en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴连锋,男,1986年出生,博士,高级工程师。主要研究方向为功能高分子材料。E-mail:wulianfeng126@126.com

通讯作者:

朱艳吉,女,1978年出生,博士,副教授,硕士研究生导师。主要研究方向为化工装备腐蚀防护与节能技术、聚合物基功能涂层、太阳能综合利用及功能化复合材料。E-mail:yanji.zhu@tju.edu.cn

中图分类号:TB332

DOI:10.11933/j.issn.1007-9289.20230223001

参考文献 1
BAO D,CUI Y X,XU F,et al.High thermal conductivity of epoxy composites via micro-zone enhanced 3D interconnected nickel skeleton[J].Ceramics International,2020,46(17):27531-27538.
参考文献 2
杨静晖,柏奇琪,张楠,等.导热绝缘高分子复合材料的研究进展[J].绝缘材料.2017,50(8):14-21.YANG Jinghui,BAI Qiqi,ZHANG Nan,et al.Research progress of thermal conductive and insulating polymer composites[J].Insulating Material,2017,50(8):14-21.(in Chinese)
参考文献 3
何亭融,曲绍宁,尹训茜.电子封装用环氧树脂/氮化硼导热复合材料的研究进展[J].绝缘材料,2020,53(7):12-17.HE Tingrong,QU Shaoning,YIN Xunxi.Research progress of epoxy resin/boron nitride thermal conductive composites for electronic packaging[J].Insulating Material,2020,53(7):12-17.(in Chinese)
参考文献 4
LIU Z,LI J H,LIU X H.Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties[J].ACS Applied Materials & Interfaces,2020,12(5):6503-6515.
参考文献 5
CHEN X,LIN J,YAN W,et al.Salt template assisted BN scaffold fabrication towards highly thermal conductive epoxy composites[J].ACS Applied Materials & Interface,2020,12(14):16987-16996.
参考文献 6
郭玉兰,何静,屈琦琪,等.BN/GS 填充EP导热绝缘复合材料的制备[J].材料科学与工程学报,2020,38(2):189-193.GUO Yulan,HE Jing,QU Qiqi,et al.Preparation of BN/GS filled EP thermal conductive and insulating composites[J].Journal of Materials Science & Engineering,2020,38(2):189-193.(in Chinese)
参考文献 7
YONG H,DU G,NAN C.A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity[J].Composites Science and Technology,2016,124:36-43.
参考文献 8
贾园,师瑞峰,呼雪,等.导热环氧树脂复合材料研究进展[J].工程塑料应用,2020,48(4):139-143.JIA Yuan,SHI Ruifeng,HU Xue,et al.Research progress on thermal conductive epoxy resin composites[J].Engineering Plastics Application,2020,48(4):139-143.(in Chinese)
参考文献 9
迟庆国,崔爽,张天栋,等.碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J].电工技术学报,2020,35(20):4405-4414.CHI Qingguo,CUI Shuang,ZHANG Tiandong,et al,Study on nonlinear characteristics on conductivity of silicon carbide whisker/epoxy resin composites[J].Transactions of China Electrotechnical Society,2020,35(20):4405-4414.(in Chinese)
参考文献 10
ZHU Y J,SHEN X S,BAO D,et al.Nano SiC enhancement in the BN micro structure for high thermal conductivity epoxy composite[J].Journal of Polymer Research,2021,28(10):1-10.
参考文献 11
SHEN Z,FENG J.Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement[J].Composites Science and Technology,2019,170:135-140.
参考文献 12
MEHRA N,MU L,JI T,et al.Thermal transport in polymeric materials and across composite interfaces[J].Applied Materials Today,2018,12:92-130.
参考文献 13
SHEN S,HENRY A,CHEN G.Polyethylene nanofibres with very high thermal conductivities[J].Nature Nanotechnology,2010,5(4):251-255.
参考文献 14
SINGH V,BOUGHER T L,WEATHERS A,et al.High thermal conductivity of chain-oriented amorphous polythiophene[J].Nature Nanotechnology,2014,9(5):384-390.
参考文献 15
HAN S,MENG Q,DEMIRAL M.Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives:Experimental and numerical analysis[J].Composites Part A:Applied Science and Manufacturing,2019,120:116-126.
参考文献 16
BURGER N,LAACHACHI A,RUCH D.Review of thermal conductivity in composites:Mechanisms,parameters and theory[J].Progress in Polymer Science,2016,61:1-28.
参考文献 17
YANG X,ZHU J,YANG D,et al.High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J].Composites Part B:Engineering,2020,185:107784.
参考文献 18
RUAN K,ZHONG X,SHI X,et al.Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites:A mini-review[J].Materials Today Physics,2021,20:100456.
参考文献 19
YEO H,ISLAM A M,YOU N H,et al.Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties[J].Composites Science & Technology,2017,141:99-105.
参考文献 20
SONG S H,KATAGI H,TAKEZAWA Y.Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure[J].Polymer,2012,53(20):4489-4492.
参考文献 21
AKATSUKA M,TAKEZAWA Y.Study of high thermal conductive epoxy resins containing controlled high order structures[J].Journal of Applied Polymer Science,2003,89(9):2464-2467.
参考文献 22
YANG X,ZHONG X,ZHANG J,et al.Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance[J].Journal of Materials Science & Technology,2021,68:209-215.
参考文献 23
YAN Z L,LIU W Q,CHEN H S,et al.Surface properties of the epoxy resin modified by a novel functional fluorinated oligomer[J].Iranian Polymer Journal,2012,21:721-730.
参考文献 24
石林,马忠雷,景佳瑶,等.双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J].复合材料学报,2022,39(10):4531-4539.SHI Lin,MA Zhonglei,JING Jiayao,et al.Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J].Acta Materiae Compositae Sinica,2022,39(10):4531-4539.(in Chinese)
参考文献 25
SHEN X S,GAO Y Y,SUN Y,et al.Improving the intrinsic thermal conductivity of epoxy resin by synergistic effect between rigid groups and hydrogen bonds[J].Chemistry Select,2021,6(32):8219-8226
目录contents

