en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王东,男,1996年出生,硕士研究生。主要研究方向为表面工程。E-mail:2251542153@qq.com

通讯作者:

尚伟,女,1978年出生,博士,教授,硕士研究生导师。主要研究方向为应用电化学。E-mail:2001018@glut.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20221001002

参考文献 1
孙乐,马颖,李奇辉,等.纯镁表面等离子体电解渗硼改性层的制备及性能[J].中国表面工程,2022,35(6):88-97.SUN Le,MA Ying,LI Qihui,et al.Fabrication and performances of surface modified layers obtained by plasma electrolytic boronizing on pure magnesium[J].China Surface Engineering,2022,35(6):88-97.(in Chinese)
参考文献 2
王莹,唐爱国,周星怡,等.镁合金表面 SA/GO 耐蚀/耐磨一体化复合涂层[J].中国表面工程,2022,35(2):70-79.WANG Ying,TANG Aiguo,ZHOU Xingyi,et al.Stearic acid/graphene oxide composite coatings on Mg alloy surfaces for anti-corrosion/wear performances[J].China Surface Engineering,2022,35(2):70-79.(in Chinese)
参考文献 3
YANG W,XU D P,WANG J L,et al.Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy[J].Corrosion Science,2018,136:174-179.
参考文献 4
SUN M,YEROKHIN A,BYCHKOVA M Y,et al.Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy[J].Corrosion Science,2016,111:753-769.
参考文献 5
KUCUKOSMAN R,SUKUROGLU E E,TOTIK Y,et al.Effects of graphene oxide addition on wear behaviour of composite coatings fabricated by plasma electrolytic oxidation(PEO)on AZ91 magnesium alloy[J].Journal of Adhesion Science and Technology,2020,35(3):242-255.
参考文献 6
GNEDENKOV A S,MEI D,LAMAKA S V,et al.Localized currents and pH distribution studied during corrosion of MA8 Mg alloy in the cell culture medium[J].Corrosion Science,2020,170:108689.
参考文献 7
YAO W H,LIANG W,HUANG G S,et al.Superhydrophobic coatings for corrosion protection of magnesium alloys[J].Journal of Materials Science & Technology,2020,52:100-118.
参考文献 8
FAN X Z,WANG Y,ZOU B L,et al.Preparation and corrosion resistance of MAO/Ni–P composite coat on Mg alloy[J].Applied Surface Science,2013,277:272-280.
参考文献 9
ZHANG S Y,LI Q,CHEN B,et al.Preparation and corrosion resistance studies of nanometric sol–gel-based CeO2 film with a chromium-free pretreatment on AZ91D magnesium alloy[J].Electrochimica Acta,2010,55(3):870-877.
参考文献 10
GARCIA-RODRIGUEZ S,TORRES B,PULIDOGONZALEZ N,et al.Corrosion behavior of 316L stainless steel coatings on ZE41 magnesium alloy in chloride environments[J].Surface & Coatings Technology,2019,378:124944.
参考文献 11
WANG Y L,YAN D S,ZHU Y H,et al.Corrosion protection of epoxy coatings containing ZSM-5 zeolites on Mg–Li alloys[J].Materials and Corrosion,2019,70(7):1222-1229.
参考文献 12
CHEN J F,LIN W X,LIANG S Y,et al.Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy[J].Applied Surface Science,2019,463:535-544.
参考文献 13
CHEN M A,CHENG N,OU Y C,et al.Corrosion performance of electroless Ni–P on polymer coating of MAO coated AZ31 magnesium alloy[J].Surface and Coatings Technology,2013,232:726-733.
参考文献 14
安景花,齐玉明,彭振军,等.AZ31 镁合金表面含纳米SiC氟化镁膜层的制备及耐腐蚀性能[J].中国表面工程,2020,33(1):24-33.AN Jinghua,QI Yuming,PENG Zhenjun,et al.Preparation and corrosion resistance of MgF2 coating containing SiC nanoparticles on AZ31 magnesium alloy[J].China Surface Engineering,2020,33(1):24-33.(in Chinese)
参考文献 15
韩嘉平,王振玲,唐莎巍,等.微弧氧化镁表面钙磷生物涂层的制备及性能[J].中国表面工程,2020,33(4):102-110.HAN Jiaping,WANG Zhenling,TANG Shawei,et al.Preparation and properties of calcium phosphate bio-coating formed on micro arc oxidized magnesium[J].China Surface Engineering,2020,33(4):102-110.(in Chinese)
参考文献 16
SONG Z W,XIE Z H,YU G,et al.A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy[J].Journal of Alloys and Compounds,2015,623:274-281.
参考文献 17
LI C Y,FAN X L,ZENG R C,et al.Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA[J].Journal of Materials Science & Technology,2019,35(6):1088-1098.
参考文献 18
TANG M Q,FENG Z Q,WU X Y,et al.Microarc oxidation coatings containing TiC and NbC on magnesium alloy[J].Surface Engineering,2019,36(11):1171-1179.
参考文献 19
FARSHID S,KHARAZIHA M.Micro and nano-enabled approaches to improve the performance of plasma electrolytic oxidation coated magnesium alloys[J].Journal of Magnesium and Alloys,2021,9(5):1487-1504.
参考文献 20
CHAHARMAHALI R,FATTAH-ALHOSSEINI A,BABAEI K.Surface characterization and corrosion behavior of calcium phosphate(Ca-P)base composite layer on Mg and its alloys using plasma electrolytic oxidation(PEO):A review[J].Journal of Magnesium and Alloys,2021,9(1):21-40.
参考文献 21
MOLAEI M,BABAEI K,FATTAH-ALHOSSEINI A.Improving the wear resistance of plasma electrolytic oxidation(PEO)coatings applied on Mg and its alloys under the addition of nano-and micro-sized additives into the electrolytes:A review[J].Journal of Magnesium and Alloys,2021,9(4):1164-1186.
参考文献 22
FATTAH-ALHOSSEINI A,CHAHARMAHALI R,BABAEI K.Impressive strides in amelioration of corrosion and wear behaviors of Mg alloys using applied polymer coatings on PEO porous coatings:A review[J].Journal of Magnesium and Alloys,2022,10(5):1171-1190.
参考文献 23
YANG C W,LIU C,LIN D J,et al.Hydrothermal treatment and butylphosphonic acid derived selfassembled monolayers for improving the surface chemistry and corrosion resistance of AZ61 magnesium alloy[J].Scientific Reports,2017,7(1):16910.
参考文献 24
LIU X B,SHAN D Y,SONG Y W,et al.Effect of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism[J].Materials Chemistry and Physics,2015,149-150:559-565.
参考文献 25
ZENG R C,LIU L J,LUO K J,et al.In vitro corrosion and antibacterial properties of layer-by-layer assembled GS/PSS coating on AZ31 magnesium alloys[J].Transactions of Nonferrous Metals Society of China,2015,25(12):4028-4039.
参考文献 26
GAO C,DAI L,MENG W,et al.Electrochemically promoted electroless nickel-phosphorous plating on titanium substrate[J].Applied Surface Science,2017,392:912-919.
参考文献 27
SAHOO P,DAS S K.Tribology of electroless nickel coatings-A review[J].Materials & Design,2011,32(4):1760-1775.
参考文献 28
LOTO C A.Electroless nickel plating—A Review[J].Silicon,2016,8(2):177-186.
参考文献 29
CHEN J,ZHAO G L,MATSUDA K,et al.Microstructure evolution and corrosion resistance of Ni–Cu–P amorphous coating during crystallization process[J].Applied Surface Science,2019,484:835-844.
参考文献 30
ABDI-ALGHANAB K,SEIFZADEH D,RAJABALIZADEH Z,et al.High corrosion protection performance of the LDH/Ni-P composite coating on AM60B magnesium alloy[J].Surface and Coatings Technology,2020,397:125979.
参考文献 31
SHARIFALHOSEINI Z,ENTEZARI M H,DAVOODI A,et al.Access to nanocrystalline,uniform,and fine-grained Ni-P coating with improved anticorrosive action through the growth of ZnO nanostructures before the plating process[J].Corrosion Science,2020,172:108743.
目录contents

