en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张秀丽,女,1989年出生,博士,副教授,硕士研究生导师。主要研究方向为表面防粘涂层、流固耦合仿真分析和滑动轴承设计。E-mail:zhangxiulli@163.com

通讯作者:

吴永玲,女,1962年出生,博士,教授,博士研究生导师。主要研究方向为表面工程技术和纳米材料化学合成。E-mail:ylwu06@sdut.edu.cn

中图分类号:TQ330;G76

DOI:10.11933/j.issn.1007-9289.20230508002

参考文献 1
YE Y,JIA B,CHEN J,et al.Laser cleaning of the contaminations on the surface of tire mould[J].International Journal of Modern Physics B,2017,31(16-19):1744100.
参考文献 2
周广武.水润滑橡胶轴承模压硫化成型尺寸精度控制研究[J].装备制造技术,2016,259(7):119-121,124.ZHOU Guangwu.Dimensional deviation control on mold pressing vulcanization shaping of water lubricated rubber bearing[J].Equipment Manufacturing Technology,2016,259(7):119-121,124.(in Chinese)
参考文献 3
HANULIKOVA B,SHEJBALOVA D,DVORAK Z.Infrared analysis of fouling during EPDM curing studied on molds made of steel and aluminium alloys[J].Rubber Chemistry and Technology,2018,91:390-400.
参考文献 4
BUKHINA M F,MOROZOV Y L,VAN DE VEN P,et al.Mould fouling of EPDM rubber compounds[J].KGK-Kautschuk Gummi Kunststoffe,2003,56:172-183.
参考文献 5
GUAN C,FU J,CUI Z,et al.Evaluation of the tribological and anti-adhesive properties of different materials coated rotary tillage blades[J].Soil & Tillage Research,2021,209:104933.
参考文献 6
CALDERÓN J C,KOCH L,BANDL C,et al.Multilayer coatings based on the combination of perfluorinated organosilanes and nickel films for injection moulding tools[J].Surface and Coatings Technology,2020,399:126152.
参考文献 7
SÁNCHEZ-URBANO F,PAZ-GÓMEZ G,RODRÍGUEZALABANDA Ó,et al.Non-stick coatings in aluminium molds for the production of polyurethane foam[J].Coatings,2018,8(9):301.
参考文献 8
AKINCI A,COBANOGLU E.Coating of Al mould surfaces with polytetrafluoroethylene(PTFE),fluorinated ethylene propylene(FEP),perfluoroalkoxy(PFA)and ethylene-tetrafluoroethylene(ETFE)[J].e-Polymers,2009,9(1):401-407.
参考文献 9
ZHANG X,LIU Z,WANG X,et al.Comparative study of anti-sticking properties of coatings for tire molds[J].Coatings,2022,12:1740.
参考文献 10
王旭,刘志兰,张秀丽,等.橡胶模具水性氟树脂涂层防粘性能研究[J].电镀与涂饰,2023,42(4):50-56.WANG Xu,LIU Zhilan,ZHANG Xiuli,et al.Study on anti-sticking performance of waterborne fluororesin coatings for rubber mold[J].Electroplating & Finishing,2023,42(4):50-56.(in Chinese)
参考文献 11
邹德荣.聚四氟乙烯(PTFE)防粘涂层的应用[J].上海涂料,2002,40(1):22-23.ZOU Derong.The application of antiadhesion coating based on PTFE[J].Shanghai Coatings,2002,40(1):22-23.(in Chinese)
参考文献 12
NOVOTNY J,MICHNA S,HREN I,et al.PTFE based multilayer micro-coatings for aluminum AlMg3 forms used in tire production[J].Coatings,2021,11:119.
参考文献 13
ANDREATTA F,LANZUTTI A,ANEGGI E,et al.Degradation of PTFE non-stick coatings for application in the food service industry[J].Engineering Failure Analysis,2020,115:104652.
参考文献 14
FRIEDRICHS M,PENG Z,GRUNWALD T,et al.PtIr protective coating system for precision glass molding tools:design,evaluation and mechanism of degradation[J].Surface and Coatings Technology,2020,385:125378.
参考文献 15
DONADEI V,KOIVULUOTO H,SARLIN E,et al.The effect of mechanical and thermal stresses on the performance of lubricated icephobic coatings during cyclic icing/deicing tests[J].Progress in Organic Coatings,2022,163:106614.
参考文献 16
ZIAEI-ASL A,RAMEZANLOU MT.Thermo-mechanical behavior of gas turbine blade equipped with cooling ducts and protective coating with different thicknesses[J].International Journal of Mechanical Sciences,2019,150:656–664.
参考文献 17
WANG L,YANG J,NI J,et al.Influence of cracks in APS-TBCs on stress around TGO during thermal cycling:A numerical simulation study[J].Surface and Coatings Technology,2016,285:98–112.
参考文献 18
曹枝军,袁建辉,苏怀宇,等.声发射技术在热障涂层失效机理中的研究进展及展望[J].中国表面工程,2023,36(2):34-53.CAO Zhijun,YUAN Jianhui,SU Huaiyu,et al.Research progress and prospect of acoustic emission technology in failure mechanism of thermal barrier coatings[J].China Surface Engineering,2023,36(2):34-53.(in Chinese)
参考文献 19
XIANG Y,XUE H,ZHENG Z,et al.Research in fluorinated block copolymer/polystyrene blends with durable antifouling properties based on chainentanglement[J].Polymer,2023,270:125780.
参考文献 20
CHEN J,WEI C,RAN J,ET al.Functional hydrophobic coating for phosphogypsum via stoichiometric silanization,hydrophobic characterization,microstructure analysis,and durability evaluation[J].Construction and Building Materials,2022,347:128560.
参考文献 21
MONDAL S,PAL S,CHAUDHURI A,et al.Fluoropolymer adhered bioinspired hydrophobic,chemically durable cotton fabric for dense liquid removal and self-cleaning application[J].Surface Engineering,2020,37:299-307.
参考文献 22
MASI G,BERNARDI E,MARTINI C,et al.An innovative multi-component fluoropolymer-based coating on outdoor patinated bronze for Cultural Heritage:Durability and reversibility[J].Journal of Cultural Heritage,2020,45:122-134.
参考文献 23
WOOD KA.Optimizing the exterior durability of new fluoropolymer coatings[J].Progress in Organic Coatings,2001,43:207-213.
参考文献 24
Lee H S,KIM H,LEE J H,et al.Fabrication of a conjugated fluoropolymer film using one-step icvd process and its mechanical durability[J].Coatings,2019,9:430.
参考文献 25
LI X,LI X,ZHU B,et al.Synthesis of porous ZnS,ZnO and ZnS/ZnO nanosheets and their photocatalytic properties[J].RSC Advances,2017,7(49):30956-30962.
参考文献 26
沈德言.红外光谱法在高分子研究中的应用[M].北京:科学出版社,1982.SHEN Deyan.Application of infrared spectroscopy in polymer research[M].Beijing:Science Press,1982.(in Chinese)
参考文献 27
OLIFIROV L K,STEPASHKIN A A,SHERIF G,et al.Tribological,mechanical and thermal properties of fluorinated ethylene propylene filled with Al-Cu-Cr quasicrystals,polytetrafluoroethylene,synthetic graphite and carbon black[J].Polymers 2021,13:781.
参考文献 28
朱开贵,石建中,李可斌,等.聚四氟乙烯薄膜的制备及其红外光谱研究[J].物理学报,1997(9):101-104.ZHU Kaigui,SHI Jianzhong,LI Kebin,et al.Preparations and infrared spectrum studies of polytetrafluoroethylene thin films[J].Acta Physica Sinica,1997(9):101-104.(in Chinese)
参考文献 29
代军,晏华,郭骏骏,等.结晶度对聚乙烯热氧老化特性的影响[J].材料研究学报,2017,31(1):41-48.DAI Jun,YAN Hua,GUO Junjun,et al.Effects of crystallinity on degradation properties of polyethylene by thermos-oxidation aging[J].Chinese Journal of Materials Research,2017,31(1):41-48.(in Chinese)
目录contents

