en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

许静,女,1986年出生,博士,教授,博士研究生导师。主要研究方向为功能表面、摩擦与润滑和智能制造。E-mail:xujing@hdu.edu.cn;

马靖轩,男,1997年出生,硕士研究生。主要方向为柔性传感器。E-mail:331087613@qq.com

中图分类号:TP212

DOI:10.11933/j.issn.1007-9289.20220107001

参考文献 1
TAKEO Y,HAYAMIZU Y,YAMAMOTO Y,et al.A stretchable carbon nanotube strain sensor for human-motion detection[J].Nature Nanotechnology,2011,6(5):296-301.
参考文献 2
CHEN S J,ZHUO B G,GUO X J.Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range[J].ACS Applied Materials & Interfaces,2016,8(31):20364-20370.
参考文献 3
JEONG J.The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays[J].Semiconductor Science and Technology,2011,26(3):034008.
参考文献 4
YING H,FANG D,WU C,et al.A flexible touch-pressure sensor array with wireless transmission system for robotic skin[J].Review of Scientific Instruments,2016,87(6):65007.
参考文献 5
LEE J,LIM M,YOON J,et al.Transparent,flexible strain sensor based on a solution-processed carbon nanotube network[J].ACS Applied Materials & Interfaces,2017,9(31):26279-26285.
参考文献 6
周建辉,曹建国,程春福,等.高柔弹性电子皮肤压力触觉传感器的研究[J].哈尔滨工业大学学报,2020,52(7):1-10.ZHOU Jianhui,CAO Jianguo,CHEN Chunfu,et al.Research on highly flexible and stretchable pressure tactile sensor for electronic skin[J].Journal of Harbin Institute of Technology,2020,52(7):1-10.(in Chinese)
参考文献 7
GANG G,CAI Y C,DONG Q C,et al.A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection[J].Nanoscale,2018,10(21):10033-10040.
参考文献 8
JUN Yang,LUO Shi,ZHOU Xi,et al.Flexible,tunable,and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes[J].ACS Applied Materials & Interfaces,2019,11(16):14997-15006.
参考文献 9
PERSANO L,CANAN D,SU Y W,et al.High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-cotrifluoroethylene)[J].Nature Communications,2013,4:1633.
参考文献 10
ZHANG Yanjun,LIU Minqiang.Application of photoelectric sensor in control of industrial robot[J].Journal of Nanoelectronics and Optoelectronics,2021,16(2):324-332.
参考文献 11
FAN F G,LIN L,ZHU G,et al.Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J].Nano Letters,2012,12(6):3109-3114.
参考文献 12
NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197-200.
参考文献 13
LU N S,LU C,YANG S X,et al.Highly sensitive skin-mountable strain gauges based entirely on elastomers[J].Advanced Functional Materials,2012,22(19):4044-4050.
参考文献 14
李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,ZHANG Yujing,et al.Research progress of textured surface optimization design and Application[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)
参考文献 15
ZHU Bowen,NIU Zhiqiang,HONG Wang,et al.Microstructured graphene arrays for highly sensitive flexible tactile sensors[J].Small,2014,10(18):3625-3631.
参考文献 16
JONGHWA P,LEE Y,HONG J,et al.Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J].ACS Nano,2014,8(5):4689-4697.
参考文献 17
李伊梦,侯晓娟,张辽原,等.石墨烯/PDMS 仿生银杏叶微结构柔性压阻式压力传感器[J].微纳电子技术,2020,57(3):198-203.LI Yimeng,HOU Xiaojuan,ZHANG Liaoyuan,et al.Graphene/PDMS biomimetic ginkgo leaf microstructure flexible piezoresistive pressure sensor[J].Micronanoelectronic Technology,2020,57(3):198-203.(in Chinese)
参考文献 18
FANG Xiaohui,ZHAO Shikun,QIN Zhen,et al.Fingerprint-inspired high conductive pedot-coated nanofiber film for ultra-sensitive,stretchable,and flexible piezoresistive sensor[J].Advanced Materials Technologies,2021,7:2100788.
参考文献 19
JIN Jia,HUANG Guotao,DENG Jianping,et al.Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles[J].Nanoscale,2019,11(10):4258-4266.
参考文献 20
TEE B,ALEX C,DUNN R,et al.Tunable Flexible pressure sensors using microstructured elastomer geometries for intuitive electronics[J].Advanced Functional Materials,2014,24(34):5427-5434.
参考文献 21
YU Pang,ZHANG Kunning,YANG Zhen,et al.Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J].ACS Nano,2018,12(3):2346-2354.
参考文献 22
GAO Yang,CONG Lu,YU Guohui,et al.Laser micro-structured pressure sensor with modulated sensitivity for electronic skins[J].Nanotechnology,2019,30(32):120824.
参考文献 23
XU Mengdi,GAO Yang,YU Guohui,et al.Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing[J].Sensors and Actuators A-physical,2018,284:260-265.
目录contents