    摘要

    镁合金具有很强的活性,在水溶液或潮湿的大气中容易被腐蚀。为了提高镁合金的耐腐蚀性能,首先利用微弧氧化工艺进行微弧氧化,通过乙酸乙酯(C4H8O2)进行自组装,最后化学镀镍,在 AZ91D 镁合金表面制备微弧氧化(MAO)/ 自组装(SAM)/ 镍(Ni)复合涂层。通过形貌结构、电化学测试和腐蚀产物分析研究复合涂层在 3.5 wt.% NaCl 环境中的腐蚀行为,并建立复合涂层的腐蚀过程模型。结果表明:Cl 的存在加速了腐蚀的发生。复合涂层的腐蚀电流密度与镁合金相比下降 3 个数量级,复合涂层显著提高了镁合金的耐蚀性。复合涂层在盐雾环境中 0~96 h 时,Ni 层表面结构仍然致密。当复合涂层暴露在腐蚀环境中 120 h 后,Ni 层开始被破坏,腐蚀离子进行渗透,形成通道。之后,基体上的 SAM 层和 MAO 层的保护时间缩短。在 144 h 时,腐蚀离子直接穿透了复合涂层,使基体涂层保护失效。研究成果可为该类涂层的开发、制备和应用提供试验依据和理论基础。

    Abstract

    Magnesium alloys, which are the lightest metal construction materials used in industry, play a vital role in future development. Magnesium alloys exhibit outstanding qualities such as low density, efficient electromagnetic shielding, and dimensional stability, making them highly valuable across a wide range of applications in automotive, medical, and electronic communication sectors, among others. However, Mg alloys are highly active and readily corrode in aqueous solutions or humid atmospheres. These alloys have limited applications because of their poor corrosion resistance. Composite coatings can improve the defects of a single coating to achieve better substrate protection. To improve the corrosion resistance of magnesium alloys, a micro-arc oxidation (MAO) / self-assembly (SAM) / nickel composite coating was fabricated on the surface of a magnesium alloy (AZ91D), via MAO, self-assembly by ethyl acetate (C4H8O2), and chemical plating with nickel. SEM and EDS were used to characterize the surface morphology and corrosion product content of the corrosion-processed samples. XRD and XPS tests were employed to analyze the changes in the surface material of the sample during corrosion. AFM was used to characterize the surface roughness of the sample during corrosion. Polarization curve and electrochemical impedance spectroscopy was used to assess the corrosion resistance of samples at various corrosion durations. The corrosion behavior of the composite coating in 3.5 wt.% NaCl environment was studied by morphological structure analysis, electrochemical tests, and corrosion product analysis, and the corrosion process model of the composite coating was established. The results show that the presence of Cl accelerates the onset of corrosion. Polarization curves and impedance tests showed that the corrosion resistance of the MAO / SAM / Ni composite coating was significantly improved compared with that of the magnesium alloy matrix. The corrosion current density of the composite coating decreased by three orders of magnitude compared with that of the magnesium alloy. After 120 h of corrosion, the corrosion current density of the composite coating was still one order of magnitude lower than that of the magnesium alloy substrate, and the electrochemical impedance reached 1.16×104 Ω·cm2 . The results indicate that the composite coating significantly improved the corrosion resistance of the Mg alloy. The Mg alloy matrix corrodes within 24 h and generates corrosion products, including MgO and MgCl2, in an environment of 3.5 wt.% NaCl. The corrosion of the MAO / SAM / Ni composite coatings can be divided into three stages, namely early, middle, and late stages. The surface structure of the Ni layer remained dense when the composite coating was exposed to a salt-spray environment for 0–96 h. In the early stages of corrosion, the corrosion resistance of the coating improved, mainly owing to the formation of the corrosion product NiO, on the surface of the coating. As the corrosion time increased, trivalent NiOOH formed on the surface of the coating, and the coating gradually deteriorated. When the composite coating was exposed to a corrosive environment for 120 h, the Ni layer started deteriorating, and the corrosive ions penetrated and formed channels. Subsequently, the protection capabilities of the SAM and MAO layers diminished. After 144 h, the corrosive ions directly penetrated the composite coating, rendering the substrate coating ineffective. Once the outer layer of the electroless nickel plating was compromised, corrosion ions easily penetrated the composite coating, forming MgCl2 corrosion products. The results provide an experimental basis and theoretical foundation for the development, preparation, and application of such coatings.

