全位错密度梯度较大,其他位错密度变化梯度较小,在沉积 100 个 Cr 原子时达到峰值 2.7×1016 / m2。 Perfect 位错密度稳定在 1.6×1016 / m2,Frank 不全位错占比较小。Shockley 不全位错占比最高,在沉积 100 个 Cr 原子达到峰值 8.2×1016 / m2。随着沉积 Cr 原子数量的增加,部分 Shockley 不全位错转变为 Perfect 位错,之后稳定在 8.4× 1016 / m2

  • 图10 原子比例 Cr∶O∶C=2∶4∶5 时多晶 Cu 的表层位错

  • Fig.10 Surface layer dislocations in polycrystalline Cu at Cr : O : C=2 : 4 : 5

  • 图11a~11e 表示沉积原子 Cr∶O∶C=1∶2∶ 3 时多晶 Cu 表层位错的变化,其中 Shockley 不全位错密度梯度较大,其余位错密度变化较小。其他位错稳定在 2.1×1016 / m2,Perfect 位错密度稳定在 1.1×1016 / m2,Frank 不全位错占比较小。 Shockley 不全位错密度在沉积 100 个 Cr 原子时达到峰值 6.8×1016 / m2,之后部分 Shockley 不全位错转变为 Perfect 位错,Shockley 不全位错密度稳定在 6.4×1016 / m2

  • 沉积不同比例的 Cr-O-C 原子,多晶 Cu 内部及表面位错均以 Shockley 不全位错为主,而 Shockley 不全位错的出现将 FCC 结构晶格转变为 HCP 结构[41]。随着沉积原子数的变化,多晶 Cu 表层产生应变梯度,产生几何必须位错[42]

  • 图11 原子比例 Cr∶O∶C=1∶2∶3 时多晶 Cu 的表层位错

  • Fig.11 Surface layer dislocations in polycrystalline Cu at Cr : O : C=1 : 2 : 3

  • 位错的增加对多晶 Cu 表层有一定的强化效果。在三种沉积比例中,位错密度的峰值都出现在沉积 100 个 Cr 原子处,这说明在沉积 100 个 Cr 原子时,位错对于多晶 Cu 表面的强化效果最好。随着沉积原子的增加,对比多晶 Cu 表面能单调递减结果,表层位错密度趋于稳定,说明 Cr-O-C 层对多晶 Cu 表层强化效果是有限的。

  • 3.4 脱模粗糙度

  • 多晶 Cu 基底的表面能和表层位错直接影响精密电铸的脱模断面位置:脱模断面在 Cu / Ni 复合体界面处,脱模表面粗糙度最低。图12a~12e 为沉积不同密度 Cr 核时 Cu / Ni 复合体脱模后 Ni 层的表面粗糙度。在多晶 Cu 基底沉积 5 组 Cr 核,密度分别为 2.23×1011、4.29×1011、5.08×1011、10.34×1011、 15.80×1011 / cm2。从图12 可以看出,Ni 层的表面粗糙度随着沉积 Cr 原子密度的增大而降低,当 Cr 核密度为 2.23×1011 / cm2 时,Ra 为 0.33µm,是 Cr 核密度为 15.80×1011 / cm2Ra 的 5.5 倍。

  • 图12 沉积不同 Cr 核数对应 Cu / Ni 复合体的脱模表面粗糙度

  • Fig.12 The surface appearance and surface roughness Ra of Ni layer with different density of Cr nuclei

  • 从以上分析可以得出,通过改变沉积 Cr 核密度可以控制脱模后 Ni 层的表面粗糙度,而不同的 Cr 核可以通过控制沉积参数获得。

  • 4 结论

  • 采用分子动力学方法研究沉积 Cr-O-C 钝化层对多晶 Cu 的表面能和内部位错的影响规律,可为理解 Cr-O-C 钝化层辅助脱模机理提供帮助。研究结果表明:

  • (1)对于多晶 Cu 表面,在沉积 Cr-O-C 钝化层后,表面能降低,意味着 Cu / Cr-O-C 表面比 Cu 表面更趋于疏水。

  • (2)对于多晶 Cu 表面,在沉积 Cr-O-C 钝化层后,表层位错密度增加,意味着 Cu / Cr-O-C 表层比 Cu 表层强度低。

  • (3)多晶 Cu 的表面能变化及表层位错密度及分布是试验方法难以观察到的,分子动力学计算给出丰富的信息,利于从微观上进一步理解 Cr-O-C 层对多晶 Cu 表面改性的物理机制。

  • 参考文献

    • [1] 易培云,彭林法,来新民.光学薄膜微细结构制造方法新进展[J].科学通报,2015,60(Z2):2707-2718.YI Peiyun,PENG Linfa,LAI Xinmin.Recent progress in fabrication methods for micro structures on optical thin film[J].Chinese Science Bulletin,2015,60(Z2):2707-2718.(in Chinese)

    • [2] ROEDER M,GUENTHER T,ZIMMERMANN A.Review on fabrication technologies for optical mold inserts[J].Micromachines,2019,10(4):233.

