en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

崔博超,男,1995年出生,博士研究生。主要研究方向为机械摩擦学。E-mail:bochaocui@163.com

通讯作者:

陈平,女,1973年出生,博士,教授,博士研究生导师。主要研究方向为机械摩擦学和耐磨/耐蚀涂层。E-mail:chenp@ustb.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20230219001

参考文献 1
JIN Yingze,CHEN Fei,ZHANG Fan,et al.Nonlinear dynamic performance of tilting-pad journal bearing with adjustable elastic pivot design[J].Tribology International,2019,136:533-547.
参考文献 2
宋强,范华涛,王瑞,等.深海水下装备水润滑轴承研究现状与进展[J].船舶工程,2019,41(11):125-130,136.SONG Qiang,FAN Huatao,WANG Rui,et al.Current status and progress of water lubricated bearings for deep sea equipment[J].Ship Engineering,2019,41(11):125-130,136.(in Chinese)
参考文献 3
孙丽军,薛闯,张立浩,等.倾斜轴颈重载轴承润滑性能分析及试验研究[J].润滑与密封,2016,41(7):107-111.SUN Lijun,XUE Chuang,ZHANG Lihao,et al.Lubrication performance analysis and test of misalignment heavy-duty journal bearings[J].Lubrication Engineering,2016,41(7):107-111.(in Chinese)
参考文献 4
何阳,郭智威,吴祖旻,等.网状表面织构对水润滑轴承摩擦磨损性能的影响[J].润滑与密封,2021,46(1):31-37.HE Yang,GUO Zhiwei,WU Zumin,et al.Effect of surface mesh texture on friction and wear properties of water-lubricated bearings[J].Lubrication Engineering,2021,46(1):31-37.(in Chinese)
参考文献 5
毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)
参考文献 6
盛晨兴,马成,吴祖旻.条形沟槽深度对船舶水润滑尾轴承材料摩擦性能的影响[J].船舶工程,2018,40(6):31-35.SHENG Chenxing,MA Cheng,WU Zumin.Influence of strip-type groove depth on friction performance of water lubricated stern bearing material[J].Ship Engineering,2018,40(6):31-35.(in Chinese)
参考文献 7
纪敬虎,周莹超,田朋霖,等.局部凹坑织构化径向滑动轴承流体动力润滑数值分析[J].表面技术,2021,50(10):214-220.JI Jinghu,ZHOU Yingchao,TIAN Penglin,et al.Numerical analysis of hydrodynamic lubrication of partially textured surfaces with dimples for journal bearing[J].Surface Technology,2021,50(10):214-220.(in Chinese)
参考文献 8
AWASTHI R K,MAAN JagjitSingh.Influence of surface texture on the performance of hydrodynamic journal bearing operating under turbulent regime[J].Tribology Online,2021,16(2):99-112.
参考文献 9
李俊玲,陈平,邵天敏,等.葫芦形微凹坑对不锈钢表面摩擦学性能的影响[J].摩擦学学报,2016,36(2):207-214.LI Junling,CHEN Ping,SHAO Tianmin,et al.The effect of gourd-shaped surface texture on tribological performance of stainless steel[J].Tribology,2016,36(2):207-214.(in Chinese)
参考文献 10
RAHMANI Ramin,SHIRVANI Ayoub,SHIRVANI Hassan.Optimization of partially textured parallel thrust bearings with square-shaped micro-dimples[J].Tribology Transactions,2008,50:401-406.
参考文献 11
DONG Guangneng,ZHANG Hui,HAFEZI Mahshid,et al.A design of coverage area for textured surface of sliding journal bearing based on genetic algorithm[J].Journal of Tribology,2018,140:061702-061708.
参考文献 12
胡宇,王优强,李云凯,等.具有复合型织构的水润滑轴承的摩擦学性能研究[J].表面技术,2021,50(11):233-242.HU Yu,WANG Youqiang,LI Yunkai,et al.Study on tribological properties of water-lubricated bearings with compound dimple[J].Surface Technology,2021,50(11):233-242.(in Chinese)
参考文献 13
王耀晨,王优强,赵涛,等.水润滑聚合物轴承材料改性研究进展[J].轴承,2023,8:1-8.WANG Yaochen,WANG Youqiang,ZHAO Tao,et al.Research progress on material modification of waterlubricated polymer bearings[J].Beaing,2023,8:1-8.(in Chinese)
参考文献 14
杜媛英,闵为,刘晓艺,等.考虑粗糙度时不同衬层材料水润滑轴承润滑特性比较[J].润滑与密封,2022,47(9):24-31.DU Yuanying,MIN Wei,LIU Xiaoyi,et al.Comparison of lubrication characteristics of water-lubricated bearings with different lining materials considering roughness[J].Lubrication Engineering,2022,47(9):24-31.(in Chinese)
参考文献 15
崔旨桃,郭智威,谢心,等.尼龙自润滑性与表面织构协同作用对HDPE基水润滑轴承摩擦磨损性能的影响 [J].摩擦学学报,2019,39(4):407-417.CUI Zhitao,GUO Zhiwei,XIE Xin,et al.The synergistic effect mechanism of PA66 self-lubrication property and surface texture on tribological performance of HDPE water-lubricated bearing[J].Tribology,2019,39(4):407-417.(in Chinese)
参考文献 16
周新聪,钟达,黄健,等.ATP 改性UHMWPE水润滑轴承材料的摩擦学特性研究[J].摩擦学学报,2022,42(3):632-641.LU Jisong,SONG Xintao,WANG Xiaoli.The influence of surface texture on mixed lubrication performance of water-lubricated bearing[J].Lubrication Engineering,2019,44(11):29-33.(in Chinese)
参考文献 17
路继松,宋新涛,王晓力.表面织构对水润滑轴承混合润滑性能的影响[J].润滑与密封,2019,44(11):29-33.LU Jisong,SONG Xintao,WANG Xiaoli.The influence of surface texture on mixed lubrication performance of water-lubricated bearing[J].Lubrication Engineering,2019,44(11):29-33.(in Chinese)
参考文献 18
谢心.表面纹理对水润滑轴承材料的摩擦学性能影响 [D].武汉:武汉理工大学,2020.XIE Xin.Influence of surface texture tribological property of water lubricated bearing materials[D].Wuhan:Wuhan University of Technology,2020.(in Chinese)
目录contents

