en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴玉厚,男,1955年出生,博士,教授,博士研究生导师。主要研究方向为硬脆材料精密及超精密加工技术。E-mail:wuyh@sjzu.edu.cn

通讯作者:

闫广宇,男,1991年出生,博士,讲师,硕士研究生导师。主要研究方向为功能薄膜制备技术。E-mail:ygy0813@sjzu.edu.cn

中图分类号:TQ174

DOI:10.11933/j.issn.1007-9289.20220518001

参考文献 1
文怀兴,孙建建,陈威.氮化硅陶瓷轴承润滑技术的研究现状与发展趋势[J].材料导报,2015,29(17):6-14.WEN Huaixing,SUN Jianjian,CHEN Wei.Review on research status and development trend on silicon nitride ceramic bearings[J].Materials Review,2015,29(17):6-14.(in Chinese)
参考文献 2
张创,宋仪杰.氮化硅陶瓷的研究与应用进展[J].中国陶瓷工业,2021,28(3):40-47.ZHANG Chuang,SONG Yijie.Progress in research and application of silicon nitride ceramics[J].China Ceramic Industry,2021,28(3):40-47.
参考文献 3
MARTINHO R P,SLIVA F J G,BAPTISTA A P M.Wear behaviour of uncoated and diamond coated Si3N4 tools under severe turning conditions[J].Wear,2007,263(7-12):1417-1422.
参考文献 4
吕反修.化学气相沉积金刚石膜的研究与应用进展[J].材料热处理学报,2010,31(1):15-28.LÜ Fanxiu.Progress in research and application development of CVD diamond film[J].Transactions of Materials and Heat Treatment,2010,31(1):15-28.(in Chinese)
参考文献 5
魏秋平,王玲,余志明,等.进气方式对热丝CVD制备金刚石薄膜的影响[J].中国表面工程,2009,22(6):36-41,46.WEI Qiuping,WANG Ling,YU Zhiming,et al.Effect of reacting gas admission way on HFCVD diamond films[J].China Surface Engineering,2009,22(6):36-41,46.(in Chinese)
参考文献 6
孙磊,熊计,杨天恩.金属陶瓷及硬质合金表面 CVD/PVD 涂层的摩擦与切削性能[J].中国表面工程,2019,32(6):45-55.SUN Lei,XIONG Ji,YANG Tianen.Friction and cutting properties of CVD/PVD coatings on cermet and cemented carbide surfaces[J].China Surface Engineering,2019,32(6):45-55.
参考文献 7
SHEN B,SUN F H,ZhANG Z M,et al.Application of ultra-smooth composite diamond film coated WC-Co drawing dies under water-lubricating conditions[J].Transactions of Nonferrous Metals Society of China,2013,23(1):161-169.
参考文献 8
吴玉程.金刚石薄膜制备方法与应用的研究现状[J].材料热处理学报,2019,40(5):1-16.WU Yucheng.Research trends of preparation and application of diamond film[J].Transactions of Materials and Heat Treatment,2019,40(5):1-16.(in Chinese)
参考文献 9
SLACK G A,BARTRAM S F.Thermal expansion of some diamondlike crystals[J].Journal of Applied Physics,1975,46(1):89-98.
参考文献 10
NETO M A,FERNANDES A J S,SILVA R F,et al.Nucleation of nanocrystalline diamond on masked/unmasked Si3N4 ceramics with different mechanical pretreatments[J].Diamond & Related Materials,2008,17(4-5):440-445.
参考文献 11
ALMEIDA F A,AMARAL M,OLIVEIRA F J,et al.Machining behaviour of silicon nitride tools coated with micro-,submicro-and nanometric HFCVD diamond crystallite sizes[J].Diamond and Related Materials,2006,15(11):2029-2034.
参考文献 12
AMARAL M,OLIVEIRA F J,BELMONTE M,et al.Hot-filament chemical vapour deposition of nanodiamond on silicon nitride substrates[J].Diamond and Related Materials,2004,13(4-8):643-647.
参考文献 13
LIU J,HEI L F,CHEN G C,et al.Influence of seeding pre-treatments on mechanical properties of ultrananocrystalline diamond films on silicon and Si3N4 substrates[J].Thin Solid Films,2014,556:385-389.
参考文献 14
MALLIKA K,KOMANDURI R.Low pressure microwave plasma assisted chemical vapor deposition(MPCVD)of diamond coatings on silicon nitride cutting tools[J].Thin Solid Films,2001,396(1-2):145-165.
参考文献 15
SILVA V A,CORAT E J,SILVA C R M.Influence of CF4 addition for HFCVD diamond growth on silicon nitride substrates[J].Diamond and Related Materials,2001,10(11):2002-2009.
参考文献 16
CAPPELLI E,ESPOSITO L,PINZARI F,et al.Diamond nucleation and adhesion on sintered nitride ceramics[J].Diamond and Related Materials,2002,11(10):1731-1746.
参考文献 17
王贺,沈建辉,闫广宇,等.甲烷浓度对碳化硅基底金刚石薄膜摩擦性能影响[J].人工晶体学报,2021,50(11):267-2074.WANG He,SHEN Jianhui,YAN Guangyu,et al.Tribological properties of SiC-based diamond films synthesized with different methane concentrations[J].Journal of Synthetic Crystals,2021,50(11):267-2074.(in Chinese)
参考文献 18
罗凯,汪建华,余军火,等.高功率微波等离子体环境下甲烷浓度对金刚石膜的影响[J].化工学报,2018,69(S2):505-511.LUO Kai,WANG Jianhua,YU Junhuo,et al.Effect of methane concentration on diamond film in high power[J].CIESC Journal,2018,69(S2):505-511.(in Chinese)
参考文献 19
ZHANG J G,WANG X C,SHEN B,et al.Effect of deposition parameters on micro-and nano-crystalline diamond films growth on WC-Co substrates by HFCVD[J].Transactions of Nonferrous Metals Society of China,2014,24(10):3181-3188.
参考文献 20
SCHWARZ S,ROSIWAL S M,FRANK M,et al.Dependence of the growth rate,quality,and morphology of diamond coatings on the pressure during the CVD-process in an industrial hot-filament plant[J].Diamond and Related Materials,2002,11(3-6):589-595.
参考文献 21
BUCHKREMER H,REN H,WEISS H.Optimization of MW-PACVD diamond deposition parameters for high nucleation density and growth rate on Si3N4 substrate[J].Diamond and Related Materials,1997,6(2-4):411-416.
参考文献 22
DUA A K,GEORGE V C,FRIEDRICH M,et al.Effect of deposition parameters on different stages of diamond deposition in HFCVD technique[J].Diamond and Related Materials,2004,13(1):74-84.
参考文献 23
WANG X X,LIN Z C,SHEN B,et al.Effects of deposition parameters on HFCVD diamond films growth on inner hole surfaces of WC-Co substrates[J].Transactions of Nonferrous Metals Society of China,2015,25(3):791-802.
参考文献 24
WEI Q P,YU Z M,ASHFOLD M,et al.Synthesis of micro-or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition[J].Applied Surface Science,2010,256(13):4357-4364.
参考文献 25
VIDAKIS N,ANTONIADIS A,BILALIS N.The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds[J].Journal of Materials Processing Technology,2003,143-144(1):481-485.
参考文献 26
ZHOU D,MCCAULEY T G,QIN L C,et al.Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma[J].Journal of Applied Physics,1998,83(1):540-540.
参考文献 27
CHEN S L,SHEN B,ZHANG J G,et al.Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy[J].Transactions of Nonferrous Metals Society of China,2012,22(12):3021-3026.
参考文献 28
PRAWER B S,NEMANICH R J.Raman spectroscopy of diamond and doped diamond[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2004,362(1824):2537-2565.
参考文献 29
LEE S T,LIN ZD,JIANG X.CVD diamond films:nucleation and growth[J].Materials Science and Engineering,1999,25:123-154.
参考文献 30
PFEIFFER R,KUZMANY H,SALK N,et al.Evidence for trans-polyacetylene in nano-crystalline diamond films[J].Applied Physics Letters,2003,82(23):4149-4150.
参考文献 31
FERRARI A C,ROBERTSON J.Resonant Raman spectroscopy of disordered,amorphous,and diamondlike carbon[J].Physical Review B,2001,64(7):075414-1-13.
参考文献 32
代明江,王德政,周克崧,等.涂层金刚石刀具研究(1)-沉积工艺与性能关系[C]//第二届中国功能材料及应用学术会议论文集,成都,1995-10-01.重庆:功能材料,1995,26:646-649.DAI Mingjiang,WANG Dezheng,ZHOU Kesong,et al.A study on the tolls coated with diamond films(1)-the relationships between the properties and the deposition process parameters[C]//Proceedings of the Second China Conference on Functional Materials and Applications,Chengdu,1995-10-01.Chongqing:Journal of Functional Materials,1995,26:646-649.(in Chinese)
参考文献 33
黄元盛,罗承萍,邱万奇.化学气相沉积金刚石薄膜的晶体缺陷和杂质[J].中国表面工程,2004(1):5-9.HUANG Yuansheng,LUO Chengping,QIU Wanqi.Crystal defects and impurities of CVD diamond films[J].China Surface Engineering,2004(1):5-9.(in Chinese)
参考文献 34
LIANG X,LEI W,ZHU H,et al.Effect of pressure on nanocrystalline diamond films deposition by hot filament CVD technique from CH4/H2 gas mixture[J].Surface and Coatings Technology,2007,202(2):261-267.
参考文献 35
罗福平,汪建华,苏帆,等.温度场对金刚石薄膜质量的影响[J].真空与低温,2014,20(2):109-112.LUO Fuping,WANG Jianhua,SU Fan,et al.Influence f temperature field on the preparation of diamond films[J].Vacuum & Cryogenics,2014,20(2):109-112.(in Chinese)
参考文献 36
WEI Q P,YU Z M,MA L,et al.The effects of temperature on nanocrystalline diamond films deposited on WC-13 wt.% Co substrate with W-C gradient layer[J].Applied Surface Science,2009,256(5):1322-1328.
目录contents