    • [3] ZHANG S,ZHOU Y,ZHANG H,et al.Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J].International Journal of Machine Tools and Manufacture,2019,142:16-41.

    • [4] BARRANCO A,BORRAS A,GONZALEZ-ELIPE A R,et al.Perspectives on oblique angle deposition of thin films:From fundamentals to devices[J].Progress in Materials Science,2016,76:59-153.

    • [5] LIU C F,PAN C T,LIU K H,et al.Optical film for LED with triangular-pyramidal array using size-reducible embossing method[J].Journal of materials engineering and performance,2011,20:1544-1553.

    • [6] RIEMER O.A review on machining of micro-structured optical molds[J].Key Engineering Materials,2008,364:13-18.

    • [7] ZHANG S J,TO S,WANG S J,et al.A review of surface roughness generation in ultra-precision machining[J].International Journal of Machine Tools and Manufacture,2015,91:76-95.

    • [8] JIANG B,ZHOU M,WENG C,et al.Fabrication of nanopillar arrays by combining electroforming and injection molding[J].The International Journal of Advanced Manufacturing Technology,2016,86:1319-1328.

    • [9] HERBERT W G,HENDRIX L E,MAIER G J,et al.Electroforming mandrels with contoured surfaces.U.S.Patent 6,7,692[P].1999-12-28.

    • [10] MIMURA H,ISHIKURA H,MATSUYAMA S,et al.Electroforming for replicating nanometer-level smooth surface[J].Journal of Nanoscience and Nanotechnology,2011,11(4):2886-2889.

    • [11] YANG G,CHEN J,LI B,et al.Impact of Cr nanocrystalline discrete crystal nuclei on demolding strength and surface roughness of precision electroforming Ni layer on Cu substrate[J].Journal of Applied Electrochemistry,2022,52(7):1091-1100.

    • [12] 杨光,陈菊,张玉周,等.电沉积层中 Cr-O-C 界面影响Cu/Ni复合体脱模的分子动力学模拟[J].中国有色金属学报,2023,33(2):565-576.YANG Guang,CHEN Ju,ZHANG Yuzhou,et al.Molecular dynamics simulation of effect of cr-o-c interface on the demoulding of Cu/Ni complexes in electrodeposition layers[J].The Chinese Journal of Nonferrous Metals,2023,33(2):565-576.(in Chinese)

    • [13] LEROY F,MÜLLER-PLATHE F.Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method[J].The Journal of chemical physics,2010,133(4):44110.

    • [14] HADDEMAN E F C,THIJSSE B J.Transient sputtering of silicon by argon studied by molecular dynamics simulations[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,202:161-167.

    • [15] SHUANG F,AIFANTIS K E.Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions:A molecular dynamics study[J].Carbon,2021,172:50-70.

    • [16] 于会珠,崔偎偎,白子龙,等.微纳分级结构超疏水金属表面的电沉积构筑及性能[J].中国表面工程,2021,34(5):181-187.YU Huizhu,CUI Weiwei,BAI Zilong,et al.Electrodeposition and properties of micro/nanoscale hierarchical structured superhydrophobic metal surface[J].China Surface Engineering,2021,34(5):181-187.(in Chinese)

    • [17] KIM K S,KIM J.Elasto-plastic analysis of the peel test for thin film adhesion[J].Journal of Engineering Materials and Technology,1988,110(3):266-273.

    • [18] LI Y,YANG G,DENG D,et al.Effect of chromium coating thickness on surface adhesion of polyethylene terephthalate optical film[J].Surfaces and Interfaces,2021,26:101429.

    • [19] THOMPSON A P,AKTULGA H M,BERGER R,et al.LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic,meso,and continuum scales[J].Computer Physics Communications,2022,271:108171.

    • [20] ZHU X Y,LIU X J,ZONG R L,et al.Microstructure and mechanical properties of nanoscale Cu/Ni multilayers[J].Materials Science and Engineering:A,2010,527(4-5):1243-1248.

    • [21] HALICIO LU T,POUND G M.Calculation of potential energy parameters form crystalline state properties[J].Physica Status Solidi(A),1975,30(2):619-623.

