en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭磊,男,1986年出生,博士,副教授,博士研究生导师。主要研究方向为高温防护涂层。E-mail:glei028@tju.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007-9289.20230210001

参考文献 1
郑蕾,郭洪波,郭磊,等.新一代超高温热障涂层研究 [J].航空材料学报,2012,32(6):14-24.ZHENG Lei,GUO Hongbo,GUO Lei,et al.New generation thermal barrier coatings for ultrahigh temperature applications[J].Journal of Aeronautical Materials,2012,32(6):14-24.(in Chinese)
参考文献 2
CLARKE D R,OECHSNER M,PADTURE N P.Thermal-barrier coatings for more efficient gas-turbine engines[J].Cambridge University Press,2012,37(3):891-898.
参考文献 3
THAKARE Jayant Gopal,PANDEY Chandan,MAHAPATRA M M,et al.Thermal barrier coatings-a state of the art review[J].Molecular Human Reproduction,2021,27(7):1947-1968.
参考文献 4
李灿锋,张盼盼,姚建华,等.热障涂层后处理技术研究进展[J].材料研究与应用,2022,16(1):48-56.LI Canfeng,ZHANG Panpan,YAO Jianhua,et al.Research progress on post-treatment technology of thermal barrier coatings[J].Materials Research and Application,2022,16(1):48-56.(in Chinese)
参考文献 5
VAßEN Robert,JARLIGO Maria Ophelia,STEINKE Tanja,et al.Overview on advanced thermal barrier coatings[J].Surface and Coatings Technology,2010,205(4):938-942.
参考文献 6
MILLER R A.Thermal barrier coatings for aircraft engines:history and directions[J].Journal of Thermal Spray Technology,1997,6(1):35.
参考文献 7
BAKAN Emine,VASSEN Robert.Ceramic top coats of plasma-sprayed thermal barrier coatings:materials,processes,and properties[J].Journal of Thermal Spray Technology,2017,26(12):992-1010.
参考文献 8
何箐,吕玉芬,汪瑞军,等.等离子喷涂常规和纳米8YSZ热障涂层的性能[J].中国表面工程,2008,21(6):18-22.HE Jing,LÜ Yufen,WANG Ruijun,et al.Properties of thermal barrier coatings with common and nano 8YSZ powders[J].China Surface Engineering,2008,21(6):18-22.(in Chinese)
参考文献 9
唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Sintering-stiffening behavior of plasma sprayed La2Zr2O7 thermal barrier coatings during high temperature exposure[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)
参考文献 10
郭磊,李博文,冯佳燚.YSZ 热障涂层表面MAX相 Ti2AlC 防护层的料浆法制备[J].中国表面工程,2021,34(1):16-24.GUO Lei,LI Bowen,FENG Jiayi.Preparation of Ti2AlC MAX phase protective coating on YSZ thermal barrier coatings by slurry method[J].China Surface Engineering,2021,34(1):16-24.(in Chinese)
参考文献 11
SHI Jia,LIU Senhui,WEI Liangliang,et al.Effects of different nano-agglomerated powders on the microstructures of PS-PVD YSZ coatings[J].Ceramics International,2023,49(2):2157-2166.
参考文献 12
LI Shan,CHEN Wenbo,ZHAO Lidong,et al.Calcia-magnesia-alumino-silicate-induced degradation of(Gd0.9Yb0.1)2Zr2O7 thermal barrier coatings prepared by plasma spray-physical vapor deposition(PS-PVD)[J].Surface and Coatings Technology,2023,454:129179.
参考文献 13
马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)
参考文献 14
杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):91-100.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings[J].China Surface Engineering,2020,33(1):91-100.(in Chinese)
参考文献 15
GUO Lei,LI Guang,WU Jing,et al.Effects of pellet surface roughness and pre-oxidation temperature on CMAS corrosion behavior of Ti2AlC[J].Journal of Advanced Ceramics,2022,11(6):945-960.
参考文献 16
MEHBOOB Ghazanfar,LIU Meijun,XU Tong,et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J].Ceramics International,2019,46(7):8497–8521.
参考文献 17
GUO Yiqian,SONG Wenjia,GUO Lei,et al.Molten-volcanic-ash-phobic thermal barrier coating based on biomimetic structure[J].Advanced Science,2023,2205156.
参考文献 18
WU Yang,SONG Wenjia,DINGWELL Donald B,et al.Silicate ash-resistant novel thermal barrier coatings in gas turbines[J].Corrosion Science,2022,194:109929.
参考文献 19
王斯佳,徐彤,刘梅军,等.热障涂层失效行为及长寿命设计研究现状[J].材料研究与应用,2022,16(1):1-18.WANG Sijia,XU Tong,LIU Meijun,et al.Failure behavior and long-life design of thermal barrier coating:a review[J].Materials Research and Application,2022,16(1):1-18.(in Chinese)
参考文献 20
AFRASIABI Abbas,SAREMI Mohsen,KOBAYASHI Akira.A comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ,YSZ+Al2O3 and YSZ/Al2O3[J].Materials Science and Engineering:A,2008,478(1-2):264-269.
参考文献 21
XU Zhenhua,HE Limin,MU Rende,et al.Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings[J].Surface and Coatings Technology,2010,204(21):3652-3661.
参考文献 22
ZHANG Chenguan,FAN Yun,ZHAO Juanli,et al.Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition[J].Journal of Advanced Ceramics,2021,10(3):520-528.
参考文献 23
吴杨,郭星晔,贺定勇.航空发动机热障涂层的CMAS腐蚀与防护研究进展[J].中国表面工程,2023,36(5):1-13.WU Yang,GUO Xinye,HE Dingyong.Research progress of cmas corrosion and protection method for thermal barrier coatings in aero-engines[J].China Surface Engineering,2023,36(5):1-13.(in Chinese)
参考文献 24
YAN Zheng,GUO Lei,LI Zhihua,et al.Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J].Corrosion Science,2019,157:450-461.
参考文献 25
HU Wanpeng,LEI Yiming,ZHANG Jie,et al.Mechanical and thermal properties of RE4Hf3O12(RE = Ho,Er,Tm)ceramics with defect fluorite structure[J].Journal of Materials Science and Technology,2019,35(9):2064-2069.
参考文献 26
STEINBERG Lars,NARAPARAJU Ravisankar,HECKERT Mirko,et al.Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime:Effect of TBC microstructure and the CMAS chemistry[J].Journal of the European Ceramic Society,2018,38:5101–5112.
参考文献 27
KRÄMER S,FAULHABER S,CHAMBERS M,et al.Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calciummagnesium-alumino-silicate(CMAS)penetration[J].Materials Science and Engineering:A,2008,490(1-2):26-35.
参考文献 28
郭磊,高远,叶福兴,等.航空发动机热障涂层的CMAS腐蚀行为与防护方法[J].金属学报,2021,57(9):1184-1198.GUO Lei,GAO Yuan,YE Fuxing,et al.CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine[J].Acta Metallurgica Sinica,2021,57(9):1184-1198.(in Chinese)
参考文献 29
NIETO Andy,AGRAWAL Richa,BRAVO Luis,et al.Calciamagnesia-alumina-silicate(CMAS)attack mechanisms and roadmap towards sandphobic thermal and environmental barrier coatings[J].International Materials Reviews,2020,66(11):451-492.
参考文献 30
KRAUSE A R,GARCES H F,DWIVEDI G,et al.Calciamagnesia-alumino-silicate(CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings[J].Acta Materialia,2016,105:355-366.
参考文献 31
华云峰,潘伟,李争显,等.热障涂层抗腐蚀研究进展 [J].稀有金属材料与工程,2013,42(9):1976-1980.HUA Yunfeng,PAN Wei,LI Zhengxian,et al.Research progress on corrosion resistance of thermal barrier coatings[J].Rare Metal Meterials and Engineering,2013,42(9):1976-1980.(in Chinese)
参考文献 32
NARAPARAJU Ravisankar,MECHNICH Peter,SCHULZ Uwe,et al.The accelerating effect of CaSO4 within CMAS(CaO–MgO–Al2O3–SiO2)and its effect on the infiltration behavior in EB-PVD 7YSZ[J].Journal of the American Ceramic Society,2016,99(4):1398-1403.
参考文献 33
GUO Lei,ZHANG Xinmu,XIN Hui.Corrosiveness of CMAS and CMAS + salt(NaVO3,Na2SO4 and NaCl)to YSZ thermal barrier coating materials[J].Corrosion Science,2022,209:110738.
参考文献 34
SHIFLER D A,CHOI S R.CMAS Effects on ship gas-turbine components/materials[C]//Proceedings of ASME Turbo Expo 2018,June 11-15,2018,OsLo,Norway.ASME Paper GT2018-75865,2018.
参考文献 35
GARCES Hector F,TRAN Anh,STERNLICHT Hadas,et al.Sea-salt-induced moderate-temperature degradation of thermally-sprayed MCrAlY bond-coats[J].Surface and Coatings Technology,2020,404:126459.
参考文献 36
GUO Lei,LI Mingzhu,YE Fuxing.Phase stability and thermal conductivity of RE2O3(RE=La,Nd,Gd,Yb)and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics[J].Ceramics International,2016,42(6):7360-7365.
参考文献 37
BOISSONNET G,CHALK C,NICHOLLS J,et al.Thermal insulation of CMAS(calcium-magnesiumalumino-silicates)-attacked plasma-sprayed thermal barrier coatings[J].Journal of the European Ceramic Society,2020,40(5):2042-2049.
参考文献 38
GUO Lei,XIN Hui,HU Chengwu.Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings[J].Corrosion Science,2020,177(4):108968.
参考文献 39
GUO Lei,XIN Hui,LI Yanyan,et al.Self-crystallization characteristics of calcium-magnesium-alumina-silicate(CMAS)glass under simulated conditions for thermal barrier coating applications[J].Journal of the European Ceramic Society,2020,40(15):5683-5691.
参考文献 40
KRÄMER Stephan,YANG James,LEVI Carlos G.Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167–3175.
目录contents