    摘要

    防粘性失效是橡胶模具表面涂层的主要失效形式之一,但影响涂层防粘耐久性的因素和机理尚不清晰。为了提高橡胶模具表面常用氟化乙烯丙烯共聚物(FEP)涂层的使用寿命,通过橡胶硫化试验并利用 SEM 和 EDS 测试,分析试样表面微观形貌和元素成分随硫化试验次数的变化,研究溶剂体系、涂层厚度和烧结工艺对橡胶模具表面 FEP 涂层防粘耐久性的影响规律,分析各因素对涂层使用寿命的影响机理。通过 XPS 测试胶垢成分发现胶垢主要包含 Zn、S、C、O 四种元素,模具使用初期 ZnS 是胶垢的主要成分,随硫化次数增加,ZnS 层上产生有机沉积。硫化试验 300 次后,45 钢试样、双层水性 FEP 涂层和单层溶剂型 FEP 涂层试样表面 Zn 元素质量含量分别为 40.6%、0.45%和 1.13%,FEP 涂层表面胶垢出现在涂层表面缺陷处。由于双层水性 FEP 涂层更容易控制表面 FEP 树脂成膜厚度和质量,其较单层溶剂型 FEP 涂层具有更好的防粘耐久性。涂层面层厚度和成膜质量是影响双层水性 FEP 涂层防粘耐久性的关键因素;在 300 次硫化试验范围内,烧结工艺对涂层的防粘耐久性影响不大。采用橡胶硫化试验和表面分析的方法研究橡胶模具表面涂层的防粘耐久性,探究溶剂体系、涂层厚度和烧结工艺等因素的影响,研究结果可为橡胶模具表面处理提供理论依据。

    Abstract

    Rubber molds are widely used in the manufacturing of tires, shoe soles, seals, and stern bearings. The mold surface quality directly affects the quality and appearance of products. However, the surfaces of rubber molds are contaminated after multiple vulcanizations, causing difficulty in demolding and affecting product quality. Coatings are usually used to improve the anti-sticking performance of rubber molds in industry; however, anti-sticking failure is still one of the main failure modes of rubber mold surface coatings. The factors and mechanisms that affect the anti-sticking durability of coatings are unclear. To improve the service life of commonly used fluorinated ethylene propylene (FEP) coatings on rubber molds, coatings were prepared on flat samples using the air-spraying method, and their anti-sticking durability was evaluated using rubber vulcanization tests. The surface morphology and elemental composition of the samples were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to study the changes with the vulcanization time. A bilayer waterborne FEP coating sample and a single-layer solvent-based FEP coating sample were prepared, and their anti-sticking durabilities were compared with that of a type 45 steel sample. The results showed that Zn and S were added to the surface of the samples after the vulcanization tests. After 300 tests, the surface Zn weight concentrations of the type 45, bilayer waterborne FEP coating, and single-layer solvent-based FEP coating samples were 40.6%, 0.45%, and 1.13%, respectively. X-ray photoelectron spectra (XPS) analysis was conducted for the type 45 steel sample, and it was found that the contaminants were mainly composed of Zn, S, C, and O. ZnS was the main component of the contaminants in the beginning, and as the number of vulcanizations increased, organic deposition occurred in the ZnS layer. The contaminants on the FEP coating samples appeared at the surface defects of the coating. The surface FEP resin film thickness and quality are easier to control for the bilayer waterborne FEP coating than for the single-layer solvent-based FEP coating; thus, the bilayer waterborne FEP coating has better anti-sticking durability. Three bilayer waterborne FEP coating samples with different coating thicknesses (T1: 13.7 μm, T2: 20.4 μm, T3: 29 μm) were prepared by changing the thickness of the topcoat, and their anti-sticking durability was studied and compared. The results showed that the increase in the Zn concentration on the surface of the T1 sample was more significant than those of the T2 and T3 samples, indicating that the topcoat thickness and film quality are the key factors affecting the anti-sticking durability of the bilayer waterborne FEP coating. Bilayer waterborne FEP coating samples with different sintering processes were prepared by changing the sintering temperature (340 ℃ and 380 ℃) and using a cooling method (furnace cooling, air cooling, and water quenching). The Fourier-transform infrared spectra (FTIR) of the coating samples were obtained, and it was deduced that the sintering process of the coating had a slight effect on the molecular structure of the FEP resin but had an effect on the crystallinity. The water-quenching and air-cooling methods resulted in lower crystallinity of the FEP resin than the furnace-cooling method. The results of the anti-sticking durability test showed that, within 300 vulcanization tests, the sintering process had a slight effect on the anti-sticking durability of the bilayer waterborne FEP coating. The research results provide a theoretical basis for the anti-sticking surface treatment of rubber molds.