    • [22] FILPPPOVA V P,KUNAVIN S A,PUGACHEV M S.Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances[J].Inorganic Materials:Applied Research,2015,6:1-4.

    • [23] WILHELM E,BATTIN R.Estimation of lennard-Jones(6,12)pair potential parameters from gas solubility data[J].The Journal of Chemical Physics,1971,55(8):4012-4017.

    • [24] RAPPÉ A K,CASEWIT C J,COLWEL K S,et al.UFF,a full periodic table force field for molecular mechanics and molecular dynamics simulations[J].Journal of the American Chemical Society,1992,114(25):10024-10035.

    • [25] BARBISAN L,MARZEGALLI A,MONTALENTI F.Atomic-scale insights on the formation of ordered arrays of edge dislocations in Ge/Si(001)films via molecular dynamics simulations[J].Scientific Reports,2022,12(1):3235.

    • [26] LI Y,ZENG X,WANG F.Investigation on the micro-mechanism of martensitic transformation in nano-polycrystalline NiTi shape memory alloys using molecular dynamics simulations[J].Journal of Alloys and Compounds,2020,821:153509.

    • [27] TYSON W R.Surface energies of solid metals[J].Canadian Metallurgical Quarterly,1975,14(4):307-314.

    • [28] WEN Y N,ZHANG J M.Surface energy calculation of the fcc metals by using the MAEAM[J].Solid State Communications,2007,144(3-4):163-167.

    • [29] ŁODZIANA Z,TOPSØE N Y,NØRSKOV J K.A negative surface energy for alumina[J].Nature Materials,2004,3(5):289-293.

    • [30] MATHUR A,SHARMA P,CAMMARATA R C.Negative surface energy—clearing up confusion[J].Nature Materials,2005,4(3):186-186.

    • [31] YANG G,LI Y,PI J,et al.Control of the adhesion strength between nickel replica and copper mold by electrochemical nucleation of lead[J].Journal of Applied Electrochemistry,2019,49:1003-1011.

    • [32] LI Y,YAN G G,WU Q,et al.Cr anti-sticking layer for improving mold release quality in electrochemical replication of PVC optical molds[J].Micromachines,2019,10(10):702-716.

    • [33] QIAN H,SUN J,LI Q,et al.Electrochemical mechanism of trivalent chromium reduction in ChCl-EG deep eutectic solvents containing trivalent chromium[J].Journal of the Electrochemical Society,2020,167(10):102511.

    • [34] 翟傲霜,黄啸,王欣,等.基于位错密度理论的喷丸强化诱导7050铝合金组织细化的数值模拟[J].中国表面工程,2023,36(2):114-124.ZHAI Aoshuang,HUANG Xiao,WANG Xin,et al.Numerical simulation of surface grain refinement of 7050 aluminum alloy induced by shot peening based on dislocation density theory[J].China Surface Engineering,2023,36(2):114-124.(in Chinese)

    • [35] LU S,ZHAO J,HUANG M,et al.Multiscale discrete dislocation dynamics study of gradient nano-grained materials[J].International Journal of Plasticity,2022,156:103356.

    • [36] PUSZTAI T,TEGZE G,TÓTH G I,et al.Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation[J].Journal of Physics:Condensed Matter,2008,20(40):404205.

    • [37] CORAUX J,PLASA T N,BUSSE C,et al.Structure of epitaxial graphene on Ir(111)[J].New Journal of Physics,2008,10(4):43033.

    • [38] HUA J,HARTMAIER A.Determining Burgers vectors and geometrically necessary dislocation densities from atomistic data[J].Modelling and Simulation in Materials Science and Engineering,2010,18(4):45007.

    • [39] LIU T,VAUDIN M D,BUNN J R,et al.Quantifying dislocation density in Al-Cu coatings produced by cold spray deposition[J].Acta Materialia,2020,193:115-124.

    • [40] KVASHIN N,ANENTO N,TERENTYEV D,et al.Atomic-level study on the interaction of plastic slip with Σ3 {112} tilt grain boundary and {112} twins in bcc metals[J].Physical Review Materials,2022,6(3):33606.

    • [41] CHISHOLM M F,KUMAR S,HAZZLEDINE P.Dislocations in complex materials[J].Science,2005,307(5710):701-703.

    • [42] WANG Y F,HUANG C X,FANG X T,et al.Hetero-deformation induced(HDI)hardening does not increase linearly with strain gradient[J].Scripta Materialia,2020,174:19-23.