    摘要

    环氧树脂是导热复合材料领域必不可少的,但是由于其本征导热系数较低限制了应用,因此提高环氧树脂本征导热系数对于高性能导热复合材料的开发具有重要意义。环氧树脂本征热导率的提高通常可采用引入刚性基团的方式实现,而实际操作中往往受限于含刚性基团分子与环氧树脂分子之间存在极性差异、相容性不一致等问题,导致环氧树脂及其复合材料结构设计与合成具有复杂性,限制了其实际应用。采用含较强刚性萘环的 1, 5-萘二酚(Naphthalenediol)改性环氧树脂(EP) 制备萘改性环氧树脂(NEP),改善环氧树脂分子链的“有序性”,减少导热过程中声子的散射,提高材料的导热性。研究结果表明,NEP 的导热系数为 0.32 W / (m·K),是 EP 导热系数 0.19 W / (m·K)的 1.68 倍。氮化硼(BN)填料的加入使 NEP / BN 复合材料的热导率提升至 1.25 W / (m·K),为 EP / BN 复合材料热导率 1.01 W / (m·K)的 1.24 倍,EP 的 6.58 倍。NEP 及 NEP / BN 复合材料导热性能的提升,归因于萘环的刚性引起分子链的排列更加有序,以及改性过程中形成氢键的协同作用。向环氧树脂中引入萘环结构,采用简单的试验操作,明显提高了环氧树脂的本征热导率,可以为具有良好导热性能的树脂材料的开发提供思路。

    Abstract

    Polymer-based composite materials are widely used in the field of thermal conductivity owing to their low weight, electrical insulation, heat resistance, corrosion resistance, and excellent mechanical properties. Epoxy resin (EP) is essential in the field of thermally conductive composite materials; however, its low intrinsic thermal conductivity limits its application. Therefore, improving the intrinsic thermal conductivity of EP is crucial for developing high-performance thermally conductive composite materials. An improvement in the thermal conductivity of EP composite materials can be achieved by increasing the content of inorganic fillers; however, excessive inorganic fillers also affect the processing performance of the composite materials. Therefore, improving the intrinsic thermal conductivity of EP is important. Generally, the intrinsic thermal conductivity of EP can be improved by introducing molecules with rigid groups. However, in practical operations, limitations often exist, such as polarity differences and inconsistent compatibility between molecules containing rigid groups and EP molecules, which result in complexity in the structural design and synthesis of EP and its composite materials, limiting their practical applications. In this paper, the naphthalenediolmodified EP (NEP) was prepared by the reaction of the strong rigidity naphthalenediol and EP, aiming to improve the "order" of the EP molecular chain. When naphthalene glycol is used as a thermally conductive material, the rigid groups of naphthalene glycol reduce phonon scattering and improve the thermal conductivity of NEP and the corresponding composite materials with thermally conductive fillers. When used as a thermally conductive material, the rigid groups of naphthalenediol reduce the scattering of phonons and improve the thermal conductivity of NEP and the corresponding composites incorporating thermally conductive fillers. Infrared analysis indicated that the 1,5-naphthalene diphenol-modified EP consumed some epoxy groups, indicating the occurrence of a NEP modification reaction. The thermal conductivity of NEP was 0.32 W / (m·K), which was 1.68 times that of EP (0.19 W / (m·K)). To determine the effect of the 1,5-naphthalene diphenol content on the thermal conductivity of the NEP and NEP / BN composite materials, we conducted tests on the thermal conductivity of the materials at different mass ratios and curing temperatures. The increase rate of the thermal conductivity of the NEP / BN composite material was always greater than that of EP / BN composite material. Specifically, after adding BN filler with a weight ratio of 30%, the thermal conductivity of the NEP / BN composite increased to 1.25 W / (m·K), which was 1.24 times that of EP / BN composite (1.01 W / (m·K)) and 6.58 times that of EP. The increase in the NEP and EP / BN composite materials is primarily because the EP modified with a rigid naphthalene ring is more likely to form a thermal conductivity network within the molecule, improving the thermal conductivity of the composite material. Furthermore, the infrared thermal imager recorded the changes in surface color and temperature of the EP (a1), NEP (a2), EP / BN (a3), and NEP / BN (a4) composite materials over time. After BN was added, the surface color change of the NEP / BN and EP / BN composite materials was significantly faster than that of NEP and EP, and the surface temperature change of all samples became more pronounced with increasing heating time. The mechanism analysis showed that after NEP was heated, phonons were transmitted along the EP naphthalene molecular chain. Because of the relatively complete planar structure of the naphthalene ring, the phonons transmitted here were efficiently transmitted on its surface, reducing the probability of phonon scattering and thereby improving thermal conductivity. This study provides insights into improving the thermal conductivities of modified EP and its composite materials.