    关键词

    涂层氟树脂防粘耐久性橡胶模具

  • 0 前言

  • 橡胶模具广泛用于制造轮胎、鞋底、密封、船尾轴承等[1-2]。模具的表面质量直接影响产品的质量和外观。然而,橡胶模具在硫化使用多次后表面会出现胶垢,造成脱模困难并影响产品质量[3-4]。目前工业主要采用表面防粘涂层改善模具防粘性能,延长模具硫化次数和使用寿命。在模具服役过程中发现,相较无涂层模具,涂层模具的硫化使用次数极大提高,但涂层的使用寿命仍有限,数千次硫化之后涂层表面仍会粘胶,需清理后重新制备涂层,影响生产效率和生产成本。

  • 一些学者研究了不同涂层在橡胶或注塑模具表面的防粘性能[5-8],结果表明氟树脂涂层防粘性能优异,且可溶性聚四氟乙烯(PFA)树脂防粘和脱膜性能最好。ZHANG 等[9-10]对比研究了不同涂层在橡胶模具上的脱模和防粘污性能,发现 PFA 和氟化乙烯丙烯共聚物(FEP)涂层脱模力几乎为零,且无污染物残留,聚四氟乙烯(PTFE)涂层无污染物残留,但有一定脱模力;分析发现,涂层微观形貌是影响脱模力的重要因素,涂层微观表面越光滑,脱模力越小。涂层表面化学组成影响橡胶污染残留, C-F 键键能最高,使表面能降低,防粘性最好。PFA 和 FEP 涂层是两种理想的橡胶模具防粘涂层,但 PFA 粉末价格约是 FEP 粉末的 3 倍,应用于涂层成本过高,因此 FEP 涂层更适用于橡胶模具工业应用。

  • 在橡胶模具涂层耐久性方面,邹德荣[11]研究了自制的溶剂型 PTFE 防粘涂料在 45# 钢橡胶模具上的应用,试验结果表明丁腈橡胶(NBR)和三元乙丙橡胶(EPDM)的硫化使用次数分别为 200 和 240 次。NOVOTNY 等[12]制备了一种用于 AlMg3 合金轮胎模具的 PTFE 基多层涂层,并应用于轮胎生产,测试结果表明使用涂层后,冬季轮胎模具生产能力从 1 000 个增加到 4 000 个,夏季轮胎模具生产能力增加到 2 000 个。目前公开发表的橡胶模具防粘涂层耐久性相关文献较少。其他涂层耐久性研究方面, ANDREATTA 等[13]研究了食品加工用 PTFE 防粘涂层的退化机理,所采用的工作温度为 280℃,加热周期为 90 s,研究发现 PTFE 涂层在机械磨损、热老化的共同作用下容易产生内部裂纹,在裂纹附近会出现防粘失效。FRIEDRICHS 等[14]研究了精密玻璃成型模具用 PtIr 保护涂层的设计、寿命评估和恶化机理,研究发现由 600 nm 厚的 PtIr 层和 20 nm 厚的 Cr 粘合层组成的保护涂层耐久性最好,样品表征结果表明涂层使用过程中存在互扩散、氧化、涂层剥落和玻璃粘附在涂层上等现象。DONADEI 等[15] 研究了在循环结冰 / 除冰试验下润滑聚合物涂层的疏冰性能和耐久性,涂层成分为聚乙烯和固体润滑添加剂,结果表明循环试验会对表面造成机械损伤,增加涂层表面粗糙度,甚至产生表面裂纹,从而降低涂层的疏冰性,机械损伤由热应力和机械应力造成。另外还有许多学者研究了热障涂层的耐久性[16-18],发现其与涂层力学和热性能密切相关,具体取决于涂层结构。还有一些研究评估了所开发涂层的耐污性[19-21]、耐候性[22-23]和耐摩擦性能[24]等,但都是常温下的耐久性试验。橡胶模具防粘耐久性的影响因素和机理尚有待研究。

  • 本文针对橡胶模具常用的 FEP 涂料,研究溶剂体系、涂层厚度和烧结工艺对 FEP 涂层防粘耐久性的影响,通过测试试样微观结构和表面成分随橡胶硫化次数的变化,评估涂层的防粘耐久性,分析影响涂层使用寿命的因素和机理,提出提高橡胶模具防粘涂层使用寿命的方法,为橡胶模具表面处理提供理论依据。

  • 1 试验

  • 1.1 材料

  • 45 钢板(厚 5 mm):市售;天然橡胶:青岛北橡国际贸易有限公司;分析纯无水乙醇:淄博齐霖化工有限公司。

  • 采用了两种商用FEP涂料,一种是双层水性FEP 涂料(展阳高分子材料有限公司),包括黑色底漆和闪银色面漆,底漆包含粘结树脂、FEP 树脂和颜填料,面漆主要为 FEP 树脂和颜料;另一种是单层溶剂型 FEP 涂料(美国华福公司)。两种涂料的推荐成膜温度均为 380~400℃,固含量均为 50%~60%。

  • 1.2 试样制备

  • 用 2 种涂料分别制备φ75 mm×5 mm 的 45 钢试样用于开展橡胶硫化试验,并与无涂层试样进行对比。为了研究涂层厚度和烧结工艺对涂层耐久性的影响,制备了 3 种不同厚度和 4 种不同烧结工艺的试样。涂层厚度范围为 10~35 μm,烧结工艺分别采用 380℃随炉冷却、380℃空气冷却、380℃水淬冷却和 340℃随炉冷却方式。

  • 为了保证涂层与 45 钢基材之间具有良好的结合力,首先对基材表面进行喷砂处理,喷砂后基材表面粗糙度值约为 1.4 μm,之后用无水乙醇超声清洗后烘干。采用空气喷涂方式喷涂试样表面,喷枪喷涂方向与试样表面垂直,喷枪喷嘴高度约 250 mm,空气压力为 0.12 MPa。

  • 1.3 性能检测

  • 采用深圳宇问公司的 EC500XE 型涂层测厚仪测量涂层膜厚。采用日本 Mitutoyo 公司的 SJ-210 型表面粗糙度仪测量试样表面粗糙度。采用上海中晨公司的 JC2000D1 型接触角测量仪测量涂层与水的静态接触角,注射液滴体积为 8 μL。

  • 采用美国 Thermo Fisher Scientific 公司的 Phenom XL G2 台式扫描电子显微镜及其配置的 ESD 探测器观察样品微观结构并分析涂层表面元素成分。采用美国 Thermo Fisher Scientific 公司的 EscaLab250Xi X 射线光谱仪分析试样表面污染物的元素组成和价态。采用美国 Thermo Fisher Scientific 公司的 Nicolet 5700 傅里叶红外光谱仪分析氟树脂涂层的分子结构,分辨率为 4 cm−1,扫描次数为 32。

  • 采用图1 所示的平板硫化试验机对试样进行橡胶硫化试验。试样安装在基板上,在试样上放上橡胶模具,试样与橡胶模具之间通过销定位,胶料放在模具内进行硫化。采用天然橡胶,硫化温度为 180℃,硫化压力为 10 MPa,硫化时间为 7 min。硫化试验流程为:热模→胶料称重→开模→填料→ 合模→硫化→出模→样品检查。重复硫化试验以测试试样的防粘耐久性。