    摘要

    环境沉积物(CaO-MgO-Al2O3-SiO2,CMAS)的高温腐蚀已成为航空发动机涡轮叶片热障涂层过早失效的重要原因之一。然而涡轮叶片工作环境复杂,熔盐、海盐常与 CMAS 耦合,一起对热障涂层造成多元复杂腐蚀,但目前关于 CMAS 与盐类的多元耦合腐蚀行为鲜有报道。针对 Y2O3部分稳定 ZrO2(YSZ)热障涂层在 CMAS、CMAS+NaVO3、CMAS+海盐作用下的腐蚀行为进行对比研究。通过 XRD、SEM 等方法对不同条件下腐蚀后的涂层进行表征,并分析热处理温度、腐蚀物种类对腐蚀行为的影响。结果表明:与 CMAS 相比,CMAS+NaVO3、CMAS+海盐会在更低的温度下损伤涂层(1200 ℃)。当三种腐蚀物均能完全熔化时(1250 ℃),CMAS+NaVO3、CMAS+海盐熔体则由于更大的流动性而大量渗入,腐蚀内部涂层。其中,CMAS+海盐熔体在涂层内的渗透性最强,1250 ℃热处理 4 h 后,渗透深度超过 400 μm。盐类的共存会改变 CMAS 的性质,增强熔体的渗透能力,增加涂层内部甚至底部失效的倾向。研究结果有助于理解盐类与 CMAS 耦合时混合熔体对热障涂层的破坏机理及潜在威胁。