    关键词

    环氧树脂15-萘二酚导热改性热导率

  • 0 前言

  • 电子器件的小型化使其在高频运行过程中产生大量的热量,热量的加速积累会对电子元件造成不可逆的损害,从而降低器件的精确度,缩短产品的使用寿命[1-3],因此对导热材料的使用需求越来越迫切。聚合物基复合材料,由于具有质轻、电绝缘性、耐热性、耐腐蚀和良好的力学性能等,已广泛应用于导热领域。

  • 目前,提高聚合物基复合材料导热性能的方法主要有两种:一是通过向基体树脂中添加导热填料来提高导热性能,即填充型导热复合材料;二是通过改性提高聚合物本身的导热系数,即本征型导热高分子材料。对于填充型导热复合材料来说,通常采用的无机填料包括氮化硼(BN)[4-6]、氧化铝 (Al2O3[7-8]、碳化硅(SiC)[9-11]、石墨等,这些改性填料自身具有良好的导热性能,同时能够与环氧树脂形成如 π-π 作用等的非共价键相互作用,得以提高热导率。然而由于无机填料与树脂之间存在明显的界面,且填料大多随机分布在聚合物基体中形成“海岛”结构,导致无法形成连续的导热通路,复合材料导热系数的提高有限。而且大量无机填料的加入势必会对复合材料的力学性能、电学性能等产生负面影响 [12]。近年来,越来越多的研究者将目光集中于提高聚合物自身热导系数的研究中。由于大多数聚合物的热导系数较低,一般不超过 1.0 W /(m·K),而且高分子材料导热率的提高主要依靠改变分子结构来实现,因此难以获得预期的效果。SHEN 等[13]通过超拉伸技术制造了分子链有序排列的聚乙烯纳米纤维,热导率高达 104 W /(m·K)。 SINGH 等 [14]通过模板辅助电聚合法对纯非晶材料进行链排列,可使多噻吩纳米纤维的热导率提高 20 倍以上。

  • 作为最常用的粘结材料之一,环氧树脂已广泛应用于涂料、粘合剂和先进复合材料领域[15]。然而,环氧树脂的导热系数仅为 0.19 W /(m·K),限制了其在导热领域的应用[1016]。提高分子链的秩序性,在环氧树脂中引入具有结晶性的基团可有效改善其热导率[17]。研究表明,液晶结构、刚性基团的存在是环氧树脂热导率提高的主要原因,这些结构的引入使环氧树脂中存在有序取向的介晶微区,令聚合物的结晶度或分子间作用力增大,可改善分子振动和晶格振动的协调,减少环氧树脂中的分子缺陷,有效抑制声子散射,从而提高环氧树脂的本征热导率[18-19]。SONG 等[20]研究发现含介晶基元的环氧树脂中存在球晶结构,其导热率高达 0.33 W /(m·K)。 TAKEZAWA 等[21]合成并纯化了含苯基或苯甲酸基的环氧树脂,热导率比传统环氧树脂高 5 倍左右。 YANG 等[22]合成的侧链刚性的环氧树脂热导率达 0.33 W /(m·K),且具有良好的自愈性能。

  • 本文采用含刚性萘环的 1,5-萘二酚 (Naphthalenediol),通过开环聚合引入环氧树脂 (EP)中,制备了 1,5-萘二酚改性环氧树脂(NEP)。结果表明,NEP 的导热系数为 0.32 W /(m·K),是 EP 的 1.6 倍;进一步以 NEP 为基体树脂,BN 为导热填料,制备的 NEP / BN 复合材料导热系数为 1.25 W /(m·K),是相同 BN 含量下 EP / BN 复合材料的 1.24 倍,是 EP 的 6.58 倍。萘环的引入增加了 EP 分子链的“有序性”,减少了传热过程的声子散射,可明显提高环氧树脂的本征导热系数。本文研究成果为改性环氧树脂及其复合材料导热性提高提供了思路。