  • 图1 平板硫化试验机

  • Fig.1 Plate vulcanization test machine

  • 2 结果与分析

  • 2.1 双层水性 FEP 涂层与单层溶剂型 FEP 涂层耐久性对比

  • 通过橡胶硫化试验对比了 45 钢试样、双层水性 FEP 涂层与单层溶剂型 FEP 涂层的防粘耐久性。表1 为试样的膜厚、表面粗糙度 Ra 及与水的接触角。 2 个 FEP 涂层试样的涂层厚度都约为 20 μm,水接触角为 106~109°。

  • 表1 试样信息

  • Table1 Information of the samples

  • 图2 所示为 3 个试样表面随橡胶硫化试验次数的变化情况。其中 45 钢试样硫化 200 次图片为电镜拍摄图,其余为手机拍摄图。由图可见,45 钢试样在硫化试验前表面光亮,硫化试验 100 次后其表面已粘附较多杂质并呈黄褐色,不同区域橡胶污垢含量不同,随硫化试验次数增加其表面污垢继续增多,试验 300 次后试样表面已呈黄黑色。2 个 FEP 涂层试样在硫化试验前表面光滑平整,试验后涂层表面光泽度下降,但试验 300 次后涂层试样表面仍无肉然可见杂质粘附。

  • 图2 试样(Φ75 mm)外观随硫化次数的变化

  • Fig.2 Sample appearance changes with vulcanization times

  • 图3 为 3 个试样试验 100 次后的硫化橡胶块外观图。由图可见,45 钢试样硫化的橡胶块表面色差明显,其表面与试样表面分布形状一致,这是由于 45 钢试样表面橡胶污垢多处较光滑,而污垢少处较粗糙,从而导致硫化橡胶块表面不同区域光泽度有差异。2 个 FEP 涂层试样硫化的橡胶块表面几乎无色差。由此可见,模具表面粘污将极大影响硫化橡胶产品的质量,要提高橡胶模具的使用寿命,必须要保证表面涂层防橡胶粘污持久性。

  • 图3 试样试验 100 次后的硫化橡胶块

  • Fig.3 Vulcanized rubber blocks after 100 experiments

  • 图4 所示为 3 种试样表面微观形貌随试验次数的变化。表2 和表3 分别列示了 45 钢试样和涂层试样在图4 所测位置的元素质量含量。图5 展示了图4 部分图片的表面元素分布。由图4a~4d 可以看出,45 钢试样在硫化试验前表面有较多加工沟痕,试验 100 次后试样表面沟痕被污垢填充,试验 200 次后试样表面污垢更加致密,试验 300 次后试样表面污垢出现很多裂纹,继续试验污垢将脱落,进而影响橡胶制品的表面质量,这也说明 45 钢试样将达到使用寿命。45 钢试样在硫化试验前表面仅含有 Fe 和 C 元素,试验后试样表面增加了 Zn、S、O、Cl 和 Bi 元素,其中 Zn 和 S 元素增加显著,其次是 O 和 C,试验后试样表面 Fe 元素减少。图5a~5c 表示了图4a~4c 的表面元素分布,可以发现试验 100 次时 Zn 和 S 元素遍布试样表面,仅在试样凸起处有 Fe 元素裸露,试验 200 次后 Zn 和 S 元素覆盖试样表面。

  • 由图4e~4h 可以看出,双层水性 FEP 涂层试样在硫化试验前微观表面光滑致密,试验 100 次后涂层表面增加一些亮斑,试验 200 次和 300 次后涂层表面亮斑数量增加不明显。图4i~4l 表明单层溶剂型 FEP 涂层试样在硫化试验前微观表面同样光滑致密,但存在不同亮度区域,这可能是因为涂层内部含有铝粉颜料;试验 100 次后涂层表面出现少数不平整区域,试验 200 次后缺陷区域数量增加,试验 300 次后缺陷区域面积增大。表3 表明两种 FEP 涂层表面只含 F 和 C 元素,双层水性 FEP 试样在硫化试验后表面只增加了 Zn,S 元素可能因含量过低未检出,单层溶剂型 FEP 涂层试验 200 次后表面检测出 Zn 元素,试验 300 次后检测出 S 元素,且其 Zn 和 S 元素质量含量较双层水性 FEP 涂层高。图5d 和图5e 分别表示了图4g 和图4l 测量位置的表面元素分布,可以发现 FEP 涂层试样表面亮斑处主要为 Zn 和 S 元素。结合微观形貌和元素分布分析发现,FEP 涂层表面 Zn 和 S 元素主要出现在表面缺陷处。模具表面 FEP 涂层缺陷可能是由机械损伤、涂层检测引起的损伤、模压使基体粗糙峰暴露、以及 FEP 涂层热老化等因素造成。涂层缺陷使涂层表面连续的 FEP 树脂膜破坏,暴露出底漆甚至基体,使胶垢容易附着。因此 FEP 涂层防粘污性主要取决于表面 FEP 树脂的成膜质量。另外,随硫化试验次数增加,单层溶剂型 FEP 涂层相较双层水性 FEP 涂层表面缺陷增加更显著,说明单层溶剂型 FEP 涂层表面的 FEP 树脂膜更容易破损。

  • 图4 试样微观形貌随硫化次数的变化

  • Fig.4 Sample microstructure changes with vulcanization times

  • 表2 45 钢试样表面元素质量分数变化(wt.%)

  • Table2 Surface element mass fraction changes of the type 45 steel sample (wt.%)

  • 表3 FEP 涂层试样表面元素质量分数变化(wt.%)

  • Table3 Surface element mass fraction changes of the FEP coating samples (wt.%)

  • 图5 试样微观表面元素分布(a)图4(a)(b)图4(b)(c)图4(c)(d)图4(g)(e)图4(l)

  • Fig.5 Element distribution of sample microscopic surface. (a) Fig.4 (a) ; (b) Fig.4 (b) ; (c) Fig.4 (c) ; (d) Fig.4 (g) ; (e) Fig.4 (l) .