    Abstract

    As a key thermal protection technology for aeroengine turbine blades, thermal barrier coatings (TBCs) can significantly improve working temperatures and prolong service lifetimes. The corrosion of environmental sediments (CaO-MgO-Al2O3-SiO2, CMAS) is a significant reason for the premature failure of engine TBCs. The aircraft service environment is complex and often experiences desert, inland, ocean, and other regional environments; some molten salts and sea salts are often coupled with CMAS, which together cause multiple and complex corrosions of TBCs. However, there are few reports on the multivariate coupled corrosion behavior of TBCs in the presence of CMAS and salt. The corrosion behavior of Y2O3 partially stabilized ZrO2 (YSZ) TBCs under the attack of CMAS, CMAS+NaVO3, CMAS+sea salt is studied. After corrosion under different conditions, the coatings are characterized using X-ray diffraction, SEM and other methods, and the effects of temperature and corrosion species on the corrosion behavior are analyzed. The results showed that temperature was an important factor affecting the corrosiveness of CMAS, CMAS+NaVO3, and CMAS+sea salt. Only at high temperatures did the coating undergo obvious damage when the corrosion agent was completely melted. As the temperature increased, the penetration ability of the corrosive agents was further enhanced. The type of corrosive substance is another factor that affects corrosion behavior. Compared with CMAS, CMAS+NaVO3 and CMAS+sea salt damaged the coating at lower temperatures. After holding for 4 h at 1200 ℃, CMAS cannot completely melt, thus its damage to the coating is limited. It did not interact with or penetrate the coating. However, the CMAS+NaVO3 and CMAS+sea salt melted completely under these conditions. The molten CMAS+NaVO3 and CMAS+sea salt dissolved and penetrated the coating surface, leading to the phase transformation of the YSZ. The penetration of CMAS+sea salt was the most severe. At 1250 ℃, all the three corrosive substances completely melted and corroded the coatings. However, CMAS and CMAS+NaVO3 exhibited small penetration depths owing to their relatively low fluidity. They mainly remained near the surface of the coating, causing delamination and cracking. In contrast, the molten CMAS+sea salt penetrated the coating in large quantities owing to its greater fluidity. After heat treatment at 1250 ℃ for 4 h, CMAS+sea salt completely penetrated into the coating, and the penetration depth exceeded 400 μm. Consequently, although the surface stratification of the coatings after CMAS+sea salt corrosion was less evident than that after CMAS corrosion, more phase transitions and cracks appeared in the coating interior. The coexistence of salts changes the properties of CMAS and enhances the permeability of the melt, which enables the mixed melt to corrode the YSZ coating at a lower temperature and has stronger permeability. This poses a serious threat to the interior and bottom of the coating. Multivariate coupled corrosion in complex environments poses a serious threat to TBCs. Among these, the influence of sea salt on the CMAS melt is particularly obvious. The damage mechanism and potential threat of the mixed melt to TBCs when the salt is coupled with CMAS are analyzed and expounded, providing a theoretical basis for developing TBC materials with high resistance to the coupling corrosion of CMAS+salt.

  • 0 前言

  • 随着航空发动机不断向高推重比发展,发动机涡轮前温度已远远超过了最先进的高温合金承受极限[1]。热障涂层(Thermal barrier coating,TBC)作为一种有效的热防护技术,涂覆在涡轮叶片高温合金表面,可显著降低合金表面温度,并起到抗冲刷、耐腐蚀作用,从而延长叶片寿命,减少发动机油耗和提高发动机效率[2-4]。目前,最广泛使用的 TBC 材料是 7 wt.%氧化钇部分稳定氧化锆(7YSZ)[5-8]

  • 近年来,TBC 制备工艺不断优化,使得 TBC 的寿命和可靠性得以不断提升[9-14]。然而,由于工作温度不断提高(>1 200℃),TBC 面临着加速烧结、相变、高温腐蚀等一系列威胁[15-19]。其中,环境沉积物(主要成分为 CaO-MgO-Al2O3-SiO2,简称 CMAS)在高温下的热腐蚀已经成为威胁 TBC 寿命的重要因素之一,引起越来越多学者们的高度重视[20-24]。高温下,熔融 CMAS 润湿、渗透涂层,并在之后的冷却过程中快速凝固。涂层内部,大量的孔隙被固态的脆性 CMAS 填充,多孔结构被破坏,导致涂层失去了原有的应变容限,寿命大大降低[25-27]。此外在高温下,YSZ 中的 Y3+会溶解在熔融 CMAS 中,导致涂层中 Y2O3 被大量消耗并引发相变,伴随而来的体积膨胀会产生内应力导致涂层开裂[28-31]