    摘要

    梯度排布微织构在提升水润滑轴承摩擦学性能方面具有显著效果,然而梯度排布微织构在水润滑轴承中的应用仍缺乏系统性研究。为了探究梯度排布微织构对水润滑轴承启停过程摩擦学性能的影响,基于 Greenwood-Tripp 微凸体接触模型、 Archard 磨损模型求解轴瓦表面的磨损量。通过 CFT-I 材料表面性能综合测试仪对 CNC 雕刻机加工的织构化表面进行水润滑条件下的摩擦学试验研究。针对光滑、单一圆形织构、圆形与三角形以轴向交错平行(112 )和周向交错平行分布(1212)方式梯度排布的表面,测量各个表面的磨损量和摩擦因数。通过立体显微镜、扫描电子显微镜对摩擦磨损试验前后的表面形貌和摩擦因数进行分析。数值模拟和试验结果显示,与光滑表面和单一织构化表面相比,梯度排布微织构化表面磨损量和摩擦因数显著降低;圆形与三角形以112方式的梯度排布微织构化表面摩擦学性能最佳,接触表面磨损量最小、表面摩擦因数最低。梯度排布微织构在流体润滑过程中相互影响,可以起到提高轴承表面举升力,减少表面接触,降低表面磨损和摩擦因数的作用。研究不同形状、排布方式下梯度排布微织构化表面的磨损量和摩擦因数的变化规律,可为舰船装备水润滑轴承研制阶段主动设计提供理论基础。

    Abstract

    Water-lubricated bearings are key components of the trailing axis systems of naval equipment and are widely used in ship axis systems. Bearings are often subjected to unbalanced forces, such as inertial forces caused by the weight of the propeller and additional forces generated by the deformation of the vessel body during its operation. These harsh working conditions would result in poor lubrication of the bearings and cause severe friction and wear. The gradient-arranged microtexture has a significant effect on improving the tribological performance of water-lubricated bearings, which is significant for improving the bearing lubrication and load-bearing performance and reducing wear. However, systematic research on the application of gradient-arranged microtextures in water-lubricated bearings is lacking. To evaluate the effect of the gradient-arranged texture on the tribological performance of water-lubricated bearings during the start-stop process, the surface wear of the shaft shank is solved based on the Greenwood-Tripp micro-convex body contact model and the Archard wear model. The effect of the microtextured arrangement on the tribological performance of the water-lubricated bearings during the start-stop process is analyzed. The tribological properties of water-lubricated gradient-arranged textured surfaces are evaluated using the CFT-I material surface property comprehensive tester, which verifies the results of the numerical calculations. The gradient-arranged textured surfaces are manufactured by the computer numerical control engraving machine. The effects of the microtextured depth and circumferential spacing on the average wear of water-lubricated bearing surfaces are calculated using numerical simulations. The optimal microtextured depth and circumferential spacing are selected to design the microtextured arrangement based on the numerical simulation results. The effects of the microtexture gradient-arranged on the average wear of the water-lubricated bearing surfaces are also calculated. The wear amounts and friction factors of each surface are measured for the smooth, single-circular texture, circular and triangular surfaces arranged in a gradient of axially staggered parallel (112 ), and circumferentially staggered parallel distribution (1212). The morphology and friction factor of the surfaces before and after the frictional wear experiments are analyzed using stereo microscopy and scanning electron microscopy. The effects of the gradient-arranged microtexture on the surface morphology and friction factor of the water-lubricated bearings are analyzed. The numerical simulation results showed that the surface wear amounts of the gradient-arranged microtexture were significantly decreased compared with those of the smooth and single-texture surfaces. The best tribological performance of the gradient-arranged microtextured surfaces with the circular composite triangle in the form of 112 had the lowest wear amount at the contact surface. The experimental results showed that the friction factor of the gradient-arranged microtextured surfaces was more than 40% lower than that of smooth and single-textured surfaces. Similarly, the surface with circular composite triangles arranged in the form of an 112 gradient microtexture had the lowest friction factor. There were evident water film pressure convergence zones on the bearing surface under water-lubricated conditions, which could enhance the water film lifting force and generate dynamic pressure effect. The gradient-arranged microtextures interact with each other in the fluid lubrication process to enhance the lifting force on the bearing surface, which plays a role in reducing the surface wear and lowering the friction factor of the contact surface. Thus, an appropriate gradient-arranged microtexture can significantly improve the tribological performance of bearing surfaces. Increasing the convergence zone of the surface water film pressure, improving the surface lifting force, and reducing the surface contact, surface friction factor, and surface wear should be considered when designing the surface micro-texture. The study of the influence of different shapes and arrangements of gradient-arranged microtexture-structured surfaces on the wear amount and friction factor can provide a theoretical basis for the active design of water-lubricated bearings in the development stage of naval equipment.