  • 参考文献

    • [1] 易培云,彭林法,来新民.光学薄膜微细结构制造方法新进展[J].科学通报,2015,60(Z2):2707-2718.YI Peiyun,PENG Linfa,LAI Xinmin.Recent progress in fabrication methods for micro structures on optical thin film[J].Chinese Science Bulletin,2015,60(Z2):2707-2718.(in Chinese)

    • [2] ROEDER M,GUENTHER T,ZIMMERMANN A.Review on fabrication technologies for optical mold inserts[J].Micromachines,2019,10(4):233.

    • [3] ZHANG S,ZHOU Y,ZHANG H,et al.Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J].International Journal of Machine Tools and Manufacture,2019,142:16-41.

    • [4] BARRANCO A,BORRAS A,GONZALEZ-ELIPE A R,et al.Perspectives on oblique angle deposition of thin films:From fundamentals to devices[J].Progress in Materials Science,2016,76:59-153.

    • [5] LIU C F,PAN C T,LIU K H,et al.Optical film for LED with triangular-pyramidal array using size-reducible embossing method[J].Journal of materials engineering and performance,2011,20:1544-1553.

    • [6] RIEMER O.A review on machining of micro-structured optical molds[J].Key Engineering Materials,2008,364:13-18.

    • [7] ZHANG S J,TO S,WANG S J,et al.A review of surface roughness generation in ultra-precision machining[J].International Journal of Machine Tools and Manufacture,2015,91:76-95.

    • [8] JIANG B,ZHOU M,WENG C,et al.Fabrication of nanopillar arrays by combining electroforming and injection molding[J].The International Journal of Advanced Manufacturing Technology,2016,86:1319-1328.

    • [9] HERBERT W G,HENDRIX L E,MAIER G J,et al.Electroforming mandrels with contoured surfaces.U.S.Patent 6,7,692[P].1999-12-28.

    • [10] MIMURA H,ISHIKURA H,MATSUYAMA S,et al.Electroforming for replicating nanometer-level smooth surface[J].Journal of Nanoscience and Nanotechnology,2011,11(4):2886-2889.

    • [11] YANG G,CHEN J,LI B,et al.Impact of Cr nanocrystalline discrete crystal nuclei on demolding strength and surface roughness of precision electroforming Ni layer on Cu substrate[J].Journal of Applied Electrochemistry,2022,52(7):1091-1100.

    • [12] 杨光,陈菊,张玉周,等.电沉积层中 Cr-O-C 界面影响Cu/Ni复合体脱模的分子动力学模拟[J].中国有色金属学报,2023,33(2):565-576.YANG Guang,CHEN Ju,ZHANG Yuzhou,et al.Molecular dynamics simulation of effect of cr-o-c interface on the demoulding of Cu/Ni complexes in electrodeposition layers[J].The Chinese Journal of Nonferrous Metals,2023,33(2):565-576.(in Chinese)

    • [13] LEROY F,MÜLLER-PLATHE F.Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method[J].The Journal of chemical physics,2010,133(4):44110.

    • [14] HADDEMAN E F C,THIJSSE B J.Transient sputtering of silicon by argon studied by molecular dynamics simulations[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,202:161-167.

    • [15] SHUANG F,AIFANTIS K E.Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions:A molecular dynamics study[J].Carbon,2021,172:50-70.

    • [16] 于会珠,崔偎偎,白子龙,等.微纳分级结构超疏水金属表面的电沉积构筑及性能[J].中国表面工程,2021,34(5):181-187.YU Huizhu,CUI Weiwei,BAI Zilong,et al.Electrodeposition and properties of micro/nanoscale hierarchical structured superhydrophobic metal surface[J].China Surface Engineering,2021,34(5):181-187.(in Chinese)

    • [17] KIM K S,KIM J.Elasto-plastic analysis of the peel test for thin film adhesion[J].Journal of Engineering Materials and Technology,1988,110(3):266-273.

    • [18] LI Y,YANG G,DENG D,et al.Effect of chromium coating thickness on surface adhesion of polyethylene terephthalate optical film[J].Surfaces and Interfaces,2021,26:101429.

    • [19] THOMPSON A P,AKTULGA H M,BERGER R,et al.LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic,meso,and continuum scales[J].Computer Physics Communications,2022,271:108171.

    • [20] ZHU X Y,LIU X J,ZONG R L,et al.Microstructure and mechanical properties of nanoscale Cu/Ni multilayers[J].Materials Science and Engineering:A,2010,527(4-5):1243-1248.

    • [21] HALICIO LU T,POUND G M.Calculation of potential energy parameters form crystalline state properties[J].Physica Status Solidi(A),1975,30(2):619-623.