  • 飞机服役环境复杂,经历沙漠、内陆、海洋等多地域环境,使得 CMAS 不可避免地会与盐类等其他腐蚀物共存,对 TBC 产生多元耦合腐蚀。例如,当飞机使用杂质较多的低质量燃料时,燃油中的 S、 Cl 等元素会在高温作用下形成 Na2SO4 等熔盐,与 CMAS 共同附着在 TBC 上导致 CMAS+熔盐的耦合腐蚀。NARAPARAJU 等[32]研究了含有 CaSO4的 CMAS 对 YSZ 涂层的腐蚀行为。发现当与 CMAS 共存时,CaSO4 会在更低的温度下发生分解;同时,由于黏度和熔点较低,含 CaSO4 的 CMAS 在 YSZ 涂层中的渗透深度明显高于 CMAS。GUO 等[33]研究了含有 NaCl、Na2SO4的 CMAS 对 YSZ 涂层的腐蚀行为,发现引入 NaCl 和 Na2SO4 会使 CMAS 在涂层中表现出更强的渗透能力。此外,在海洋环境下服役的飞机还可能遭受 CMAS+海盐的耦合腐蚀。 SHIFLER 等[34]发现海洋环境下的发动机部件会在更低的温度下遭受 CMAS 的侵蚀,并证实 CMAS 与海盐、Na2SO4 的混合物确实比 CMAS 的熔点更低,使得它们能够在更低的温度下对 TBC 产生威胁。GARCES 等[35]探讨了海盐或 NaCl 的存在对热喷涂 NiCoCrAlY 粘结层降解的影响,并发现海盐的存在会加速粘结层的氧化。

  • 可以看出,当 CMAS 与其他腐蚀物共存时,混合熔体可能对涂层造成更严重的损伤。然而,目前有关 CMAS 与不同盐类耦合对 TBC 的腐蚀行为的报道仍然较为有限。因此,本文以大气等离子喷涂 (APS)的 YSZ TBC 作为研究对象,针对热障涂层在多地域服役环境,尤其是海洋环境下可能发生的 CMAS 与盐的多元耦合腐蚀行为进行了探究。选择熔盐腐蚀中常见的 NaVO3,以及海洋环境中可能出现的海盐制备了 CMAS+NaVO3、CMAS+海盐作为腐蚀物,并以 CMAS 腐蚀作为对照,比较温度及腐蚀物种类对 CMAS 腐蚀行为的影响,阐明 CMAS +NaVO3、CMAS+海盐对 TBC 的耦合腐蚀机理,旨在为提高 TBC 抗腐蚀性能提供理论基础。

  • 1 试验准备

  • 1.1 YSZ 涂层的制备

  • 采用化学共沉淀-煅烧法制备等离子喷涂所用的 7YSZ 粉末,具体的制备过程与此前的研究相同,此处不再赘述[36]。将制备好的 7YSZ 粉末充分干燥并喷雾处理,选择尺寸为 10 cm×5 cm 的石墨作为基材,采用大气等离子喷涂的方法制备 YSZ 涂层。喷涂过程中具体的操作参数如表1 所示,该参数选自预优化程序。

  • 表1 等离子喷涂 YSZ 热障涂层工艺参数

  • Table1 Plasma spray parameters for the fabrication of YSZ coatings

  • 1.2 CMAS 和海盐的制备

  • 采用熔融急冷法制备热腐蚀试验所用的 CMAS 粉末,CMAS 成分为 45SiO2-33CaO-13AlO1.5-9MgO (mol.%),该成分与之前的研究保持一致,能够在一定程度上反映不同地区 CMAS 平均成分[2430]。将高纯度的 CaO、MgO、Al2O3 和 SiO2粉末精确称量,并在混合后进行球磨。将获得的料浆充分烘干并过筛得到混合粉末,然后装入刚玉坩埚中,放置于 1 550℃的箱式炉(SX-G08163)中保温 1 h,最后将熔融的 CMAS 从炉中取出,并快速倾倒在底部放有铜板并装满去离子水的烧杯中,获得CMAS玻璃。将制备的 CMAS 玻璃充分研磨并过筛,获得 CMAS 粉末。

  • 采用溶解蒸发的方法制备热腐蚀试验所用的海盐粉末。本试验参照 GB / T10834—2008 标准中人造海水的成分确定了海盐的成分,具体的组成及含量如表2 所示。将 NaCl、MgCl2、Na2SO4 等原料粉末按比例精确称量后充分溶解在去离子水中,将得到的混合溶液烘干直至水分完全蒸发。然后,将干燥后的粉末充分研磨并过筛,获得海盐粉末。

  • 表2 海盐的化学成分(质量分数 wt.%)

  • Table2 Chemical composition of sea salt (wt.%)

  • 1.3 热腐蚀试验

  • 为了避免石墨基体在高温下对 YSZ 涂层造成影响,进行腐蚀试验前,将制备好的涂层在 800℃ 的箱式炉中保温 1 h 以去除石墨基体。将 CMAS 粉末与 NaVO3 粉末按重量比 9∶1 均匀混合后得到 CMAS+NaVO3(简称 CMAS+V)粉末,将 CMAS 粉末与海盐粉末分别按重量比95∶5和9∶1均匀混合后得到的 CMAS+海盐粉末(简称 CMAS+5SS 和 CMAS+10SS)粉末,腐蚀物样品编号及对应的成分如表3 所示。