  • 0 前言

  • 镁是最轻的结构元素,在地球上有丰富的储量,具有许多优异的性能[1-2]。其中,AZ 系列镁合金因其易加工、易回收、低密度和较好的电磁屏蔽性能等优点,广泛用于航空航天和计算机部件[3-5]。较为活跃的镁合金也带来了较差的耐腐蚀性[6]。这一缺点在腐蚀环境中尤为明显,尤其是存在 Cl 的环境中,这大大限制了其在工程中的应用[7-9]。镁合金的表面改性技术已日益成为一个研究热点[10-12]

  • MAO 技术可以在镁合金表面原位生产出具有良好耐腐蚀性和优良附着力的陶瓷涂层[13-15]。MAO 涂层的高孔隙率也为腐蚀离子提供了渗透通道,这不利于 MAO 涂层对基体的长期腐蚀保护[16-18]。在微弧氧化溶液中加入微纳米颗粒,可以提高镁及其合金表面 MAO 涂层的耐腐蚀性和耐磨性[19-21]。有机化合物对 MAO 涂层表面的改性在金属腐蚀和保护领域有积极作用[22]。有机化合物可以通过 SAM 技术减少 MAO 薄膜的孔隙率[23]。自组装技术具有操作方法简单、成膜均匀、稳定等优良性能[24-25]。然而,所制备的自组装层的硬度和耐磨性还须改进。镍磷涂层可以弥补自组装层的缺陷,提高复合涂层的硬度和耐腐蚀性。化学镀镍涂层通常可以通过化学镀在样品上制备[26-28]。MAO / SAM / Ni 三层复合涂层可以改善单一涂层的缺陷,更好地提高镁合金基体的耐腐蚀性。

  • 本文研究了 MAO / SAM / Ni 三层复合涂层在 3.5 wt.% NaCl 环境下的腐蚀过程,探究了镁合金和复合涂层在腐蚀过程中的微观形貌及表面成分的变化,腐蚀产物及元素价态的变化。结合电化学测试,建立了腐蚀模型来表征 MAO / SAM / Ni 复合涂层的腐蚀过程。

  • 1 试验准备

  • 1.1 材料

  • AZ91D 镁合金被切割成 20 mm×20 mm× 3 mm 的小块,用不同型号(180#、600#、1000#和 1500#)的碳化硅砂纸对基体进行打磨直至表面光滑。之后,在碱性脱脂液中进行脱脂处理 60 s,脱脂后的样品在乙醇和蒸馏水中分别进行超声清洗 10 min,并在烘箱中干燥后备用。

  • 1.2 涂层制备

  • 将预处理好的镁合金基体放入配置好的微弧氧化电解液(3~5 g / L Na2SiO3,10~12 g / L NaOH,6~8 g / L NaF,2~6 g / L Na2B4O7,1~3 g / L Na2WO4,1~4 ml / L C3H8O3,2~4 ml / L C6H15NO3)中,以不锈钢片为阴极,预处理后的镁合金为阳极,使用 JHMAO-380 / 20A 微弧氧化电源(北京金弧绿宝科技有限公司,中国)对镁合金进行微弧氧化处理制备微弧氧化涂层。试验过程中的参数如下:频率为 50 Hz,占空比为 30%,终止电压为 200~240 V。采取 Pd2+ 活化工艺,在自组装之前将制备的 MAO 样品放置在活化液(0.04~0.06 g / L PdCl2,500 mL / L C2H5OH, 500 mL / L H2O)中进行活化 60 s,之后用还原溶液 (30 g / L NaH2PO2)还原 60 s。然后进行自组装:浓度为 20 mL / L C4H8O2溶液,时间为 20 min,温度为 30℃,之后取出样品在鼓风干燥机中固化 2 h。乙酸乙酯结构式见图1。制备好 MAO / SAM 双层涂层后,最后将样品置入化学镀镍溶液中(30~35 g / L NiSO4·6H2O,30~35 g / L NaH2PO2·H2O,25~30 g / L C6H5Na3O7·2H2O,7~10 g / L NH4F,2~5 mg / L KI,1~5 mg / L CN2H4S,pH 6.8),在 60℃ 条件下进行化学镀 2 h,制备 MAO / SAM / Ni 复合涂层。将镁合金基体和复合涂层样品(厚度约 25.6 μm) 置于浓度为3.5 wt.% NaCl的盐雾箱中进行腐蚀试验。在试验期间,箱内的温度保持在 35℃,并采用喷雾 12 h,静置 12 h 为一个周期。

  • 图1 乙酸乙酯结构式

  • Fig.1 Structural formula of ethyl acetate

  • 1.3 测试方法

  • 采用扫描电子显微镜(SEM,SU5000,日本) 和能量色散 X 射线(EDS)来观察镁合金和复合涂层在不同腐蚀时间下的微观形貌及表面成分的变化,其中,用于 EDS 分析的加速电压为 15 kV。使用 Cu Kα 射线(λ=1.54 Å.)的 X 射线衍射仪(XRD, Xpert3 Powder,荷兰)和以 Al Kα 射线为激发源的 X 射线光电子能谱仪(XPS,ESCALAB 250xi,美国)来表征样品腐蚀过程中腐蚀产物和元素价态的变化。采用悬臂式原子力显微镜(Shimadzu,日本, SPM-9700),测试复合涂层在不同腐蚀时间下的表面粗糙度变化。电化学测试用于表征复合涂层在腐蚀环境中不同时间的耐腐蚀性变化。使用电化学工作站 CHI760(中国辰华)和 ZView 软件来测试和分析样品的极化曲线和电化学阻抗谱(EIS)。测试面积为 1 cm2 的样品作为工作电极,饱和甘汞电极作为参比电极,铂电极作为辅助电极。在每个样品的开路电位下进行 EIS 测试,测试频率范围为 105 Hz 至 10−2 Hz。在扫描速率为 1 mV·s −1 的测试参数下测试极化曲线。