    摘要

    为满足智能机器人、电子皮肤等领域对柔性传感器高灵敏度日益增加的需求,通过设计高表面积形貌以制备石墨烯凸台微织构柔性传感器,并对比分析有无微织构传感器的灵敏度;基于结构力学方程与静电方程,建立微织构柔性传感器模型,开展了电场作用不同基底厚度以及微织构间距下柔性传感器微织构应变的数值模拟,研究柔性压阻传感器微织构压缩应变机制,探寻机械载荷和电载荷的交互作用关系。结果表明,柔性基底的微织构化处理能有效提高柔性压阻传感器的灵敏度。模型总位移的最大值随基底厚度的增加呈非线性增加,微织构应变随着厚度的增加而减小。电场作用下微织构应变受机电耦合压力叠加的影响均大于无电场作用。框状微织构类似于悬臂梁,作用在微织构上的力矩随间距增加而增大,同时刚度减小,微织构的压缩形变增加,应变增大。组合尺寸微织构的应变随着微织构间距的增加而增大,制备多尺寸微结构传感器可使用 (150+350)μm 的组合尺寸,能够有效增加接触面积提高传感器灵敏度。机械载荷和电载荷的耦合作用,组合尺寸对力矩与刚度的分配有效增加了基底的应变,提高了柔性传感器的灵敏度。

    Abstract

    The flexible pressure sensor is gradually replacing traditional sensors owing to its high sensitivity, strong flexibility, implantability, wearability and other characteristics, and has become a research hotspot at home and abroad in recent years. To meet the increasing demand for highly sensitive flexible sensors in intelligent robots, electronic skin and other fields, considering the working mechanism that converts external physical stimuli into electrical signals and increasing the contact area as the entry point, a flexible pressure resistance sensor substrate is designed and processed into the frame convex micro-structured, which take PDMS as the base and graphene as the conductive function layer. The experiment results show that the micro-texture can improve the sensitivity of the flexible sensor, and the sensitivity is five times that of the non-micro-texture sensor. This is because when the micro-texture is subjected to external pressure, it produces compressive deformation, which increases the contact area of the substrate, resulting in reduced resistance and increased sensitivity of the sensor. To deeply study the mechanism of the compressive strain of the microtexture, the microtexture flexible sensor model is established, and a numerical simulation of the microtexture strain of the flexible sensor under the influence of electric field action is conducted based on the structural mechanical equation and electrostatic equation. The numerical simulation results of the microstructure strain of the flexible sensor in different substrate thicknesses, microstructure sizes, and combined size microstructures under the presence of an electric field are compared. The calculated results show that for the thickness of the different microstructures, the model total displacement maximum increases nonlinearly with the substrate thickness and the microtexture strain decreases with the thickness. Owing to the elastic potential energy stored by PDMS, the total displacement of the microtexture surface increase is less than the increase of the thickness, causing a decrease in the microstructural strain. Under the experimental conditions with the electric field, the stress variables of the microtexture are greater than those without the electric field. The maximum value of the micro-texture strain was 4.953×10-10 and the minimum value was 3.018×10-10 without the electric field. The maximum strain was 5.515×10-10 and the minimum was 3.297×10-10 with the electric field. This is caused by the influence of electromechanical coupling, which concentrates the electric field, and the superposition of pressure on the microtexture adds the strain. For different microstructure spacing, the strain of the microtexture increases with the spacing. This is because the frame microtexture is similar to the cantilever beam, where the moment acting on increases with the increased spacing while the stiffness decreases, and the increased compressive deformation of the microtexture leads to increased strain. For different combinations of microstructure sizes, the strain of the combined size micro-textures increases with the increase of the total spacing of the microtextures. This is because according to the torque distribution method, the greater the pressure on the torque of the small and micro-texture, the greater the spacing of the large and micro-texture, the greater the transmission torque. When the micro-texture distance increases from 300 μm to 500 μm, the micro-texture strain increases by 1.6×10-11 in the absence of the electric field, and the micro-texture strain increases by 1.78×10-11 in the electric field. When the micro-texture distance increases from 500 μm to 700 μm, the increase is 0.98×10-11 under the action of the electric field. Therefore, the decrease of the micro-texture stiffness of a small size leads to a decrease in the overall micro-texture stiffness and increases the overall strain. The preparation of multi-size microstructure sensors can use a combined size of (150+350) μm, which can effectively increase the contact area and improve the sensitivity of the sensors. In conclusion, reducing the thickness of the microstructure base and increasing the spacing of the microstructure can increase the sensitivity of flexible sensors.