  • 1 试验准备

  • 1.1 样品制备

  • 试验中的原料:双酚 A 型环氧树脂(E51),济宁市华凯树脂有限公司;1,5-萘二酚(纯度 98%)、乙基三苯基溴化磷(纯度 98%),上海迈瑞尔化学技术有限公司;六方氮化硼(粒径 1~2 μm),丹东日进科技有限公司;聚醚胺固化剂 D230,滁州汇盛电子材料有限公司;乙酸乙酯,天津市元立化工有限公司。其他化学品和溶剂均为工业品并按原样使用。

  • 1.1.1 NEP 的制备与固化

  • 称取若干环氧树脂于三颈烧瓶中,按一定比例称取 1,5-萘二酚,与环氧树脂混合,在 90℃下搅拌至均相,然后取一定质量的乙基三苯基溴化磷加入烧瓶防止粘附于瓶壁,随后以 2℃ / min 的速率升温至 170℃左右,继续加热 1 h,反应终止,将改性环氧树脂倒入离心管中密封。由于 1,5-萘二酚为黑色,反应过程中环氧树脂体系始终保持黑色,为优化反应条件,按以上步骤分别选择 1,5-萘二酚与环氧树脂质量比分别为 3∶1、7∶2、4∶1、9∶2、 5∶1 进行改性反应,选择合适的终止温度及反应时间,获得最终 NEP 样品,反应方程式如图1 所示。将适量的 NEP 及固化剂 D230 加入料杯,再将料杯放入行星式重力搅拌机中真空搅拌,不同质量比 NEP 的制备重复上述操作。将搅拌后的改性环氧树脂导入预热的模具中,再将模具放入真空干燥箱中进行抽真空除气泡,然后在 50、80、120℃下分别固化 2、1、1 h,得到固化的 NEP 材料。

  • 图1 1,5-萘二酚改性环氧树脂的反应式

  • Fig.1 Reaction formula of 1, 5-naphthalenediol modified epoxy resin

  • 1.1.2 NEP / BN 复合材料的制备

  • 取若干克上述未固化的 NEP,溶解于适量乙酸乙酯中,在 80℃的烘箱放置 12 h 使大部分溶剂挥发,然后取适量 BN 及固化剂混合加入到料杯中,后续行星搅拌混合过程以及固化条件与 NEP 相同,得到固化的 NEP / BN 复合材料。

  • 1.2 NEP 及 NEP / BN 复合材料的表征

  • 本文采用 Nicolet 6700 型傅里叶变换红外光谱仪(FTIR)分析材料表面官能团。利用 Bruker D8 Advanced 型 X 射线衍射仪(XRD)分析 NEP 及 NEP / BN 复合材料的物相组成(具体试验条件:Cu Kα 辐射源,电压 40 kV,电流 40 mA,扫描范围 10°~60°,扫描速率 10(°)/ min)。采用法国 SETARAM 瞬态平面热源法(TPS)检测热导率,所有测试均在室温下进行。采用 Ti480Pro、Fluke 红外热像仪记录复合材料表面的加热过程,测试样品尺寸 15 mm×15 mm×5 mm.

  • 2 结果与讨论

  • 2.1 NEP 及 NEP / BN 复合材料的表征

  • 纯 EP 的红外光谱(图2,红线)在 3 503 和 3 035 cm−1 处的特征峰分别对应于环氧树脂羟基— OH 和 C—H 的伸缩振动吸收峰,1 607 和 916 cm−1 处的特征峰为苯环骨架 C=C 和末端环氧基 C—O— C 的伸缩振动吸收峰[23],这与标准环氧树脂红外谱图一致。随着 1,5-萘二酚改性环氧反应的进行,NEP 相应红外吸收峰的位置和强度都发生明显变化,由图1 可知 1,5-萘二酚的开环聚合会消耗环氧树脂末端的环氧基生成羟基,导致末端环氧基数量减少,羟基含量增加。对于 NEP 来说(图2,黑线), 3 437 cm−1 处的特征峰对应-OH 的吸收振动,其峰强大于 EP 且峰的位置向低频移动,谱带比 EP 更宽,证明改性后形成了氢键,这有利于 NEP 导热系数的提高[24]。另外,916 cm−1 处 NEP 末端环氧峰强度减弱,也说明 1,5-萘二酚改性环氧树脂消耗了部分环氧基团,表明 NEP 改性反应的发生[25]

