en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

卢金鹏,男,1999年出生,硕士研究生。主要研究方向为离子渗氮和表面涂层制备。E-mail:ytuljp@163.com

通讯作者:

李杨,男,1983年出生,博士,教授,硕士研究生导师。主要研究方向为等离子体化学热处理、离子镀、摩擦与腐蚀等。E-mail:metalytu@163.com

中图分类号:TG174;TG115

DOI:10.11933/j.issn.1007-9289.20221005002

参考文献 1
黄朝军,梁文萍,缪强,等.2Cr13 不锈钢的硼碳共渗及其摩擦学性能[J].热处理,2019,34(6):1-9.HUANG Chaojun,LIANG Wenping,MIAO Qiang,et al.Borcarburizing and resulting tribological property for 2Cr13 stainless steel[J].Heat Treatment,2019,34(6):1-9.(in Chinese)
参考文献 2
WANG X,FAN L,DING K,et al.Pitting corrosion of 2Cr13 stainless steel in deep-sea environment[J].Journal of Materials Science & Technology,2021,64:187-194.
参考文献 3
DALMAU A,RICHARD C,IGUAL–MUñOZ A.Degradation mechanisms in martensitic stainless steels:Wear,corrosion and tribocorrosion appraisal[J].Tribology International,2018,121:167-79.
参考文献 4
顾剑锋,李沛,钟庆东.物理气相沉积在耐腐蚀涂层中的应用[J].材料导报,2016,30(9):75-80.GU Jianfeng,LI Pei,ZHONG Qingdong.Application of physical vapor deposition in corrosion resistant coatings[J].Materials Reports,2016,30(9):75-80.(in Chinese)
参考文献 5
ZHANG L,SHAO M,WANG Z,et al.Comparison of tribological properties of nitrided Ti-N modified layer and deposited TiN coatings on TA2 pure titanium[J].Tribology International,2022,174:107712.
参考文献 6
YOU P F,ZHANG X,YANG X G,et al.Preparation and performances of Ni-Fe/CrNx dual layer coatings for ferritic stainless steel interconnects[J].Results in Physics,2019,12:1598-1605.
参考文献 7
夏虎峰,田广科,陈庆春,等.不同工作环境下CrN涂层的摩擦磨损性能[J].中国表面工程,2019,32(6):56-62.XIA Hufeng,TIAN Guangke,CHEN Qingchun,et al.Friction and wear properties of CrN films in different working Environments[J].China Surface Engineering,2019,32(6):56-62.(in Chinese)
参考文献 8
刘吉良,廖日东,罗军,等.20CrMo 上沉积CrN涂层的力学性能及5W/40润滑下的摩擦学性能[J].中国表面工程,2017,30(6):103-110.LIU Jiliang,LIAO Ridong,LUO Jun,et al.Mechanical properties of CrN coating on 20CrMo and its tribological properties under 5W/40 oil[J].China Surface Engineering,2017,30(6):103-110.(in Chinese)
参考文献 9
SHAN L,ZHANG Y R,WANG Y X,et al.Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater[J].Transactions of Nonferrous Metals Society of China,2016,26(1):175-84.
参考文献 10
KABIR M S,MUNROE P,ZHOU Z,et al.Wear behavior of graded Cr-CrN-Cr(1−x)Al(x)N coatings synthesized by closed-field unbalanced magnetron sputtering for advanced machining operations[J].Ceramics International,2018,44(7):7723-7733.
参考文献 11
XU X,SU F,LI Z.Tribological properties of nanostructured TiAlN/W2N multilayer coating produced by PVD[J].Wear,2019,430-431:67-75.
参考文献 12
王力涛,燕峰,黄新放,等.CrWN 涂层中W元素含量对涂层纳米硬度和热稳定性的影响[J].表面技术,2021,50(12):372-380.WANG Litao,YAN Feng,HUANG Xinfang,et al.Effect of W content on the nano-hardness and thermal stability of the CrWN coating[J].Surface Technology,2021,50(12):372-380.(in Chinese)
参考文献 13
CHEN H,YE Y,WANG C,et al.Understanding the corrosion and tribological behaviors of CrSiN coatings with various Si contents in HCl solution[J].Tribology International,2019,131:530-540.
参考文献 14
KABIR M S,MUNROE P,ZHOU Z,et al.Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering[J].Wear,2017,380-381:163-75.
参考文献 15
张向东,蔡习军,蔡飞,等.钛合金表面不同多层结构 Cr/CrAlN 涂层的制备及磨损性能[J].材料导报,2022,36(15):127-132.ZHANG Xiangdong,CAI Xijun,CAI Fei,et al.Preparation and wear properties of Cr/CrAlN coatings with different multilayer structures on titanium alloy surfaces[J].Materials Reports,2022,36(15):127-132.(in Chinese)
参考文献 16
SHI W,MIAO Q,LIANG W,et al.Gas-solid erosion characteristics of CrAl/CrAlN duplex layer coating deposited by RF magnetron sputtering[J].Surfaces and Interfaces,2021,22:100843.
参考文献 17
BELIARDOUH N E,BOUZID K,NOUVEAU C,et al.Tribological and electrochemical performances of Cr/CrN and Cr/CrN/CrAlN multilayer coatings deposited by RF magnetron sputtering[J].Tribology International,2015,82:443-452.
参考文献 18
CHIPATECUA Y L,OLAYA J J,ARIAS D F.Corrosion behaviour of CrN/Cr multilayers on stainless steel deposited by unbalanced magnetron sputtering[J].Vacuum,2012,86(9):1393-1401.
参考文献 19
HUANG X,XIE Z,LI K,et al.Microstructure,wear and oxidation resistance of CrWN glass molding coatings synthesized by plasma enhanced magnetron sputtering[J].Vacuum,2020,174:109206.
参考文献 20
刘鑫宇,张艳,蔡吴敏,等.(CrNbTiMoZr)C 薄膜在人工海水环境中的摩擦腐蚀性能[J].中国表面工程,2022,35(2):35-44.LIU Xinyu,ZHANG Yan,CAI Wumin,et al.Friction corrosion properties of(CrNbTiMoZr)C coating in artificial seawater[J].China Surface Engineering,2022,35(2):35-44.(in Chinese)
参考文献 21
DONG M,ZHU Y,WANG C,et al.Structure and tribocorrosion properties of duplex treatment coatings of TiSiCN/nitride on Ti6Al4V alloy[J].Ceramics International,2019,45(9):12461-12468.
参考文献 22
MORENO BáRCENAS A,ALVARADO OROZCO J M,CARMONA J M G,et al.Synergistic effect of plasma nitriding and bias voltage on the adhesion of diamond-like carbon coatings on M2 steel by PECVD[J].Surface and Coatings Technology,2019,374:327-37.
参考文献 23
LI Y,HE Y,XIU J,et al.Wear and corrosion properties of AISI 420 martensitic stainless steel treated by active screen plasma nitriding[J].Surface and Coatings Technology,2017,329:184-92.
参考文献 24
李广宇,齐森鹏,于克伟,等.等离子体源渗氮2Cr13马氏体不锈钢的耐磨与耐腐蚀性能[J].机械工程材料,2019,43(4):6-9,34.LI Guangyu,QI Senpeng,YU Kewei,et al.Wear and corrosion resistance of plasma source nitrided 2Cr13 martensitic stainless steel[J].Materials for Mechanical Engineering,2019,43(4):6-9,34.(in Chinese)
参考文献 25
LI Y,ZHANG S Z,QIU J X,et al.Effect of electric potentials on microstructure,corrosion and wear characteristic of the nitrided layer prepared on 2Cr13 stainless steel by plasma nitriding[J].Acta Metallurgica Sinica(English Letters),2018,32(6):733-45.
参考文献 26
由园,闫纪红,闫牧夫,等.2Cr13 钢 440 ℃等离子体渗氮[J].金属热处理,2017,42(5):172-175.YOU Yuan,YAN Jihong,YAN Mufu,et al.Plasma nitriding of 2Cr13 steel at 440 ℃[J].Heat Treatment of Metals,2017,42(5):172-175.(in Chinese)
参考文献 27
TANG J F,HUANG C H,LIN C Y,et al.Effect of plasma nitriding and modulation structure on the adhesion and corrosion resistance of CrN/Cr2O3 coatings[J].Surface and Coatings Technology,2019,379:125051.
参考文献 28
TILLMANN W,LOPES DIAS N F,STANGIER D.Influence of plasma nitriding pretreatments on the tribo-mechanical properties of DLC coatings sputtered on AISI H11[J].Surface and Coatings Technology,2019,357:1027-1036.
参考文献 29
黄振,郭媛媛,滕越,等.AISI 316L 表面氮化复合类金刚石涂层的相结构及摩擦学性能[J].中国表面工程,2019,32(5):111-118.HUANG Zhen,GUO Yuanyuan,TENG Yue,et al.Phase structure and tribological properties of DLC coatings combined with nitriding on surface AISI 316L[J].China Surface Engineering,2019,32(5):111-118.(in Chinese)
参考文献 30
LI Y,LIU Z,LUO J,et al.Microstructure,mechanical and adhesive properties of CrN/CrTiAlSiN/WCrTiAlN multilayer coatings deposited on nitrided AISI 4140 steel[J].Materials Characterization,2019,147:353-364.
参考文献 31
LI Y,YE Q,ZHU Y,et al.Microstructure,adhesion and tribological properties of CrN/CrTiAlSiN/WCrTiAlN multilayer coatings deposited on nitrocarburized AISI 4140 steel[J].Surface and Coatings Technology,2019,362:27-34.
参考文献 32
WANG Z W,LI Y,ZHANG Z H,et al.Friction and wear behavior of duplex-treated AISI 316L steels by rapid plasma nitriding and(CrWAlTiSi)N ceramic coating[J].Results in Physics,2021,24:104132.
参考文献 33
YE Q W,LI Y,ZHANG M Y,et al.Electrochemical behavior of(Cr,W,Al,Ti,Si)N multilayer coating on nitrided AISI 316L steel in natural seawater[J].Ceramics International,2020,46(14):22404-18.
参考文献 34
李杨,徐惠忠,邱剑勋,等.AISI 316L 奥氏体不锈钢空心阴极放电离子源渗氮技术[J].中国表面工程,2014,27(3):25-30.LI Yang,XU Huizhong,QIU Jianxun,et al.Plasma nitriding of AISI 316L austenitic stainless steel by hollow cathode discharge source[J].China Surface Engineering,2014,27(3):25-30.(in Chinese)
参考文献 35
李广宇,李刚,雷明凯.2Cr13 不锈钢活性屏等离子体源渗氮层组织与耐蚀性能[J].表面技术,2022,51(6):300-306.LI Guangyu,LI Gang,LEI Mingkai.Microstructure and corrosion resistance of nitriding layer of 2Cr13 stainless steel by active screen plasma source nitriding[J].Surface Technology,2022,51(6):300-306.(in Chinese)
参考文献 36
STECHYSHYN M S,MARTYNYUK A V,BILYK Y M,et al.Influence of the ionic nitriding of steels in glow discharge on the structure and properties of the Coatings[J].Materials Science,2017,53(3):343-350.
参考文献 37
SILVA F J G,CASAIS R C B,BAPTISTA A P M,et al.Comparative study of the wear behavior of B4C monolayered and CrN/CrCN/DLC multilayered physical vapor deposition coatings under high contact loads:an experimental analysis[J].Journal of Tribology,2022,144(3):1-42.
参考文献 38
WANG Y,CHEN Y,ZHAO D,et al.Deformation mechanism of CrN/nitriding coated steel in wear and nano-scratch experiments under heavy loading conditions[J].Applied Surface Science,2018,447:100-106.
参考文献 39
LI C X,BELL T.Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions[J].Corrosion Science,2006,48(8):2036-2049.
参考文献 40
CHALA A,NOUVEAU C,DJOUADI M A,et al.Effect of duplex treatments by plasma nitriding and triode sputtering on corrosion behaviour of 32CDV13 low alloy steel[J].Surface and Coatings Technology,2006,200(22-23):6568-6571.
参考文献 41
YAN M F,LIU R L.Influence of process time on microstructure and properties of 17-4PH steel plasma nitrocarburized with rare earths addition at low temperature[J].Applied Surface Science,2010,256(20):6065-6071.
参考文献 42
陈志林,曹驰,杨瑞成,等.奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J].材料导报,2021,35(6):6161-6166.CHEN Zhilin,CAO Chi,YANG Ruicheng,et al.Microstructure and properties of composite modified layer of austenitic stainless steel obtsined by nitriding & physical vapor deposition[J].Materials Reports,2021,35(6):6161-6166.(in Chinese)
参考文献 43
GATEY A M,HOSMANI S S,FIGUEROA C A,et al.Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel[J].Surface and Coatings Technology,2016,304:413-424.
参考文献 44
MENG Q,FRANKEL G,COLIJN H,et al.Stainless-steel corrosion and MnS inclusions[J].Nature,2003,424(6947):389-390.
参考文献 45
BORGIOLI F,GALVANETTO E,BACCI T.Corrosion behaviour of low temperature nitrided nickel-free,AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution[J].Corrosion Science,2018,136:352-365.
参考文献 46
OLZON-DIONYSIO M,DE SOUZA S D,BASSO R L O,et al.Application of Mössbauer spectroscopy to the study of corrosion resistance in NaCl solution of plasma nitrided AISI 316L stainless steel[J].Surface and Coatings Technology,2008,202(15):3607-3614.
参考文献 47
CHELARIU R,TRINCA L C,MUNTEANU C,et al.Corrosion behavior of new quaternary ZrNbTiAl alloys in simulated physiological solution using electrochemical techniques and surface analysis methods[J].Electrochimica Acta,2017,248:368-375.
参考文献 48
WILLIAM GRIPS V K,BARSHILIA H C,SELVI V E,et al.Electrochemical behavior of single layer CrN,TiN,TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering[J].Thin Solid Films,2006,514(1):204-211.
目录contents