  • 2 结果与讨论

  • 2.1 表面特征

  • 图2 显示了在 3.5 wt.% NaCl 环境下,镁合金基体在不同腐蚀时间的表面微观形貌和成分变化。在图2a 中,0 h 时镁合金表面平整光滑,没有发生腐蚀。在图2b 中,4 h 后镁合金表面出现云朵状腐蚀产物。在 24 h 时,镁合金表面完全被腐蚀产物堆积覆盖(图2c)。从图2d~2f 的数据变化可以看出,随着腐蚀时间的增加,镁合金表面的 O 元素含量显著增加,并且在 24 h 时含量达到较大值,表明腐蚀产物在镁合金表面基本形成。根据镁合金表面不同腐蚀时间的表面形貌和成分,可以知道镁合金基体在短时间内就会发生腐蚀,耐腐蚀性能非常差。

  • 图2 镁合金基体在不同腐蚀时间下的表面微观形貌和元素组成

  • Fig.2 Surface micromorphology and elemental composition of Mg alloy substrate at different corrosion times

  • 图3显示了3.5 wt.% NaCl环境下镁合金表面复合涂层在不同腐蚀时间的表面形貌和成分变化。在图3a 和图3b 中,0 和 24 h 时复合涂层表面上的化学镀镍层的花椰菜结构非常完整。在 72 h 时,复合涂层的表面结构没有变化,但是在图3c 中,在菜花结构的一部分结节中出现了腐蚀孔。在 96 h 时,腐蚀孔增加,并且在图3d 中开始出现腐蚀产物。在图3e 样品腐蚀 120 h 后,在电子显微镜下明显看出腐蚀孔加深,腐蚀产物逐渐增多,镍层表面仍然具有原始的外观结构,而复合涂层的表面结构不再致密。用蒸馏水冲洗化学镀镍涂层表面的杂质后的电镜图像如图3f 所示。在 144 h 时,腐蚀离子透过化学镀镍层渗透到镁合金基体中,形成了腐蚀坑。图3g~3l EDS 谱图和数据对应图3a~3f 的电镜图。在腐蚀 24 h 时,样品表面的 O 含量大大增加,化学镀镍层表面的金属层可能被氧化。在 120 h 时,复合涂层表面的 O 含量再次增加,并且在表面检测到一定含量的 Mg,可能的原因是化学镀镍层不再致密,涂层形成通道。在 144 h 时,O 含量和 Mg 含量迅速增加,表明此时的腐蚀已经到达 MAO 层或镁合金基体。

  • 图3 复合涂层在不同腐蚀时间下的表面微观形貌和元素组成

  • Fig.3 Surface micromorphology and elemental composition of composite coating at different corrosion times

  • 2.2 XRD 分析

  • 图4显示了不同样品在3.5 wt.% NaCl环境下不同腐蚀时间的 XRD 结果。镁合金基体被腐蚀 24 h 后,出现了 Mg 峰。在复合涂层被置于腐蚀环境中之前,在 44.60°附近出现了一个 Ni(111)峰。复合涂层被腐蚀 96 h 后,Mg、MgSiO3 和 Mg2SiO4 的峰是镁合金基体和微弧氧化层中的峰,Ni 峰是最外层的化学镀镍层,呈非晶态[29]。与 96 h 相比,在 120 h 时 MgSiO3和 NiO 峰出现在 55°~75°。结合电子显微镜结果可知,化学镀镍层由于腐蚀离子的侵入而被破坏,使得微弧氧化层暴露出来,在镁合金基体上生成腐蚀产物。在 144 h 处,可以在样品表面检测到 Mg、MgSiO3和 Mg2SiO4 的峰,这表明腐蚀离子已经完全渗透了 MAO / SAM / 化学镀镍层,复合涂层完全失去了保护作用。

  • 2.3 XPS 分析

  • 图5a 显示了镁合金基体在 3.5 wt.% NaCl 环境中腐蚀 24 h 后的 XPS 结果。结果表明,MgO 的特征峰出现在 1 304.8 eV 和 532.1 eV,MgCl2 的特征峰出现在 1 303.9 eV,Al2O3 的特征峰出现在 531.9 eV。镁合金基体在腐蚀环境中被腐蚀,并生成了 MgO、MgCl2 和 Al2O3的腐蚀产物。图5b~5c 分别显示了复合涂层在腐蚀环境中 96 和 120 h 的 XPS结果。腐蚀 96 h,复合涂层的表面由 Ni、NiO 和 Ni(OH)2 组成。腐蚀 120 h,复合涂层的表面由 NiO、 Ni(OH)2 和 NiOOH 组成。表面元素 Ni 发生了价态的变化,腐蚀明显发生。图5d 显示了复合涂层在腐蚀环境下腐蚀 144 h 后的 XPS 结果。可以看出,通过分析 Mg 和 O 的拟合结果,可以知道 Mg2SiO4 和 Mg3H2(SiO34 腐蚀产物被生成,腐蚀离子完全破坏了复合涂层,从而导致镁合金基体腐蚀发生。MgCl2 表示腐蚀性离子 Cl 通过复合涂层腐蚀镁合金基体并产生腐蚀产物。从 XPS 的结果可以看出,镁合金基体在腐蚀环境中 24 h 后已经生成腐蚀产物。复合涂层的表面在 96 h 时仍具有元素 Ni,但在 120 h 后几乎被腐蚀产物覆盖,并且存在三价 Ni 氧化物。 144 h 后,复合涂层被完全破坏。

  • 图4 不同样品在不同腐蚀时间的 XRD (镁合金:24 h,复合涂层:0、96、120、144 h)

  • Fig.4 XRD of different samples at different corrosion time (magnesium alloy: 24 h, composite coating: 0, 96, 120, 144 h)