  • 0 前言

  • 柔性压力传感器[1]因其高灵敏度、强柔韧性以及可植入、可穿戴等特点,正逐渐取代传统传感器,成为近年来国内外的研究热点,他们已广泛应用于可穿戴电子设备[2]、柔性显示器[3]、智能机器人[4]、面部识别[5]和电子皮肤[6]等领域。柔性压力传感器将外部物理刺激转换为可记录或可测量的电信号,其特点成为柔性可穿戴电子传感器受到众多学者广泛关注的关键因素。

  • 柔性可穿戴电子传感器信号转换机制的常见类型包括压阻式[7]、电容式[8]、压电式[9]、光电式[10] 和摩擦电式[11],同时电信号的传输需要导电材料作为中介传导,石墨烯因其独特的电性能和机械强度而作为良好的导电层材料[12]。压阻式柔性传感器具有制备简单、检测范围宽、成本低及信号采集方便等优点得到广泛研究[13]。然而普通柔性传感器的灵敏度较低,众多学者研究发现,微织构能够提高柔性传感器的灵敏度,常见的微织构为单一尺寸类型[14]。ZHU 等[15]使用光刻法对硅模具进行刻蚀获得了微金字塔硅模具,并使用该模具制备了微金字塔阵列柔性传感器。在低压范围里,传感器灵敏度为 5.53 kPa-1。JONGHWA 等[16]研制了互锁微圆顶薄膜并应用于柔性传感器,该微圆顶结构增大了负载时传感器接触面积,其灵敏度为 15.1 kPa-1,能够检测到 0.2 Pa 的超低压力。李伊梦等[17]使用倒模法将银杏叶微织构引到 PDMS 薄膜上,制备了银杏叶微织构柔性传感器,具有 1.56 kPa-1 的灵敏度。另外,也有学者使用多尺寸微织构制备柔性传感器。 FANG 等[18]受指纹结构的启发,开发了一种基于 3D 聚(3,4-亚乙基二氧噻吩)涂层皱纹纳米纤维薄膜的柔性压阻传感器,在 0~3 kPa 的压力范围里灵敏度高达 397.54 kPa-1。JIN 等[19]根据人体皮肤微织构,制备了一种分层结构和梯度还原氧化石墨烯皱纹的柔性传感器,具有 178 kPa-1 的优异灵敏度。然而,上述研究并没有进行数值模拟深入研究微织构对传感灵敏度影响的作用机理。一些学者为研究柔性传感器微织构的力学性能,建立了柔性传感器模型并对其进行数值模拟。TEE 等[20] 为了解弹性体界电层不同形状与其力学模量的关系,对不同的几何形状进行了有限元建模与仿真,结果表明金字塔结构可将弹性体的有效机械模量降低一个数量级。YU 等[21]模拟了锥体结构、半球形结构、纳米线结构和随机分布棘突结构的电阻与结构压缩度的关系,结果表明,随机分布棘突压力传感器具有最高的灵敏度和最宽的线性范围。GAO 等[22]使用有限元建模来比较半圆柱体和微球顶压缩特性,发现微球比半圆柱形线更敏感并将其归因于微球顶端出现了更大的应力集中,产生了更大的压缩应变。XU 等[23]通过模拟计算发现微球与微球接触以及微球与平面电极接触两种触点的局部应力随着压力的增加而增加。然而,这些数值模拟研究只模拟了分散微织构模型,并没有对框状微织构进行数值模拟,同时,对于机电耦合的多物理场相互作用关系对微织构应变的影响结果分析涉及较少。