  • 表3 腐蚀物编号及组分

  • Table3 Components of each corrosive substance

  • 本试验中所用腐蚀物(CMAS、CMAS+NaVO3 及 CMAS+SS)浓度均为 20 mg / cm2。进行热腐蚀试验前,取多个面积约为 2 cm2 的小块涂层作为样品,通过Photoshop软件精确计算面积后,换算出所需腐蚀物粉末的质量。为了保证粉末的均匀性,选用 200 目的细网筛,分别将 CMAS、CMAS+V、 CMAS+5SS、CMAS+10SS 粉末少量多次地筛分到样品表面。在筛分前和每次筛分后称量涂层样品质量,直至二者质量差达到所需沉积的腐蚀物质量。由于所用网筛面积远大于每个样品面积,且筛分过程中网筛始终垂直于涂层表面,因此每次筛分过程中沉积的粉末能较为均匀地分布在整个涂层样品表面,保证了腐蚀物粉末的均匀性。将涂覆了不同腐蚀物粉末的涂层分别于 1 200℃、1 250℃下保温 4 h。然后对腐蚀后的样品进行冷镶、粗磨、抛光以进行相和结构分析。

  • 1.4 相和微观结构表征

  • 采用扫描电子显微镜(SEM;Nanosem 430, FEI,美国)对不同条件下腐蚀后的涂层截面进行微观结构分析,使用能谱仪(EDS;Genesis XM2, EDAX,美国)对腐蚀物的渗透情况进行分析。采用 X 射线衍射仪(XRD;D8 Advanced,Bruker,德国)分析涂层表面腐蚀产物的相组成,扫描范围为 10 °~90 °,速率为 0.2(°)/ s。

  • 2 结果与讨论

  • 2.1 原始 YSZ 涂层的相组成和微观形貌

  • 图1 显示了原始喷涂态 YSZ 涂层的 XRD 图谱和截面微观结构。喷涂后,YSZ 涂层由非平衡转变的四方相(t'-ZrO2)组成,这是由于在大气等离子喷涂的过程中,受热转变为气态或熔融状态的 YSZ 粉末会在之后的沉积过程中急冷固化,因此得到的 YSZ 呈现为非平衡状态。

  • 图1 原始 YSZ 涂层的 XRD 图谱和截面微观结构

  • Fig.1 XRD pattern and cross-sectional microstructures of the original YSZ coating

  • 从原始涂层的截面微观结构可以看出,大部分区域的 YSZ 完全熔化,并形成了致密的层状结构,其间交错分布着些许微裂纹,这些微裂纹对涂层隔热性能的提升有着一定的积极作用。同时,由于少量的 YSZ 粉末在喷涂过程中没有完全熔化,涂层中也观察到了由这些未熔化的颗粒形成的疏松结构。

  • 2.2 CMAS、CMAS+V、CMAS+SS 对 YSZ 热障涂层的腐蚀行为

  • 2.2.1 1 200℃下三种腐蚀物作用下 YSZ 涂层的腐蚀行为

  • 如图2 所示,1 200℃下保温 4 h 后,CMAS 粉末呈现熔化的状态,并在 YSZ 涂层的表面铺展,厚度为 143.35 μm。在 CMAS / 涂层界面发现了较大的孔洞。这些孔洞主要是由于多孔涂层和 CMAS 粉末内部存在一定量的空气,由于 CMAS 在 1 200℃ 下黏度较大,这些空气在高温下受热逸出的过程存在较大的阻力,因此被困在了 CMAS 中形成孔洞,其他报道中也出现了相似的现象[37]。进一步观察 CMAS / 涂层界面,如图2b 所示,CMAS 层内部出现了多种结晶相。根据此前的研究可知[38],这是 CMAS 在冷却过程中发生的自结晶行为,而不是与涂层发生相互作用产生。由于本文的研究重点为腐蚀物与涂层之间的相互作用,因此对自结晶所产生的结晶相不做过多讨论。涂层的表面并未发生严重的分解和破坏,内部也保持了原始层状结构。

  • 由于制备 CMAS 的过程中,不同氧化物粉末在球磨后充分混合均匀,并在高温下充分熔化,保证了急冷后得到的 CMAS 玻璃,以及后续研磨后得到的 CMAS 粉末成分的均匀性。为了适当简化数据,同时不影响结果的科学性,选择 CMAS 中成分含量最高的 Si 元素为代表,并通过 EDS 面扫结果来观察熔融 CMAS 的渗透情况。如图2c 所示,Si 元素信号仅出现在了 CMAS 层中,涂层部分的 Si 元素信号非常弱,表明 CMAS 只能停留在 YSZ 涂层的上方,基本没有向涂层中渗透;而 Zr 元素信号仅出现在 YSZ 涂层中,表明 ZrO2 没有向 CMAS 层中溶解和扩散(图2d)。这主要是由于较大的黏度使 CMAS 渗透和 YSZ 晶粒的溶解存在巨大阻力,因此此条件下 CMAS 对涂层的腐蚀有限。

  • 与 CMAS 腐蚀的情形有所不同,涂层表面的 CMAS+V 呈现完全熔融的状态,如图3a 所示,残余层厚度为~71.68 μm,略小于 CMAS 残余层的厚度,说明一部分腐蚀物可能渗透到了涂层内部。玻璃层内部同样观察到了由于自结晶而产生的深灰色杆状结晶相。然而,相比于 CMAS,CMAS+V 的结晶程度有所降低。相同条件下,CMAS 由于自结晶而产生的结晶相充满了残余玻璃层(图2b),而 CMAS+V 层中,结晶相只出现在了部分靠近表面的区域,玻璃层的下部以及 CMAS+V / 涂层界面处都呈现出均一的非晶态,并没有观察到结晶相的出现,说明 NaVO3 可能抑制了 CMAS 的自结晶行为。此外,残余熔体内部的气孔明显更小,说明 CMAS+V 具有更低的黏度,能够让更多的气体在相同时间内逸出。进一步观察图3a 中标记出来的 CMAS+V / 涂层界面,如图3b 所示,涂层顶部保留了较为清晰的原始结构,但部分 YSZ 晶粒发生了明显的溶解,并产生了细小的裂纹。这些裂纹内部充满了灰色衬度的熔体,结合图3c 的 EDS 结果可以确定为 CMAS+V。同时,这些裂纹为腐蚀物的渗透提供了渠道,渗透到涂层内部的 CMAS+V 与 YSZ 晶粒发生反应,对涂层造成进一步破坏。