  • 为了研究试样表面胶垢的元素组成和化学价态,对 45 钢试样硫化试验 50 次和 200 次后的表面进行了 X 射线光电子能谱(XPS)分析,结果如图6 所示。图6a 表明胶垢主要包含 Zn、S、C、O 四种元素。图6b~6d 分别是 C1s、Zn 2p 和 S 2p 的分峰谱图。图6b 在结合能为 284.8、286.2 和 288.6 eV的峰分别对应 C-C、C-O-C 和 O-C=O / C=O。图6c 中结合能为1 022.1 和1 045.2 eV的两个高峰分别代表 Zn2+的 Zn 2p3 / 2 和 Zn 2p1 / 2。图6d 中结合能为 161.7 和 162.8 eV 的两个高峰分别代表 S2− 的 S 2p3 / 2和 S 2p1 / 2,结合能为 164.0 和 169.2 eV 处的小峰分别对应 S-H / S-S 键和 SO4 2-。为了确定污染物成分主要为 ZnO 还是 ZnS,将结果与 LI 等[25]的结果进行了对比,发现所测 XPS 图谱与 ZnS 结果一致。因此,胶垢中Zn2+以ZnS的形式存在。BUKHINA 等[4]报道,ZnS 是硫化剂 ZnO 和 S 在橡胶硫化过程中的反应产物。在硫化初期,反应产物 ZnS 容易粘附到模具表面,形成灰色沉积层,随着硫化次数增加,橡胶中的低分子量组分将附着在 ZnS 微晶上,导致有机沉积。

  • 图6 45 钢试样表面 XPS 分析(a)试验 50 次和 200 次的 XPS 全谱图(b)C1s 谱图(c)Zn2p 谱图(d)S2p 谱图

  • Fig.6 XPS spectra of the type45 steel sample: (a) Survey spectra after 50 and 200 vulcanizations; (b) C1s; (c) Zn2p; (d) S2p.

  • 图7 总结了 3 种试样表面 Zn 元素平均质量含量随橡胶硫化试验次数的变化。45 钢试样在硫化试验 100 次后表面 Zn 元素平均质量含量约为 37.7%,之后 Zn 元素质量含量缓慢增加,硫化试验 300 次后为 42.3%。双层水性 FEP 涂层试样在橡胶硫化试验 100 次后表面 Zn 元素平均质量含量为 0.3%,之后 Zn 元素质量含量增加并不明显。而单层溶剂型 FEP 涂层在橡胶硫化试验 100 次时未检测到 Zn 元素,之后 Zn 元素含量增加显著,试验 300 次时其表面 Zn 元素平均质量含量为 1.2%,远大于双层水性FEP涂层,说明硫化试验100次后单层溶剂型FEP 涂层比双层水性 FEP 涂层污染物增加速度快。试样微观形貌和成分分析结果表明,双层水性 FEP 涂层较单层溶剂型 FEP 涂层防粘耐久性更好。这可能是由于单层溶剂型 FEP 涂层包含粘结树脂和 FEP 树脂,涂层固化过程中依靠自组装原理在表面形成一层 FEP 树脂,但 FEP 树脂厚度不能精准控制,硫化试验过程中粘结树脂成分可能会暴露。而双层水性 FEP 涂层面漆主要成分为 FEP 树脂,其更容易形成一层完整的具有一定厚度的 FEP 防粘层。

  • 图7 试样表面 Zn 元素平均质量含量随硫化次数的变化

  • Fig.7 Average weight concentration changes of Zn element with vulcanization times

  • 2.2 涂层厚度对水性 FEP 涂层耐久性的影响

  • 选择双层水性 FEP 涂层研究涂层厚度对防粘耐久性的影响。制备试样时底漆同时喷涂,得到底漆干膜厚度均约为 9 μm,通过改变面漆厚度得到不同涂层厚度。表4 列出了不同涂层厚度双层水性 FEP 涂层试样的基本信息。3 个试样 T1~T3 的平均涂层厚度分别为 13.7、20.4 和 29.0 μm,对应面漆厚度分别约为 4.7、11.4 和 20.0 μm。

  • 表4 不同厚度双层水性 FEP 涂层试样信息

  • Table4 Information of the waterborne FEP coating samples with different coating thicknesses

  • 图8 表示了 3 个试样表面随着橡胶硫化试验次数的变化情况。硫化前涂层表面光滑平整,色泽较亮,试验 100 次后涂层表面光泽度下降。涂层表面斑点为电镜测量成分处,涂层导电性差使测量处发生充电效应使涂层产生缺陷,导致测量处易粘附橡胶污垢。随硫化试验次数增加,T1 试样表面斑点明显增加,其次是 T2 试样,T3 试样表面斑点数量最少。这说明涂层越薄,底漆或基体越容易暴露,从而降低涂层防粘耐久性。

  • 图9 所示为 3 个试样表面微观形貌随试验次数的变化。3 个涂层试样在硫化试验前微观表面均光滑平整。T1 涂层试样在试验 100 次后微观表面出现较多小亮斑(含 Zn 和 S 元素),试验 200 次和 300 次后微观表面亮斑数量增加且面积增大。T2 涂层试样在试验 100 次后微观表面出现少量亮斑,但随试验次数增加亮斑数量及面积无明显变化。T3 涂层试样微观表面随试验次数增加没有明显变化,试验 300 次后涂层微观表面也几乎没有亮斑。

  • 图8 不同厚度水性 FEP 涂层试样外观随硫化次数的变化

  • Fig.8 Surface appearance changes with vulcanization times for the waterborne FEP coating samples with different coating thicknesses

  • 图9 不同涂层厚度水性 FEP 涂层试样微观形貌随硫化次数的变化

  • Fig.9 Surface microstructure changes with vulcanization times for the waterborne FEP coating samples with different coating thicknesses

  • 图10 总结了 3 个试样表面 Zn 元素平均质量含量随试验次数的变化情况。可以发现在硫化试验 500 次范围内,T1 涂层试样表面的 Zn 元素含量近似与硫化试验次数成正比。T1 涂层试样硫化 500 次时,Zn 元素平均质量含量为 2.01%。假设试样表面 Zn 元素质量含量小于 10%时,其与硫化试验次数为线性关系,则预计 Zn 元素质量含量达到 10%时, T1 试样约能够硫化试验 2 500 次。T2 和 T3 涂层试样硫化 500 次时涂层表面 Zn 元素平均质量含量仅为 0.34%和 0.32%。由于试样表面 Zn 元素含量低,测量数据标准差较大。从曲线上看,T3 涂层试样表面的 Zn 元素含量小于 T2 试样。随硫化试验次数的增加,T2 和 T3 试样表面 Zn 元素质量含量增长并不明显。预计 Zn 元素质量含量达到 10%时,T2 和 T3 涂层试样的硫化试验次数至少为 T1 涂层试样的 3 倍和 5 倍以上。可见,涂层厚度是影响双层水性 FEP 涂层防粘耐久性的重要因素。由于涂层防粘污性主要取决于表面 FEP 树脂成膜质量,因此要提高双层水性 FEP 涂层的防粘耐久性,必须保证涂层面层厚度和成膜质量。

  • 图10 不同涂层厚度的水性 FEP 涂层试样表面 Zn 元素平均质量含量随硫化次数的变化

  • Fig.10 Average weight concentration changes of Zn element with vulcanization times for the waterborne FEP coating samples with different coating thicknesses