  • 鉴于此,本文使用聚二甲基硅氧烷 (Polydimethylsiloxane,PDMS)作为基底材料,石墨烯作为导电层材料,通过自行设计的模具制备了石墨烯凸台微织构柔性传感器,并对比了有无微织构传感器的灵敏度。为进一步量化微织构的应变情况以获得更高灵敏度的柔性传感器,基于结构力学方程与静电方程以模拟传感器真实的工况,利用 COMSOL Multiphysics(Comsol)建立微织构柔性传感器模型,模拟研究了有无电场作用下微织构间距,以及基底厚度对柔性传感器应变的影响,研究柔性压阻传感器微织构压缩应变机制,探寻机械载荷和电载荷的交互作用关系。

  • 1 试验部分

  • 1.1 试验步骤

  • 已有学者设计的微织构大部分呈分散阵列分布,然而 PDMS 表面许多空间没有被充分利用,导致传感器灵敏度具有局限性,为充分利用 PDMS 表面和提高传感器灵敏度,本文设计了一框状凸台微织构,该微织构截面呈梯形,上底为 2 μm,下底为 13.2 μm,高为 12 μm,相邻微织构间距为 450 μm。通过 3D 打印获得微织构反模具,将 PDMS(型号为 Syl-gard184)A 胶和 B 胶以质量比为 10∶1 进行混合,使用玻璃棒充分搅拌 5 min,放入真空箱中进行 30 min 脱气处理以除去气泡,向微织构模具中倒入混合物,经脱气后放入干燥箱中经 70℃加热 2 h,将已固化的 PDMS 裁剪成面积为 1 cm×1 cm 的矩形,向 PDMS 表面喷涂石墨烯分散液制备导电层,最后将附着铜箔的 PI 胶带与石墨烯 / PDMS 贴合,利用银浆将铜线固定在 PDMS 和 PI 表面,使用胶带封装柔性传感器。微织构柔性传感器制备的工艺如图1 所示。

  • 图1 微织构柔性传感器制备工艺

  • Fig.1 Process diagram for preparation of micro-texture flexible sensors

  • 1.2 试验设备

  • 利用万能试验机对传感器施加压力,使用电压源和 KEITHLEY2450 数字源表对传感器的电学性能进行测试,柔性传感器测试试验台和测试样品见图2。

  • 图2 柔性传感器测试试验台

  • Fig.2 Test bench for testing flexible sensors

  • 1.3 试验结果与分析

  • 试验对比有无微织构柔传感器的灵敏度,以验证微织构在柔性传感器的效用,两种传感器基底的厚度都为 300 μm,根据式(1)计算灵敏度:

  • S=R-R0R0P
    (1)
  • 式中,S 为传感器灵敏度;R 为电阻测量值;R0 为电阻初始值;P 为压力。试验得到的柔性传感器电阻变化率随压力的变化如图3 所示,结果表明微织构能提高柔性传感器的灵敏度,且灵敏度是无微织构传感器的 5 倍。这是由于凸台微织构受到外部压力作用,微织构产生压缩形变从而增大接触面积,传感器的电阻减小,灵敏度增大。

  • 图3 柔性传感器电阻变化率随压力变化的曲线图

  • Fig.3 Curve of resistance change rate of flexible sensor with pressure

  • 2 理论建模及分析

  • 上述研究发现微织构受压产生压缩应变增加了接触面积,从而电阻发生改变,电阻的变化进而转化为电流的变化,影响了传感器的灵敏度。为进一步量化微织构的应变变化,以期研究柔性压阻传感器微织构压缩应变机制,通过使用 Comsol 仿真软件建立微织构柔性传感器模型,考虑柔性压阻传感器应用过程中受到机械载荷和电载荷的作用,模拟有无电场作用下微织构的应变过程,以探求两者之间的作用关系对传感器灵敏度的影响。

  • 2.1 理论建模

  • 2.1.1 理论模型

  • 基于结构力学方程与静电电荷守恒方程,分析微织构在有无电场下受到压力下的应变情况。无电场作用下微织构应变只来源于外部施加的压力,电场作用下微织构应变同时受到机械载荷和电载荷作用,所采用的物理场为结构力学与静电,具体如下:

  • (1)结构力学方程

  • 0=FSaT+FV
    (2)
  • F=I+u
    (3)
  • 式中,F 为力;Sa 为单位面积;FV 为体积力;I 为力矩;u 为位移场;为散度算子;∇ 为梯度算子。