  • 图2 1 200℃下 CMAS 腐蚀 4 h 后 YSZ 涂层的截面微观结构

  • Fig.2 Cross-sectional microstructures of the YSZ coating after CMAS corrosion at 1 200℃ for 4 h

  • 图3 1 200℃下 CMAS+V 腐蚀 4 h 后 YSZ 涂层的截面微观结构

  • Fig.3 Cross-sectional microstructures of the YSZ coating after CMAS+V corrosion at 1 200℃ for 4 h

  • 如图4 所示,1 200℃下热处理 4 h 后,CMAS+ 5SS 和 CMAS+10SS 同样完全熔融并均匀地铺展在 YSZ 涂层表面。然而与 CMAS 相比,涂层上方 CMAS+5SS 残余层的厚度减小(~78.03 μm),说明腐蚀物流入了涂层内部。将混合熔体 / 涂层界面处放大,如图4b 所示,涂层最外侧由原始喷涂态转变为小尺寸的球形晶粒形成的疏松结构,内部的某些区域(虚线椭圆标记处)还出现了 CMAS+5SS 聚集区。这表明涂层已经遭到了混合熔体的侵蚀并发生相变,相应的 EDS 面扫(图4c)也印证了 CMAS+ 5SS 的渗透。图4d 为 CMAS+10SS 腐蚀后涂层的截面形貌,随着海盐含量的增加,涂层表面的 CMAS+10SS 熔体已经所剩无几,残余 CMAS+ 10SS 层的平均厚度不足 30 μm,说明大量的 CMAS+10SS 渗透到了涂层的内部。进一步观察残余熔体 / 涂层界面处,如图4e 所示,涂层顶部的原始边界遭到破坏,表面大量的 YSZ 晶粒发生了溶解,并向残余 CMAS+100SS 熔体中扩散。此外,如红色虚线椭圆标记区域所示,涂层内部更深的区域也出现了 CMAS+10SS 熔池和 YSZ 反应区。图4f 中涂层内部明显的 Si 元素信号印证了 CMAS+ 10SS 的渗透。结合残余玻璃层厚度以及 EDS 面扫结果可知,在同样的热处理条件下,CMAS+5SS 和 CMAS+10SS 都对 YSZ 涂层产生了明显的腐蚀行为,且 CMAS+10SS 具有更好的流动性,渗透情况最为明显。

  • 图4 1 200℃下 CMAS+SS 腐蚀 4 h 后 YSZ 涂层的截面微观结构

  • Fig.4 Cross-sectional microstructures of the YSZ coating after CMAS+SS corrosion at 1 200℃ for 4 h

  • 2.2.2 1 250℃下三种腐蚀物作用下 YSZ 涂层的腐蚀行为

  • 此前的研究表明[39],CMAS 会在~1 200℃开始熔化,并在~1 230℃时完全熔融。因此,1 200℃ 的热处理温度并不能使CMAS拥有足够的流动性润湿并渗透涂层。为了进一步比较完全熔融时,三种腐蚀物对 YSZ 涂层的腐蚀行为,将热处理温度提高至 1 250℃。

  • 图5 所示为 1 250℃下 CMAS 腐蚀 4 h 后的涂层微观形貌。由于 CMAS 的黏度会随着温度的升高而降低,样品内部的气体受到的阻力减小,并在热处理过程中全部逸出,涂层表面的 CMAS 层中没有发现任何气孔,且厚度相比 1 200℃时明显减小 (~19.35 μm)。此外,涂层的微观结构遭到破坏,内部观察到了 YSZ 晶粒的溶解和大尺寸的裂纹。图5a 对应的 EDS 面扫结果如图5b 所示,Si 元素信号出现在涂层内部,并主要集中在白色虚线以上的涂层近表面,说明 CMAS 的渗透深度较为有限(~41.67 μm)。将涂层表面破坏较为严重的区域放大观察(图5c),涂层近表面区域的原始层状结构已经被球状颗粒形成的疏松结构所取代。横向裂纹内部同样被白色衬度的球状晶粒以及灰色衬度的 CMAS 填充。CMAS 沿着涂层表面的疏松结构和孔隙渗入到内部,进一步引发 YSZ 晶粒的溶解和相变。

  • 图5 1 250℃下 CMAS 腐蚀 4 h 后 YSZ 涂层的截面微观结构

  • Fig.5 Cross-sectional microstructures of the YSZ coating after CMAS corrosion at 1 250℃ for 4 h