  • 0 前言

  • 水润滑轴承是舰船装备尾轴轴系的关键部件之一,在舰船轴系中应用十分广泛,承载着舰船前进和倒退全部轴系动力的传输[1-2]。轴承在工作时,除了承受螺旋桨轴和螺旋桨的自身重力以外,还要承受因螺旋桨的重量不平衡所引起的惯性力和船体变形所产生的附加力,这将使轴承处于恶劣的润滑状态,从而产生严重的摩擦和磨损。尤其在低速、重载、启停等一些特殊工况下,恶劣的润滑状态会发生严重的摩擦磨损,导致轴颈和轴承抱死,严重影响舰船装备水上航行和生存能力[3]

  • 在滑动轴承表面加工适当的微织构能够有效地提升摩擦副的表面摩擦性能。将仿生微织构与轴承润滑和磨损分析相结合,研究具有不同仿生表面轴承的润滑承载与磨损性能,对提高轴承润滑承载性能、降低磨损具有重要意义[4-6]

  • 目前,研究者主要从织构参数设计出发,研究仿生微织构对轴承润滑承载与磨损性能的影响。纪敬虎等[7]建立了凹坑织构轴承润滑模型,分析了凹坑几何参数和分布规律对油膜承载力的影响规律,发现凹坑织构能明显改善滑动轴承润滑承载性能,合适的织构参数与分布位置能达到最佳的润滑效果。AWASTHI 等[8]研究了圆柱形韧窝的深度和位置对轴承性能的影响,发现对轴承表面进行织构改性,可以提高动压轴承的承载能力,降低摩擦因数,提高轴承稳定性。

  • 在织构排布方式方面,研究发现单一微织构或多种微织构的不规则排布对润滑承载与耐磨性能亦具有显著的影响。李俊玲等[9]仿照葫芦形状,研究了葫芦形微织构梯度排布对其摩擦学性能的影响,发现葫芦形微织构表面的摩擦因数显著降低。RAHMANI 等[10]通过数值方法研究了不同覆盖区域微织构化表面的影响,发现了部分微织构化表面可以提高承载力和减小摩擦力的作用。张晖等[11]优化了径向滑动轴承的织构排布,发现在轴承收敛区域呈“半椭圆形”的织构排布具有更优良的摩擦学性能。胡宇等[12]基于仿生硅藻的多孔结构,设计了具有复合型微织构的水润滑轴承,显著提高了轴承的摩擦学性能。

  • 在水润滑轴承的轴瓦材料方面,高分子聚合物材料具有自润滑、减摩、减震、降噪等优点,采用高分子聚合物材料提升水润滑条件下的摩擦学性能成为目前研究的热点[13]。常用的高分子轴瓦材料有丁腈橡胶、尼龙、飞龙和超高分子聚乙烯(Ultra-high molecular weight polyethylene,UHMWPE)等[14]。崔旨桃等[15]通过在尼龙润滑填料材料表面构筑微凸织构,有效地降低了摩擦因数、减轻了表面磨损。周新聪等[16]通过在 UHMWPE 中添加改性填料,能够显著提升 UHMWPE 基板的摩擦学性能。

  • 可见,聚合物材料表面构筑微织构在提升轴承润滑承载与耐磨性能方面具有显著效果,且微织构梯度排布相比于规则排布具有更为优异的提升效果。微织构梯度排布的研究对于提升轴承承载力、降低轴承摩擦因数和提升轴承稳定性具有重要的意义。因此,本文从微织构深度、间距和排布方式三方面开展水润滑轴承在启动和停止运行时的低速转动过程的摩擦学性能研究。

  • 1 理论模型

  • 本文主要研究水润滑轴承在启停过程中的摩擦学性能,该过程轴颈位于轴瓦的最低端,梯度排布微织构水润滑轴承示意图如图1 所示。

  • 图1 轴承结构示意图

  • Fig.1 Diagram of journal bearing structure

  • 为了减小水润滑轴承在启停过程的磨损量和摩擦因数,改善轴承的摩擦学性能,在轴颈与轴瓦接触区域构筑梯度排布的微织构阵列。如图1 所示,构筑微织构区域的范围为 φ = 45°。图2 为构筑有微织构区域沿轴承的周向展开图,为了更加清晰地展示梯度排布微织构的形貌,对构筑有微织构的区域进行了局部放大。通过调整微织构的深度、周向和轴向长度控制微织构的尺寸,调整微织构的轴向和周向间距控制微织构的面积率。