  • 图5 不同样品在不同腐蚀时间的 XPS

  • Fig.5 XPS of different samples at different corrosion time

  • 2.4 AFM 分析

  • 镁合金表面复合涂层样品在不同腐蚀时间下的表面粗糙度测试结果如图6 和图7 所示。可以看出,在 24、96 和 120 h 时,复合涂层的表面粗糙度分别为 426.64、679.82 和 726.90 nm。对比相关文献[30-31],复合涂层在腐蚀环境中 120 h 后仍然具有较低的表面粗糙度。在 24 h 时,复合涂层表面的镍晶胞最明显,膜层最致密。在 96 h 和 120 h 的复合涂层表面出现微小的凹坑,并且膜层致密度降低。从图7d 可以看出,镁合金基体表面和 MAO 层被腐蚀以产生山峰状结构。421.26 nm 的表面粗糙度值小于化学镀镍层的表面粗糙度值,可能的原因是,经过化学镀镍层后,腐蚀离子在 MAO 层和镁合金基体上发生腐蚀。结合 XPS 的结果,可以看出在 144 h 时,复合涂层已经失去保护性能。

  • 图6 复合涂层在不同腐蚀时间下的表面投影

  • Fig.6 Face projections of composite coating at different corrosion time

  • 2.5 电化学性能

  • 图8 显示了镁合金基体在 0 h 和复合涂层在不同腐蚀时间的极化曲线和相应参数。来源于图8 中极化曲线的拟合结果见表1。一般来说,腐蚀电位越高,腐蚀电流密度越低,样品的耐腐蚀性越好。对比图8b 中的数据,可以看到腐蚀时间为 0、24、48 和 72 h 后得到的复合涂层腐蚀电流密度均为 10−8 数量级。腐蚀 96 h 后,镁合金表面复合涂层的腐蚀电流密度提高了一个数量级。在 0~96 h 期间,腐蚀电流密度相对较小,表明复合涂层为镁合金基体提供了更好的腐蚀防护。在 0~96 h 期间,复合涂层的腐蚀电位变化不大,腐蚀电位比镁合金基体的腐蚀电位要正,这主要是由复合涂层中化学镀镍层的保护作用所致。腐蚀 120 h 后,样品的腐蚀电位变为−1.361 V,腐蚀电流密度也比 96 h 时高出一个数量级。对比电镜图可知,120 h 时,复合涂层表面腐蚀孔加深,腐蚀产物大量出现在最外层的化学镀镍层上。腐蚀离子进入自组装层和 MAO 层,引起腐蚀电位的变化。在 144 h 时,腐蚀电位继续负向移动,与 120 h 相比,腐蚀电流密度增加了两个数量级,复合涂层的耐腐蚀性差,这表明 144 h 后复合涂层对镁合金基体的保护作用差。同时,144 h 时复合涂层的腐蚀电流密度与 0 h 时的镁合金基体相比增加了一个数量级,也表明 144 h 后腐蚀完全发生。

  • 图7 复合涂层在不同腐蚀时间下的 3D 形貌

  • Fig.7 3D topographies of composite coating at different corrosion time

  • 图8 镁合金在 0 h 和复合涂层在不同腐蚀时间的极化曲线以及相应的电化学参数

  • Fig.8 Polarization curves of Mg alloy at 0 h and composite coating at different corrosion times and the corresponding electrochemical parameters

  • 表1 来源于图8 中极化曲线的拟合结果

  • Table1 Fitted data of Polarization curve in Fig 8

  • 图9a~9b 是不同腐蚀时间下镁合金表面复合涂层的能奎斯特图,图9c~9d 是不同腐蚀时间下复合涂层的波特图。样品的能奎斯特图是由半圆弧组成的。容抗弧的直径越大,样品的耐腐蚀性越好。从图中可以看出,随着样品在腐蚀环境中腐蚀时间的增加,复合涂层的阻抗值在 24 h 达到最大值,结合 EDS 数据表明,可能的原因是样品表面的 O 元素在 24 h 内大大增加,复合涂层表面的 Ni 在腐蚀环境中生成 NiO,从而提高了耐蚀性。之后,随着腐蚀时间的增加,容抗弧的半径逐渐减小。在 144 h 时,复合涂层的阻抗值达到最小,复合涂层对基体的保护已经失效。观察图9c 中 2~144 h 样品的阻抗模量,可以看出,低频区域的阻抗模量在 24 h 时达到最大值,随后开始逐渐下降。从 96 h 起,阻抗模量明显下降,这意味着复合涂层开始被损坏。在 144 h,阻抗模量减少到最小。

  • 图9 复合涂层在不同腐蚀时间的的能奎斯特图和波特图

  • Fig.9 Nyquist spectra and Bode diagram of composite coating at different corrosion time

  • 样品的拟合等效电路图如图10 所示。使用 Zview 软件进行阻抗拟合的结果见表2。Rs 是溶液电阻,Rct 是电荷传导电阻,Qdl 是工作电极和溶液界面之间的双电层电容,RcoatQcoat 是涂层电阻和涂层电容。样品表面的 QcoatQdl的值在腐蚀 24 h 后达到最小,RcoatRct 在腐蚀 24 h 时达到最大,表明此时的耐腐蚀性最好。在 144 h 时,Rcoat 已经减少了 2 个数量级,此时的耐腐蚀性是最差的。

  • 图10 复合涂层在不同腐蚀时间下的等效电路图

  • Fig.10 Equivalent circuit diagram of composite coating at different corrosion time

  • 表2 来源于图9 中 EIS 的拟合数据

  • Table2 Fitting data derived from the EIS in Fig.9

  • 2.6 复合涂层的腐蚀过程和腐蚀模型

  • 为了更清楚地解释复合涂层在腐蚀环境中腐蚀过程参数的变化和模型的建立,绘制了如图11 所示的 QcoatRcoat 随时间变化的曲线,并建立了如图12 所示的腐蚀过程模型图。在腐蚀初期(2~24 h),在复合涂层的表面形成一层保护性金属氧化物,使涂层的耐蚀性略有增强。在中间腐蚀阶段(24~96 h),随着腐蚀时间的增加,复合涂层表面开始出现腐蚀孔,抗腐蚀能力下降。在最后的腐蚀阶段 (120~144 h),化学镀镍层全面腐蚀并产生大量腐蚀产物。腐蚀离子通过腐蚀孔穿过复合涂层,到达镁合金基体并产生腐蚀产物,复合涂层的保护失效。从图12 可以直观地看到镁合金表面复合涂层的腐蚀过程。