  • (2)超弹性材料方程

  • WS=C10I¯1-3+C01I¯2-3+12κJel-12
    (4)
  • σ=J-1FSaFT
    (5)
  • J=det(F)
    (6)
  • 式中,WS 为弹性应变能量密度;I¯1I¯2为左等弦柯西-格林变形张量的第一和第二不变量;C10C01为 Mooney-Rivlin 模型两参数;κ 为体积模量;Jel 为弹性雅可比矩阵;σ 为柯西应力;J 为体积变化率。

  • (3)静电电荷守恒方程

  • E=-V
    (7)
  • ε0εrE=ρV
    (8)
  • 式中,E 为电场强度;V 为电势;ε0 为真空界电常数;εr 为相对界电常数; ρ V 为电荷密度。

  • 2.1.2 几何模型

  • 试验制备的柔性传感器面积为 1 cm×1cm,微织构截面为凸台状,凸台微织构上底为 2 μm,下底为 13.2 μm,高度为 12 μm,微织构尺寸与传感器整体尺寸相差较大,为降低计算时间与减少计算机内存损耗,本文针对实际制备的多个凸台微织构模型进行简化,建立了单个凸台微织构模型如图4 所示,只对单个微织构进行数值模拟。所有模型尺寸如表1 所示。

  • 图4 计算模型

  • Fig.4 Calculated model

  • 表1 计算模型尺寸参数(μm)

  • Table1 Parameters of calculated model size (μm)

  • 2.1.3 边界条件

  • PI 胶带的泊松比设置为 0.34,物理场采用固体力学和静电,PDMS 为超弹性材料,因此需要在固体力学中添加超弹性材料选项,使用的材料模型为 Mooney-Rivlin 双参数,模型参数 C10C01 分别为 75.5 MPa和5.7 MPa,体积模量κ为962 MPa,在PDMS 底层设置固定约束,PI 顶层设置边界载荷,载荷类型为单位面积力,数值为−0.1N。PI 与铜箔,铜箔与石墨烯,石墨烯与 PDMS 三者之间设置接触条件,其中 PI 与铜箔以及石墨烯与 PDMS 需设置粘附条件,铜箔与石墨烯之间设置摩擦条件,摩擦因数为 0.3,电势初始值设置为 0。模型材料及其边界条件如图5 所示。

  • 图5 模型材料及其边界条件

  • Fig.5 Materials and boundary conditions of the model

  • 2.1.4 网格划分

  • PDMS 微织构部分为主要应变来源,接触问题模型的源与目标的网格尺寸关系需满足 hdest<0.5× hsource,PI 部分为源,PDMS 为目标,PI 部分采用扫掠方式进行网格划分,添加分布条件设置单元数为 10。PDMS 部分采用自由四面体网格,设置最大单元尺寸为 0.05 mm。铜箔层采用自由四面体网格,设置最大单元为 0.049 1 mm,最小单元为 0.006 14 mm,最大单元增长率为 1.45,曲率因子为 0.5,石墨烯层采用自由自由四面体网格,设置最大单元为 0.01 mm,最小单元为 0.008 mm。模型网格如图6 所示。

  • 图6 模型网格图

  • Fig.6 Grid diagram of model

  • 2.2 结果分析

  • 2.2.1 柔性基底厚度对微织构应变的影响

  • 不同厚度的柔性基底影响传感器微织构的压缩应变,图7 为不同 PDMS 薄膜基底厚度(分别为 200 μm、300 μm、400 μm、500 μm、600 μm)柔性传感器的总位移云图,微织构间距为 450 μm。结果表明,随着 PDMS 基底厚度的增加,PDMS 的总位移增大,根据式(9)计算应变平均值:

  • ε=Δhh1
    (9)
  • 式中,h1 为 PDMS 基底初始厚度;Δh 为 PDMS 基底厚度的变化量,同时为微织构表面的总位移平均值(通过 Comsol 仿真软件所获得);ε为应变平均值。图7 所示为模型总位移云图,结果表明,模型总位移最大值随基底厚度的增加呈非线性增大,微织构的应变随着 PDMS 基底厚度的增加而减小,这是因为 PDMS 基底受到压力储存了一定的弹性势能,从而微织构表面总位移的增加量小于基底厚度的增加量,根据式(9)可知 PDMS 基底越厚,微织构的应变越小。同一基底厚度,电场作用下微织构应变值均大于无电场作用,受电载荷作用,外加机械载荷与其引起了电场集中,导致相互接触的两种导电材料产生吸附力,使得作用在微织构上的压力出现叠加,微织构产生更大的位移从而应变增大。无电场作用下微织构应变最大值为 4.953×10-10,最小值为 3.018×10-10。电场作用下应变最大值为 5.515× 10-10,最小值为 3.297×10-10