  • 常用的微织构形状有圆形、三角形、矩形和正方形等。微织构梯度排布方案有周向分区平行分布(1122)、轴向交错平行分布(1 1 1、112)和周向交错平行分布(1212)等,如图2 所示。图中箭头方向为摩擦副的运动方向,1 1 1、112、1122 和 1212 为梯度排布方案代号。

  • 图2 梯度排布方式示意图

  • Fig.2 Schematic diagram of the combination of micro-texture gradient arrangement

  • 采用圆形织构、三角形织构、矩形织构和正方形织构面积相等的原则,进行微织构尺寸设计。圆形织构直径采用路继松等[17]研究中的 1 000 μm,则三角形织构边长为 1 350 μm,矩形织构边长分别为 1 200 μm 和 600 μm,正方形织构边长为 900 μm。为了微织构加工方便,对微织构尺寸均进行了圆整。以微织构深度和直径的比值为设计变量进行微织构深度设计,分别设置为 1∶100、3∶100 和 5∶100 等三种微织构深度,即 10 μm、30 μm 和 50 μm。

  • 1.1 Greenwood-Tripp 微凸体接触模型

  • 采用 Greenwood-Tripp 微凸体接触模型,计算轴瓦粗糙表面法向接触应力 Pa

  • Pa=162π15ρaζε2E'εζF5/2(H)
    (1)
  • 式中,ρa 为微凸体峰顶密度,ζ 为微凸体峰顶的曲率半径,E’为当量弹性模量,ε 为当量粗糙度,H 为膜厚比(当 H<4 时,发生微凸体接触)。

  • 根据库仑定律计算微凸体切向接触摩擦力 τa

  • τa=μaPa
    (2)
  • 式中,μa为粗糙接触的摩擦因数。

  • 1.2 Archard 磨损模型

  • 基于Archard磨损模型计算轴承的表面磨损率:

  • dWdt=kHrpcmvreln
    (3)
  • 式中,k 为磨损系数,Hr 为材料表面硬度,pc 为接触压力,vrel为相对滑动速度,m 为压力指数,n 为速度指数。

  • 轴瓦采用超高分子聚乙烯(ultra-high molecular weight polyethylene,UHMWPE)材料,该材料的基本参数如表1 所示。

  • 表1 UHMWPE 材料基本参数

  • Table1 UHMWPE material basic parameters

  • 2 数值计算

  • 采用 Solidworks 建立轴承实体模型,轴承尺寸及微织构深度、直径等参数如表2 所示。根据水润滑轴承的实际工况,对材料属性、接触类型等进行定义,并设置数值模拟的边界条件。轴颈与轴瓦之间的接触设置为面-面接触,接触类型为摩擦接触,水润滑状态下摩擦因数在 0.05~0.1[18]。在轴颈轴心位置施加一个旋转驱动并输入旋转速度为 100 r / min,在轴颈上施加沿 z 轴负方向的载荷并设置载荷大小为 1 kN。数值模拟计算的有限元模型如图3 所示。为了便于在微织构区域进行网格局部加密,对轴瓦做分块处理。

  • 表2 水润滑轴承计算参数

  • Table2 Calculation parameters of water-lubricated bearing

  • 图3 轴承有限元模型

  • Fig.3 Finite element model of the bearing

  • 由于单次磨损产生的磨损量较小,因此累计计算 10 h 所产生的表面磨损量。Workbench 运算过程中需要在摩擦接触中初始化 APDL 模块,该模块所需的 Archard 磨损模型如式(3)所示。

  • 3 结果与讨论

  • 3.1 微织构深度对平均磨损量的影响

  • 不同微织构深度对水润滑轴承表面平均磨损量的影响如图4 所示,图中直线是光滑表面平均磨损量。可以看出,微织构化表面的磨损量均比光滑表面磨损量有所减少。正方形、矩形、三角形和圆形四种单一微织构中,圆形和三角形织构表面平均磨损量均比正方形和矩形织构表面平均磨损量低。故在进行微织构梯度排布组合时,优先选用圆形织构和三角形织构。当微织构深度为 30 μm 时,微织构表面的平均磨损量最小;圆形织构表面平均磨损体积较光滑表面降低了 22.87%;三角形织构表面降低了 20.65%;矩形织构表面和正方形织构表面平均磨损体积与光滑表面平均磨损体积相比,分别降低了 11.99%和 11.14%。因此,在微织构梯度排布设计时,微织构深度优先选择 30 μm。

  • 图4 不同微织构深度下轴承表面平均磨损量

  • Fig.4 Average wear volume of bearing surfaces at different texture depths

  • 表面微织构的形状对摩擦副表面的磨损具有较大影响,如图5 所示为不同微织构形状表面水膜压力发散区和收敛区分布情况。由图5a 和图5b 可以看出,圆形织构和三角形织构均存在收敛区,能够增强水膜举升力、产生动压效应,起到减少表面接触、降低表面磨损的作用。矩形和正方形织构的收敛区和发散区并非十分明显,如图5c 和图5d 所示。但是,微织构凹坑可以储存润滑介质和磨屑,也能起到提高表面举升力的作用,从而减少表面接触、降低接触表面磨损。因此,矩形织构和正方形织构也能起到降低轴承表面磨损的作用。