  • 图11 复合涂层 QcoatRcoat 与时间的曲线图

  • Fig.11 Regular curve of the Qcoat and Rcoat of composite coating with time

  • 图12 镁合金表面复合涂层在 3.5 wt.% NaCl 中的腐蚀过程模型

  • Fig.12 Corrosion process model of composite coating on Mg alloy surface in 3.5 wt.% NaCl

  • 首先,将复合涂层置于中性盐雾环境中,如图12a 所示。之后,在腐蚀环境中,复合涂层的最外层表面出现了腐蚀点,如图12b 所示。随着腐蚀时间的增加,腐蚀离子侵蚀化学镀镍层,在膜层表面腐蚀点扩大,并产生相应的腐蚀产物,如图12c 所示。最后,如图12d 所示,随着膜层表面腐蚀的发生,腐蚀离子穿透化学镀镍层,形成腐蚀通道。由于薄的自组装层和 MAO 层表面微孔的存在,腐蚀离子通过腐蚀通道穿透涂层直达镁合金基体,生成腐蚀产物并对镁合金基体产生腐蚀破坏。

  • 3 结论

  • (1)利用微弧氧化、自组装和化学镀镍工艺相结合,在AZ91D镁合金表面制备了MAO / SAM / Ni 复合涂层。与镁合金基体相比,MAO / SAM / Ni 复合涂层的耐蚀性显著提高。

  • (2)复合涂层在盐雾环境中 0~96 h 时,Ni 层表面结构仍然致密,在 120 h 时复合涂层中化学镀镍层已经产生破坏,在 144 h 复合涂层全面破坏。

  • (3)复合涂层腐蚀阶段可划分为腐蚀初期、腐蚀中期和腐蚀后期三个阶段。在腐蚀初期,涂层的耐蚀性有所提高,这主要是由于在涂层表面形成了腐蚀产物 NiO。随着腐蚀时间的延长,在涂层表面形成三价 NiOOH,涂层开始逐渐失效。外层的化学镀镍层被破坏后,腐蚀离子很容易直接穿过复合涂层对基体进行腐蚀,形成 MgCl2 腐蚀产物。

  • 参考文献

    • [1] 孙乐,马颖,李奇辉,等.纯镁表面等离子体电解渗硼改性层的制备及性能[J].中国表面工程,2022,35(6):88-97.SUN Le,MA Ying,LI Qihui,et al.Fabrication and performances of surface modified layers obtained by plasma electrolytic boronizing on pure magnesium[J].China Surface Engineering,2022,35(6):88-97.(in Chinese)

    • [2] 王莹,唐爱国,周星怡,等.镁合金表面 SA/GO 耐蚀/耐磨一体化复合涂层[J].中国表面工程,2022,35(2):70-79.WANG Ying,TANG Aiguo,ZHOU Xingyi,et al.Stearic acid/graphene oxide composite coatings on Mg alloy surfaces for anti-corrosion/wear performances[J].China Surface Engineering,2022,35(2):70-79.(in Chinese)

    • [3] YANG W,XU D P,WANG J L,et al.Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy[J].Corrosion Science,2018,136:174-179.

    • [4] SUN M,YEROKHIN A,BYCHKOVA M Y,et al.Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy[J].Corrosion Science,2016,111:753-769.

    • [5] KUCUKOSMAN R,SUKUROGLU E E,TOTIK Y,et al.Effects of graphene oxide addition on wear behaviour of composite coatings fabricated by plasma electrolytic oxidation(PEO)on AZ91 magnesium alloy[J].Journal of Adhesion Science and Technology,2020,35(3):242-255.

    • [6] GNEDENKOV A S,MEI D,LAMAKA S V,et al.Localized currents and pH distribution studied during corrosion of MA8 Mg alloy in the cell culture medium[J].Corrosion Science,2020,170:108689.

    • [7] YAO W H,LIANG W,HUANG G S,et al.Superhydrophobic coatings for corrosion protection of magnesium alloys[J].Journal of Materials Science & Technology,2020,52:100-118.

    • [8] FAN X Z,WANG Y,ZOU B L,et al.Preparation and corrosion resistance of MAO/Ni–P composite coat on Mg alloy[J].Applied Surface Science,2013,277:272-280.

    • [9] ZHANG S Y,LI Q,CHEN B,et al.Preparation and corrosion resistance studies of nanometric sol–gel-based CeO2 film with a chromium-free pretreatment on AZ91D magnesium alloy[J].Electrochimica Acta,2010,55(3):870-877.

    • [10] GARCIA-RODRIGUEZ S,TORRES B,PULIDOGONZALEZ N,et al.Corrosion behavior of 316L stainless steel coatings on ZE41 magnesium alloy in chloride environments[J].Surface & Coatings Technology,2019,378:124944.

    • [11] WANG Y L,YAN D S,ZHU Y H,et al.Corrosion protection of epoxy coatings containing ZSM-5 zeolites on Mg–Li alloys[J].Materials and Corrosion,2019,70(7):1222-1229.

    • [12] CHEN J F,LIN W X,LIANG S Y,et al.Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy[J].Applied Surface Science,2019,463:535-544.

    • [13] CHEN M A,CHENG N,OU Y C,et al.Corrosion performance of electroless Ni–P on polymer coating of MAO coated AZ31 magnesium alloy[J].Surface and Coatings Technology,2013,232:726-733.