  • 提高热处理温度后,CMAS+V 熔体完全渗入到涂层的内部,渗透深度达到了~108.09 μm (图6a)。涂层发生了明显的开裂和分层,内部出现了很多大尺寸的横向裂纹。对分层区域放大进一步观察(图6b),裂纹内部充满 CMAS+V,附近的 YSZ 晶粒完全丧失了原始结构,转变为球状晶粒。结合 XRD 图谱(图7)可以确定,这些球状晶粒为 YSZ 相变后产生的单斜氧化锆相(m-ZrO2)。同时应该注意到,虽然 CMAS+V 的渗透能力强于 CMAS,引发的开裂和分层也比 CMAS 更为严重,但失效主要发生涂层的近表层区域,涂层内部仍然保持了良好的原始结构并未遭到破坏,说明此条件下 CMAS+V 并不具备穿透到涂层底部能力。

  • 图6 1 250℃下 CMAS+V 腐蚀 4 h 后 YSZ 涂层截面微观结构

  • Fig.6 Cross-sectional microstructures of the YSZ coating after CMAS+V corrosion at 1 250℃ for 4 h

  • 图7 1 250℃下 CMAS、CMAS+V、CMAS+5SS 和 CMAS+10SS 腐蚀后涂层表面的 XRD 图谱

  • Fig.7 XRD patterns of YSZ coating surface exposed to CMAS, CMAS+V, CMAS+5SS and CMAS+10SS at 1 250℃

  • 图8 显示了 1 250℃下 CMAS+5SS 及 CMAS+ 10SS 腐蚀后的涂层。涂层表面同样没有任何腐蚀物的残留。然而,如图8a 所示,CMAS+5SS 腐蚀后,涂层表面的分层并不严重,但内部却出现了很多 YSZ 晶粒溶解的区域。将白色虚线标记的区域进行更高倍数的观察,如图8b 所示,与周边涂层典型的喷涂态结构有所不同,裂纹附近区域的 YSZ 晶粒发生了明显的溶解,转变为疏松的球形颗粒,说明 CMAS 通过涂层内部的孔隙和微裂纹渗透到了该位置,并引发了涂层的相变。从图8c 可以看出,与 CMAS+5SS 相比,CMAS+10SS 腐蚀后涂层的失效行为更多地出现在内部~300 μm 深的区域(区域 1),并且开裂的情况明显更为严重。将区域 1 放大观察(图8d),许多大尺寸的横向裂纹出现在涂层中,内部填充了球状的 YSZ 晶粒。进一步观察更深层的区域 2,如图8e,涂层的裂纹中观察到了灰色的熔体,附近发生了 YSZ 晶粒的溶解,说明 CMAS+10SS 的渗透深度超过了~400 μm。

  • 相比于1 200℃,1 250℃下的CMAS、CMAS+ V、CMAS+5SS 及 CMAS+10SS 四种腐蚀物对涂层的腐蚀能力都有所增强。然而,CMAS+5SS 及 CMAS+10SS 腐蚀后,涂层表面的相变和开裂情况似乎并不如 CMAS 和 CMAS+V 腐蚀后严重,这可以通过分析熔体的渗透情况来解释。图7 显示了 1 250℃下这四种腐蚀物腐蚀4 h 后YSZ涂层的XRD 图谱。由于 1 250℃下所有的腐蚀物完全熔化为非晶态的玻璃,并且大部分渗透到了涂层内,四个样品 XRD 图谱的所有衍射峰都属于喷涂后得到的 t'-ZrO2,以及相变后产生的单斜(m)相 ZrO2,表明涂层表面确实发生了不同程度的相变。然而,仔细观察 XRD 图谱可以发现,不同熔体腐蚀后涂层表面的 m-ZrO2 和 t'-ZrO2 衍射峰的相对强度有所不同。CMAS+5SS、CMAS+10SS 腐蚀后样品表面的 m-ZrO2相衍射峰的信号很弱,说明表面 m-ZrO2含量较少。而 CMAS 和 CMAS+V 腐蚀后样品的 XRD 图谱中的 m-ZrO2 相衍射峰更多、更强。由于 X 射线仅能穿透~10 μm 的涂层,因此衍射峰的相对强度能在一定程度上反应涂层表面 m-ZrO2相的含量。

  • 由此可知, CMAS 和 CMAS+V 的渗透深度较小,熔体主要停留在涂层的近表层区域,从而使浅层区域的腐蚀产物浓度较大。大量的 YSZ 溶解在腐蚀物熔体中并沉淀出 m-ZrO2,导致 CMAS 和 CMAS+V腐蚀后涂层表面的m-ZrO2衍射峰相对强度较高。

  • 然而,在同样全部流入涂层内的情况下, CMAS+5SS、CMAS+10SS 腐蚀后 YSZ 涂层表面的 m-ZrO2 衍射峰强度明显低于 CMAS+V。结合涂层内部的开裂情况(图8)可以说明,引入海盐后, CMAS+SS 混合熔体具有比 CMAS+V 更强的流动性和渗透能力,导致大部分熔体更快地渗透到了涂层的内部,从而使得涂层内部的破坏更为严重,而涂层表面则由于与 CMAS+SS 接触的时间减少,发生的相变和分层较少。

  • 图8 1 250℃下 CMAS+SS 腐蚀 4 h 后 YSZ 涂层的截面微观结构

  • Fig.8 Cross-sectional microstructures of the YSZ coating after CMAS+SS corrosion at 1 250℃ for 4 h