  • 图2 EP 和 NEP 的红外谱图

  • Fig.2 FTIR of EP and NEP

  • 2.2 EP / BN 及 NEP / BN 复合材料的 XRD 分析

  • EP / BN 和 NEP / BN 复合材料的 XRD 如图3 所示。26.81°、41.65°、43.91°、50.18°和 55.14°处的衍射峰分别对应 BN 的(002)、(100)、(101)、(102)和(004)晶面,这些均符合六方相氮化硼的特征。对于 NEP / BN 复合材料来说,26.81°处代表 BN(002)晶面的峰位增加到 27.05°且强度明显增大,其他相应的特征峰也或多或少有位移和强度增大的趋势,由晶体衍射的布拉格方程 2dsinθ=(其中,d 为晶面间距,θ 为入射线、反射线与反射晶面之间的夹角,λ 为波长,n 为反射级数)可知,衍射角变大 NEP / BN 复合材料中 BN 的晶面间距变小,从而说明 NEP 使得 NEP / BN 复合材料中 BN 晶粒的排列更加紧密,这对于提高材料的导热性能很重要。NEP / BN 复合材料中六方相氮化硼衍射峰的变化并不太明显,表明其原有的晶型没有被破坏。另一方面,在 20°左右出现明显的鼓包峰,也说明 NEP / BN 复合材料中环氧树脂的排列更加有序[25]

  • 图3 EP 和 NEP 的 XRD 谱图

  • Fig.3 XRD of EP and NEP

  • 2.3 NEP 及 NEP / BN 复合材料的热导率分析

  • 为了确定 1,5-萘二酚含量对 NEP 及 NEP / BN 复合材料导热性能的影响,进行不同质量比及固化温度下材料热导率的测试。如图4a 所示,当环氧树脂与 1,5-萘二酚质量比(简称质量比)为 5∶1 时, NEP 的导热系数仅为 0.22 W /(m·K),与 EP 导热系数 0.19 W /(m·K)相比仅有很小幅度的提升;随着 1,5-萘二酚含量的增加,NEP 的导热系数明显增加,质量比为 9 ∶ 2 时 NEP 的导热系数为 0.25 W /(m·K);质量比为 4∶1 时达到最高的 0.32 W /(m·K),为 EP 的 1.68 倍;质量比为 7∶2和 3∶1 时 NEP 的导热系数明显下降,表明环氧树脂与 1,5-萘二酚最优的质量比为 4∶1。这主要是由于 1,5-萘二酚中的萘环为刚性基团,将其引入环氧树脂能够提高分子链的规整性,减少热传导过程中的声子散射,提高材料的热导率,而在萘环含量过高时会增加声子的散射,对导热系数的提高不利。

  • 另一方面,改性反应终止温度对材料的导热系数具有明显的影响。如图4a 所示,当反应终止温度为 140℃时,改性产物的热导率与 EP 相同为 0.19 W /(m·K),表明该温度下改性反应并未发生; 而终止温度升至 150℃、160℃、170℃和 180℃ 时,NEP 的热导率分别达到了 0.27、0.30、0.32 和 0.28,表明 170℃为制备 NEP 最佳的反应温度。

  • 对于 EP / BN 及 NEP / BN 复合材料来说,填料 BN 的含量对导热系数有明显影响,如图4b 所示,BN 含量为 10%、20%和 30%时,EP / BN 及 NEP / BN 复合材料的热导率分别为 0.41 和 0.47 W /(m·K),0.71 和 0.98 W /(m·K),1.01 和 1.25 W /(m·K),即相同填料含量下 NEP / BN 复合材料的导热系数均高于 EP / BN 复合材料,这主要是由于环氧树脂经刚性的萘环改性后更加容易在分子内形成导热网络,提升复合材料的导热系数。

  • 图4 不同比例和温度下 NEP 的热导率和不同含量填料的复合材料的热导率

  • Fig.4 Thermal conductivity of NEP at different proportions and temperatures and thermal conductivity of composites with different content of filler

  • 2.4 复合材料的红外热成像分析

  • 一般来说,导热复合材料被加热的过程中,表面颜色变化越快,说明温度升高的速度越快,导热性能越好。为了更加直观地观察材料的热传输能力,采用红外热成像仪记录 EP(a1)、NEP(a2)、 EP / BN(a3)和 NEP / BN(a4)复合材料表面颜色和温度随时间的变化情况。如图5a 所示,开始时所有样品表面均为蓝色,证明加热均从室温开始,可以看出 NEP / BN(a4)复合材料表面颜色变化最快,其次为 EP / BN,EP 最慢,表明 NEP 的导热性能优于 EP。加入 BN 以后,NEP / BN 及 EP / BN 复合材料表面颜色变化明显快于 NEP 和 EP,且随着加热时间的延长全部样品表面温度变化更加明显。