    摘要

    马氏体不锈钢的常规表面改性方法基本局限在单一化学热处理或镀膜,对表面性能的提升有限。对 2Cr13 不锈钢进行离子渗氮与多弧离子镀 WCrAlTiSiN 纳米多层涂层复合强化处理,研究其在天然海水环境中的耐腐蚀性能。采用不同的表面强化工艺,即未处理(Untreated)、低温渗氮处理(LPN)、高温渗氮处理(HPN)、单一镀膜处理(Coating)、低温渗氮+镀膜处理(LPN+C)和高温渗氮+镀膜处理(HPN+C)。采用 X 射线衍射、光学显微镜、透射电子显微镜和维氏硬度计对不同样品的组织结构、化学成分和硬度等进行表征。采用电化学阻抗法和动态电位极化法对 2Cr13 在天然黄海海水中的电化学行为进行测试。试验结果表明:WCrAlTiSiN 涂层可在一定程度上提升腐蚀性能,但是溶液中的 Cl 通过较薄单一涂层的缺陷侵入基体。LPN 样品因渗氮层的存在提升了一定的耐腐蚀性能,而 HPN 样品因为渗氮温度过高而导致 CrN 大量析出,使得样品表面出现“贫 Cr”现象,耐腐蚀性能下降。复合处理样品的渗氮层-WCrAlTiSiN 涂层可形成保护屏障,有效阻止电荷转移和电流从阳极流向阴极,提高 2Cr13 钢在海水环境中的耐腐蚀性能。通过离子渗氮-多弧离子镀 WCrAlTiSiN 纳米涂层复合强化方法可有效提升马氏体不锈钢在海水中的耐腐蚀性能。