    摘要

    为了避免氮化硅材料因产生裂纹或延伸破裂等造成的失效,利用热丝化学气相沉积法(Hot filament chemical vapor deposition,HFCVD)在氮化硅基底上沉积具有高硬度的金刚石涂层,采用单因素影响试验,分别探究碳源浓度、腔室压力、基底温度对金刚石成膜过程的影响机制,探究微米和纳米金刚石涂层的最优生长工艺参数。利用拉曼光谱仪(Raman)、X 射线衍射仪(XRD)、扫描电子显微镜(SEM)和原子力显微镜(AFM)对不同参数制备出的金刚石的形核、表面形貌、薄膜质量、表面粗糙度等进行表征,利用洛氏硬度计分析膜基结合力。结果表明,腔室压力越大,活性物质到达基底的动能越小,不利于金刚石的成核和生长。生长速率和表面粗糙度主要受甲烷浓度的影响:甲烷浓度从 1%到 7%,生长速率从 0.84 μm / h 上升到 1.32 μm / h;表面粗糙度 Ra 从 53.4 nm 降低到 23.5 nm;甲烷浓度过高导致涂层脱落严重,膜基结合力变差;晶面形貌和金刚石含量受到基底温度的影响较为明显,随着温度升高,金刚石质量提高。综合基底温度、腔室压力对金刚石涂层的影响,确定最佳生长温度为 900 ℃,气压为 1 kPa。调节甲烷浓度 1%为微米金刚石;甲烷浓度 5%为纳米金刚石。研究方法可以优化在陶瓷基底上制备具有优异性能的金刚石薄膜的制备参数。

    Abstract

    To avoid failures such as cracking or elongation of silicon nitride (Si3N4), it is possible to use erosion-resistant diamond films. Diamond has very high hardness, high thermal conductivity, and a low friction factor, and its coefficient of thermal expansion is very close to that of Si3N4, which provides good adhesion, low residual stresses, and significantly increases the service life when deposited on Si3N4 substrates. Single-layer diamond films were deposited on Si3N4 substrates using hot filament chemical vapor deposition (HFCVD). A single variable control method was used to investigate the effect of the carbon source concentration, chamber pressure, and substrate temperature on the nucleation and growth of diamond on Si3N4 and to investigate the optimal parameters for the growth of micro- and nanodiamond films. Each of the three factors is defined as three series, where methane was selected as the carbon source. Series A represents the variation in the methane concentration, series B represents the variation in the chamber pressure, and series C represents the variation in the substrate temperature. The diamond surface and cross-sectional morphology, coating quality, and surface roughness of the diamonds in the as-deposited diamond films prepared with different parameters were characterized using Laser Raman Spectrometry (Raman), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). Indentation experiments were carried out using a Rockwell hardness tester to observe the cracks in the films and the area of delamination, in order to analyze the adhesion force between the diamond films deposited with different parameters and the substrates The results are summarized as follows: (1) The growth rate and surface roughness are mainly affected by the methane concentration: the growth rate increased from 0.84 μm / h to 1.32 μm / h when the methane concentration was increased from 1% to 7%, whereas the surface roughness (Ra) decreased from 53.4 nm to 23.5 nm. As the methane concentration increased, more carbon radicals were deposited in the films; however, secondary nucleation tended to occur and the non-diamond phase increased, resulting in a reduction in the surface roughness and film quality. Excessive methane concentration reduces the mechanical strength and hardness of the films themselves, decreasing the adhesion force with the substrate and increasing the delamination of the films when stressed by forces. (2) The chamber pressure affects the kinetic energy of the active material within the reaction chamber that reaches the substrate. As the pressure increased, the kinetic energy decreased, which is unfavorable for diamond nucleation and growth. Although the diamond content was highest in the films grown at 2 kPa, analysis of the other factors collectively showed that the adhesive force for the substrate and surface morphology of the films grown at 2 kPa were not as good as those of the diamond films deposited at 1 kPa. (3) The surface morphology and diamond phase composition of the films were significantly influenced by the substrate temperature. At 800 ℃, the surface of the coating could not form complete and continuous diamond crystals, many cavities appeared and no obvious diamond characteristic peaks appeared in the Raman spectra. Therefore, a temperature below 800 ℃ is not suitable for the growth of diamond. When the temperature was increased from 850 ℃ to 900 ℃, the nucleation density of the diamond surface and the quality increased. In addition, the content of the non-diamond phase was reduced, and the surface had a more stable (111) crystalline structure, which enables the growth of high-quality films and provides a stronger adhesion force to the substrate. (4) The optimum growth temperature and air pressure were 900 ℃ and 1 kPa, respectively. The methane concentration in the reaction chamber was adjusted to control the diamond grain size and sp2 carbon content, giving films with 1% microdiamond and 5% nanodiamond. The preparation parameters for diamond films with excellent properties on ceramic substrates were optimized using three-factor-coupled experiments.