    • [22] FILPPPOVA V P,KUNAVIN S A,PUGACHEV M S.Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances[J].Inorganic Materials:Applied Research,2015,6:1-4.

    • [23] WILHELM E,BATTIN R.Estimation of lennard-Jones(6,12)pair potential parameters from gas solubility data[J].The Journal of Chemical Physics,1971,55(8):4012-4017.

    • [24] RAPPÉ A K,CASEWIT C J,COLWEL K S,et al.UFF,a full periodic table force field for molecular mechanics and molecular dynamics simulations[J].Journal of the American Chemical Society,1992,114(25):10024-10035.

    • [25] BARBISAN L,MARZEGALLI A,MONTALENTI F.Atomic-scale insights on the formation of ordered arrays of edge dislocations in Ge/Si(001)films via molecular dynamics simulations[J].Scientific Reports,2022,12(1):3235.

    • [26] LI Y,ZENG X,WANG F.Investigation on the micro-mechanism of martensitic transformation in nano-polycrystalline NiTi shape memory alloys using molecular dynamics simulations[J].Journal of Alloys and Compounds,2020,821:153509.

    • [27] TYSON W R.Surface energies of solid metals[J].Canadian Metallurgical Quarterly,1975,14(4):307-314.

    • [28] WEN Y N,ZHANG J M.Surface energy calculation of the fcc metals by using the MAEAM[J].Solid State Communications,2007,144(3-4):163-167.

    • [29] ŁODZIANA Z,TOPSØE N Y,NØRSKOV J K.A negative surface energy for alumina[J].Nature Materials,2004,3(5):289-293.

    • [30] MATHUR A,SHARMA P,CAMMARATA R C.Negative surface energy—clearing up confusion[J].Nature Materials,2005,4(3):186-186.

    • [31] YANG G,LI Y,PI J,et al.Control of the adhesion strength between nickel replica and copper mold by electrochemical nucleation of lead[J].Journal of Applied Electrochemistry,2019,49:1003-1011.

    • [32] LI Y,YAN G G,WU Q,et al.Cr anti-sticking layer for improving mold release quality in electrochemical replication of PVC optical molds[J].Micromachines,2019,10(10):702-716.

    • [33] QIAN H,SUN J,LI Q,et al.Electrochemical mechanism of trivalent chromium reduction in ChCl-EG deep eutectic solvents containing trivalent chromium[J].Journal of the Electrochemical Society,2020,167(10):102511.

    • [34] 翟傲霜,黄啸,王欣,等.基于位错密度理论的喷丸强化诱导7050铝合金组织细化的数值模拟[J].中国表面工程,2023,36(2):114-124.ZHAI Aoshuang,HUANG Xiao,WANG Xin,et al.Numerical simulation of surface grain refinement of 7050 aluminum alloy induced by shot peening based on dislocation density theory[J].China Surface Engineering,2023,36(2):114-124.(in Chinese)

    • [35] LU S,ZHAO J,HUANG M,et al.Multiscale discrete dislocation dynamics study of gradient nano-grained materials[J].International Journal of Plasticity,2022,156:103356.

    • [36] PUSZTAI T,TEGZE G,TÓTH G I,et al.Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation[J].Journal of Physics:Condensed Matter,2008,20(40):404205.

    • [37] CORAUX J,PLASA T N,BUSSE C,et al.Structure of epitaxial graphene on Ir(111)[J].New Journal of Physics,2008,10(4):43033.

    • [38] HUA J,HARTMAIER A.Determining Burgers vectors and geometrically necessary dislocation densities from atomistic data[J].Modelling and Simulation in Materials Science and Engineering,2010,18(4):45007.

    • [39] LIU T,VAUDIN M D,BUNN J R,et al.Quantifying dislocation density in Al-Cu coatings produced by cold spray deposition[J].Acta Materialia,2020,193:115-124.

    • [40] KVASHIN N,ANENTO N,TERENTYEV D,et al.Atomic-level study on the interaction of plastic slip with Σ3 {112} tilt grain boundary and {112} twins in bcc metals[J].Physical Review Materials,2022,6(3):33606.

    • [41] CHISHOLM M F,KUMAR S,HAZZLEDINE P.Dislocations in complex materials[J].Science,2005,307(5710):701-703.

    • [42] WANG Y F,HUANG C X,FANG X T,et al.Hetero-deformation induced(HDI)hardening does not increase linearly with strain gradient[J].Scripta Materialia,2020,174:19-23.

  • 手机扫一扫看