  • 图7 微织构压缩应变在有无电场作用下随基底厚度变化对比曲线

  • Fig.7 Comparison curve of micro-texture compressive strain with thicknesses of the substrate with or without electric field

  • 2.2.2 微织构间距对微织构应变的影响

  • 微织构间距影响传感器微织构的压缩应变,图8 所示为在有无电场作用下微织构应变随微织构间距变化曲线,结果表明,PDMS 微织构的应变随着微织构间距的增加而增大。究其原因,框状微织构的任意一行类似于悬臂梁,作用在微织构上的力矩随其间距增加而增大,刚度随微织构长度的增加而减小,导致微织构更容易产生压缩形变增大应变,且同一微织构间距,电场作用下的微织构应变均大于无电场作用。当微织构间距从 150 μm 增加到 550 μm 时,微织构应变在无电场作用下从 2.963× 10-10 增加到 6.292×10-10,在电场作用下 3.281× 10-10 增加到 7.823×10-10

  • 图8 微织构压缩应变随微织构间距变化在有无电场作用下对比曲线

  • Fig.8 Comparison curve of micro-texture strain with micro-texture spacing with or without electric field

  • 2.2.3 组合尺寸对微织构应变的影响

  • 组合尺寸(由两种尺寸微织构组成)微织构受压后的应变情况不同于均匀尺寸,从而影响传感器灵敏度。为研究微织构应变与大小交替尺寸之间的关系,本文设计了 5 种组合尺寸微织构模型,分别为 150+150,150+250,150+350,150+450,150 +550(每组数字表示两种微织构的间距,单位: μm),基底厚度为 200 μm,计算条件与单一尺寸微织构模型相同。根据式(9)计算应变,结果如图9 所示,表明 PDMS 微织构的应变随着微织构间距的增加而增大。这是由于组合尺寸微织构受到压力后,根据力矩分配法,压力向小尺寸微织构传递了更大的力矩,且大尺寸微织构间距越大传递的力矩越大,从而小尺寸微织构刚度减小引起组合尺寸整体刚度减小,整体应变增大。这里间距指的是从第一列微织构的最左边到第三列微织构的最右边的距离。

  • 相同微织构间距电场作用微织构应变均大于无电场作用。无电场作用的微织构应变最大值为 2.718 ×10-10,最小值为 2.484×10-10,电场作用下微织构应变最大值为 2.801×10-10,最小值为 2.525×10-10。微织构间距从 300 μm 增加到 500 μm 时,无电场作用下微织构应变增加了 1.6×10-11,电场作用下增加了 1.78×10-11,微织构间距从 500 μm 增加到 700 μm 时,无电场作用下微织构应变增加了 0.74 ×10-11,电场作用下增加了 0.98×10-11。在工程应用中,可使用 150+350 μm 的组合尺寸微织构增加微织构的数量以增大基底材料的接触面积,从而提高灵敏度。

  • 图9 组合尺寸微织构压缩应变在有无电场作用下对比曲线

  • Fig.9 Comparison curve of combined size micro-texture strain with or without electric field

  • 3 结论

  • (1)模型总位移的最大值随基底厚度的增加呈非线性增大,微织构应变随着厚度的增加而减小,微织构表面总位移的增加量因 PDMS 储存的弹性势能小于厚度的增加量,从而微结构应变减小。电场作用下微织构应变量均大于无电场作用,受机电耦合的影响引起电场集中,使得作用在微织构上的压力产生叠加,微织构应变增大。

  • (2)微织构应变随着间距的增大而增大,框状微织构类似于悬臂梁,作用在微织构上的力矩随其间距增加而增大,同时刚度在减小,微织构更容易被压缩导致应变增大。

  • (3)组合尺寸微织构模型的应变随微织构间距的增大而增大,由于组合尺寸微织构受到压力后,根据力矩分配法,压力向小尺寸微织构传递了更大的力矩,且大尺寸微织构间距越大,传递的力矩越大,从而小尺寸微织构刚度减小引起组合尺寸整体刚度减小,获得更大的整体应变。使用 150+350 μm 的组合尺寸制备多尺寸微结构传感器能够极大增加接触面积同时获得高灵敏度。

  • 参考文献

    • [1] TAKEO Y,HAYAMIZU Y,YAMAMOTO Y,et al.A stretchable carbon nanotube strain sensor for human-motion detection[J].Nature Nanotechnology,2011,6(5):296-301.