    Abstract

    The poor corrosion resistance of 2Cr13 steel significantly affects its service life in marine environments, such as petrochemical, naval, and ocean engineering. Currently, strengthening methods for martensitic stainless steel are mainly limited to a single chemical heat treatment or coating, and there is relatively little research on composite treatment processes, especially nitriding and nano-multilayer coating. Plasma nitriding and multi-arc ion plating (WCrAlTiSiN multilayer coating) were used for the composite strengthening of 2Cr13 martensitic stainless steel, and its corrosion resistance in the natural Yellow Seawater environment was studied. 2Cr13 was subjected to ion nitriding using an LDMC-20F pulsed glow discharge ion-nitriding furnace. The sample was placed on the cathode of a nitriding furnace, and the internal pressure of the furnace was reduced to 10 Pa. The voltage was adjusted to 750 V with a duty cycle of 73%, and the temperature was adjusted to 440 or 480℃. The internal NH3 pressure was maintained at 350 Pa, and the sample was heat-treated for 5 h. Untreated, “LPN, and HPN” samples were deposited with (W, Cr, Al, Ti, Si)N multilayer coatings using an industrial HCCE-280 cathodic arc evaporation system. Three W (99.99%), three Cr (99.99%), one Al-Ti-Si, and one Al-Ti alloy targets were selected. The current parameters for each target were adjusted according to the desired deposition rate. A very thin Cr bonding layer was deposited on the polished surface of the sample in an argon atmosphere, followed by the deposition of a CrN transition layer in a nitrogen atmosphere. Subsequently, in a mixed atmosphere of argon and nitrogen, a CrTiAlSiN layer was deposited on three Cr, one Al-Ti, and one Al-Ti-Si targets. Finally, multiple nanoscale WCrAlTiN layers were prepared as the outermost layer using programmed alternating deposition of WCrAlTiN and CrWAlTiN layers enriched with W and Cr, respectively. The structure, chemical composition, and hardness of the samples were characterized using X-ray diffraction, optical microscopy, transmission electron microscopy, and Vickers hardness testing. The results show that the nitrided sample is mainly composed of ε-Fe2-3N, γ’-Fe4N, and αN phases. The surface of the LPN and the HPN samples formed hardened layers of 50 and 90 μm thicknesses, respectively. The WCrAlTiN coating, with a thickness of 2.3 μm, was composed of CrN, W2N, TiN, and AlN phases. The surface hardness of the untreated sample was low and could not provide sufficient support, leading to an unsatisfactory hardness of the coated sample. After the composite treatment, the surface hardness of 2Cr13 steel increased from approximately 250 HV0.1 to 2100 HV0.1. The electrochemical behavior of 2Cr13 in natural Yellow Seawater was tested using electrochemical impedance spectroscopy and potentiodynamic polarization. The results show that all samples exhibited a single equivalent circuit in the EIS spectra. Compared to the other samples, the “LPN+C” sample exhibited excellent corrosion resistance. Compared to the untreated sample, the Ecorr value of the LPN+C sample increased from −6.54×10−1 V to −4.79×10−1 V, the Icorr value and corrosion rate decreased by a single order of magnitude, while Rct increased by a single order of magnitude. The nitrided layer and WCrAlTiSiN coating can formed a protective barrier, effectively blocking charge transfer and current flow from anode to cathode. this improved the corrosion resistance of 2Cr13 steel in seawater. The composite reinforcement method of ion nitriding and multi-arc ion plating with nanocoating can effectively enhance the surface hardness and corrosion resistance of martensitic stainless steel, particularly in seawater environments, thereby extending the service life of martensitic stainless-steel parts in marine applications.

  • 0 前言

  • 2Cr13 钢是一种应用范围很广泛的马氏体不锈钢,具有较高的强度和良好的力学性能,主要应用于承受冲击载荷较多兼具一定耐蚀性要求的零件。但 2Cr13 钢耐磨性和耐腐蚀性较差,不仅限制其在石油化工和海洋工程等领域的应用,也严重影响其使用寿命[1-3]。提高 2Cr13 马氏体不锈钢零件的耐腐蚀性,延长零件的使用寿命对工业生产水平的提升具有重要意义。

  • 硬质涂层在金属材料防氧化腐蚀方面的发展十分迅速。在工件涂覆一层或多层硬质涂层可以有效地提高材料的硬度、耐腐蚀性能和耐摩擦性能[45]。在物理沉积技术发展的过程中,发现 CrN 基涂层具有优越的性能,因此在工业中被广泛使用[6-8]。研究发现,在 CrN 基涂层中加入 Ti[9]、Al[10]、W[11-12]和 Si[13]等元素可以进一步提高涂层的性能,比如,具有优秀化学稳定性和韧性的 CrTiN[14]和 CrAlN 涂层[15-16]

  • 制造业的快速发展对涂层的性能也有了更高的要求。在工业领域中 TiN、CrN 系列的涂层使用较多,缺少对 WN 系列的纳米多层涂层的研究。在 CrN 膜层中添加 Ti、Al、W 和 Si 等元素,可以形成具有多种相的纳米涂层,这种涂层相比传统的 TiN、 CrN 涂层来说,硬度更高,耐腐蚀和耐摩擦性能更好,而且具有更好的膜基结合力。BELIARDOUH 等[17]研究表明,Cr / CrN / CrAlN 多层膜具有优秀的耐摩擦性和耐腐蚀性。CHIPATECUA 等[18] 研究表明物理气相沉积的方法在不锈钢表面沉积 CrN 涂层可以大大提高在氯化物中的耐腐蚀性。 KABIR 等[10]研究表明在 CrN 涂层中掺入 Al,可以形成致密的铬铝氧化物保护膜,这些富含 Al 和 Cr 的氧化物对金属表面具有出色的保护效果,并且可以在氧化过程中阻止氧的向内扩散和金属阳离子的向外扩散。另外,Ti 的掺入会提高涂层的磨损性能,提高 CrN 基涂层的致密性[14]。HUANG 等[19]研究表明 CrWN 涂层表现出优异的力学性能和耐磨性,W 元素的存在提高了涂层的整体性能,随着 W 含量的增加,晶格膨胀和硬度增加。

  • 硬质涂层可以给基体带来更好的耐腐蚀性能和耐摩擦性能[20],但是由于涂层本身的硬度要高于基体的表面硬度,如果基体的承载能力不够,有可能会导致涂层失效。而且涂层比较薄,长时间置放于含有 Cl 的溶液中时,也很难抵挡 Cl 的腐蚀,所以具有较好耐腐蚀性的氮化强化层会很好地解决这个问题[21-22]。HE 和 LI 等[23-26]采用离子渗氮方法对 2Cr13 表面进行处理,结果表明经过渗氮处理样品的表面硬度、耐腐蚀性和耐摩擦性得到较大的提升。

  • 若在涂层沉积之前,先对基体进行渗氮处理,涂层与基体之间的结合力得到提高,承载能力也会大为提升[27-31]。WANG 和 LI 等[32-34]在经过渗氮前处理的 AISI 316L 钢上沉积 WCrAlTiSiN 复合涂层,将不同处理的样品进行电化学腐蚀和摩擦磨损试验后,试验结果表明,离子渗氮方法可以在样品表面形成均匀而致密的渗氮层,复合处理后的样品表现出优异的耐腐蚀性能和耐摩擦性。较高的 Cr 含量使奥氏体不锈钢本身就具有不错的耐腐蚀性,可以应用在恶劣的腐蚀环境下,而马氏体不锈钢比奥氏体不锈钢 Cr 含量低,导致马氏体不锈钢更适合应用在轻度腐蚀的场合中。

  • 目前 2Cr13 钢的强化处理基本局限在单一渗氮或镀膜,复合处理的工艺应用较少。本文以 2Cr13 钢为研究对象,进行离子渗氮和 WCrAlTiSiN 涂层复合强化,并研究复合强化后样品在海水中的电化学行为。

  • 1 试验准备

  • 1.1 样品制备

  • 使用电火花线切割机(EDWC)将 2Cr13 马氏体不锈钢棒材切割成厚度 8 mm,直径 25 mm 的样品,2Cr13 化学成分(质量分数)如表1 所示。对样品表面进行打磨,抛光后表面粗糙度 Ra< 0.05 μm。最后将样品清洗吹干。

  • 表1 2Cr13 钢的化学成分(质量分数 / wt.%)

  • Table1 Chemical composition of 2Cr13 steel (wt.%)

  • 1.1.1 渗氮过程

  • 使用 LDMC-20F 脉冲辉光离子氮化炉对 2Cr13 进行离子渗氮处理[25]。将样品置于渗氮炉的阴极,炉内气压抽至 10 Pa。

  • 调整电压为 750 V,占空比为 73 %,调整温度 (440、480℃),保持炉内 NH3 气压为 350 Pa,保温处理 5 h。

  • 1.1.2 沉积过程

  • 对未处理(Untreated)、低温渗氮(LPN)和高温渗氮(HPN)样品使用工业化的 HCCE-280 阴极电弧蒸发系统沉积(W、Cr、Al、Ti、Si)N 多层涂层。

  • 靶材选用 3 个 W 靶(99.99%),3 个 Cr 靶 (99.99%),1 个 Al-Ti-Si 和 1 个 Al-Ti 合金靶。每个靶材根据所需的沉积速率调整其电流参数。

  • 在氩气氛中,先在抛光后的样品表面上沉积非常薄的 Cr 粘合层,然后在氮气氛下沉积 CrN 过渡层。接着在氩气和氮气混合气氛中,使用 3 个 Cr 靶、1 个 Al-Ti 靶和 1 个 Al-Ti-Si 靶沉积 CrTiAlSiN 层。最后,使用编程控制交替沉积富含 W 元素的 WCrAlTiN 层和富含 Cr 元素的 CrWAlTiN 层,以制备出多个纳米级的 WCrAlTiN 层作为最外层。共制备 6 组不同工艺的样品,见表2。