  • 3.2 微织构周向间距对平均磨损量的影响

  • 微织构深度为 30 μm,不同微织构周向间距对水润滑轴承表面平均磨损量的影响如图6 所示,图中直线是光滑表面平均磨损量。不同微织构周向间距下,圆形织构和三角形织构表面平均磨损量比正方形和矩形织构表面平均磨损量低。当微织构周向间距为 4.5°时,圆形织构表面平均磨损量最小,三角形织构表面次之,矩形和正方形织构表面平均磨损量接近,均比圆形和三角形织构表面平均磨损量要大。因此,在进行微织构梯度排布时,微织构周向间距优先选择 4.5°。

  • 图5 不同微织构形状表面水膜压力发散区和收敛区分布

  • Fig.5 Distribution of dispersion and convergence zones of water film pressure in different texture shapes

  • 图6 不同微织构间距下轴承表面平均磨损量

  • Fig.6 Average wear volume of bearing surfaces at different texture pitches

  • 对于矩形织构和正方形织构,当水流流过微织构凹坑时,表面水膜压力会先经过发散区减小和收敛区增大两个过程。矩形织构较窄,发散区较小; 正方形织构较宽,发散区较大,如图7 所示。因此,矩形织构相比正方形织构提高表面举升力、减少表面接触、降低表面磨损的效果较好。

  • 图7 矩形和正方形织构表面水膜压力发散区和收敛区分布

  • Fig.7 Distribution of dispersion and convergence zones of water film pressure in rectangular and square texture

  • 3.3 微织构梯度排布方式对平均磨损量的影响

  • 根据 3.1 和 3.2 节中优选的微织构尺寸和形状,按图2 的排布方式进行组合设计。分别对圆形和三角形织构以1 1 1、112、1122 和 1212 等方式进行组合设计。最优的 5 组微织构梯度排布水润滑轴承的表面平均磨损量如图8 所示。圆形与三角形织构以112 方式梯度排布的表面减磨效果最佳,平均磨损体积为 5.66×10−6 mm 3,相较于光滑轴承表面平均磨损量降低了 28.72%,相较于单一的圆形织构降低了 7.52%;三角形与圆形织构以 1122 方式梯度排布的表面减磨效果次之,平均磨损体积为 5.99 × 10−6 mm 3,相较于光滑轴承表面平均磨损量降低了 25.56%,相较于单一的圆形织构降低了 2.12%;圆形织构以1 1 1 方式、三角形与圆形织构以112 方式、圆形与三角形织构以 1122 方式梯度排布的表面平均磨损量十分接近,相较于光滑轴承表面平均磨损量降低了 23.53%,相较于单一的圆形织构降低了 0.85%。

  • 圆形和三角形织构梯度排布表面水膜压力发散区和收敛区分布情况如图9 所示。图9a 为圆形与三角形织构以112 方式梯度排布微织构表面,可以看出收敛区较多,所以在减少表面接触、降低表面磨损以及提高表面举升力方面效果最佳。图9b 为三角形与圆形织构以 1122 方式梯度排布微织构表面,收敛区减少,在提高表面举升力及减少表面接触、降低表面磨损方面效果稍有下降。图9c 和图9d 分别为圆形织构以1 1 1 方式、三角形与圆形织构以112 方式梯度排布表面,发散区增多,在提高表面举升力方面及减少表面接触、降低表面磨损效果变差。因此,在设计表面微织构时,应考虑增加表面举升力收敛区,来减少表面接触、降低表面磨损以及提高表面举升力。

  • 图8 不同微织构梯度排布轴承表面平均磨损量

  • Fig.8 Average wear volume of bearing surfaces with different texture gradient arrangements

  • 图9 梯度排布微织构表面水膜压力发散区和收敛区分布

  • Fig.9 Distribution of the dispersion and convergence zones of water film pressure on the surface of the gradient arrangement texture

  • 4 试验

  • 为了进一步验证梯度排布微织构对水润滑轴承的耐磨减摩效果,通过 CNC 雕刻机在试验试件表面加工微织构,采用 CFT-I 材料表面性能综合测试仪,开展梯度排布微织构表面摩擦磨损试验研究。

  • 4.1 试验材料

  • 本文选取 UHMWPE 作为主要研究对象。UHMWPE 材料的基本参数如表1 所示。

  • 采用 CNC 数控雕刻的加工方式,分别制备带有单一圆形织构、三角形与圆形织构以 1122 方式和圆形与三角形织构以112 方式梯度排布的 UHMWPE 表面,进行摩擦磨损试验,测量微织构表面的摩擦因数。通过与光滑表面的摩擦学性能进行对比,比较微织构化表面的减摩效果。CNC 数控雕刻机制备的试样表面形貌如图10 所示,微织构深度为 30μm。