  • 具体来说,加热 5 s 时 NEP / BN 复合材料表面颜色为浅蓝色(图5a),表面温度 35.5℃(图5b); 加热 83 s 时 EP、NEP、EP / BN 和 NEP / BN 复合材料表面颜色分别变为黄绿色、黄色、红色和粉红色,样品表面温度(图5b)分别为 47.6℃、51.8℃、68.4℃ 和 74.4℃,即随着加热时间的延长,NEP / BN 复合材料表面温度变化速率始终高于 EP / BN、NEP 和 EP,表明 NEP / BN 复合材料具有更好的吸热能力,这与导热系数的结果一致(图4)。综上所述,经 1,5-萘二酚改性的环氧树脂 NEP 及 NEP / BN 复合材料均具有良好的导热性能,在导热复合材料领域将具有潜在的应用价值。

  • 图5 EP(a1),NEP(a2),EP / BN(a3)和 NEP / BN(a4)复合材料加热过程中的红外热成像图片和温度-时间变化图

  • Fig.5 Infrared thermal imaging image and temperature-time relationship of EP (a1) , NEP (a2) , EP / BN (a3) and NEP / BN (a4) composites during heating

  • 2.5 导热机理分析

  • 分子组成及结构的不同对高分子及其复合材料的热导性的影响也不同,由于环氧树脂 EP 及萘改性环氧树脂 NEP 在声子传递过程中起到不同的作用,进而影响各自的导热系数。对于聚合物来说,通常为饱和体系,无自由电子,导热载体为声子,热传导主要依靠晶格振动。环氧树脂 EP 本身是一种热固性高分子,其分子链依靠可交联基团实现交联固化并生成网状结构(图6a-Ⅰ),分子链的无规则缠结使其固化后呈现非结晶状态,这也是 EP 导热系数比较低的主要原因。固化好的环氧树脂被加热以后(图6a-Ⅱ),其内部具有多分散性,声子传播的路径不唯一,其中路线①中声子沿着分子链进行传递,而路线②中的声子则在传递过程中被散射掉,这些均与文献报道的环氧树脂较低小的导热系数有关。对于萘改性环氧树脂 NEP 来说,萘酚羟基与环氧树脂表面可交联基团键合形成萘环-环氧树脂相连的结构,即在环氧树脂内部形成规整有序、局部刚性的结构(图6b-Ⅰ),这对于提高环氧树脂的导热系数有利。具体来说,NEP 被加热以后,声子沿着环氧树脂-萘分子链进行传递(图6b-Ⅱ),其中路线③④由于萘环较完整的平面结构,使传递到此的声子可在其表面高效传递,降低路线②中声子散射出现的几率,从而提高导热系数。

  • 图6 环氧树脂 EP 及萘改性环氧树脂 NEP 材料的形成及其声子传递机制

  • Fig.6 Formation and phonon transfer mechanism of epoxy resin EP and naphthalenediol modified epoxy resin NEP materials

  • 3 结论

  • (1)通过简单的改性方法将刚性萘环引入环氧树脂中,增加了分子链的“秩序性”,减少了热传导过程的声子散射,使环氧树脂的本征导热系数提升了 68%。

  • (2)萘改性环氧树脂 NEP 不仅提升了其自身热导率,同时对于 NEP / BN 复合材料,其热导率提高始终大于 EP / BN 复合材料,当 BN 填料含量达 30%时,NEP / BN 复合材料的热导率得到极大提升,是 EP / BN 复合材料和 EP 的 1.24 倍和 6.58 倍。

  • (3)NEP 及 NEP / BN 复合材料中萘环基团的刚性及改性过程中形成的氢键协同作用,相比现有的普通环氧来说,对环氧树脂本征热导率的提高有利。

  • 参考文献

    • [1] BAO D,CUI Y X,XU F,et al.High thermal conductivity of epoxy composites via micro-zone enhanced 3D interconnected nickel skeleton[J].Ceramics International,2020,46(17):27531-27538.

    • [2] 杨静晖,柏奇琪,张楠,等.导热绝缘高分子复合材料的研究进展[J].绝缘材料.2017,50(8):14-21.YANG Jinghui,BAI Qiqi,ZHANG Nan,et al.Research progress of thermal conductive and insulating polymer composites[J].Insulating Material,2017,50(8):14-21.(in Chinese)

    • [3] 何亭融,曲绍宁,尹训茜.电子封装用环氧树脂/氮化硼导热复合材料的研究进展[J].绝缘材料,2020,53(7):12-17.HE Tingrong,QU Shaoning,YIN Xunxi.Research progress of epoxy resin/boron nitride thermal conductive composites for electronic packaging[J].Insulating Material,2020,53(7):12-17.(in Chinese)

    • [4] LIU Z,LI J H,LIU X H.Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties[J].ACS Applied Materials & Interfaces,2020,12(5):6503-6515.

    • [5] CHEN X,LIN J,YAN W,et al.Salt template assisted BN scaffold fabrication towards highly thermal conductive epoxy composites[J].ACS Applied Materials & Interface,2020,12(14):16987-16996.