  • 表2 不同样品的制备工艺

  • Table2 The preparation process of different samples

  • 1.2 材料表征测试

  • 使用以 Cu-Kα 作为辐射源(λ = 1.540 6)的 Bruker D8 X 射线衍射仪(XRD)在材料表面 30°~85°的2θ范围内进行扫描。使用ZEISS Axio Observer 3M 光学金相显微镜(OM)观察样品形貌。使用 JEM-2100F 高分辨率透射电子显微镜(HRTEM)对截面微观结构进行了表征。使用基于 TEM 的能谱仪(EDX)进行元素分析。使用 HV-1000A 维氏硬度仪测试显微硬度,测试载荷为 50 gf / 100 gf (1 kgf=9.806 65 N),保压时间 15 s。

  • 使用 CST-310 电化学工作站对不同的样品进行腐蚀行为研究。采用常规的三电极系统,工作电极为样品,辅助电极为铂丝,参比电极为饱和甘汞电极。选取来自黄海的天然海水(pH=8.1±0.2)做为电解质溶液,成分见表3。动态电位极化测试电位范围为−1.0 V 至+0.8 V,扫描速率为 1 mV / s,持续 3 200 s。电化学阻抗谱(EIS)频率范围为 10−2 ~105 Hz。使用 CView 软件和 ZView 软件对极化数据和阻抗数据进行分析和拟合。

  • 表3 黄海海水的化学成分(g / L)

  • Table3 Chemical composition of the seawater (g / L)

  • 2 结果与讨论

  • 图1 是 6 种工艺样品的 XRD 图谱。未经处理的 2Cr13 钢主要由 α-Fe 相组成[35]。Coating 样品在 Untreated 样品所含有相的基础上,出现了 CrN 相、 W2N 相、TiN 相、AlN 相。氮化样品以 ε-Fe2-3N 相、 γ'-Fe4N 相为主。与 HPN 样品相比,LPN 样品的 ε-Fe2-3N 相、γ'-Fe4N 相较弱,只是因为 HPN 样品的渗氮温度较高,形成的渗氮层更厚,存在的 ε-Fe2-3N、 γ'-Fe4N 更多。HPN 样品除了含有 ε-Fe2-3N 相和 γ'-Fe4N 相之外,还析出了 CrN 相。由于涂层很薄,复合处理样品中除了存在 CrN 相、W2N 相、TiN 相、 AlN 相外,依然能检测到 ε-Fe2-3N 相和 γ'-Fe4N 相。

  • 图1 不同试验条件样品的 XRD 图谱

  • Fig.1 XRD patterns of samples under different test conditions

  • 图2 是不同样品的横截面形貌图。Coating 样品在基体表面形成一层均匀致密的涂层。对 Coating 样品截面进行 TEM 形貌分析(图3)。涂层的总厚度为 2.3 μm,其中顶部 W-Cr-Al-Ti-N 纳米涂层的厚度为 0.7 μm,Cr-Ti-Al-Si-N 中间层的厚度为 1.6 μm,底部 CrN 层的厚度为 0.3 μm。黑色纳米层和白色纳米层分别对应富含 W 的 WCrAlTiN 层和富含 Cr 的 CrWAlTiN 层,顶部纳米多层涂层的调制周期为 30 nm。经过 EDX 分析顶部 W-Cr-Al-Ti-N 纳米涂层中只含有 W、Cr、Al、Ti 和 N 元素,而且元素分布均匀。如图2c 和图2e 所示,样品经过渗氮处理后,在表面形成了化合物层。LPN+C 样品(图2d-1)和 HPN+C 样品(图2f-1)表面由较厚的氮化层和一层比较薄的涂层组成。

  • 图2 不同样品的横截面 OM 显微照片

  • Fig.2 Cross-sectional OM micrographs of different samples: (a) Untreated, (b) Coating, (c) LPN, (d) LPN+C, (e) HPN, and (f) HPN+C.

  • 图3 WCrAlTiSiN 涂层 TEM 图及对应的 EDX 面扫图

  • Fig.3 TEM image and corresponding EDX surface scan of WCrAlTiSiN coating.

  • 图4 显示了不同样品的表面显微硬度。经过渗氮处理的样品表面硬度得到明显提升,这是因为存在 ε-Fe2-3N 和 γ'-Fe4N 相。Coating 样品的硬度约为 526 HV0.1,仅仅是原始样品的 2.4 倍,表面硬度结果远低于涂层本身硬度。这是因为单一涂层很薄,而原始基体的表面很软,支撑能力差,导致样品表面在承受载荷的时候受到影响[36]。经过复合处理的样品表面硬度得到大幅提升,LPN+C 样品和 HPN+C 样品的表面显微硬度分别为 2 064 和 2 111 HV0.1,这是因为较高硬度的氮化物层给了涂层更好的支撑力,使涂层的硬度得以体现[37-38]。图5 显示了不同样品的断面硬度梯度曲线。结果表明,LPN 和 HPN 样品的硬化层厚度分别约为 50 和 90 μm,这说明温度的提升会使 N 元素的扩渗能力增强[38]

  • 图4 不同样品的表面显微硬度

  • Fig.4 Surface microhardness of the different samples

  • 图5 不同样品横截面硬度梯度曲线

  • Fig.5 Hardness gradient curve of the different samples

  • 图6 为不同样品在海水中的极化曲线,表4 为不同样品的动态电位极化拟合结果,包括极化曲线的自腐蚀电流密度(Icorr)、自腐蚀电位(Ecorr)、腐蚀速率(Vcorr)。Untreated 样品具有较低的自腐蚀电位 (−0.65 V)、较高的自腐蚀电流密度(3.45 × 10−6 A·cm−2)和腐蚀速率(4.06×10−2 mm / a)。极化曲线有一个明显的钝化区,当自腐蚀电位在 0 V 左右时,自腐蚀电流密度随着自腐蚀电位的升高而迅速增加,样品表面发生点蚀[39]

  • 图6 不同工艺样品的极化曲线

  • Fig.6 Polarization curves of the different samples

  • 表4 不同工艺样品的极化参数

  • Table4 Polarization parameters of the different samples

  • LPN 的极化曲线呈现出较宽的钝化区,与 Untreated 样品相比,自腐蚀电位增加到−5.01× 10−1 V,自腐蚀电流密度有所增加,腐蚀速率增加到 5.80×10−2 mm / a。HPN 的极化曲线呈现出较宽的钝化区,与 Untreated 样品相比,自腐蚀电位降低到−7.67×10−1 V,自腐蚀电流密度升高到 6.26× 10−6 A·cm−2,腐蚀速率增加了一个数量级,耐腐蚀性下降,这是由在高温条件下 CrN 的析出导致的。 LI 等[23]指出渗氮温度过高会导致 CrN 的析出,从而使样品的耐腐蚀性能下降,而 LPN 样品会由 ε-Fe2-3N 相、γ'-Fe4N 相的存在致使耐腐蚀性能得到提升。Coating 样品未表现出明显的钝化现象,与 Untreated 样品相比,自腐蚀电位增加到−4.88× 10−1 A·cm−2,自腐蚀电流密度和腐蚀速率下降了一个数量级,表现出较好的耐腐蚀性。

  • 对于复合处理样品来说,自腐蚀电位均升高,自腐蚀电流密度和腐蚀速率下降,呈现出最好的耐腐蚀性能。HPN+C 样品的自腐蚀电位为−0.58 V,自腐蚀电流密度(7.58×10−7 A·cm−2)和腐蚀速率 (8.91×10−3 mm / a)显著优于 Untreated 和 HPN 样品。LPN+C 样品自腐蚀电位为 0.48 V,自腐蚀电流密度(4.04×10−7 A·cm−2)和腐蚀速率(4.75× 10−3 mm / a)相比 LPN 样品下降了一个数量级。 LPN+C 样品的耐腐蚀性能最好,能够有效抵御腐蚀性介质的侵蚀。复合处理大幅提高了 2Cr13 马氏体不锈钢的耐腐蚀性能[40]

  • 图7 是不同样品电化学腐蚀后的表面形貌。 Untreated样品表面已经被腐蚀出多个密集而明显的坑洞(图7a),发生了全面腐蚀。Coating 样品(图7b)表面出现长条状的腐蚀沟壑,而且部分涂层已经发生溶解,这种现象主要是因为涂层表面出现了电偶腐蚀,涂层破损,Cl 吸附在涂层表面,加剧了腐蚀。LPN 样品(图7c)与 Untreated 样品相比呈现出较好的腐蚀形貌,表面只出现较浅的点状腐蚀坑,这是因为氮化层比基体更具耐腐蚀性[41]。LI 等[39]研究发现,含有 ε-Fe2–3N 和 γ'-Fe4N 的化合物层可以提高低温氮化马氏体不锈钢的表面耐腐蚀性。HPN 样品渗氮温度过高,导致 CrN 的大量析出,使样品出现了“贫 Cr”现象,耐腐蚀性下降[42],同时 XRD 结果(图1)也证明了 HPN 样品析出了 CrN 相。

  • 图7 不同样品电化学腐蚀后表面形貌

  • Fig.7 Surface morphology of different samples after electrochemical corrosion: (a) Untreated, (b) Coating, (c) LPN, (d) LPN+C, (e) HPN, and (f) HPN+C.