  • 图10 微织构化 UHMWPE 表面形貌图

  • Fig.10 Textured UHMWPE surface morphology

  • 4.2 试验参数

  • 采用 CFT-I 材料表面性能综合测试仪对光滑、单一圆形织构、三角形与圆形织构以 1122 方式和圆形与三角形织构以 112 方式梯度排布的 UHMWPE 表面与 GCr15 柱销进行摩擦学性能检测,试验过程柱销固定不动并施加载荷,UHMWPE 试样板做往复直线运动以实现滑动摩擦,原理图如图11 所示。具体试验参数如下:室温条件,浸水润滑,载荷为 10 7N,往复距离为 15 mm,频率 1 Hz,摩擦时间为 20 min,柱销直径为 6 mm。试验过程中摩擦力由力传感器采集,通过计算机自动转化为摩擦因数。

  • 图11 摩擦磨损试验原理图

  • Fig.11 Schematic diagram of friction and wear test

  • 4.3 试验结果

  • 图12 为光滑表面、单一圆形织构表面、三角形与圆形织构以 1122 方式和圆形与三角形织构以112 方式梯度排布表面的摩擦因数随时间变化的曲线。随着时间的增加,各试样表面的摩擦因数在摩擦初期迅速增加,并很快趋于稳定。

  • 图12 中四组表面的平均摩擦因数分别为 0.305、0.247、0.149、0.147。相较于光滑表面,单一微织构表面和 1122、112 两组梯度排布微织构表面的平均摩擦因数分别降低 19.01%、 51.15% 和 51.80%。微织构化表面在水润滑条件下,可以形成更加稳定的动压润滑效应,提高润滑水膜压力,从而降低表面摩擦因数。而梯度排布微织构化表面水膜压力收敛区更多,更容易形成动压润滑效应,使得表面摩擦因数更低。

  • 图12 不同排列方式下摩擦副瞬时摩擦因数

  • Fig.12 Instantaneous friction factor of friction pair at different arrangements

  • 图13 为不同排列方式微织构化表面磨损后的形貌图。与光滑表面和单一圆形织构表面相比,圆形与三角形织构以 112 方式梯度排布表面磨痕最浅,磨损体积最小,磨损后的微织构形状、尺寸并未发生明显变化;三角形与圆形织构以 1122 方式梯度排布表面磨痕较浅,主要集中在两个织构的间隙区域,磨损后的微织构形状、尺寸也未发生明显变化。

  • 图13 不同排列方式微织构表面磨损形貌图

  • Fig.13 Wear morphology of texture surfaces in different arrangements

  • 5 结论

  • 基于 Greenwood-Tripp 微凸体接触模型和 Archard 磨损模型求解水润滑轴承微织构化表面磨损量,研究了梯度排布微织构对水润滑轴承摩擦学性能的影响,采用 CFT-I 材料表面性能综合测试仪,开展了摩擦磨损试验。得到以下结论:

  • (1)与光滑轴承表面、单一织构化轴承表面相比,梯度排布微织构化表面摩擦学性能最佳,表面磨损量最少、摩擦因数最小。梯度排布微织构可以有效减少表面接触,降低表面磨损量和摩擦因数。

  • (2)水润滑条件下,织构化轴承表面存在明显的水膜压力收敛区,能够增强水膜举升力、产生动压效应。其中,梯度排布微织构可以增加水膜压力收敛区,更容易形成动压效应,显著提高轴承表面的举升力。

  • (3)合理微织构排布方式,可以显著高轴承表面的摩擦学性能。在设计表面微织构时,应考虑增加表面水膜压力收敛区,提高表面举升力,减少表面接触、降低表面摩擦因数和表面磨损。

  • 参考文献

    • [1] JIN Yingze,CHEN Fei,ZHANG Fan,et al.Nonlinear dynamic performance of tilting-pad journal bearing with adjustable elastic pivot design[J].Tribology International,2019,136:533-547.

    • [2] 宋强,范华涛,王瑞,等.深海水下装备水润滑轴承研究现状与进展[J].船舶工程,2019,41(11):125-130,136.SONG Qiang,FAN Huatao,WANG Rui,et al.Current status and progress of water lubricated bearings for deep sea equipment[J].Ship Engineering,2019,41(11):125-130,136.(in Chinese)

    • [3] 孙丽军,薛闯,张立浩,等.倾斜轴颈重载轴承润滑性能分析及试验研究[J].润滑与密封,2016,41(7):107-111.SUN Lijun,XUE Chuang,ZHANG Lihao,et al.Lubrication performance analysis and test of misalignment heavy-duty journal bearings[J].Lubrication Engineering,2016,41(7):107-111.(in Chinese)

    • [4] 何阳,郭智威,吴祖旻,等.网状表面织构对水润滑轴承摩擦磨损性能的影响[J].润滑与密封,2021,46(1):31-37.HE Yang,GUO Zhiwei,WU Zumin,et al.Effect of surface mesh texture on friction and wear properties of water-lubricated bearings[J].Lubrication Engineering,2021,46(1):31-37.(in Chinese)

    • [5] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)

    • [6] 盛晨兴,马成,吴祖旻.条形沟槽深度对船舶水润滑尾轴承材料摩擦性能的影响[J].船舶工程,2018,40(6):31-35.SHENG Chenxing,MA Cheng,WU Zumin.Influence of strip-type groove depth on friction performance of water lubricated stern bearing material[J].Ship Engineering,2018,40(6):31-35.(in Chinese)