    • [14] 安景花,齐玉明,彭振军,等.AZ31 镁合金表面含纳米SiC氟化镁膜层的制备及耐腐蚀性能[J].中国表面工程,2020,33(1):24-33.AN Jinghua,QI Yuming,PENG Zhenjun,et al.Preparation and corrosion resistance of MgF2 coating containing SiC nanoparticles on AZ31 magnesium alloy[J].China Surface Engineering,2020,33(1):24-33.(in Chinese)

    • [15] 韩嘉平,王振玲,唐莎巍,等.微弧氧化镁表面钙磷生物涂层的制备及性能[J].中国表面工程,2020,33(4):102-110.HAN Jiaping,WANG Zhenling,TANG Shawei,et al.Preparation and properties of calcium phosphate bio-coating formed on micro arc oxidized magnesium[J].China Surface Engineering,2020,33(4):102-110.(in Chinese)

    • [16] SONG Z W,XIE Z H,YU G,et al.A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy[J].Journal of Alloys and Compounds,2015,623:274-281.

    • [17] LI C Y,FAN X L,ZENG R C,et al.Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA[J].Journal of Materials Science & Technology,2019,35(6):1088-1098.

    • [18] TANG M Q,FENG Z Q,WU X Y,et al.Microarc oxidation coatings containing TiC and NbC on magnesium alloy[J].Surface Engineering,2019,36(11):1171-1179.

    • [19] FARSHID S,KHARAZIHA M.Micro and nano-enabled approaches to improve the performance of plasma electrolytic oxidation coated magnesium alloys[J].Journal of Magnesium and Alloys,2021,9(5):1487-1504.

    • [20] CHAHARMAHALI R,FATTAH-ALHOSSEINI A,BABAEI K.Surface characterization and corrosion behavior of calcium phosphate(Ca-P)base composite layer on Mg and its alloys using plasma electrolytic oxidation(PEO):A review[J].Journal of Magnesium and Alloys,2021,9(1):21-40.

    • [21] MOLAEI M,BABAEI K,FATTAH-ALHOSSEINI A.Improving the wear resistance of plasma electrolytic oxidation(PEO)coatings applied on Mg and its alloys under the addition of nano-and micro-sized additives into the electrolytes:A review[J].Journal of Magnesium and Alloys,2021,9(4):1164-1186.

    • [22] FATTAH-ALHOSSEINI A,CHAHARMAHALI R,BABAEI K.Impressive strides in amelioration of corrosion and wear behaviors of Mg alloys using applied polymer coatings on PEO porous coatings:A review[J].Journal of Magnesium and Alloys,2022,10(5):1171-1190.

    • [23] YANG C W,LIU C,LIN D J,et al.Hydrothermal treatment and butylphosphonic acid derived selfassembled monolayers for improving the surface chemistry and corrosion resistance of AZ61 magnesium alloy[J].Scientific Reports,2017,7(1):16910.

    • [24] LIU X B,SHAN D Y,SONG Y W,et al.Effect of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism[J].Materials Chemistry and Physics,2015,149-150:559-565.

    • [25] ZENG R C,LIU L J,LUO K J,et al.In vitro corrosion and antibacterial properties of layer-by-layer assembled GS/PSS coating on AZ31 magnesium alloys[J].Transactions of Nonferrous Metals Society of China,2015,25(12):4028-4039.

    • [26] GAO C,DAI L,MENG W,et al.Electrochemically promoted electroless nickel-phosphorous plating on titanium substrate[J].Applied Surface Science,2017,392:912-919.

    • [27] SAHOO P,DAS S K.Tribology of electroless nickel coatings-A review[J].Materials & Design,2011,32(4):1760-1775.

    • [28] LOTO C A.Electroless nickel plating—A Review[J].Silicon,2016,8(2):177-186.

    • [29] CHEN J,ZHAO G L,MATSUDA K,et al.Microstructure evolution and corrosion resistance of Ni–Cu–P amorphous coating during crystallization process[J].Applied Surface Science,2019,484:835-844.

    • [30] ABDI-ALGHANAB K,SEIFZADEH D,RAJABALIZADEH Z,et al.High corrosion protection performance of the LDH/Ni-P composite coating on AM60B magnesium alloy[J].Surface and Coatings Technology,2020,397:125979.

    • [31] SHARIFALHOSEINI Z,ENTEZARI M H,DAVOODI A,et al.Access to nanocrystalline,uniform,and fine-grained Ni-P coating with improved anticorrosive action through the growth of ZnO nanostructures before the plating process[J].Corrosion Science,2020,172:108743.

  • 参考文献

    • [1] 孙乐,马颖,李奇辉,等.纯镁表面等离子体电解渗硼改性层的制备及性能[J].中国表面工程,2022,35(6):88-97.SUN Le,MA Ying,LI Qihui,et al.Fabrication and performances of surface modified layers obtained by plasma electrolytic boronizing on pure magnesium[J].China Surface Engineering,2022,35(6):88-97.(in Chinese)

    • [2] 王莹,唐爱国,周星怡,等.镁合金表面 SA/GO 耐蚀/耐磨一体化复合涂层[J].中国表面工程,2022,35(2):70-79.WANG Ying,TANG Aiguo,ZHOU Xingyi,et al.Stearic acid/graphene oxide composite coatings on Mg alloy surfaces for anti-corrosion/wear performances[J].China Surface Engineering,2022,35(2):70-79.(in Chinese)

    • [3] YANG W,XU D P,WANG J L,et al.Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy[J].Corrosion Science,2018,136:174-179.

    • [4] SUN M,YEROKHIN A,BYCHKOVA M Y,et al.Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy[J].Corrosion Science,2016,111:753-769.

    • [5] KUCUKOSMAN R,SUKUROGLU E E,TOTIK Y,et al.Effects of graphene oxide addition on wear behaviour of composite coatings fabricated by plasma electrolytic oxidation(PEO)on AZ91 magnesium alloy[J].Journal of Adhesion Science and Technology,2020,35(3):242-255.

    • [6] GNEDENKOV A S,MEI D,LAMAKA S V,et al.Localized currents and pH distribution studied during corrosion of MA8 Mg alloy in the cell culture medium[J].Corrosion Science,2020,170:108689.