  • LPN+C 和 HPN+C 样品呈现出最好的耐腐蚀能,但其腐蚀坑洞比较密集,这是由于沉积在表面的涂层在缺陷位置发生了电偶腐蚀,但是渗氮层的存在有效阻止了腐蚀介质的扩散和涂层中的电荷转移,降低了自腐蚀电流密度和腐蚀速率。复合处理样品在涂层和渗氮层的双重防护下,有效阻挡了腐蚀介质的扩散,提高了耐蚀性。

  • 图8 为不同样品在海水中进行电化学阻抗测试结果。从 Nyquist 图中看出,在弥散效应的影响下,所有样品的电化学容抗弧均向上凸起,钝化腐蚀过程主要受电荷转移控制。研究表明,容抗弧半径的大小可以反应电极反应速率的快慢,容抗弧的半径越大,越难发生电极反应,所对应样品的耐腐蚀性越好[43]。Untreated 样品呈现单容抗弧特征,而经过处理的样品容抗弧半径均有所增加,说明经过处理后的样品阻抗增加,耐腐蚀性提升。其中,LPN+C 样品的容抗弧半径最大,耐腐蚀性最好,Coating 样品次之。复合处理样品的容抗弧半径均大于单一渗氮的样品,表现出较好的耐腐蚀性能。不同样品的容抗弧均呈现出一种半圆形,这是一种简单的 Randles 电路。利用等效电路对阻抗谱进行拟合,分析不同样品在海水中的电化学反应过程,以 LPN+C 样品为例建立等效电路,如图9 所示。

  • 图8 不同样品的 EIS 图

  • Fig.8 EIS diagram of the different samples

  • 图9 LPN+C 样品的等效电路

  • Fig.9 Equivalent circuits for the different samples

  • 表5 为不同样品的等效电路拟合结果,包括溶液电阻(Rs)、电荷转移电阻(Rct)、双电层电容 (CPEdl)。由于电极的双电层电容的响应特性与纯电容(C)存在偏差,而且样品表面具有不同的粗糙度,所以出现弥散效应。使用常相位角元件 CPE 代替纯电容 C 会很好地解决这个问题。LPN+C 样品具有最大的 Rct值,表明 LPN+C 样品具有最好的耐腐蚀性能。复合处理可以改善高温渗氮腐蚀性能差的缺点。

  • 表5 不同处理样品的 EIS 参数

  • Table5 Electrochemical parameters of different treated samples obtained in EIS diagram

  • 图10 表明了不同样品在海水中的腐蚀行为。 2Cr13 钢基体在 Cl 的侵蚀作用下,钝化膜开始出现全面腐蚀。渗氮样品的表面主要以点蚀为主。点蚀的生长过程和原理非常复杂,可能与 MnS 夹杂物密切相关。FRANKEL 等[44]认为,当不锈钢处于含有氯化物的环境中时,点蚀的发生通常始于钢中的 MnS 夹杂物。LPN 样品在海水中表现出较好耐腐蚀性,这是因为渗氮层的存在,通过 [N]+ 4H+ + 3e →NH4+反应,N 形成 NH4 +,促进表面再钝化,并消耗 Cl[45-46]。HPN 样品虽然形成了较厚的氮化层,但是过高的温度使 CrN 大量析出,导致耐蚀性下降。Coating 样品的表面缺陷处会形成钝化膜,在基体和腐蚀物质之间起到了物理屏障的作用,使涂层耐腐蚀性能得到提升[47]。WCrAlTiSiN 纳米多层涂层的界面数量和过渡层结构可以一定程度上阻止腐蚀介质通过缺陷渗入基体[48]。同时,涂层中 W、 Al 和 Si 元素的存在可以形成金属氧化物,如 FeWO4。这些氧化物的存在抑制了 Cl 的通过,在发生腐蚀处形成致密的 TMN 钝化膜,防止了腐蚀介质的进一步渗入。但是因单一的涂层厚度较薄,腐蚀介质有可能会穿过涂层,与基体产生局部电偶腐蚀,导致涂层失效。LPN+C 样品的耐腐蚀性能最好。WCrAlTiSiN 涂层与氮化层形成的双重屏障,可以有效阻止涂层中电荷转移和电流从阳极流向阴极,降低自腐蚀电流密度及溶解速率。

  • 图10 不同样品在海水中的腐蚀行为图

  • Fig.10 Schematic illustrations of corrosion behavior of the different specimens in seawater: (a) Untreated, (b) Coating, (c) LPN, (d) HPN, (e) LPN+C, and (f) HPN+C.

  • 3 结论

  • 通过离子渗氮技术与多弧离子镀膜技术对 2Cr13 马氏体不锈钢进行处理,制备出 6 种不同的样品,即 Untreated、LPN、HPN、Coating、LPN+ C 和 HPN+C 样品。得到以下结论:

  • (1)复合处理样品表面的复合强化层由表层的 WCrAlTiSiN 涂层和次表层的氮化层组成。其中 WCrAlTiSiN 涂层以 CrN、W2N、TiN、AlN 相组成,氮化层以 ε-Fe2-3N 和 γ'-Fe4N 相为主。

  • (2)复合处理方法可以有效解决 2Cr13 基体无法为 WCrAlTiN 涂层提供足够支撑力的问题。2Cr13 钢经过复合处理后的表面硬度是原始基体的近 10 倍。

  • (3)Untreated 样品的腐蚀机理主要是全面腐蚀。在经过渗氮处理后,以点蚀为主。Coating 样品与复合处理样品以电偶腐蚀为主。与 HPN 样品相比,HPN+C 样品腐蚀情况明显好转。在黄海海水环境中的进行了阻抗测试,发现了所有样品呈现单一电路。不同样品的阻抗性能从优到差依次是: LPN+C >Coating >HPN+C >LPN >HPN >Untreated。复合强化层可以有效抵御腐蚀介质的侵入,有效改善马氏体不锈钢在海洋环境中的服役情况。

  • 参考文献

    • [1] 黄朝军,梁文萍,缪强,等.2Cr13 不锈钢的硼碳共渗及其摩擦学性能[J].热处理,2019,34(6):1-9.HUANG Chaojun,LIANG Wenping,MIAO Qiang,et al.Borcarburizing and resulting tribological property for 2Cr13 stainless steel[J].Heat Treatment,2019,34(6):1-9.(in Chinese)

    • [2] WANG X,FAN L,DING K,et al.Pitting corrosion of 2Cr13 stainless steel in deep-sea environment[J].Journal of Materials Science & Technology,2021,64:187-194.

    • [3] DALMAU A,RICHARD C,IGUAL–MUñOZ A.Degradation mechanisms in martensitic stainless steels:Wear,corrosion and tribocorrosion appraisal[J].Tribology International,2018,121:167-79.

    • [4] 顾剑锋,李沛,钟庆东.物理气相沉积在耐腐蚀涂层中的应用[J].材料导报,2016,30(9):75-80.GU Jianfeng,LI Pei,ZHONG Qingdong.Application of physical vapor deposition in corrosion resistant coatings[J].Materials Reports,2016,30(9):75-80.(in Chinese)

    • [5] ZHANG L,SHAO M,WANG Z,et al.Comparison of tribological properties of nitrided Ti-N modified layer and deposited TiN coatings on TA2 pure titanium[J].Tribology International,2022,174:107712.