  • 0 前言

  • 氮化硅(Si3N4)是一种具有高硬度、高断裂韧性、高耐磨性、良好的化学和热稳定性的先进工程陶瓷材料[1-2]。然而,Si3N4 陶瓷轴承的干摩擦因数较高,摩擦学性能并不理想[3],其表面也可能因颗粒撞击或氧化而受损。为避免 Si3N4 上裂纹和延伸相关的失效形式,可选用非常坚硬且耐侵蚀涂层降低损耗。

  • 金刚石(Diamond,D)具有优异的物理力学性能,如极高的硬度、较高的导热系数和较低的摩擦因数等[4-5],被广泛应用在各种领域。化学气相沉积 (Chemical vapor deposition,CVD)金刚石涂层材料和天然金刚石性能相似,且已被证明可以延长材料的寿命和提高生产率[6-7]。其中,热丝化学气相沉积技术(Hot filament chemical vapor deposition, HFCVD)因具有操作方便、成本低廉、多功能性等优点而成为最常用的镀膜技术之一[8]。在所有的沉积衬底材料中,Si3N4与金刚石的热膨胀系数十分接近[9],是一种优异的金刚石涂层衬底材料[10]。在 Si3N4 上沉积金刚石薄膜可以获得良好的附着力和较低的残余应力。

  • CVD 金刚石涂层发展至今,国内外学者在这方面取得了丰硕的成果。目前,学者们已经成功在 Si3N4基底上制备出性能优异的微米金刚石涂层[11]、纳米金刚石涂层[12]、超纳米金刚石涂层[13]等,并对制备参数[14]、结合力[15]、预处理方式[16]等都进行深等都进行深入细致的探究。这些也足以证明在 Si3N4 上沉积金刚石涂层具有广阔的应用前景。

  • 碳源浓度、腔室压力和基底温度是影响化学气相沉积的主要因素。近年来,大量文献报道了沉积参数对金刚石涂层质量和均匀性的影响。王贺等[17] 的研究表明,随着甲烷浓度从 1%增大到 7%,晶粒尺寸和表面粗糙度呈现出先增大后减小的趋势,涂层中的压应力始终增强。罗凯等[18]也证明随着甲烷浓度的增加,晶粒尺寸逐渐增大,涂层内增加更多非金刚石相,导致结晶质量变差。ZHANG 等[19]在 1.3 kPa、3.9 kPa、和 5.2 kPa 条件下制备金刚石涂层,研究发现压力对金刚石的晶粒大小、生长速率和表面形貌有明显的影响。较低的腔室压力 (1.3 kPa)最有利于纳米金刚石涂层的生长。 SCHWARZ 等[20]研究基底温度在 760~850℃范围内金刚石的生长速率变化。研究表明,在高压条件下温度几乎不会影响生长速率,但在低压下,金刚石涂层的生长速率随着基底温度的增加而显著增加。BUCHKREMER 等[21]、DUA 等[22]、WANG 等[23]也分别研究了在不同基底上各阶段沉积参数的影响。因此,结合以往研究可以看出,金刚石从成核到生长过程中受基底工艺参数影响较大,而影响金刚石生长的三因素耦合分析也一直是涂层制备的难点和热点问题。

  • 针对上述问题,利用 HFCVD 法在 Si3N4 基底上制备金刚石涂层,根据影响涂层生长的基本因素碳源浓度、腔室压力、基底温度三个方面设计试验参数并制备涂层,对金刚石涂层生长规律进行耦合分析,探究制备过程中最适宜的反应条件。

  • 1 试验准备

  • 1.1 试验步骤及参数

  • 试验采用 HFCVD 技术将金刚石沉积在尺寸为 φ 20 mm×2 mm Si3N4 圆片上。通过改变碳源浓度、腔室压力和基底温度,探究金刚石涂层的生长规律。沉积前先对基底进行预处理,达到去除基底表面的有机、无机杂质和提高金刚石成核密度的作用[24]

  • 步骤如下:

  • (1)依次放置于丙酮、去离子水、无水乙醇中,各超声处理 15 min。

  • (2)采用金刚石溶液∶水=100∶1 的比例配制 50 ml 的金刚石悬浮液,将样品放置其中超声处理 30 min。

  • (3)在无水乙醇中超声处理 3 min。

  • 制备过程选用的反应气源为氢气和甲烷,分别控制甲烷浓度、腔室压力和基底温度制备金刚石涂层,沉积时间 3 h。ABC 代表改变单一变量的系列, A 代表改变甲烷浓度,B 代表改变腔室压力,C 代表改变基底温度,具体试验设计参数如表1 所示。

  • 表1 制备试验参数设计

  • Table1 Design of experimental parameters for preparation

  • 1.2 结构表征及力学性能测试

  • 采用 HITACHISU-70 场发射扫描电子显微镜 ( Field emission scanning electron microscope,FESEM),观察金刚石涂层的表面和截面晶粒形貌。采用日本岛津 X 射线衍射仪 XRD-7000(X-Ray diffractometer,XRD),分析金刚石涂层中的晶粒取向,测试采用铜 K 线,波长为 1.546 Å。采用 LabRAM HR Evolution 系列显微共聚焦拉曼光谱仪(Laser raman spectrometry,Raman),观察涂层内的拉曼光谱特征峰确定金刚石相、非金刚石相、石墨相的存在,选用 532 nm 激发波长,光栅为每毫米 1 800 刻线。采用 Innova 系列原子力显微镜(Atomic force microscopy,AFM),表征涂层表面形貌和测试涂层的表面粗糙度,每个样品进行 3 个区域的测试,区域范围 5 μm×5 μm。采用 LCR500 洛氏硬度计 (Rockwell type hardness tester),判断压痕破损面积和裂痕半径,评价涂层结合性能,根据德国 3198 号 VDI 标准,结合力分为 HF1-HF6 六个等级[25],其中 HF1-HF4 代表较好的结合力;HF5 和 HF6 代表较差的结合力。测试选用 HRA 标准金刚石圆锥压头,加载力设置为 588 N,加载时间设为 5 s,保持时间 3 s,卸载时间 3 s,最终形成具有火山口状形貌的压痕,对同一个平面样品进行三次不同位置的压痕测试并进行显微观察。

  • 2 结果与讨论

  • 2.1 甲烷浓度对金刚石涂层生长的影响

  • 研究甲烷浓度对金刚石涂层生长的影响,设定基底温度为 900℃,压力 1 kPa,甲烷浓度分别是 1%、 3%、5%、7%,对应样品编号为 A1、A2、A3、A4。

  • 图1 为不同甲烷浓度下生长金刚石涂层表面和截面形貌图。从图中可看出,A1 样品表面晶粒生长紧密,金刚石晶粒轮廓清晰可见,晶粒具有完整性,裸露面以锥形的(111)面为主,截面为柱状晶结构,说明该条件下可沉积高质量的微米金刚石涂层。A2 样品的金刚石晶粒轮廓逐渐消失,表面是几百纳米的小晶粒聚集成的团簇,从截面也可看出表面的表面粗糙度明显低于 A1 样品。晶粒细化导致团簇现象是因为在高碳源浓度下,在晶体成长的同时又形成新的晶核,从而形成聚晶体。A3 样品具有更小的晶粒尺寸和光滑的表面,这是因为甲烷浓度升高时,腔内气体成分增多,热丝分解气体后反应腔中的碳自由基含量增多,形成 sp 2 碳的速度加快,而很大一部分 sp 2 碳没有被氢原子刻蚀掉而残留在涂层中,阻碍晶粒的进一步生长,所以晶粒减小[26]。A4 样品的表面晶粒尺寸更小,有利于降低表面粗糙度。

  • A1、A2、A3、A4 样品对应的金刚石涂层生长速率也有所不同,分别是 0.84 μm / h、1 μm / h、 1.22 μm / h、1.32 μm / h。随着甲烷浓度增高,分解碳基团浓度升高,氢离子刻蚀速度不变,导致二次形核能力升高,所以涂层生长速率加快。

  • 图1 不同甲烷浓度沉积金刚石涂层表面和截面形貌

  • Fig.1 Cross-sectional and Morphological SEM images of diamond films deposited at different CH4 concentrations