    • [6] 郭玉兰,何静,屈琦琪,等.BN/GS 填充EP导热绝缘复合材料的制备[J].材料科学与工程学报,2020,38(2):189-193.GUO Yulan,HE Jing,QU Qiqi,et al.Preparation of BN/GS filled EP thermal conductive and insulating composites[J].Journal of Materials Science & Engineering,2020,38(2):189-193.(in Chinese)

    • [7] YONG H,DU G,NAN C.A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity[J].Composites Science and Technology,2016,124:36-43.

    • [8] 贾园,师瑞峰,呼雪,等.导热环氧树脂复合材料研究进展[J].工程塑料应用,2020,48(4):139-143.JIA Yuan,SHI Ruifeng,HU Xue,et al.Research progress on thermal conductive epoxy resin composites[J].Engineering Plastics Application,2020,48(4):139-143.(in Chinese)

    • [9] 迟庆国,崔爽,张天栋,等.碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J].电工技术学报,2020,35(20):4405-4414.CHI Qingguo,CUI Shuang,ZHANG Tiandong,et al,Study on nonlinear characteristics on conductivity of silicon carbide whisker/epoxy resin composites[J].Transactions of China Electrotechnical Society,2020,35(20):4405-4414.(in Chinese)

    • [10] ZHU Y J,SHEN X S,BAO D,et al.Nano SiC enhancement in the BN micro structure for high thermal conductivity epoxy composite[J].Journal of Polymer Research,2021,28(10):1-10.

    • [11] SHEN Z,FENG J.Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement[J].Composites Science and Technology,2019,170:135-140.

    • [12] MEHRA N,MU L,JI T,et al.Thermal transport in polymeric materials and across composite interfaces[J].Applied Materials Today,2018,12:92-130.

    • [13] SHEN S,HENRY A,CHEN G.Polyethylene nanofibres with very high thermal conductivities[J].Nature Nanotechnology,2010,5(4):251-255.

    • [14] SINGH V,BOUGHER T L,WEATHERS A,et al.High thermal conductivity of chain-oriented amorphous polythiophene[J].Nature Nanotechnology,2014,9(5):384-390.

    • [15] HAN S,MENG Q,DEMIRAL M.Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives:Experimental and numerical analysis[J].Composites Part A:Applied Science and Manufacturing,2019,120:116-126.

    • [16] BURGER N,LAACHACHI A,RUCH D.Review of thermal conductivity in composites:Mechanisms,parameters and theory[J].Progress in Polymer Science,2016,61:1-28.

    • [17] YANG X,ZHU J,YANG D,et al.High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J].Composites Part B:Engineering,2020,185:107784.

    • [18] RUAN K,ZHONG X,SHI X,et al.Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites:A mini-review[J].Materials Today Physics,2021,20:100456.

    • [19] YEO H,ISLAM A M,YOU N H,et al.Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties[J].Composites Science & Technology,2017,141:99-105.

    • [20] SONG S H,KATAGI H,TAKEZAWA Y.Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure[J].Polymer,2012,53(20):4489-4492.

    • [21] AKATSUKA M,TAKEZAWA Y.Study of high thermal conductive epoxy resins containing controlled high order structures[J].Journal of Applied Polymer Science,2003,89(9):2464-2467.

    • [22] YANG X,ZHONG X,ZHANG J,et al.Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance[J].Journal of Materials Science & Technology,2021,68:209-215.

    • [23] YAN Z L,LIU W Q,CHEN H S,et al.Surface properties of the epoxy resin modified by a novel functional fluorinated oligomer[J].Iranian Polymer Journal,2012,21:721-730.

    • [24] 石林,马忠雷,景佳瑶,等.双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J].复合材料学报,2022,39(10):4531-4539.SHI Lin,MA Zhonglei,JING Jiayao,et al.Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J].Acta Materiae Compositae Sinica,2022,39(10):4531-4539.(in Chinese)

    • [25] SHEN X S,GAO Y Y,SUN Y,et al.Improving the intrinsic thermal conductivity of epoxy resin by synergistic effect between rigid groups and hydrogen bonds[J].Chemistry Select,2021,6(32):8219-8226

  • 参考文献

    • [1] BAO D,CUI Y X,XU F,et al.High thermal conductivity of epoxy composites via micro-zone enhanced 3D interconnected nickel skeleton[J].Ceramics International,2020,46(17):27531-27538.