    • [7] YAO W H,LIANG W,HUANG G S,et al.Superhydrophobic coatings for corrosion protection of magnesium alloys[J].Journal of Materials Science & Technology,2020,52:100-118.

    • [8] FAN X Z,WANG Y,ZOU B L,et al.Preparation and corrosion resistance of MAO/Ni–P composite coat on Mg alloy[J].Applied Surface Science,2013,277:272-280.

    • [9] ZHANG S Y,LI Q,CHEN B,et al.Preparation and corrosion resistance studies of nanometric sol–gel-based CeO2 film with a chromium-free pretreatment on AZ91D magnesium alloy[J].Electrochimica Acta,2010,55(3):870-877.

    • [10] GARCIA-RODRIGUEZ S,TORRES B,PULIDOGONZALEZ N,et al.Corrosion behavior of 316L stainless steel coatings on ZE41 magnesium alloy in chloride environments[J].Surface & Coatings Technology,2019,378:124944.

    • [11] WANG Y L,YAN D S,ZHU Y H,et al.Corrosion protection of epoxy coatings containing ZSM-5 zeolites on Mg–Li alloys[J].Materials and Corrosion,2019,70(7):1222-1229.

    • [12] CHEN J F,LIN W X,LIANG S Y,et al.Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy[J].Applied Surface Science,2019,463:535-544.

    • [13] CHEN M A,CHENG N,OU Y C,et al.Corrosion performance of electroless Ni–P on polymer coating of MAO coated AZ31 magnesium alloy[J].Surface and Coatings Technology,2013,232:726-733.

    • [14] 安景花,齐玉明,彭振军,等.AZ31 镁合金表面含纳米SiC氟化镁膜层的制备及耐腐蚀性能[J].中国表面工程,2020,33(1):24-33.AN Jinghua,QI Yuming,PENG Zhenjun,et al.Preparation and corrosion resistance of MgF2 coating containing SiC nanoparticles on AZ31 magnesium alloy[J].China Surface Engineering,2020,33(1):24-33.(in Chinese)

    • [15] 韩嘉平,王振玲,唐莎巍,等.微弧氧化镁表面钙磷生物涂层的制备及性能[J].中国表面工程,2020,33(4):102-110.HAN Jiaping,WANG Zhenling,TANG Shawei,et al.Preparation and properties of calcium phosphate bio-coating formed on micro arc oxidized magnesium[J].China Surface Engineering,2020,33(4):102-110.(in Chinese)

    • [16] SONG Z W,XIE Z H,YU G,et al.A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy[J].Journal of Alloys and Compounds,2015,623:274-281.

    • [17] LI C Y,FAN X L,ZENG R C,et al.Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA[J].Journal of Materials Science & Technology,2019,35(6):1088-1098.

    • [18] TANG M Q,FENG Z Q,WU X Y,et al.Microarc oxidation coatings containing TiC and NbC on magnesium alloy[J].Surface Engineering,2019,36(11):1171-1179.

    • [19] FARSHID S,KHARAZIHA M.Micro and nano-enabled approaches to improve the performance of plasma electrolytic oxidation coated magnesium alloys[J].Journal of Magnesium and Alloys,2021,9(5):1487-1504.

    • [20] CHAHARMAHALI R,FATTAH-ALHOSSEINI A,BABAEI K.Surface characterization and corrosion behavior of calcium phosphate(Ca-P)base composite layer on Mg and its alloys using plasma electrolytic oxidation(PEO):A review[J].Journal of Magnesium and Alloys,2021,9(1):21-40.

    • [21] MOLAEI M,BABAEI K,FATTAH-ALHOSSEINI A.Improving the wear resistance of plasma electrolytic oxidation(PEO)coatings applied on Mg and its alloys under the addition of nano-and micro-sized additives into the electrolytes:A review[J].Journal of Magnesium and Alloys,2021,9(4):1164-1186.

    • [22] FATTAH-ALHOSSEINI A,CHAHARMAHALI R,BABAEI K.Impressive strides in amelioration of corrosion and wear behaviors of Mg alloys using applied polymer coatings on PEO porous coatings:A review[J].Journal of Magnesium and Alloys,2022,10(5):1171-1190.

    • [23] YANG C W,LIU C,LIN D J,et al.Hydrothermal treatment and butylphosphonic acid derived selfassembled monolayers for improving the surface chemistry and corrosion resistance of AZ61 magnesium alloy[J].Scientific Reports,2017,7(1):16910.

    • [24] LIU X B,SHAN D Y,SONG Y W,et al.Effect of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism[J].Materials Chemistry and Physics,2015,149-150:559-565.

    • [25] ZENG R C,LIU L J,LUO K J,et al.In vitro corrosion and antibacterial properties of layer-by-layer assembled GS/PSS coating on AZ31 magnesium alloys[J].Transactions of Nonferrous Metals Society of China,2015,25(12):4028-4039.

    • [26] GAO C,DAI L,MENG W,et al.Electrochemically promoted electroless nickel-phosphorous plating on titanium substrate[J].Applied Surface Science,2017,392:912-919.

    • [27] SAHOO P,DAS S K.Tribology of electroless nickel coatings-A review[J].Materials & Design,2011,32(4):1760-1775.

    • [28] LOTO C A.Electroless nickel plating—A Review[J].Silicon,2016,8(2):177-186.

    • [29] CHEN J,ZHAO G L,MATSUDA K,et al.Microstructure evolution and corrosion resistance of Ni–Cu–P amorphous coating during crystallization process[J].Applied Surface Science,2019,484:835-844.

    • [30] ABDI-ALGHANAB K,SEIFZADEH D,RAJABALIZADEH Z,et al.High corrosion protection performance of the LDH/Ni-P composite coating on AM60B magnesium alloy[J].Surface and Coatings Technology,2020,397:125979.

    • [31] SHARIFALHOSEINI Z,ENTEZARI M H,DAVOODI A,et al.Access to nanocrystalline,uniform,and fine-grained Ni-P coating with improved anticorrosive action through the growth of ZnO nanostructures before the plating process[J].Corrosion Science,2020,172:108743.

  • 手机扫一扫看