  • 通过对不同甲烷浓度下生长的金刚石涂层进行 XRD 表征,可以确定甲烷浓度对金刚石质量和晶粒取向的影响。如图2 中星号标识为 Si3N4 基底物相峰,衍射角度 43.9°和 75.3°分别为金刚石 (111)面和(220)面的衍射峰[27]。A1 样品生长的金刚石涂层(111)衍射峰尖锐且明显,说明该条件下金刚石结晶性良好。随着甲烷浓度增大,从 A2 样品到 A4 样品的 XRD 图看出(111)衍射峰逐渐宽化,表明金刚石晶粒尺寸减小或非金刚石碳的生长,与图1 和图3 的结果一致。A4 样品的金刚石(111)晶面已经严重宽化,参考图1 中 A4 样品的形貌,说明其表面主要是非金刚石碳,晶界密度极高。

  • 图2 不同甲烷浓度沉积金刚石涂层的 XRD 图谱 (A1-CH4 1%、A2-CH4 3%、A3-CH4 5%、A4-CH4 7%)

  • Fig.2 XRD patterns of diamond films deposited at different CH4 concentrations (A1-CH4 1%, A2-CH4 3%, A3-CH4 5%, A4-CH4 7%)

  • 图3 是不同甲烷浓度金刚石涂层的分峰拟合拉曼图谱。拉曼光谱是表征金刚石涂层结晶质量的主要手段,可根据拉曼峰位置确定金刚石成分以及 sp 3 杂化碳的含量来确定金刚石的结晶质量。图中可以看出随着甲烷浓度的升高,金刚石含量下降,非金刚石碳含量增加,以反式聚乙炔和无定形碳的形式存在于涂层中。A1 样品中存在尖锐的金刚石特征峰 (1 332 cm−1[28],说明该条件能制备出高质量微米金刚石。当甲烷浓度增加,v1(1 150 cm−1)和 v3 (1 480 cm−1)的拉曼峰增强,意味着非金刚石相增加。A4 样品中几乎不存在金刚石相,碳自由基以非金刚石相形式存在[29]。拉曼光谱显示为 1 150 cm−1 和 1 480 cm−1 处的特征峰增强,这两个峰也被认为是纳米金刚石涂层的标志[30-31],此时的晶粒尺寸最小,同时石墨(1 580 cm−1)含量增加。对不同甲烷浓度的拉曼图谱进行分峰处理,也可以明显发现上述结果。一般认为在金刚石膜的形核和生长过程中,等离子体中 CH2、H 原子以及 C 原子的相对浓度起着重要的作用,H 原子具有饱和基底表面 C 原子悬键以及刻蚀石墨的作用。随着 CH4浓度提高,分解出的 H 原子浓度相对减少导致对石墨的刻蚀作用减小,C2 的浓度提高有助于石墨的形成,因此非金刚石相成分提高[32]

  • 图3 不同甲烷浓度沉积金刚石涂层的分峰拟合拉曼图谱

  • Fig.3 Fitting curve of Raman spectra of diamond films deposited at different CH4 concentrations

  • 影响金刚石拉曼峰强度的因素较多,通过金刚石组分与非金刚石组分的相对强度的比较可以间接反映内组分含量,及 CVD 金刚石膜的纯度。采用金刚石特征拉曼峰(1 332 cm−1)与非金刚石组分拉曼峰(1 580 cm−1)的峰高比 Id / In 反映涂层纯度,其数值越大表明金刚石纯度越高。图4 是在不同甲烷浓度下的 Id / In。A1 样品的涂层纯度最高,金刚石相含量最多,这与拉曼的结果一致。从 A1 样品到 A4 样品,明显观察到 Id / In 变小,说明涂层中非金刚石碳增加,涂层内金刚石纯度减小。

  • 图4 不同甲烷浓度沉积金刚石相与非金刚石相的比值

  • Fig.4 Diamond phase compared to Non-diamond values at different CH4 concentrations

  • 采用 AFM 对不同甲烷浓度的金刚石涂层表面粗糙度进行测量,如图5 所示。A1、A2、A3、A4 样品的表面粗糙度 Ra 分别是 53.4 nm、31.7 nm、 28.7 nm、23.5 nm。从 A1 样品可以看到,涂层表面由带有棱角的柱状金刚石晶粒组成,有明显的晶界轮廓,表面粗糙度大。A2 样品的晶界轮廓虚化,表面由尺寸较小的晶粒聚集而成,表面粗糙度下降。 A3 样品的晶粒尺寸进一步减小,部分位置仍有晶粒聚集现象。A4 样品的表面已经是非常细小的晶粒,与图1 结果一致,表面粗糙度小。说明随着甲烷浓度增大,金刚石晶粒尺寸逐渐减小,金刚石涂层表面粗糙度逐渐降低。

  • 图6 为不同甲烷浓度沉积金刚石涂层的压痕测试结果,用来观察样品的结合力情况。随着甲烷浓度升高,膜基结合力变差。涂层的裂纹和延伸与金刚石膜特征和界面特征相关,比如硬度和厚度等。 A1 样品是微米金刚石涂层,大量研究证明,微米金刚石的特点是柱状晶,非金刚石含量少,纯度和硬度更高,对应了图3 和图4 的结论,并且涂层内石墨相含量越少,与基底的结合能力更强[14]。因此在 A1 样品的压痕附近只存在少量裂纹和碎片,说明结合力良好。随着甲烷浓度增加,在 A2 样品和 A3 样品的压痕附近没有观测到环形裂纹和成片明显涂层脱落,涂层整体形貌保持完整,结合力良好。但 A4 样品中出现大量的延展性裂纹和明显的涂层脱落,脱落面积约为 30 146 μm 2。纳米金刚石是小晶粒堆积而成,韧性高,表面粗糙度小,但硬度较低。在 A4 样品中也说明纳米金刚石以表面脱落的形式响应金刚石压头的冲击,结合力属于 HF5 等级,结合力较差。这是因为甲烷浓度过高时,非金刚石相和石墨含量多,导致沉积的涂层质量差,以及界面处晶粒尺寸减小,减弱了金刚石的钉扎效应,降低了涂层本身的机械强度和硬度。

  • 图5 不同甲烷浓度沉积金刚石涂层原子力显微镜图

  • Fig.5 AFM topography of diamond films deposited at different CH4 concentrations

  • 图6 不同甲烷浓度沉积金刚石涂层的洛氏压痕图

  • Fig.6 Rockwell indentation morphology of diamond films deposited at different CH4 concentrations

  • 图7 是对不同甲烷浓度的涂层压痕结果分析,表示不同甲烷浓度的涂层受到锥形压头的冲击时裂纹扩展或涂层脱落的示意图。A1 样品代表着微米金刚石涂层,其特点是硬度较高。当施加外力时,晶粒硬度大,表面尖端抵抗冲击,各晶粒间紧密结合可以抵抗裂纹扩展,避免裂纹扩展到基底,因此涂层不会脱落。A4 样品代表纳米金刚石涂层,其表面由细小的团状晶粒组成,硬度小,存在更多晶界。在受到较大的瞬时载荷时,无法抵抗冲击,因此裂纹产生并沿着晶界扩展至基底,结果显示为涂层大片脱落。

  • 图7 不同甲烷浓度的涂层压痕结果分析

  • Fig.7 Rockwell result analysis of different films deposited at different CH4 concentrations

  • 2.2 腔室压力对金刚石涂层生长的影响

  • 腔室压力也是影响金刚石涂层沉积的重要因素之一,为了探究不同压力下金刚石涂层的生长规律,设计基底温度为 900℃,甲烷浓度为 1%,压力分别为 1 kPa、2 kPa、3 kPa,对应样品编号为 B1、B2、 B3。