    • [2] CHEN S J,ZHUO B G,GUO X J.Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range[J].ACS Applied Materials & Interfaces,2016,8(31):20364-20370.

    • [3] JEONG J.The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays[J].Semiconductor Science and Technology,2011,26(3):034008.

    • [4] YING H,FANG D,WU C,et al.A flexible touch-pressure sensor array with wireless transmission system for robotic skin[J].Review of Scientific Instruments,2016,87(6):65007.

    • [5] LEE J,LIM M,YOON J,et al.Transparent,flexible strain sensor based on a solution-processed carbon nanotube network[J].ACS Applied Materials & Interfaces,2017,9(31):26279-26285.

    • [6] 周建辉,曹建国,程春福,等.高柔弹性电子皮肤压力触觉传感器的研究[J].哈尔滨工业大学学报,2020,52(7):1-10.ZHOU Jianhui,CAO Jianguo,CHEN Chunfu,et al.Research on highly flexible and stretchable pressure tactile sensor for electronic skin[J].Journal of Harbin Institute of Technology,2020,52(7):1-10.(in Chinese)

    • [7] GANG G,CAI Y C,DONG Q C,et al.A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection[J].Nanoscale,2018,10(21):10033-10040.

    • [8] JUN Yang,LUO Shi,ZHOU Xi,et al.Flexible,tunable,and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes[J].ACS Applied Materials & Interfaces,2019,11(16):14997-15006.

    • [9] PERSANO L,CANAN D,SU Y W,et al.High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-cotrifluoroethylene)[J].Nature Communications,2013,4:1633.

    • [10] ZHANG Yanjun,LIU Minqiang.Application of photoelectric sensor in control of industrial robot[J].Journal of Nanoelectronics and Optoelectronics,2021,16(2):324-332.

    • [11] FAN F G,LIN L,ZHU G,et al.Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J].Nano Letters,2012,12(6):3109-3114.

    • [12] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197-200.

    • [13] LU N S,LU C,YANG S X,et al.Highly sensitive skin-mountable strain gauges based entirely on elastomers[J].Advanced Functional Materials,2012,22(19):4044-4050.

    • [14] 李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,ZHANG Yujing,et al.Research progress of textured surface optimization design and Application[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)

    • [15] ZHU Bowen,NIU Zhiqiang,HONG Wang,et al.Microstructured graphene arrays for highly sensitive flexible tactile sensors[J].Small,2014,10(18):3625-3631.

    • [16] JONGHWA P,LEE Y,HONG J,et al.Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J].ACS Nano,2014,8(5):4689-4697.

    • [17] 李伊梦,侯晓娟,张辽原,等.石墨烯/PDMS 仿生银杏叶微结构柔性压阻式压力传感器[J].微纳电子技术,2020,57(3):198-203.LI Yimeng,HOU Xiaojuan,ZHANG Liaoyuan,et al.Graphene/PDMS biomimetic ginkgo leaf microstructure flexible piezoresistive pressure sensor[J].Micronanoelectronic Technology,2020,57(3):198-203.(in Chinese)

    • [18] FANG Xiaohui,ZHAO Shikun,QIN Zhen,et al.Fingerprint-inspired high conductive pedot-coated nanofiber film for ultra-sensitive,stretchable,and flexible piezoresistive sensor[J].Advanced Materials Technologies,2021,7:2100788.

    • [19] JIN Jia,HUANG Guotao,DENG Jianping,et al.Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles[J].Nanoscale,2019,11(10):4258-4266.

    • [20] TEE B,ALEX C,DUNN R,et al.Tunable Flexible pressure sensors using microstructured elastomer geometries for intuitive electronics[J].Advanced Functional Materials,2014,24(34):5427-5434.

    • [21] YU Pang,ZHANG Kunning,YANG Zhen,et al.Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J].ACS Nano,2018,12(3):2346-2354.

    • [22] GAO Yang,CONG Lu,YU Guohui,et al.Laser micro-structured pressure sensor with modulated sensitivity for electronic skins[J].Nanotechnology,2019,30(32):120824.

    • [23] XU Mengdi,GAO Yang,YU Guohui,et al.Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing[J].Sensors and Actuators A-physical,2018,284:260-265.