  • 2.3 烧结工艺对水性 FEP 涂层耐久性的影响

  • 烧结温度可能影响 FEP 树脂结晶度,进而影响涂层防粘耐久性。表5 列出了不同烧结工艺双层水性 FEP 涂层试样的基本信息。S1~S3 试样烧结温度都为 380℃,冷却条件分别为随炉冷却、水淬冷却和空气冷却,S4 试样烧结温度为 340℃,冷却条件为随炉冷却。为排除涂层厚度的影响,试样涂层厚度均为 30 μm 以上,其中底漆厚度约为 10 μm。S1 和 S3 试样表面粗糙度为 0.7 μm 左右,表面较光滑; 而水淬冷却和低烧结温度试样表面粗糙度较大,约为 2.2 μm。水淬冷却试样的水接触角较其余试样低,为 96.8°。

  • 表5 不同烧结工艺双层水性 FEP 涂层试样的基本信息

  • Table5 Information of the waterborne FEP coating samples with different sintering process

  • 为了研究烧结工艺对 FEP 涂层分子组成和结构的影响,测试了 4 个涂层试样的傅里叶变换红外光谱(FTIR),结果如图11 所示。4 个试样的 FTIR 谱图仅在波数为 700~800 cm−1 时有明显差别,波数大于 800 cm−1 时几乎重叠。700~800 cm−1 之间的吸收带对应于氟聚合物中的非晶结构[26],S2 和 S3 试样在此处的吸收强度较 S1 和 S4 试样大,说明 S2 和 S3 试样的结晶程度较 S1 和 S4 试样低。981 cm−1 处的特征峰对应于 CF3基团的伸缩振动[27],1 206 cm−1 和 1 151 cm−1 附近的强吸收峰对应于 CF2 基团的反对称伸缩振动和对称伸缩振动[28],1 645 cm−1 附近的微弱特征峰对应于 C=O 基团(来源于氟聚合物分子链中存在的少量不稳定端基如羧基(-COOH)、酰氟基(-COF)等)的伸缩振动[27]。图11 表明涂层烧结工艺不影响涂层表面 FEP 树脂的分子结构,主要影响 FEP 树脂的结晶度,采用水淬和空气冷却方式降低了 FEP 树脂的结晶度。

  • 图11 不同烧结工艺的水性 FEP 涂层的傅里叶变换红外光谱图

  • Fig.11 Fourier transform infrared spectra of the waterborne FEP coatings with different sintering processes

  • 图12 和图13 分别表示了 S1-S4 试样宏观表面和微观形貌随硫化试验次数的变化情况。涂层试样在硫化试验前宏观表面与图7 一致,硫化 100 次后表面光泽度明显下降,随硫化次数增加,涂层与橡胶接触区域主要在电镜测量处有明显改变,其他区域变化不大。图13 表明,随硫化试验次数增加,4 个涂层试样表面微观形貌没有明显变化,硫化 300次后仍没有明显亮斑。图14 总结了 4 个涂层试样表面 Zn 元素平均质量含量的变化。结果表明,硫化试验 300 次时,4 个涂层试样表面 Zn 元素质量含量都小于 0.5%。随硫化试验次数增加,4 个涂层试样表面 Zn 元素质量含量无明显变化规律。以上结果说明在 300 次硫化试验范围内,烧结工艺对涂层的防粘耐久性影响不大。

  • 图12 不同烧结工艺的水性 FEP 涂层试样外观随硫化次数的变化

  • Fig.12 Surface appearance changes with vulcanization times for the waterborne FEP coating samples by different sintering processes

  • 图13 不同烧结工艺的水性 FEP 涂层试样微观形貌随硫化次数的变化

  • Fig.13 Surface microstructure changes with vulcanization times for the waterborne FEP coating samples by different sintering processes

  • 由于防粘耐久性试验研究会消耗大量橡胶原料、时间和能源,本文仅对试样进行了 300 次硫化试验,可能还无法反映出烧结工艺对涂层长期防粘耐久性的影响。树脂的结晶度会影响树脂的热老化特性[29],进而影响涂层的防粘耐久性。因此,须进一步开展 FEP 树脂的热老化试验,研究树脂结晶度、热老化特性和防粘性的相互作用机理。

  • 图14 不同烧结工艺的水性 FEP 涂层试样表面 Zn 元素含量随硫化次数的变化

  • Fig.14 Average weight concentration changes of Zn element with vulcanization times for the waterborne FEP coating samples with different sintering processes

  • 3 结论

  • (1)通过橡胶硫化试验并结合 SEM 和 EDS 测试分析试样表面微观形貌和元素成分随硫化试验次数的变化,实现橡胶模具表面涂层防粘耐久性的定量评估。

  • (2)双层水性 FEP 涂层较单层溶剂型 FEP 涂层防粘耐久性更好,涂层面层厚度和成膜质量是影响双层水性 FEP 涂层防粘耐久性的关键因素,为橡胶模具表面涂层防粘处理提供了理论依据。

  • (3)FTIR 分析发现制备 FEP 涂层时的冷却速度影响树脂的结晶度,但在 300 次硫化试验范围内,树脂结晶度对涂层防粘耐久性影响不大。须进一步研究树脂结晶度、热老化特性和防粘性的相互作用机理。

  • 参考文献

    • [1] YE Y,JIA B,CHEN J,et al.Laser cleaning of the contaminations on the surface of tire mould[J].International Journal of Modern Physics B,2017,31(16-19):1744100.

    • [2] 周广武.水润滑橡胶轴承模压硫化成型尺寸精度控制研究[J].装备制造技术,2016,259(7):119-121,124.ZHOU Guangwu.Dimensional deviation control on mold pressing vulcanization shaping of water lubricated rubber bearing[J].Equipment Manufacturing Technology,2016,259(7):119-121,124.(in Chinese)

    • [3] HANULIKOVA B,SHEJBALOVA D,DVORAK Z.Infrared analysis of fouling during EPDM curing studied on molds made of steel and aluminium alloys[J].Rubber Chemistry and Technology,2018,91:390-400.

    • [4] BUKHINA M F,MOROZOV Y L,VAN DE VEN P,et al.Mould fouling of EPDM rubber compounds[J].KGK-Kautschuk Gummi Kunststoffe,2003,56:172-183.

    • [5] GUAN C,FU J,CUI Z,et al.Evaluation of the tribological and anti-adhesive properties of different materials coated rotary tillage blades[J].Soil & Tillage Research,2021,209:104933.

    • [6] CALDERÓN J C,KOCH L,BANDL C,et al.Multilayer coatings based on the combination of perfluorinated organosilanes and nickel films for injection moulding tools[J].Surface and Coatings Technology,2020,399:126152.