  • 图8 显示了不同腔室压力下生长的金刚石涂层表面和截面 SEM 形貌。三种涂层比较后可以观察到表面均为微米金刚石,涂层截面为柱状结构。随着压力增大,金刚石晶粒尺寸从 500 nm 增大到 1 μm 左右。B1 样品中的金刚石均为结构致密的锥形 (111)晶面。随着压力增加,B2 样品表面呈现是 (111)和(100)晶面的结合,表面晶粒尺寸不一致。 B3 样品的表面主要为(100)晶面,并且表面结构中存在小部分空隙,说明涂层致密性差。因此,腔室压力对金刚石晶粒尺寸和生长取向都有影响。 B1、B2、B3 样品的生长速率分别是 0.84 μm / h、 0.66 μm / h、0.61 μm / h,B1 样品的生长速率较快。

  • 图8 不同腔室压力下金刚石涂层表面和截面形貌

  • Fig.8 Cross-sectional and morphological SEM images of diamond films deposited at different chamber pressures

  • 图9 是在不同腔室压力下金刚石涂层的 XRD 图谱。整体来看,三种涂层随着腔室压力的增加, D(111)和 D(220)半峰高宽变化并不明显,因此可以说明腔室压力对金刚石质量影响不大。

  • 图9 不同腔室压力沉积金刚石涂层的 XRD 图谱 (B1-1 kPa、B2-2 kPa、B3-3 kPa)

  • Fig.9 XRD patterns of diamond films deposited at different pressures (B1-1 kPa, B2-2 kPa, B3-3 kPa)

  • 图10 是不同压力下金刚石涂层分峰拟合拉曼图谱。B1 样品和 B2 样品的金刚石涂层拉曼图谱相似,都是较高的金刚石峰占主导地位且特征峰强度大,B2 样品的金刚石特征峰更强,说明涂层内金刚石相更多。B3 样品的结果显示金刚石含量少,这是因为随着压力增加,原子 H 和活性基团的平均自由程减小,发生多次非弹性碰撞,能量损失大,不利于金刚石的形核生长。涂层中出现 1 130 cm−1、1 450 cm−1 和 1 580 cm−1 明显特征峰,表明存在大量的非金刚石相,这些往往存在于金刚石晶界[33]

  • 图10 不同腔室压力沉积金刚石涂层的分峰拟合拉曼图谱

  • Fig.10 Fitting curve of Raman spectra of diamond films deposited at different pressures

  • 比较金刚石相与非金刚石相 Id / In得到结论,如图11 所示,随着压力从 1 kPa 增大到 3 kPa,Id / In 呈现先上升后下降趋势,B2 样品的金刚石含量最多,纯度最大。这是因为金刚石的成核和生长主要依赖反应腔内表面活性基团的浓度和运送所需的动能。在有限的分解能力范围内,压力越高,生成的活性基团越多;但压力越高,活性物质到达基底表面的动能越小,平衡两者之间的关系会产生金刚石成核的最大生长率的最佳条件[34],在此条件下,金刚石的含量最多。

  • 图12 为不同腔室压力沉积金刚石涂层原子力显微镜形貌图,通过 AFM 对三种样品沉积的表面进行三维扫描和表面粗糙度的检测。B1、B2、B3 样品分别对应 Ra 值为 53.4 nm、58.2 nm、54.9 nm。三种样品均为 1%甲烷浓度下制备的微米金刚石涂层,结合图8 中可以看出,B1 样品表面均为(111)晶面,且具有明显的棱角。B3 样品多为(110)晶面,而 B2 样品的表面结合(111)和(110)晶面, (111)晶面的明显棱角和(110)晶面的平面模型结合在一起,形成更大的凹凸不平性,从图8 的截面图中也能看出表面凹凸性强于 B1 和 B3 样品,因此表面粗糙度最高。但整体上基本一致,说明腔室压力对金刚石涂层表面粗糙度影响较小。

  • 图11 不同腔室压力沉积金刚石相与非金刚石相的比值

  • Fig.11 Diamond phase compared to Non-diamond values at different pressures

  • 图12 不同腔室压力沉积金刚石涂层原子力显微镜形貌图

  • Fig.12 AFM topography of diamond films deposited at different chamber pressures

  • 图13 所示是不同腔室压力下涂层的压痕试验结果。B1 和 B2 样品都表现出良好的结合强度,涂层整体形貌保持完整,主要归因于 B1 样品晶粒小,生长致密,成核密度大,与基底钉扎效应强,B2 样品中金刚石含量多,与基底结合也较为紧密。但是随着沉积压力的增加,放射性裂纹的数量逐渐增多,平均裂纹长度从 229 μm 增加到 231 μm。从三种样品中可以观察到少量涂层剥落,剥落区域是从压痕中心向外扩散的放射性裂纹,与压痕边缘的环形裂纹交汇导致的。与 B1、B2 样品相比,B3 样品非金刚石相多,所以结合能力差。

  • 图13 不同腔室压力沉积金刚石涂层的洛氏压痕图

  • Fig.13 Rockwell indentation morphology of diamond films deposited at different chamber pressures

  • 2.3 基底温度对金刚石涂层生长的影响

  • 基底温度可以通过调节热丝温度去控制,用红外测温仪实时监控温度变化。生长条件是腔室压力 1 kPa,甲烷浓度 1%,温度分别设定为 800℃、 850℃、900℃,对应样品编号为 C1、C2、C3。

  • 图14 所示为不同基底温度沉积金刚石涂层的表面和截面形貌,C1 样品中基底温度过低,可吸附的活性基团少,热激活而产生的点缺陷数量少。金刚石晶核数量不多,整体金刚石生长较为稀松,晶粒间存在较大的空洞或缝隙,无法生成连续膜。C2 和 C3 样品的成核密度明显强于 C1 样品,金刚石呈现(111)晶面择优生长。这主要是高温可以激发更多的等离子体能量,降低了金刚石生长过程中二次形核和非金刚石相的生长[35],另一方面温度升高,热丝产生的功率也高,分解甲烷和氢气的速率变高,加强了对非金刚石相的刻蚀作用[36]。由此得出结论,通过改变基底温度可以对晶粒形貌和成核密度起到调控作用。截面形貌如图14 所示,C1、C2、 C3 样品生长速率分别为 0.3 μm / h、0.9 μm / h、 0.84 μm / h。由于温度过低,因此 C1 样品的截面没有完全显示出微米金刚石的柱状晶结构。随着温度升高,柱状晶结构明显,成核密度升高。

  • 图14 不同基底温度沉积金刚石涂层表面和截面形貌

  • Fig.14 Cross-sectional and Morphological SEM images of diamond films deposited at different substrate temperatures

  • 图15 是不同基底温度下金刚石涂层 XRD 物相分析。图中明显看出从 B1 样品到 B3 样品,金刚石(111) 衍射峰明显增强,变得尖锐,说明温度从 800℃上升到 900℃,金刚石强度变高,结晶性变好,符合图14 的结论。同时,金刚石(220)衍射峰强度也有所增加,这可能与金刚石择优取向生长有关。

  • 图15 不同基底温度沉积金刚石涂层 XRD 图谱 (C1-800℃、C2-850℃、C3-900℃)

  • Fig.15 XRD patterns of diamond films deposited at different substrate temperatures (C1-800℃, C2-850℃, C3-900℃)