    • [7] 纪敬虎,周莹超,田朋霖,等.局部凹坑织构化径向滑动轴承流体动力润滑数值分析[J].表面技术,2021,50(10):214-220.JI Jinghu,ZHOU Yingchao,TIAN Penglin,et al.Numerical analysis of hydrodynamic lubrication of partially textured surfaces with dimples for journal bearing[J].Surface Technology,2021,50(10):214-220.(in Chinese)

    • [8] AWASTHI R K,MAAN JagjitSingh.Influence of surface texture on the performance of hydrodynamic journal bearing operating under turbulent regime[J].Tribology Online,2021,16(2):99-112.

    • [9] 李俊玲,陈平,邵天敏,等.葫芦形微凹坑对不锈钢表面摩擦学性能的影响[J].摩擦学学报,2016,36(2):207-214.LI Junling,CHEN Ping,SHAO Tianmin,et al.The effect of gourd-shaped surface texture on tribological performance of stainless steel[J].Tribology,2016,36(2):207-214.(in Chinese)

    • [10] RAHMANI Ramin,SHIRVANI Ayoub,SHIRVANI Hassan.Optimization of partially textured parallel thrust bearings with square-shaped micro-dimples[J].Tribology Transactions,2008,50:401-406.

    • [11] DONG Guangneng,ZHANG Hui,HAFEZI Mahshid,et al.A design of coverage area for textured surface of sliding journal bearing based on genetic algorithm[J].Journal of Tribology,2018,140:061702-061708.

    • [12] 胡宇,王优强,李云凯,等.具有复合型织构的水润滑轴承的摩擦学性能研究[J].表面技术,2021,50(11):233-242.HU Yu,WANG Youqiang,LI Yunkai,et al.Study on tribological properties of water-lubricated bearings with compound dimple[J].Surface Technology,2021,50(11):233-242.(in Chinese)

    • [13] 王耀晨,王优强,赵涛,等.水润滑聚合物轴承材料改性研究进展[J].轴承,2023,8:1-8.WANG Yaochen,WANG Youqiang,ZHAO Tao,et al.Research progress on material modification of waterlubricated polymer bearings[J].Beaing,2023,8:1-8.(in Chinese)

    • [14] 杜媛英,闵为,刘晓艺,等.考虑粗糙度时不同衬层材料水润滑轴承润滑特性比较[J].润滑与密封,2022,47(9):24-31.DU Yuanying,MIN Wei,LIU Xiaoyi,et al.Comparison of lubrication characteristics of water-lubricated bearings with different lining materials considering roughness[J].Lubrication Engineering,2022,47(9):24-31.(in Chinese)

    • [15] 崔旨桃,郭智威,谢心,等.尼龙自润滑性与表面织构协同作用对HDPE基水润滑轴承摩擦磨损性能的影响 [J].摩擦学学报,2019,39(4):407-417.CUI Zhitao,GUO Zhiwei,XIE Xin,et al.The synergistic effect mechanism of PA66 self-lubrication property and surface texture on tribological performance of HDPE water-lubricated bearing[J].Tribology,2019,39(4):407-417.(in Chinese)

    • [16] 周新聪,钟达,黄健,等.ATP 改性UHMWPE水润滑轴承材料的摩擦学特性研究[J].摩擦学学报,2022,42(3):632-641.LU Jisong,SONG Xintao,WANG Xiaoli.The influence of surface texture on mixed lubrication performance of water-lubricated bearing[J].Lubrication Engineering,2019,44(11):29-33.(in Chinese)

    • [17] 路继松,宋新涛,王晓力.表面织构对水润滑轴承混合润滑性能的影响[J].润滑与密封,2019,44(11):29-33.LU Jisong,SONG Xintao,WANG Xiaoli.The influence of surface texture on mixed lubrication performance of water-lubricated bearing[J].Lubrication Engineering,2019,44(11):29-33.(in Chinese)

    • [18] 谢心.表面纹理对水润滑轴承材料的摩擦学性能影响 [D].武汉:武汉理工大学,2020.XIE Xin.Influence of surface texture tribological property of water lubricated bearing materials[D].Wuhan:Wuhan University of Technology,2020.(in Chinese)

  • 参考文献

    • [1] JIN Yingze,CHEN Fei,ZHANG Fan,et al.Nonlinear dynamic performance of tilting-pad journal bearing with adjustable elastic pivot design[J].Tribology International,2019,136:533-547.