    • [7] SÁNCHEZ-URBANO F,PAZ-GÓMEZ G,RODRÍGUEZALABANDA Ó,et al.Non-stick coatings in aluminium molds for the production of polyurethane foam[J].Coatings,2018,8(9):301.

    • [8] AKINCI A,COBANOGLU E.Coating of Al mould surfaces with polytetrafluoroethylene(PTFE),fluorinated ethylene propylene(FEP),perfluoroalkoxy(PFA)and ethylene-tetrafluoroethylene(ETFE)[J].e-Polymers,2009,9(1):401-407.

    • [9] ZHANG X,LIU Z,WANG X,et al.Comparative study of anti-sticking properties of coatings for tire molds[J].Coatings,2022,12:1740.

    • [10] 王旭,刘志兰,张秀丽,等.橡胶模具水性氟树脂涂层防粘性能研究[J].电镀与涂饰,2023,42(4):50-56.WANG Xu,LIU Zhilan,ZHANG Xiuli,et al.Study on anti-sticking performance of waterborne fluororesin coatings for rubber mold[J].Electroplating & Finishing,2023,42(4):50-56.(in Chinese)

    • [11] 邹德荣.聚四氟乙烯(PTFE)防粘涂层的应用[J].上海涂料,2002,40(1):22-23.ZOU Derong.The application of antiadhesion coating based on PTFE[J].Shanghai Coatings,2002,40(1):22-23.(in Chinese)

    • [12] NOVOTNY J,MICHNA S,HREN I,et al.PTFE based multilayer micro-coatings for aluminum AlMg3 forms used in tire production[J].Coatings,2021,11:119.

    • [13] ANDREATTA F,LANZUTTI A,ANEGGI E,et al.Degradation of PTFE non-stick coatings for application in the food service industry[J].Engineering Failure Analysis,2020,115:104652.

    • [14] FRIEDRICHS M,PENG Z,GRUNWALD T,et al.PtIr protective coating system for precision glass molding tools:design,evaluation and mechanism of degradation[J].Surface and Coatings Technology,2020,385:125378.

    • [15] DONADEI V,KOIVULUOTO H,SARLIN E,et al.The effect of mechanical and thermal stresses on the performance of lubricated icephobic coatings during cyclic icing/deicing tests[J].Progress in Organic Coatings,2022,163:106614.

    • [16] ZIAEI-ASL A,RAMEZANLOU MT.Thermo-mechanical behavior of gas turbine blade equipped with cooling ducts and protective coating with different thicknesses[J].International Journal of Mechanical Sciences,2019,150:656–664.

    • [17] WANG L,YANG J,NI J,et al.Influence of cracks in APS-TBCs on stress around TGO during thermal cycling:A numerical simulation study[J].Surface and Coatings Technology,2016,285:98–112.

    • [18] 曹枝军,袁建辉,苏怀宇,等.声发射技术在热障涂层失效机理中的研究进展及展望[J].中国表面工程,2023,36(2):34-53.CAO Zhijun,YUAN Jianhui,SU Huaiyu,et al.Research progress and prospect of acoustic emission technology in failure mechanism of thermal barrier coatings[J].China Surface Engineering,2023,36(2):34-53.(in Chinese)

    • [19] XIANG Y,XUE H,ZHENG Z,et al.Research in fluorinated block copolymer/polystyrene blends with durable antifouling properties based on chainentanglement[J].Polymer,2023,270:125780.

    • [20] CHEN J,WEI C,RAN J,ET al.Functional hydrophobic coating for phosphogypsum via stoichiometric silanization,hydrophobic characterization,microstructure analysis,and durability evaluation[J].Construction and Building Materials,2022,347:128560.

    • [21] MONDAL S,PAL S,CHAUDHURI A,et al.Fluoropolymer adhered bioinspired hydrophobic,chemically durable cotton fabric for dense liquid removal and self-cleaning application[J].Surface Engineering,2020,37:299-307.

    • [22] MASI G,BERNARDI E,MARTINI C,et al.An innovative multi-component fluoropolymer-based coating on outdoor patinated bronze for Cultural Heritage:Durability and reversibility[J].Journal of Cultural Heritage,2020,45:122-134.

    • [23] WOOD KA.Optimizing the exterior durability of new fluoropolymer coatings[J].Progress in Organic Coatings,2001,43:207-213.

    • [24] Lee H S,KIM H,LEE J H,et al.Fabrication of a conjugated fluoropolymer film using one-step icvd process and its mechanical durability[J].Coatings,2019,9:430.

    • [25] LI X,LI X,ZHU B,et al.Synthesis of porous ZnS,ZnO and ZnS/ZnO nanosheets and their photocatalytic properties[J].RSC Advances,2017,7(49):30956-30962.

    • [26] 沈德言.红外光谱法在高分子研究中的应用[M].北京:科学出版社,1982.SHEN Deyan.Application of infrared spectroscopy in polymer research[M].Beijing:Science Press,1982.(in Chinese)

    • [27] OLIFIROV L K,STEPASHKIN A A,SHERIF G,et al.Tribological,mechanical and thermal properties of fluorinated ethylene propylene filled with Al-Cu-Cr quasicrystals,polytetrafluoroethylene,synthetic graphite and carbon black[J].Polymers 2021,13:781.

    • [28] 朱开贵,石建中,李可斌,等.聚四氟乙烯薄膜的制备及其红外光谱研究[J].物理学报,1997(9):101-104.ZHU Kaigui,SHI Jianzhong,LI Kebin,et al.Preparations and infrared spectrum studies of polytetrafluoroethylene thin films[J].Acta Physica Sinica,1997(9):101-104.(in Chinese)

    • [29] 代军,晏华,郭骏骏,等.结晶度对聚乙烯热氧老化特性的影响[J].材料研究学报,2017,31(1):41-48.DAI Jun,YAN Hua,GUO Junjun,et al.Effects of crystallinity on degradation properties of polyethylene by thermos-oxidation aging[J].Chinese Journal of Materials Research,2017,31(1):41-48.(in Chinese)

  • 参考文献

    • [1] YE Y,JIA B,CHEN J,et al.Laser cleaning of the contaminations on the surface of tire mould[J].International Journal of Modern Physics B,2017,31(16-19):1744100.

    • [2] 周广武.水润滑橡胶轴承模压硫化成型尺寸精度控制研究[J].装备制造技术,2016,259(7):119-121,124.ZHOU Guangwu.Dimensional deviation control on mold pressing vulcanization shaping of water lubricated rubber bearing[J].Equipment Manufacturing Technology,2016,259(7):119-121,124.(in Chinese)

    • [3] HANULIKOVA B,SHEJBALOVA D,DVORAK Z.Infrared analysis of fouling during EPDM curing studied on molds made of steel and aluminium alloys[J].Rubber Chemistry and Technology,2018,91:390-400.