  • 图16 所示是不同温度下金刚石分峰拟合拉曼图谱。随着基底温度升高,金刚石涂层质量升高。C1 样品的线形杂乱,涂层中存在1 130 cm−1 和1 470 cm−1 的特征峰,说明涂层中存在大量的反式聚乙炔。金刚石(1 332 cm−1)特征峰强度低,因为相对其余两种温度,C1 样品的表面并没有形成完整的金刚石膜,金刚石含量较低。随着温度升高,金刚石峰值强度增大、尖锐,sp 2 杂化碳减少,涂层质量提高。C3 样品的涂层金刚石峰远高于 C1 和 C2 样品,说明 C3 样品的生长温度是高质量、高纯度的金刚石膜生长的最适宜温度。同时 C3 样品内 1 130 cm−1 处特征峰消失,而 1 470 cm−1 特征峰增加,涂层中仍然存在少量的反式聚乙炔。三种样品的拉曼峰里都只显示出微弱的石墨特征峰,说明只存在少量的石墨。

  • 对涂层的 Id / In比较得到结论,如图17 所示, C1、C2、C3 样品的 Id / In n逐渐升高,金刚石含量显著增加,分别是 2.45、4.49 和 4.65,金刚石质量升高,符合图15 的结论。

  • 图16 不同基底温度沉积金刚石涂层的分峰拟合拉曼图谱

  • Fig.16 Fitting curve of Raman spectra of diamond films deposited at different substrate temperatures

  • 图17 不同基底温度沉积金刚石相与非金刚石相的比值

  • Fig.17 Diamond phase compared to Non-diamond values at different substrate temperatures

  • 图18 是不同基底温度沉积金刚石涂层原子力显微镜形貌图。C1、C2、C3 样品对应的金刚石涂层表面粗糙度 Ra 分别是 34.5 nm、36.3 nm、53.4 nm。 C1 样品未形成金刚石晶粒,也未形成连续的薄膜,因此表面粗糙度 Ra 值小。C2 样品的金刚石涂层表面晶粒棱角变得清晰。C3 样品表面晶粒尺寸均匀且致密,最大晶粒尺寸可达到 1 μm,截面显示柱状晶生长模式,是明显的微米金刚石涂层结构,因此表面粗糙度最大。这主要是涂层内大晶粒的存在影响了整体的表面粗糙度。

  • 图19 反映了在不同基底温度下涂层结合力的情况。C1 样品表示出超过 10 条放射性裂纹由中心向外扩散。C2 样品由压痕试验观测到涂层的大面积脱落和裂纹拓展区,属于 HF5 等级,说明该条件下沉积的涂层结合力差。当基底温度低时,分解氢气的能力变弱,速率减慢,可成核的原子氢浓度较低,而且温度低还会降低原子氢的活性,减弱氢的刻蚀作用,非金刚石生长加快,涂层质量低。拉曼中显示 C2 样品内存在 v1v3非晶碳成分,是涂层附着力下降和脱落的主要原因,脱落面积约 19 607 μm 2。 C3 样品在压痕测试后的涂层结构保持完整,少量放射性裂纹和局部涂层碎片,属于 HF3 等级,具有较高结合力,与基底有较强的钉扎效应,也证实此温度下生长的金刚石涂层具有良好的结合力。

  • 图18 不同基底温度沉积金刚石涂层原子力显微镜形貌图

  • Fig.18 AFM topography of diamond films deposited at different substrate temperatures

  • 图19 不同基底温度沉积金刚石涂层的洛氏压痕图

  • Fig.19 Rockwell indentation morphology of diamond films deposited at substrate temperatures

  • 3 结论

  • (1)甲烷浓度、腔室压力和基底温度会通过影响金刚石的生长速率、基团浓度和成核密度等影响金刚石的性能和与陶瓷基底的结合能力。

  • (2)随着基底温度增大到 900℃,金刚石成核密度增大,结构更清晰,并显著提高金刚石质量; 而金刚石的最佳生长率受腔室压力影响,试验证明在 1 kPa 下金刚石的基底结合能力、表面粗糙度以及腔内活性基团的动能达到了平衡,是最优的生长条件。通过调节甲烷浓度确定金刚石晶粒尺寸和 sp2 碳含量。

  • (3)研究和总结制备金刚石薄膜过程中的各影响因素,选择更合适的制备工艺参数,完善了在陶瓷基底上制备具有强膜基结合力、大面积、低粗糙度的性能优异的金刚石薄膜的研究。

  • 参考文献

    • [1] 文怀兴,孙建建,陈威.氮化硅陶瓷轴承润滑技术的研究现状与发展趋势[J].材料导报,2015,29(17):6-14.WEN Huaixing,SUN Jianjian,CHEN Wei.Review on research status and development trend on silicon nitride ceramic bearings[J].Materials Review,2015,29(17):6-14.(in Chinese)

    • [2] 张创,宋仪杰.氮化硅陶瓷的研究与应用进展[J].中国陶瓷工业,2021,28(3):40-47.ZHANG Chuang,SONG Yijie.Progress in research and application of silicon nitride ceramics[J].China Ceramic Industry,2021,28(3):40-47.

    • [3] MARTINHO R P,SLIVA F J G,BAPTISTA A P M.Wear behaviour of uncoated and diamond coated Si3N4 tools under severe turning conditions[J].Wear,2007,263(7-12):1417-1422.

    • [4] 吕反修.化学气相沉积金刚石膜的研究与应用进展[J].材料热处理学报,2010,31(1):15-28.LÜ Fanxiu.Progress in research and application development of CVD diamond film[J].Transactions of Materials and Heat Treatment,2010,31(1):15-28.(in Chinese)

    • [5] 魏秋平,王玲,余志明,等.进气方式对热丝CVD制备金刚石薄膜的影响[J].中国表面工程,2009,22(6):36-41,46.WEI Qiuping,WANG Ling,YU Zhiming,et al.Effect of reacting gas admission way on HFCVD diamond films[J].China Surface Engineering,2009,22(6):36-41,46.(in Chinese)

    • [6] 孙磊,熊计,杨天恩.金属陶瓷及硬质合金表面 CVD/PVD 涂层的摩擦与切削性能[J].中国表面工程,2019,32(6):45-55.SUN Lei,XIONG Ji,YANG Tianen.Friction and cutting properties of CVD/PVD coatings on cermet and cemented carbide surfaces[J].China Surface Engineering,2019,32(6):45-55.

    • [7] SHEN B,SUN F H,ZhANG Z M,et al.Application of ultra-smooth composite diamond film coated WC-Co drawing dies under water-lubricating conditions[J].Transactions of Nonferrous Metals Society of China,2013,23(1):161-169.

    • [8] 吴玉程.金刚石薄膜制备方法与应用的研究现状[J].材料热处理学报,2019,40(5):1-16.WU Yucheng.Research trends of preparation and application of diamond film[J].Transactions of Materials and Heat Treatment,2019,40(5):1-16.(in Chinese)

    • [9] SLACK G A,BARTRAM S F.Thermal expansion of some diamondlike crystals[J].Journal of Applied Physics,1975,46(1):89-98.

    • [10] NETO M A,FERNANDES A J S,SILVA R F,et al.Nucleation of nanocrystalline diamond on masked/unmasked Si3N4 ceramics with different mechanical pretreatments[J].Diamond & Related Materials,2008,17(4-5):440-445.

    • [11] ALMEIDA F A,AMARAL M,OLIVEIRA F J,et al.Machining behaviour of silicon nitride tools coated with micro-,submicro-and nanometric HFCVD diamond crystallite sizes[J].Diamond and Related Materials,2006,15(11):2029-2034.

    • [12] AMARAL M,OLIVEIRA F J,BELMONTE M,et al.Hot-filament chemical vapour deposition of nanodiamond on silicon nitride substrates[J].Diamond and Related Materials,2004,13(4-8):643-647.

    • [13] LIU J,HEI L F,CHEN G C,et al.Influence of seeding pre-treatments on mechanical properties of ultrananocrystalline diamond films on silicon and Si3N4 substrates[J].Thin Solid Films,2014,556:385-389.