    • [2] 宋强,范华涛,王瑞,等.深海水下装备水润滑轴承研究现状与进展[J].船舶工程,2019,41(11):125-130,136.SONG Qiang,FAN Huatao,WANG Rui,et al.Current status and progress of water lubricated bearings for deep sea equipment[J].Ship Engineering,2019,41(11):125-130,136.(in Chinese)

    • [3] 孙丽军,薛闯,张立浩,等.倾斜轴颈重载轴承润滑性能分析及试验研究[J].润滑与密封,2016,41(7):107-111.SUN Lijun,XUE Chuang,ZHANG Lihao,et al.Lubrication performance analysis and test of misalignment heavy-duty journal bearings[J].Lubrication Engineering,2016,41(7):107-111.(in Chinese)

    • [4] 何阳,郭智威,吴祖旻,等.网状表面织构对水润滑轴承摩擦磨损性能的影响[J].润滑与密封,2021,46(1):31-37.HE Yang,GUO Zhiwei,WU Zumin,et al.Effect of surface mesh texture on friction and wear properties of water-lubricated bearings[J].Lubrication Engineering,2021,46(1):31-37.(in Chinese)

    • [5] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)

    • [6] 盛晨兴,马成,吴祖旻.条形沟槽深度对船舶水润滑尾轴承材料摩擦性能的影响[J].船舶工程,2018,40(6):31-35.SHENG Chenxing,MA Cheng,WU Zumin.Influence of strip-type groove depth on friction performance of water lubricated stern bearing material[J].Ship Engineering,2018,40(6):31-35.(in Chinese)

    • [7] 纪敬虎,周莹超,田朋霖,等.局部凹坑织构化径向滑动轴承流体动力润滑数值分析[J].表面技术,2021,50(10):214-220.JI Jinghu,ZHOU Yingchao,TIAN Penglin,et al.Numerical analysis of hydrodynamic lubrication of partially textured surfaces with dimples for journal bearing[J].Surface Technology,2021,50(10):214-220.(in Chinese)

    • [8] AWASTHI R K,MAAN JagjitSingh.Influence of surface texture on the performance of hydrodynamic journal bearing operating under turbulent regime[J].Tribology Online,2021,16(2):99-112.

    • [9] 李俊玲,陈平,邵天敏,等.葫芦形微凹坑对不锈钢表面摩擦学性能的影响[J].摩擦学学报,2016,36(2):207-214.LI Junling,CHEN Ping,SHAO Tianmin,et al.The effect of gourd-shaped surface texture on tribological performance of stainless steel[J].Tribology,2016,36(2):207-214.(in Chinese)

    • [10] RAHMANI Ramin,SHIRVANI Ayoub,SHIRVANI Hassan.Optimization of partially textured parallel thrust bearings with square-shaped micro-dimples[J].Tribology Transactions,2008,50:401-406.

    • [11] DONG Guangneng,ZHANG Hui,HAFEZI Mahshid,et al.A design of coverage area for textured surface of sliding journal bearing based on genetic algorithm[J].Journal of Tribology,2018,140:061702-061708.

    • [12] 胡宇,王优强,李云凯,等.具有复合型织构的水润滑轴承的摩擦学性能研究[J].表面技术,2021,50(11):233-242.HU Yu,WANG Youqiang,LI Yunkai,et al.Study on tribological properties of water-lubricated bearings with compound dimple[J].Surface Technology,2021,50(11):233-242.(in Chinese)

    • [13] 王耀晨,王优强,赵涛,等.水润滑聚合物轴承材料改性研究进展[J].轴承,2023,8:1-8.WANG Yaochen,WANG Youqiang,ZHAO Tao,et al.Research progress on material modification of waterlubricated polymer bearings[J].Beaing,2023,8:1-8.(in Chinese)

    • [14] 杜媛英,闵为,刘晓艺,等.考虑粗糙度时不同衬层材料水润滑轴承润滑特性比较[J].润滑与密封,2022,47(9):24-31.DU Yuanying,MIN Wei,LIU Xiaoyi,et al.Comparison of lubrication characteristics of water-lubricated bearings with different lining materials considering roughness[J].Lubrication Engineering,2022,47(9):24-31.(in Chinese)

    • [15] 崔旨桃,郭智威,谢心,等.尼龙自润滑性与表面织构协同作用对HDPE基水润滑轴承摩擦磨损性能的影响 [J].摩擦学学报,2019,39(4):407-417.CUI Zhitao,GUO Zhiwei,XIE Xin,et al.The synergistic effect mechanism of PA66 self-lubrication property and surface texture on tribological performance of HDPE water-lubricated bearing[J].Tribology,2019,39(4):407-417.(in Chinese)

    • [16] 周新聪,钟达,黄健,等.ATP 改性UHMWPE水润滑轴承材料的摩擦学特性研究[J].摩擦学学报,2022,42(3):632-641.LU Jisong,SONG Xintao,WANG Xiaoli.The influence of surface texture on mixed lubrication performance of water-lubricated bearing[J].Lubrication Engineering,2019,44(11):29-33.(in Chinese)

    • [17] 路继松,宋新涛,王晓力.表面织构对水润滑轴承混合润滑性能的影响[J].润滑与密封,2019,44(11):29-33.LU Jisong,SONG Xintao,WANG Xiaoli.The influence of surface texture on mixed lubrication performance of water-lubricated bearing[J].Lubrication Engineering,2019,44(11):29-33.(in Chinese)

    • [18] 谢心.表面纹理对水润滑轴承材料的摩擦学性能影响 [D].武汉:武汉理工大学,2020.XIE Xin.Influence of surface texture tribological property of water lubricated bearing materials[D].Wuhan:Wuhan University of Technology,2020.(in Chinese)

  • 手机扫一扫看