    • [6] YOU P F,ZHANG X,YANG X G,et al.Preparation and performances of Ni-Fe/CrNx dual layer coatings for ferritic stainless steel interconnects[J].Results in Physics,2019,12:1598-1605.

    • [7] 夏虎峰,田广科,陈庆春,等.不同工作环境下CrN涂层的摩擦磨损性能[J].中国表面工程,2019,32(6):56-62.XIA Hufeng,TIAN Guangke,CHEN Qingchun,et al.Friction and wear properties of CrN films in different working Environments[J].China Surface Engineering,2019,32(6):56-62.(in Chinese)

    • [8] 刘吉良,廖日东,罗军,等.20CrMo 上沉积CrN涂层的力学性能及5W/40润滑下的摩擦学性能[J].中国表面工程,2017,30(6):103-110.LIU Jiliang,LIAO Ridong,LUO Jun,et al.Mechanical properties of CrN coating on 20CrMo and its tribological properties under 5W/40 oil[J].China Surface Engineering,2017,30(6):103-110.(in Chinese)

    • [9] SHAN L,ZHANG Y R,WANG Y X,et al.Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater[J].Transactions of Nonferrous Metals Society of China,2016,26(1):175-84.

    • [10] KABIR M S,MUNROE P,ZHOU Z,et al.Wear behavior of graded Cr-CrN-Cr(1−x)Al(x)N coatings synthesized by closed-field unbalanced magnetron sputtering for advanced machining operations[J].Ceramics International,2018,44(7):7723-7733.

    • [11] XU X,SU F,LI Z.Tribological properties of nanostructured TiAlN/W2N multilayer coating produced by PVD[J].Wear,2019,430-431:67-75.

    • [12] 王力涛,燕峰,黄新放,等.CrWN 涂层中W元素含量对涂层纳米硬度和热稳定性的影响[J].表面技术,2021,50(12):372-380.WANG Litao,YAN Feng,HUANG Xinfang,et al.Effect of W content on the nano-hardness and thermal stability of the CrWN coating[J].Surface Technology,2021,50(12):372-380.(in Chinese)

    • [13] CHEN H,YE Y,WANG C,et al.Understanding the corrosion and tribological behaviors of CrSiN coatings with various Si contents in HCl solution[J].Tribology International,2019,131:530-540.

    • [14] KABIR M S,MUNROE P,ZHOU Z,et al.Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering[J].Wear,2017,380-381:163-75.

    • [15] 张向东,蔡习军,蔡飞,等.钛合金表面不同多层结构 Cr/CrAlN 涂层的制备及磨损性能[J].材料导报,2022,36(15):127-132.ZHANG Xiangdong,CAI Xijun,CAI Fei,et al.Preparation and wear properties of Cr/CrAlN coatings with different multilayer structures on titanium alloy surfaces[J].Materials Reports,2022,36(15):127-132.(in Chinese)

    • [16] SHI W,MIAO Q,LIANG W,et al.Gas-solid erosion characteristics of CrAl/CrAlN duplex layer coating deposited by RF magnetron sputtering[J].Surfaces and Interfaces,2021,22:100843.

    • [17] BELIARDOUH N E,BOUZID K,NOUVEAU C,et al.Tribological and electrochemical performances of Cr/CrN and Cr/CrN/CrAlN multilayer coatings deposited by RF magnetron sputtering[J].Tribology International,2015,82:443-452.

    • [18] CHIPATECUA Y L,OLAYA J J,ARIAS D F.Corrosion behaviour of CrN/Cr multilayers on stainless steel deposited by unbalanced magnetron sputtering[J].Vacuum,2012,86(9):1393-1401.

    • [19] HUANG X,XIE Z,LI K,et al.Microstructure,wear and oxidation resistance of CrWN glass molding coatings synthesized by plasma enhanced magnetron sputtering[J].Vacuum,2020,174:109206.

    • [20] 刘鑫宇,张艳,蔡吴敏,等.(CrNbTiMoZr)C 薄膜在人工海水环境中的摩擦腐蚀性能[J].中国表面工程,2022,35(2):35-44.LIU Xinyu,ZHANG Yan,CAI Wumin,et al.Friction corrosion properties of(CrNbTiMoZr)C coating in artificial seawater[J].China Surface Engineering,2022,35(2):35-44.(in Chinese)

    • [21] DONG M,ZHU Y,WANG C,et al.Structure and tribocorrosion properties of duplex treatment coatings of TiSiCN/nitride on Ti6Al4V alloy[J].Ceramics International,2019,45(9):12461-12468.

    • [22] MORENO BáRCENAS A,ALVARADO OROZCO J M,CARMONA J M G,et al.Synergistic effect of plasma nitriding and bias voltage on the adhesion of diamond-like carbon coatings on M2 steel by PECVD[J].Surface and Coatings Technology,2019,374:327-37.

    • [23] LI Y,HE Y,XIU J,et al.Wear and corrosion properties of AISI 420 martensitic stainless steel treated by active screen plasma nitriding[J].Surface and Coatings Technology,2017,329:184-92.

    • [24] 李广宇,齐森鹏,于克伟,等.等离子体源渗氮2Cr13马氏体不锈钢的耐磨与耐腐蚀性能[J].机械工程材料,2019,43(4):6-9,34.LI Guangyu,QI Senpeng,YU Kewei,et al.Wear and corrosion resistance of plasma source nitrided 2Cr13 martensitic stainless steel[J].Materials for Mechanical Engineering,2019,43(4):6-9,34.(in Chinese)

    • [25] LI Y,ZHANG S Z,QIU J X,et al.Effect of electric potentials on microstructure,corrosion and wear characteristic of the nitrided layer prepared on 2Cr13 stainless steel by plasma nitriding[J].Acta Metallurgica Sinica(English Letters),2018,32(6):733-45.

    • [26] 由园,闫纪红,闫牧夫,等.2Cr13 钢 440 ℃等离子体渗氮[J].金属热处理,2017,42(5):172-175.YOU Yuan,YAN Jihong,YAN Mufu,et al.Plasma nitriding of 2Cr13 steel at 440 ℃[J].Heat Treatment of Metals,2017,42(5):172-175.(in Chinese)

    • [27] TANG J F,HUANG C H,LIN C Y,et al.Effect of plasma nitriding and modulation structure on the adhesion and corrosion resistance of CrN/Cr2O3 coatings[J].Surface and Coatings Technology,2019,379:125051.

    • [28] TILLMANN W,LOPES DIAS N F,STANGIER D.Influence of plasma nitriding pretreatments on the tribo-mechanical properties of DLC coatings sputtered on AISI H11[J].Surface and Coatings Technology,2019,357:1027-1036.

    • [29] 黄振,郭媛媛,滕越,等.AISI 316L 表面氮化复合类金刚石涂层的相结构及摩擦学性能[J].中国表面工程,2019,32(5):111-118.HUANG Zhen,GUO Yuanyuan,TENG Yue,et al.Phase structure and tribological properties of DLC coatings combined with nitriding on surface AISI 316L[J].China Surface Engineering,2019,32(5):111-118.(in Chinese)

    • [30] LI Y,LIU Z,LUO J,et al.Microstructure,mechanical and adhesive properties of CrN/CrTiAlSiN/WCrTiAlN multilayer coatings deposited on nitrided AISI 4140 steel[J].Materials Characterization,2019,147:353-364.

    • [31] LI Y,YE Q,ZHU Y,et al.Microstructure,adhesion and tribological properties of CrN/CrTiAlSiN/WCrTiAlN multilayer coatings deposited on nitrocarburized AISI 4140 steel[J].Surface and Coatings Technology,2019,362:27-34.

    • [32] WANG Z W,LI Y,ZHANG Z H,et al.Friction and wear behavior of duplex-treated AISI 316L steels by rapid plasma nitriding and(CrWAlTiSi)N ceramic coating[J].Results in Physics,2021,24:104132.

    • [33] YE Q W,LI Y,ZHANG M Y,et al.Electrochemical behavior of(Cr,W,Al,Ti,Si)N multilayer coating on nitrided AISI 316L steel in natural seawater[J].Ceramics International,2020,46(14):22404-18.