    • [14] MALLIKA K,KOMANDURI R.Low pressure microwave plasma assisted chemical vapor deposition(MPCVD)of diamond coatings on silicon nitride cutting tools[J].Thin Solid Films,2001,396(1-2):145-165.

    • [15] SILVA V A,CORAT E J,SILVA C R M.Influence of CF4 addition for HFCVD diamond growth on silicon nitride substrates[J].Diamond and Related Materials,2001,10(11):2002-2009.

    • [16] CAPPELLI E,ESPOSITO L,PINZARI F,et al.Diamond nucleation and adhesion on sintered nitride ceramics[J].Diamond and Related Materials,2002,11(10):1731-1746.

    • [17] 王贺,沈建辉,闫广宇,等.甲烷浓度对碳化硅基底金刚石薄膜摩擦性能影响[J].人工晶体学报,2021,50(11):267-2074.WANG He,SHEN Jianhui,YAN Guangyu,et al.Tribological properties of SiC-based diamond films synthesized with different methane concentrations[J].Journal of Synthetic Crystals,2021,50(11):267-2074.(in Chinese)

    • [18] 罗凯,汪建华,余军火,等.高功率微波等离子体环境下甲烷浓度对金刚石膜的影响[J].化工学报,2018,69(S2):505-511.LUO Kai,WANG Jianhua,YU Junhuo,et al.Effect of methane concentration on diamond film in high power[J].CIESC Journal,2018,69(S2):505-511.(in Chinese)

    • [19] ZHANG J G,WANG X C,SHEN B,et al.Effect of deposition parameters on micro-and nano-crystalline diamond films growth on WC-Co substrates by HFCVD[J].Transactions of Nonferrous Metals Society of China,2014,24(10):3181-3188.

    • [20] SCHWARZ S,ROSIWAL S M,FRANK M,et al.Dependence of the growth rate,quality,and morphology of diamond coatings on the pressure during the CVD-process in an industrial hot-filament plant[J].Diamond and Related Materials,2002,11(3-6):589-595.

    • [21] BUCHKREMER H,REN H,WEISS H.Optimization of MW-PACVD diamond deposition parameters for high nucleation density and growth rate on Si3N4 substrate[J].Diamond and Related Materials,1997,6(2-4):411-416.

    • [22] DUA A K,GEORGE V C,FRIEDRICH M,et al.Effect of deposition parameters on different stages of diamond deposition in HFCVD technique[J].Diamond and Related Materials,2004,13(1):74-84.

    • [23] WANG X X,LIN Z C,SHEN B,et al.Effects of deposition parameters on HFCVD diamond films growth on inner hole surfaces of WC-Co substrates[J].Transactions of Nonferrous Metals Society of China,2015,25(3):791-802.

    • [24] WEI Q P,YU Z M,ASHFOLD M,et al.Synthesis of micro-or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition[J].Applied Surface Science,2010,256(13):4357-4364.

    • [25] VIDAKIS N,ANTONIADIS A,BILALIS N.The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds[J].Journal of Materials Processing Technology,2003,143-144(1):481-485.

    • [26] ZHOU D,MCCAULEY T G,QIN L C,et al.Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma[J].Journal of Applied Physics,1998,83(1):540-540.

    • [27] CHEN S L,SHEN B,ZHANG J G,et al.Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy[J].Transactions of Nonferrous Metals Society of China,2012,22(12):3021-3026.

    • [28] PRAWER B S,NEMANICH R J.Raman spectroscopy of diamond and doped diamond[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2004,362(1824):2537-2565.

    • [29] LEE S T,LIN ZD,JIANG X.CVD diamond films:nucleation and growth[J].Materials Science and Engineering,1999,25:123-154.

    • [30] PFEIFFER R,KUZMANY H,SALK N,et al.Evidence for trans-polyacetylene in nano-crystalline diamond films[J].Applied Physics Letters,2003,82(23):4149-4150.

    • [31] FERRARI A C,ROBERTSON J.Resonant Raman spectroscopy of disordered,amorphous,and diamondlike carbon[J].Physical Review B,2001,64(7):075414-1-13.

    • [32] 代明江,王德政,周克崧,等.涂层金刚石刀具研究(1)-沉积工艺与性能关系[C]//第二届中国功能材料及应用学术会议论文集,成都,1995-10-01.重庆:功能材料,1995,26:646-649.DAI Mingjiang,WANG Dezheng,ZHOU Kesong,et al.A study on the tolls coated with diamond films(1)-the relationships between the properties and the deposition process parameters[C]//Proceedings of the Second China Conference on Functional Materials and Applications,Chengdu,1995-10-01.Chongqing:Journal of Functional Materials,1995,26:646-649.(in Chinese)

    • [33] 黄元盛,罗承萍,邱万奇.化学气相沉积金刚石薄膜的晶体缺陷和杂质[J].中国表面工程,2004(1):5-9.HUANG Yuansheng,LUO Chengping,QIU Wanqi.Crystal defects and impurities of CVD diamond films[J].China Surface Engineering,2004(1):5-9.(in Chinese)

    • [34] LIANG X,LEI W,ZHU H,et al.Effect of pressure on nanocrystalline diamond films deposition by hot filament CVD technique from CH4/H2 gas mixture[J].Surface and Coatings Technology,2007,202(2):261-267.

    • [35] 罗福平,汪建华,苏帆,等.温度场对金刚石薄膜质量的影响[J].真空与低温,2014,20(2):109-112.LUO Fuping,WANG Jianhua,SU Fan,et al.Influence f temperature field on the preparation of diamond films[J].Vacuum & Cryogenics,2014,20(2):109-112.(in Chinese)

    • [36] WEI Q P,YU Z M,MA L,et al.The effects of temperature on nanocrystalline diamond films deposited on WC-13 wt.% Co substrate with W-C gradient layer[J].Applied Surface Science,2009,256(5):1322-1328.

  • 参考文献

    • [1] 文怀兴,孙建建,陈威.氮化硅陶瓷轴承润滑技术的研究现状与发展趋势[J].材料导报,2015,29(17):6-14.WEN Huaixing,SUN Jianjian,CHEN Wei.Review on research status and development trend on silicon nitride ceramic bearings[J].Materials Review,2015,29(17):6-14.(in Chinese)

    • [2] 张创,宋仪杰.氮化硅陶瓷的研究与应用进展[J].中国陶瓷工业,2021,28(3):40-47.ZHANG Chuang,SONG Yijie.Progress in research and application of silicon nitride ceramics[J].China Ceramic Industry,2021,28(3):40-47.

    • [3] MARTINHO R P,SLIVA F J G,BAPTISTA A P M.Wear behaviour of uncoated and diamond coated Si3N4 tools under severe turning conditions[J].Wear,2007,263(7-12):1417-1422.

    • [4] 吕反修.化学气相沉积金刚石膜的研究与应用进展[J].材料热处理学报,2010,31(1):15-28.LÜ Fanxiu.Progress in research and application development of CVD diamond film[J].Transactions of Materials and Heat Treatment,2010,31(1):15-28.(in Chinese)

    • [5] 魏秋平,王玲,余志明,等.进气方式对热丝CVD制备金刚石薄膜的影响[J].中国表面工程,2009,22(6):36-41,46.WEI Qiuping,WANG Ling,YU Zhiming,et al.Effect of reacting gas admission way on HFCVD diamond films[J].China Surface Engineering,2009,22(6):36-41,46.(in Chinese)

    • [6] 孙磊,熊计,杨天恩.金属陶瓷及硬质合金表面 CVD/PVD 涂层的摩擦与切削性能[J].中国表面工程,2019,32(6):45-55.SUN Lei,XIONG Ji,YANG Tianen.Friction and cutting properties of CVD/PVD coatings on cermet and cemented carbide surfaces[J].China Surface Engineering,2019,32(6):45-55.