    • [2] 杨静晖,柏奇琪,张楠,等.导热绝缘高分子复合材料的研究进展[J].绝缘材料.2017,50(8):14-21.YANG Jinghui,BAI Qiqi,ZHANG Nan,et al.Research progress of thermal conductive and insulating polymer composites[J].Insulating Material,2017,50(8):14-21.(in Chinese)

    • [3] 何亭融,曲绍宁,尹训茜.电子封装用环氧树脂/氮化硼导热复合材料的研究进展[J].绝缘材料,2020,53(7):12-17.HE Tingrong,QU Shaoning,YIN Xunxi.Research progress of epoxy resin/boron nitride thermal conductive composites for electronic packaging[J].Insulating Material,2020,53(7):12-17.(in Chinese)

    • [4] LIU Z,LI J H,LIU X H.Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties[J].ACS Applied Materials & Interfaces,2020,12(5):6503-6515.

    • [5] CHEN X,LIN J,YAN W,et al.Salt template assisted BN scaffold fabrication towards highly thermal conductive epoxy composites[J].ACS Applied Materials & Interface,2020,12(14):16987-16996.

    • [6] 郭玉兰,何静,屈琦琪,等.BN/GS 填充EP导热绝缘复合材料的制备[J].材料科学与工程学报,2020,38(2):189-193.GUO Yulan,HE Jing,QU Qiqi,et al.Preparation of BN/GS filled EP thermal conductive and insulating composites[J].Journal of Materials Science & Engineering,2020,38(2):189-193.(in Chinese)

    • [7] YONG H,DU G,NAN C.A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity[J].Composites Science and Technology,2016,124:36-43.

    • [8] 贾园,师瑞峰,呼雪,等.导热环氧树脂复合材料研究进展[J].工程塑料应用,2020,48(4):139-143.JIA Yuan,SHI Ruifeng,HU Xue,et al.Research progress on thermal conductive epoxy resin composites[J].Engineering Plastics Application,2020,48(4):139-143.(in Chinese)

    • [9] 迟庆国,崔爽,张天栋,等.碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J].电工技术学报,2020,35(20):4405-4414.CHI Qingguo,CUI Shuang,ZHANG Tiandong,et al,Study on nonlinear characteristics on conductivity of silicon carbide whisker/epoxy resin composites[J].Transactions of China Electrotechnical Society,2020,35(20):4405-4414.(in Chinese)

    • [10] ZHU Y J,SHEN X S,BAO D,et al.Nano SiC enhancement in the BN micro structure for high thermal conductivity epoxy composite[J].Journal of Polymer Research,2021,28(10):1-10.

    • [11] SHEN Z,FENG J.Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement[J].Composites Science and Technology,2019,170:135-140.

    • [12] MEHRA N,MU L,JI T,et al.Thermal transport in polymeric materials and across composite interfaces[J].Applied Materials Today,2018,12:92-130.

    • [13] SHEN S,HENRY A,CHEN G.Polyethylene nanofibres with very high thermal conductivities[J].Nature Nanotechnology,2010,5(4):251-255.

    • [14] SINGH V,BOUGHER T L,WEATHERS A,et al.High thermal conductivity of chain-oriented amorphous polythiophene[J].Nature Nanotechnology,2014,9(5):384-390.

    • [15] HAN S,MENG Q,DEMIRAL M.Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives:Experimental and numerical analysis[J].Composites Part A:Applied Science and Manufacturing,2019,120:116-126.

    • [16] BURGER N,LAACHACHI A,RUCH D.Review of thermal conductivity in composites:Mechanisms,parameters and theory[J].Progress in Polymer Science,2016,61:1-28.

    • [17] YANG X,ZHU J,YANG D,et al.High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J].Composites Part B:Engineering,2020,185:107784.

    • [18] RUAN K,ZHONG X,SHI X,et al.Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites:A mini-review[J].Materials Today Physics,2021,20:100456.

    • [19] YEO H,ISLAM A M,YOU N H,et al.Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties[J].Composites Science & Technology,2017,141:99-105.

    • [20] SONG S H,KATAGI H,TAKEZAWA Y.Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure[J].Polymer,2012,53(20):4489-4492.

    • [21] AKATSUKA M,TAKEZAWA Y.Study of high thermal conductive epoxy resins containing controlled high order structures[J].Journal of Applied Polymer Science,2003,89(9):2464-2467.

    • [22] YANG X,ZHONG X,ZHANG J,et al.Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance[J].Journal of Materials Science & Technology,2021,68:209-215.

    • [23] YAN Z L,LIU W Q,CHEN H S,et al.Surface properties of the epoxy resin modified by a novel functional fluorinated oligomer[J].Iranian Polymer Journal,2012,21:721-730.

    • [24] 石林,马忠雷,景佳瑶,等.双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J].复合材料学报,2022,39(10):4531-4539.SHI Lin,MA Zhonglei,JING Jiayao,et al.Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J].Acta Materiae Compositae Sinica,2022,39(10):4531-4539.(in Chinese)

    • [25] SHEN X S,GAO Y Y,SUN Y,et al.Improving the intrinsic thermal conductivity of epoxy resin by synergistic effect between rigid groups and hydrogen bonds[J].Chemistry Select,2021,6(32):8219-8226

  • 手机扫一扫看