    • [4] BUKHINA M F,MOROZOV Y L,VAN DE VEN P,et al.Mould fouling of EPDM rubber compounds[J].KGK-Kautschuk Gummi Kunststoffe,2003,56:172-183.

    • [5] GUAN C,FU J,CUI Z,et al.Evaluation of the tribological and anti-adhesive properties of different materials coated rotary tillage blades[J].Soil & Tillage Research,2021,209:104933.

    • [6] CALDERÓN J C,KOCH L,BANDL C,et al.Multilayer coatings based on the combination of perfluorinated organosilanes and nickel films for injection moulding tools[J].Surface and Coatings Technology,2020,399:126152.

    • [7] SÁNCHEZ-URBANO F,PAZ-GÓMEZ G,RODRÍGUEZALABANDA Ó,et al.Non-stick coatings in aluminium molds for the production of polyurethane foam[J].Coatings,2018,8(9):301.

    • [8] AKINCI A,COBANOGLU E.Coating of Al mould surfaces with polytetrafluoroethylene(PTFE),fluorinated ethylene propylene(FEP),perfluoroalkoxy(PFA)and ethylene-tetrafluoroethylene(ETFE)[J].e-Polymers,2009,9(1):401-407.

    • [9] ZHANG X,LIU Z,WANG X,et al.Comparative study of anti-sticking properties of coatings for tire molds[J].Coatings,2022,12:1740.

    • [10] 王旭,刘志兰,张秀丽,等.橡胶模具水性氟树脂涂层防粘性能研究[J].电镀与涂饰,2023,42(4):50-56.WANG Xu,LIU Zhilan,ZHANG Xiuli,et al.Study on anti-sticking performance of waterborne fluororesin coatings for rubber mold[J].Electroplating & Finishing,2023,42(4):50-56.(in Chinese)

    • [11] 邹德荣.聚四氟乙烯(PTFE)防粘涂层的应用[J].上海涂料,2002,40(1):22-23.ZOU Derong.The application of antiadhesion coating based on PTFE[J].Shanghai Coatings,2002,40(1):22-23.(in Chinese)

    • [12] NOVOTNY J,MICHNA S,HREN I,et al.PTFE based multilayer micro-coatings for aluminum AlMg3 forms used in tire production[J].Coatings,2021,11:119.

    • [13] ANDREATTA F,LANZUTTI A,ANEGGI E,et al.Degradation of PTFE non-stick coatings for application in the food service industry[J].Engineering Failure Analysis,2020,115:104652.

    • [14] FRIEDRICHS M,PENG Z,GRUNWALD T,et al.PtIr protective coating system for precision glass molding tools:design,evaluation and mechanism of degradation[J].Surface and Coatings Technology,2020,385:125378.

    • [15] DONADEI V,KOIVULUOTO H,SARLIN E,et al.The effect of mechanical and thermal stresses on the performance of lubricated icephobic coatings during cyclic icing/deicing tests[J].Progress in Organic Coatings,2022,163:106614.

    • [16] ZIAEI-ASL A,RAMEZANLOU MT.Thermo-mechanical behavior of gas turbine blade equipped with cooling ducts and protective coating with different thicknesses[J].International Journal of Mechanical Sciences,2019,150:656–664.

    • [17] WANG L,YANG J,NI J,et al.Influence of cracks in APS-TBCs on stress around TGO during thermal cycling:A numerical simulation study[J].Surface and Coatings Technology,2016,285:98–112.

    • [18] 曹枝军,袁建辉,苏怀宇,等.声发射技术在热障涂层失效机理中的研究进展及展望[J].中国表面工程,2023,36(2):34-53.CAO Zhijun,YUAN Jianhui,SU Huaiyu,et al.Research progress and prospect of acoustic emission technology in failure mechanism of thermal barrier coatings[J].China Surface Engineering,2023,36(2):34-53.(in Chinese)

    • [19] XIANG Y,XUE H,ZHENG Z,et al.Research in fluorinated block copolymer/polystyrene blends with durable antifouling properties based on chainentanglement[J].Polymer,2023,270:125780.

    • [20] CHEN J,WEI C,RAN J,ET al.Functional hydrophobic coating for phosphogypsum via stoichiometric silanization,hydrophobic characterization,microstructure analysis,and durability evaluation[J].Construction and Building Materials,2022,347:128560.

    • [21] MONDAL S,PAL S,CHAUDHURI A,et al.Fluoropolymer adhered bioinspired hydrophobic,chemically durable cotton fabric for dense liquid removal and self-cleaning application[J].Surface Engineering,2020,37:299-307.

    • [22] MASI G,BERNARDI E,MARTINI C,et al.An innovative multi-component fluoropolymer-based coating on outdoor patinated bronze for Cultural Heritage:Durability and reversibility[J].Journal of Cultural Heritage,2020,45:122-134.

    • [23] WOOD KA.Optimizing the exterior durability of new fluoropolymer coatings[J].Progress in Organic Coatings,2001,43:207-213.

    • [24] Lee H S,KIM H,LEE J H,et al.Fabrication of a conjugated fluoropolymer film using one-step icvd process and its mechanical durability[J].Coatings,2019,9:430.

    • [25] LI X,LI X,ZHU B,et al.Synthesis of porous ZnS,ZnO and ZnS/ZnO nanosheets and their photocatalytic properties[J].RSC Advances,2017,7(49):30956-30962.

    • [26] 沈德言.红外光谱法在高分子研究中的应用[M].北京:科学出版社,1982.SHEN Deyan.Application of infrared spectroscopy in polymer research[M].Beijing:Science Press,1982.(in Chinese)

    • [27] OLIFIROV L K,STEPASHKIN A A,SHERIF G,et al.Tribological,mechanical and thermal properties of fluorinated ethylene propylene filled with Al-Cu-Cr quasicrystals,polytetrafluoroethylene,synthetic graphite and carbon black[J].Polymers 2021,13:781.

    • [28] 朱开贵,石建中,李可斌,等.聚四氟乙烯薄膜的制备及其红外光谱研究[J].物理学报,1997(9):101-104.ZHU Kaigui,SHI Jianzhong,LI Kebin,et al.Preparations and infrared spectrum studies of polytetrafluoroethylene thin films[J].Acta Physica Sinica,1997(9):101-104.(in Chinese)

    • [29] 代军,晏华,郭骏骏,等.结晶度对聚乙烯热氧老化特性的影响[J].材料研究学报,2017,31(1):41-48.DAI Jun,YAN Hua,GUO Junjun,et al.Effects of crystallinity on degradation properties of polyethylene by thermos-oxidation aging[J].Chinese Journal of Materials Research,2017,31(1):41-48.(in Chinese)

  • 手机扫一扫看