    • [7] SHEN B,SUN F H,ZhANG Z M,et al.Application of ultra-smooth composite diamond film coated WC-Co drawing dies under water-lubricating conditions[J].Transactions of Nonferrous Metals Society of China,2013,23(1):161-169.

    • [8] 吴玉程.金刚石薄膜制备方法与应用的研究现状[J].材料热处理学报,2019,40(5):1-16.WU Yucheng.Research trends of preparation and application of diamond film[J].Transactions of Materials and Heat Treatment,2019,40(5):1-16.(in Chinese)

    • [9] SLACK G A,BARTRAM S F.Thermal expansion of some diamondlike crystals[J].Journal of Applied Physics,1975,46(1):89-98.

    • [10] NETO M A,FERNANDES A J S,SILVA R F,et al.Nucleation of nanocrystalline diamond on masked/unmasked Si3N4 ceramics with different mechanical pretreatments[J].Diamond & Related Materials,2008,17(4-5):440-445.

    • [11] ALMEIDA F A,AMARAL M,OLIVEIRA F J,et al.Machining behaviour of silicon nitride tools coated with micro-,submicro-and nanometric HFCVD diamond crystallite sizes[J].Diamond and Related Materials,2006,15(11):2029-2034.

    • [12] AMARAL M,OLIVEIRA F J,BELMONTE M,et al.Hot-filament chemical vapour deposition of nanodiamond on silicon nitride substrates[J].Diamond and Related Materials,2004,13(4-8):643-647.

    • [13] LIU J,HEI L F,CHEN G C,et al.Influence of seeding pre-treatments on mechanical properties of ultrananocrystalline diamond films on silicon and Si3N4 substrates[J].Thin Solid Films,2014,556:385-389.

    • [14] MALLIKA K,KOMANDURI R.Low pressure microwave plasma assisted chemical vapor deposition(MPCVD)of diamond coatings on silicon nitride cutting tools[J].Thin Solid Films,2001,396(1-2):145-165.

    • [15] SILVA V A,CORAT E J,SILVA C R M.Influence of CF4 addition for HFCVD diamond growth on silicon nitride substrates[J].Diamond and Related Materials,2001,10(11):2002-2009.

    • [16] CAPPELLI E,ESPOSITO L,PINZARI F,et al.Diamond nucleation and adhesion on sintered nitride ceramics[J].Diamond and Related Materials,2002,11(10):1731-1746.

    • [17] 王贺,沈建辉,闫广宇,等.甲烷浓度对碳化硅基底金刚石薄膜摩擦性能影响[J].人工晶体学报,2021,50(11):267-2074.WANG He,SHEN Jianhui,YAN Guangyu,et al.Tribological properties of SiC-based diamond films synthesized with different methane concentrations[J].Journal of Synthetic Crystals,2021,50(11):267-2074.(in Chinese)

    • [18] 罗凯,汪建华,余军火,等.高功率微波等离子体环境下甲烷浓度对金刚石膜的影响[J].化工学报,2018,69(S2):505-511.LUO Kai,WANG Jianhua,YU Junhuo,et al.Effect of methane concentration on diamond film in high power[J].CIESC Journal,2018,69(S2):505-511.(in Chinese)

    • [19] ZHANG J G,WANG X C,SHEN B,et al.Effect of deposition parameters on micro-and nano-crystalline diamond films growth on WC-Co substrates by HFCVD[J].Transactions of Nonferrous Metals Society of China,2014,24(10):3181-3188.

    • [20] SCHWARZ S,ROSIWAL S M,FRANK M,et al.Dependence of the growth rate,quality,and morphology of diamond coatings on the pressure during the CVD-process in an industrial hot-filament plant[J].Diamond and Related Materials,2002,11(3-6):589-595.

    • [21] BUCHKREMER H,REN H,WEISS H.Optimization of MW-PACVD diamond deposition parameters for high nucleation density and growth rate on Si3N4 substrate[J].Diamond and Related Materials,1997,6(2-4):411-416.

    • [22] DUA A K,GEORGE V C,FRIEDRICH M,et al.Effect of deposition parameters on different stages of diamond deposition in HFCVD technique[J].Diamond and Related Materials,2004,13(1):74-84.

    • [23] WANG X X,LIN Z C,SHEN B,et al.Effects of deposition parameters on HFCVD diamond films growth on inner hole surfaces of WC-Co substrates[J].Transactions of Nonferrous Metals Society of China,2015,25(3):791-802.

    • [24] WEI Q P,YU Z M,ASHFOLD M,et al.Synthesis of micro-or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition[J].Applied Surface Science,2010,256(13):4357-4364.

    • [25] VIDAKIS N,ANTONIADIS A,BILALIS N.The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds[J].Journal of Materials Processing Technology,2003,143-144(1):481-485.

    • [26] ZHOU D,MCCAULEY T G,QIN L C,et al.Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma[J].Journal of Applied Physics,1998,83(1):540-540.

    • [27] CHEN S L,SHEN B,ZHANG J G,et al.Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy[J].Transactions of Nonferrous Metals Society of China,2012,22(12):3021-3026.

    • [28] PRAWER B S,NEMANICH R J.Raman spectroscopy of diamond and doped diamond[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2004,362(1824):2537-2565.

    • [29] LEE S T,LIN ZD,JIANG X.CVD diamond films:nucleation and growth[J].Materials Science and Engineering,1999,25:123-154.

    • [30] PFEIFFER R,KUZMANY H,SALK N,et al.Evidence for trans-polyacetylene in nano-crystalline diamond films[J].Applied Physics Letters,2003,82(23):4149-4150.

    • [31] FERRARI A C,ROBERTSON J.Resonant Raman spectroscopy of disordered,amorphous,and diamondlike carbon[J].Physical Review B,2001,64(7):075414-1-13.

    • [32] 代明江,王德政,周克崧,等.涂层金刚石刀具研究(1)-沉积工艺与性能关系[C]//第二届中国功能材料及应用学术会议论文集,成都,1995-10-01.重庆:功能材料,1995,26:646-649.DAI Mingjiang,WANG Dezheng,ZHOU Kesong,et al.A study on the tolls coated with diamond films(1)-the relationships between the properties and the deposition process parameters[C]//Proceedings of the Second China Conference on Functional Materials and Applications,Chengdu,1995-10-01.Chongqing:Journal of Functional Materials,1995,26:646-649.(in Chinese)

    • [33] 黄元盛,罗承萍,邱万奇.化学气相沉积金刚石薄膜的晶体缺陷和杂质[J].中国表面工程,2004(1):5-9.HUANG Yuansheng,LUO Chengping,QIU Wanqi.Crystal defects and impurities of CVD diamond films[J].China Surface Engineering,2004(1):5-9.(in Chinese)

    • [34] LIANG X,LEI W,ZHU H,et al.Effect of pressure on nanocrystalline diamond films deposition by hot filament CVD technique from CH4/H2 gas mixture[J].Surface and Coatings Technology,2007,202(2):261-267.

    • [35] 罗福平,汪建华,苏帆,等.温度场对金刚石薄膜质量的影响[J].真空与低温,2014,20(2):109-112.LUO Fuping,WANG Jianhua,SU Fan,et al.Influence f temperature field on the preparation of diamond films[J].Vacuum & Cryogenics,2014,20(2):109-112.(in Chinese)

    • [36] WEI Q P,YU Z M,MA L,et al.The effects of temperature on nanocrystalline diamond films deposited on WC-13 wt.% Co substrate with W-C gradient layer[J].Applied Surface Science,2009,256(5):1322-1328.

  • 手机扫一扫看