  • 参考文献

    • [1] TAKEO Y,HAYAMIZU Y,YAMAMOTO Y,et al.A stretchable carbon nanotube strain sensor for human-motion detection[J].Nature Nanotechnology,2011,6(5):296-301.

    • [2] CHEN S J,ZHUO B G,GUO X J.Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range[J].ACS Applied Materials & Interfaces,2016,8(31):20364-20370.

    • [3] JEONG J.The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays[J].Semiconductor Science and Technology,2011,26(3):034008.

    • [4] YING H,FANG D,WU C,et al.A flexible touch-pressure sensor array with wireless transmission system for robotic skin[J].Review of Scientific Instruments,2016,87(6):65007.

    • [5] LEE J,LIM M,YOON J,et al.Transparent,flexible strain sensor based on a solution-processed carbon nanotube network[J].ACS Applied Materials & Interfaces,2017,9(31):26279-26285.

    • [6] 周建辉,曹建国,程春福,等.高柔弹性电子皮肤压力触觉传感器的研究[J].哈尔滨工业大学学报,2020,52(7):1-10.ZHOU Jianhui,CAO Jianguo,CHEN Chunfu,et al.Research on highly flexible and stretchable pressure tactile sensor for electronic skin[J].Journal of Harbin Institute of Technology,2020,52(7):1-10.(in Chinese)

    • [7] GANG G,CAI Y C,DONG Q C,et al.A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection[J].Nanoscale,2018,10(21):10033-10040.

    • [8] JUN Yang,LUO Shi,ZHOU Xi,et al.Flexible,tunable,and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes[J].ACS Applied Materials & Interfaces,2019,11(16):14997-15006.

    • [9] PERSANO L,CANAN D,SU Y W,et al.High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-cotrifluoroethylene)[J].Nature Communications,2013,4:1633.

    • [10] ZHANG Yanjun,LIU Minqiang.Application of photoelectric sensor in control of industrial robot[J].Journal of Nanoelectronics and Optoelectronics,2021,16(2):324-332.

    • [11] FAN F G,LIN L,ZHU G,et al.Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J].Nano Letters,2012,12(6):3109-3114.

    • [12] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197-200.

    • [13] LU N S,LU C,YANG S X,et al.Highly sensitive skin-mountable strain gauges based entirely on elastomers[J].Advanced Functional Materials,2012,22(19):4044-4050.

    • [14] 李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,ZHANG Yujing,et al.Research progress of textured surface optimization design and Application[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)

    • [15] ZHU Bowen,NIU Zhiqiang,HONG Wang,et al.Microstructured graphene arrays for highly sensitive flexible tactile sensors[J].Small,2014,10(18):3625-3631.

    • [16] JONGHWA P,LEE Y,HONG J,et al.Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J].ACS Nano,2014,8(5):4689-4697.

    • [17] 李伊梦,侯晓娟,张辽原,等.石墨烯/PDMS 仿生银杏叶微结构柔性压阻式压力传感器[J].微纳电子技术,2020,57(3):198-203.LI Yimeng,HOU Xiaojuan,ZHANG Liaoyuan,et al.Graphene/PDMS biomimetic ginkgo leaf microstructure flexible piezoresistive pressure sensor[J].Micronanoelectronic Technology,2020,57(3):198-203.(in Chinese)

    • [18] FANG Xiaohui,ZHAO Shikun,QIN Zhen,et al.Fingerprint-inspired high conductive pedot-coated nanofiber film for ultra-sensitive,stretchable,and flexible piezoresistive sensor[J].Advanced Materials Technologies,2021,7:2100788.

    • [19] JIN Jia,HUANG Guotao,DENG Jianping,et al.Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles[J].Nanoscale,2019,11(10):4258-4266.

    • [20] TEE B,ALEX C,DUNN R,et al.Tunable Flexible pressure sensors using microstructured elastomer geometries for intuitive electronics[J].Advanced Functional Materials,2014,24(34):5427-5434.

    • [21] YU Pang,ZHANG Kunning,YANG Zhen,et al.Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J].ACS Nano,2018,12(3):2346-2354.

    • [22] GAO Yang,CONG Lu,YU Guohui,et al.Laser micro-structured pressure sensor with modulated sensitivity for electronic skins[J].Nanotechnology,2019,30(32):120824.

    • [23] XU Mengdi,GAO Yang,YU Guohui,et al.Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing[J].Sensors and Actuators A-physical,2018,284:260-265.

  • 手机扫一扫看