    • [34] 李杨,徐惠忠,邱剑勋,等.AISI 316L 奥氏体不锈钢空心阴极放电离子源渗氮技术[J].中国表面工程,2014,27(3):25-30.LI Yang,XU Huizhong,QIU Jianxun,et al.Plasma nitriding of AISI 316L austenitic stainless steel by hollow cathode discharge source[J].China Surface Engineering,2014,27(3):25-30.(in Chinese)

    • [35] 李广宇,李刚,雷明凯.2Cr13 不锈钢活性屏等离子体源渗氮层组织与耐蚀性能[J].表面技术,2022,51(6):300-306.LI Guangyu,LI Gang,LEI Mingkai.Microstructure and corrosion resistance of nitriding layer of 2Cr13 stainless steel by active screen plasma source nitriding[J].Surface Technology,2022,51(6):300-306.(in Chinese)

    • [36] STECHYSHYN M S,MARTYNYUK A V,BILYK Y M,et al.Influence of the ionic nitriding of steels in glow discharge on the structure and properties of the Coatings[J].Materials Science,2017,53(3):343-350.

    • [37] SILVA F J G,CASAIS R C B,BAPTISTA A P M,et al.Comparative study of the wear behavior of B4C monolayered and CrN/CrCN/DLC multilayered physical vapor deposition coatings under high contact loads:an experimental analysis[J].Journal of Tribology,2022,144(3):1-42.

    • [38] WANG Y,CHEN Y,ZHAO D,et al.Deformation mechanism of CrN/nitriding coated steel in wear and nano-scratch experiments under heavy loading conditions[J].Applied Surface Science,2018,447:100-106.

    • [39] LI C X,BELL T.Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions[J].Corrosion Science,2006,48(8):2036-2049.

    • [40] CHALA A,NOUVEAU C,DJOUADI M A,et al.Effect of duplex treatments by plasma nitriding and triode sputtering on corrosion behaviour of 32CDV13 low alloy steel[J].Surface and Coatings Technology,2006,200(22-23):6568-6571.

    • [41] YAN M F,LIU R L.Influence of process time on microstructure and properties of 17-4PH steel plasma nitrocarburized with rare earths addition at low temperature[J].Applied Surface Science,2010,256(20):6065-6071.

    • [42] 陈志林,曹驰,杨瑞成,等.奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J].材料导报,2021,35(6):6161-6166.CHEN Zhilin,CAO Chi,YANG Ruicheng,et al.Microstructure and properties of composite modified layer of austenitic stainless steel obtsined by nitriding & physical vapor deposition[J].Materials Reports,2021,35(6):6161-6166.(in Chinese)

    • [43] GATEY A M,HOSMANI S S,FIGUEROA C A,et al.Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel[J].Surface and Coatings Technology,2016,304:413-424.

    • [44] MENG Q,FRANKEL G,COLIJN H,et al.Stainless-steel corrosion and MnS inclusions[J].Nature,2003,424(6947):389-390.

    • [45] BORGIOLI F,GALVANETTO E,BACCI T.Corrosion behaviour of low temperature nitrided nickel-free,AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution[J].Corrosion Science,2018,136:352-365.

    • [46] OLZON-DIONYSIO M,DE SOUZA S D,BASSO R L O,et al.Application of Mössbauer spectroscopy to the study of corrosion resistance in NaCl solution of plasma nitrided AISI 316L stainless steel[J].Surface and Coatings Technology,2008,202(15):3607-3614.

    • [47] CHELARIU R,TRINCA L C,MUNTEANU C,et al.Corrosion behavior of new quaternary ZrNbTiAl alloys in simulated physiological solution using electrochemical techniques and surface analysis methods[J].Electrochimica Acta,2017,248:368-375.

    • [48] WILLIAM GRIPS V K,BARSHILIA H C,SELVI V E,et al.Electrochemical behavior of single layer CrN,TiN,TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering[J].Thin Solid Films,2006,514(1):204-211.

  • 参考文献

    • [1] 黄朝军,梁文萍,缪强,等.2Cr13 不锈钢的硼碳共渗及其摩擦学性能[J].热处理,2019,34(6):1-9.HUANG Chaojun,LIANG Wenping,MIAO Qiang,et al.Borcarburizing and resulting tribological property for 2Cr13 stainless steel[J].Heat Treatment,2019,34(6):1-9.(in Chinese)

    • [2] WANG X,FAN L,DING K,et al.Pitting corrosion of 2Cr13 stainless steel in deep-sea environment[J].Journal of Materials Science & Technology,2021,64:187-194.

    • [3] DALMAU A,RICHARD C,IGUAL–MUñOZ A.Degradation mechanisms in martensitic stainless steels:Wear,corrosion and tribocorrosion appraisal[J].Tribology International,2018,121:167-79.

    • [4] 顾剑锋,李沛,钟庆东.物理气相沉积在耐腐蚀涂层中的应用[J].材料导报,2016,30(9):75-80.GU Jianfeng,LI Pei,ZHONG Qingdong.Application of physical vapor deposition in corrosion resistant coatings[J].Materials Reports,2016,30(9):75-80.(in Chinese)

    • [5] ZHANG L,SHAO M,WANG Z,et al.Comparison of tribological properties of nitrided Ti-N modified layer and deposited TiN coatings on TA2 pure titanium[J].Tribology International,2022,174:107712.

    • [6] YOU P F,ZHANG X,YANG X G,et al.Preparation and performances of Ni-Fe/CrNx dual layer coatings for ferritic stainless steel interconnects[J].Results in Physics,2019,12:1598-1605.

    • [7] 夏虎峰,田广科,陈庆春,等.不同工作环境下CrN涂层的摩擦磨损性能[J].中国表面工程,2019,32(6):56-62.XIA Hufeng,TIAN Guangke,CHEN Qingchun,et al.Friction and wear properties of CrN films in different working Environments[J].China Surface Engineering,2019,32(6):56-62.(in Chinese)

    • [8] 刘吉良,廖日东,罗军,等.20CrMo 上沉积CrN涂层的力学性能及5W/40润滑下的摩擦学性能[J].中国表面工程,2017,30(6):103-110.LIU Jiliang,LIAO Ridong,LUO Jun,et al.Mechanical properties of CrN coating on 20CrMo and its tribological properties under 5W/40 oil[J].China Surface Engineering,2017,30(6):103-110.(in Chinese)

    • [9] SHAN L,ZHANG Y R,WANG Y X,et al.Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater[J].Transactions of Nonferrous Metals Society of China,2016,26(1):175-84.

    • [10] KABIR M S,MUNROE P,ZHOU Z,et al.Wear behavior of graded Cr-CrN-Cr(1−x)Al(x)N coatings synthesized by closed-field unbalanced magnetron sputtering for advanced machining operations[J].Ceramics International,2018,44(7):7723-7733.

    • [11] XU X,SU F,LI Z.Tribological properties of nanostructured TiAlN/W2N multilayer coating produced by PVD[J].Wear,2019,430-431:67-75.

    • [12] 王力涛,燕峰,黄新放,等.CrWN 涂层中W元素含量对涂层纳米硬度和热稳定性的影响[J].表面技术,2021,50(12):372-380.WANG Litao,YAN Feng,HUANG Xinfang,et al.Effect of W content on the nano-hardness and thermal stability of the CrWN coating[J].Surface Technology,2021,50(12):372-380.(in Chinese)

    • [13] CHEN H,YE Y,WANG C,et al.Understanding the corrosion and tribological behaviors of CrSiN coatings with various Si contents in HCl solution[J].Tribology International,2019,131:530-540.

    • [14] KABIR M S,MUNROE P,ZHOU Z,et al.Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering[J].Wear,2017,380-381:163-75.

    • [15] 张向东,蔡习军,蔡飞,等.钛合金表面不同多层结构 Cr/CrAlN 涂层的制备及磨损性能[J].材料导报,2022,36(15):127-132.ZHANG Xiangdong,CAI Xijun,CAI Fei,et al.Preparation and wear properties of Cr/CrAlN coatings with different multilayer structures on titanium alloy surfaces[J].Materials Reports,2022,36(15):127-132.(in Chinese)

    • [16] SHI W,MIAO Q,LIANG W,et al.Gas-solid erosion characteristics of CrAl/CrAlN duplex layer coating deposited by RF magnetron sputtering[J].Surfaces and Interfaces,2021,22:100843.

    • [17] BELIARDOUH N E,BOUZID K,NOUVEAU C,et al.Tribological and electrochemical performances of Cr/CrN and Cr/CrN/CrAlN multilayer coatings deposited by RF magnetron sputtering[J].Tribology International,2015,82:443-452.

    • [18] CHIPATECUA Y L,OLAYA J J,ARIAS D F.Corrosion behaviour of CrN/Cr multilayers on stainless steel deposited by unbalanced magnetron sputtering[J].Vacuum,2012,86(9):1393-1401.

    • [19] HUANG X,XIE Z,LI K,et al.Microstructure,wear and oxidation resistance of CrWN glass molding coatings synthesized by plasma enhanced magnetron sputtering[J].Vacuum,2020,174:109206.

    • [20] 刘鑫宇,张艳,蔡吴敏,等.(CrNbTiMoZr)C 薄膜在人工海水环境中的摩擦腐蚀性能[J].中国表面工程,2022,35(2):35-44.LIU Xinyu,ZHANG Yan,CAI Wumin,et al.Friction corrosion properties of(CrNbTiMoZr)C coating in artificial seawater[J].China Surface Engineering,2022,35(2):35-44.(in Chinese)

    • [21] DONG M,ZHU Y,WANG C,et al.Structure and tribocorrosion properties of duplex treatment coatings of TiSiCN/nitride on Ti6Al4V alloy[J].Ceramics International,2019,45(9):12461-12468.

    • [22] MORENO BáRCENAS A,ALVARADO OROZCO J M,CARMONA J M G,et al.Synergistic effect of plasma nitriding and bias voltage on the adhesion of diamond-like carbon coatings on M2 steel by PECVD[J].Surface and Coatings Technology,2019,374:327-37.

    • [23] LI Y,HE Y,XIU J,et al.Wear and corrosion properties of AISI 420 martensitic stainless steel treated by active screen plasma nitriding[J].Surface and Coatings Technology,2017,329:184-92.

    • [24] 李广宇,齐森鹏,于克伟,等.等离子体源渗氮2Cr13马氏体不锈钢的耐磨与耐腐蚀性能[J].机械工程材料,2019,43(4):6-9,34.LI Guangyu,QI Senpeng,YU Kewei,et al.Wear and corrosion resistance of plasma source nitrided 2Cr13 martensitic stainless steel[J].Materials for Mechanical Engineering,2019,43(4):6-9,34.(in Chinese)

    • [25] LI Y,ZHANG S Z,QIU J X,et al.Effect of electric potentials on microstructure,corrosion and wear characteristic of the nitrided layer prepared on 2Cr13 stainless steel by plasma nitriding[J].Acta Metallurgica Sinica(English Letters),2018,32(6):733-45.

    • [26] 由园,闫纪红,闫牧夫,等.2Cr13 钢 440 ℃等离子体渗氮[J].金属热处理,2017,42(5):172-175.YOU Yuan,YAN Jihong,YAN Mufu,et al.Plasma nitriding of 2Cr13 steel at 440 ℃[J].Heat Treatment of Metals,2017,42(5):172-175.(in Chinese)

    • [27] TANG J F,HUANG C H,LIN C Y,et al.Effect of plasma nitriding and modulation structure on the adhesion and corrosion resistance of CrN/Cr2O3 coatings[J].Surface and Coatings Technology,2019,379:125051.

    • [28] TILLMANN W,LOPES DIAS N F,STANGIER D.Influence of plasma nitriding pretreatments on the tribo-mechanical properties of DLC coatings sputtered on AISI H11[J].Surface and Coatings Technology,2019,357:1027-1036.

    • [29] 黄振,郭媛媛,滕越,等.AISI 316L 表面氮化复合类金刚石涂层的相结构及摩擦学性能[J].中国表面工程,2019,32(5):111-118.HUANG Zhen,GUO Yuanyuan,TENG Yue,et al.Phase structure and tribological properties of DLC coatings combined with nitriding on surface AISI 316L[J].China Surface Engineering,2019,32(5):111-118.(in Chinese)

    • [30] LI Y,LIU Z,LUO J,et al.Microstructure,mechanical and adhesive properties of CrN/CrTiAlSiN/WCrTiAlN multilayer coatings deposited on nitrided AISI 4140 steel[J].Materials Characterization,2019,147:353-364.

    • [31] LI Y,YE Q,ZHU Y,et al.Microstructure,adhesion and tribological properties of CrN/CrTiAlSiN/WCrTiAlN multilayer coatings deposited on nitrocarburized AISI 4140 steel[J].Surface and Coatings Technology,2019,362:27-34.

    • [32] WANG Z W,LI Y,ZHANG Z H,et al.Friction and wear behavior of duplex-treated AISI 316L steels by rapid plasma nitriding and(CrWAlTiSi)N ceramic coating[J].Results in Physics,2021,24:104132.

    • [33] YE Q W,LI Y,ZHANG M Y,et al.Electrochemical behavior of(Cr,W,Al,Ti,Si)N multilayer coating on nitrided AISI 316L steel in natural seawater[J].Ceramics International,2020,46(14):22404-18.

    • [34] 李杨,徐惠忠,邱剑勋,等.AISI 316L 奥氏体不锈钢空心阴极放电离子源渗氮技术[J].中国表面工程,2014,27(3):25-30.LI Yang,XU Huizhong,QIU Jianxun,et al.Plasma nitriding of AISI 316L austenitic stainless steel by hollow cathode discharge source[J].China Surface Engineering,2014,27(3):25-30.(in Chinese)

    • [35] 李广宇,李刚,雷明凯.2Cr13 不锈钢活性屏等离子体源渗氮层组织与耐蚀性能[J].表面技术,2022,51(6):300-306.LI Guangyu,LI Gang,LEI Mingkai.Microstructure and corrosion resistance of nitriding layer of 2Cr13 stainless steel by active screen plasma source nitriding[J].Surface Technology,2022,51(6):300-306.(in Chinese)

    • [36] STECHYSHYN M S,MARTYNYUK A V,BILYK Y M,et al.Influence of the ionic nitriding of steels in glow discharge on the structure and properties of the Coatings[J].Materials Science,2017,53(3):343-350.

    • [37] SILVA F J G,CASAIS R C B,BAPTISTA A P M,et al.Comparative study of the wear behavior of B4C monolayered and CrN/CrCN/DLC multilayered physical vapor deposition coatings under high contact loads:an experimental analysis[J].Journal of Tribology,2022,144(3):1-42.

    • [38] WANG Y,CHEN Y,ZHAO D,et al.Deformation mechanism of CrN/nitriding coated steel in wear and nano-scratch experiments under heavy loading conditions[J].Applied Surface Science,2018,447:100-106.

    • [39] LI C X,BELL T.Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions[J].Corrosion Science,2006,48(8):2036-2049.

    • [40] CHALA A,NOUVEAU C,DJOUADI M A,et al.Effect of duplex treatments by plasma nitriding and triode sputtering on corrosion behaviour of 32CDV13 low alloy steel[J].Surface and Coatings Technology,2006,200(22-23):6568-6571.

    • [41] YAN M F,LIU R L.Influence of process time on microstructure and properties of 17-4PH steel plasma nitrocarburized with rare earths addition at low temperature[J].Applied Surface Science,2010,256(20):6065-6071.

    • [42] 陈志林,曹驰,杨瑞成,等.奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J].材料导报,2021,35(6):6161-6166.CHEN Zhilin,CAO Chi,YANG Ruicheng,et al.Microstructure and properties of composite modified layer of austenitic stainless steel obtsined by nitriding & physical vapor deposition[J].Materials Reports,2021,35(6):6161-6166.(in Chinese)

    • [43] GATEY A M,HOSMANI S S,FIGUEROA C A,et al.Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel[J].Surface and Coatings Technology,2016,304:413-424.

    • [44] MENG Q,FRANKEL G,COLIJN H,et al.Stainless-steel corrosion and MnS inclusions[J].Nature,2003,424(6947):389-390.

    • [45] BORGIOLI F,GALVANETTO E,BACCI T.Corrosion behaviour of low temperature nitrided nickel-free,AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution[J].Corrosion Science,2018,136:352-365.

    • [46] OLZON-DIONYSIO M,DE SOUZA S D,BASSO R L O,et al.Application of Mössbauer spectroscopy to the study of corrosion resistance in NaCl solution of plasma nitrided AISI 316L stainless steel[J].Surface and Coatings Technology,2008,202(15):3607-3614.

    • [47] CHELARIU R,TRINCA L C,MUNTEANU C,et al.Corrosion behavior of new quaternary ZrNbTiAl alloys in simulated physiological solution using electrochemical techniques and surface analysis methods[J].Electrochimica Acta,2017,248:368-375.

    • [48] WILLIAM GRIPS V K,BARSHILIA H C,SELVI V E,et al.Electrochemical behavior of single layer CrN,TiN,TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering[J].Thin Solid Films,2006,514(1):204-211.

  • 手机扫一扫看