  • 2.3 CMAS、CMAS+V、CMAS+SS 对 YSZ 热障涂层的腐蚀机理

  • 2.3.1 温度对腐蚀行为的影响

  • 许多公开报告对 CMAS 腐蚀破坏 YSZ 涂层的机制进行了报道,并表明 CMAS 的腐蚀行为很大程度上取决于涂层表面温度[3340]。当 CMAS 完全熔化后,黏度才会迅速降低,并凭借良好的流动性渗透到涂层内部。而当腐蚀温度较低或与 CMAS 熔化温度较为接近时,CMAS 则不能完全熔化,很难对涂层产生破坏。如 2.2.2 节所述,CMAS 在~1 230℃ 时才能达到完全熔融的状态,因此 1 200℃下(图2),虽然 CMAS 可以在涂层表面软化铺展,但仍然具有较高的黏度。保温 4 h 后,CMAS 仍然停留在 YSZ 涂层的上方,不能对涂层造成腐蚀和实质性的损害。相比于 CMAS,CMAS+V 及 CMAS+海盐对 YSZ 涂层的腐蚀则开始发生在更低的温度。如图3 和图4 所示,CMAS+V 及 CMAS+海盐都发生了一定程度的渗透,并引发了涂层表面 YSZ 晶粒的溶解。

  • 当温度升高到 1 250℃,如图5a 所示,CMAS 完全熔化,凭借较强的流动性渗入到多孔涂层内部。 YSZ 晶粒不断溶解在液态 CMAS 中,由于 Y3+在 CMAS 熔体中溶解度较高,再沉淀的 ZrO2 中的稳定剂 Y2O3被大量消耗。这些贫 Y 的 ZrO2 会在冷却过程中转变为球形的 m-ZrO2,伴随而来的体积膨胀会引发涂层失效(图5c 和图7)。此外,渗入到涂层中的 CMAS 还会在冷却过程中填充孔隙,导致涂层的致密化和内部应力的积聚,从而引发分层和开裂[2738]。温度的升高同样使 CMAS+V 及 CMAS+ 海盐熔体获得了更好的润湿性和流动性,并加剧了其对涂层的腐蚀。1 250℃保温 4 h 后,CMAS+V 及 CMAS+海盐混合熔体都完全渗透到了涂层内部,并开始侵蚀涂层更深层区域。这一点在 CMAS+10SS 腐蚀后的涂层中尤为明显,如图8 所示,涂层的中下部观察到明显的 YSZ 溶解的现象。

  • 2.3.2 腐蚀物种类对腐蚀行为的影响

  • 由前述可知,引入 NaVO3 或海盐会使 CMAS 对 YSZ 涂层的腐蚀行为发生不同程度的改变。如 2.3.1 节所述,CMAS 对 YSZ 涂层的腐蚀发生在较高的温度。1 200℃下,CMAS 无法有效润湿涂层,也无法通过毛细作用渗透到涂层内部。涂层中不仅没有观察到 CMAS 的存在,在 CMAS / 涂层界面,两者相互作用的现象也十分微弱。1 250℃下,虽然在涂层的表面观察到了大量的球形 m-ZrO2,但内部的开裂情况并不严重,裂纹主要集中在涂层的近表层,说明 CMAS 的渗透能力较为有限。

  • 然而,当 CMAS 与 NaVO3 共存时,混合熔体则会在更低的温度下对涂层产生威胁。如图3 所示, 1 200℃下 CMAS+V 腐蚀后的涂层就观察到了 YSZ 晶粒的溶解和混合熔体的轻微渗透。当温度升高到 1 250℃后,如图6 所示,CMAS+V 熔体在涂层中的渗透能力也明显强于 CMAS。保温 4 h 后,涂层表面的 CMAS+V 熔体全部渗透到了涂层内部,引发的分层厚度超过~100 μm。这可能是 NaVO3 的存在导致 CMAS 熔体的网络结构发生变化,降低了 CMAS 玻璃的聚合度,从而降低了混合熔体的熔点和黏度[36]。基于渗透动力学,由于拥有更低的黏度和更好的流动性,CMAS+V 熔体能够快速地润湿涂层表面,从而加剧热障涂层的损伤。此外,对比图2 和图3 发现,1 200℃下 CMAS+V 层内部的自结晶相的含量也明显小于 CMAS,说明 NaVO3 的存在抑制了 CMAS 的自结晶。由于诱导结晶行为可以有效限制 CMAS 渗透的深度,NaVO3 的存在无疑加剧了混合熔体的渗透。

  • 类似地,海盐的引入同样使腐蚀行为在更低的温度下发生,并赋予 CMAS 更强的流动性和渗透能力,使相同温度下 CMAS+SS 混合熔体能够更快地渗入涂层内部。如图4 所示,1 200℃时,当混合熔体中海盐含量达到 5%时,CMAS+5SS 就具有与 NaVO3 含量为 10%的 CMAS+V 相当的侵蚀能力。当海盐含量达到 10%时,大部分 CMAS+10SS 熔体已经渗透到了涂层内部,涂层表面的 YSZ 晶粒大量溶解,失去了原始的层状结构。1 250℃下保温 4 h 后,CMAS+5SS 和 CMAS+10SS 混合熔体全部渗透到了涂层内部,填充孔隙和裂纹,引发 YSZ 晶粒的溶解和相变,CMAS+10SS 渗透深度超过了~400 μm。同时,涂层所有残余的 CMAS+SS 熔体中均没有发现自结晶现象,说明海盐可能具有更强的抑制 CMAS 结晶的能力,使得 CMAS+10SS 具有比 CMAS+V 更强的润湿能力和渗透能力。一方面,表面的涂层与腐蚀物接触时间减少,YSZ 晶粒没有足够的时间溶解在混合如熔体中,使 YSZ 涂层表面的 m-ZrO2 衍射峰的相对强度较弱;另一方面,渗透的腐蚀物会更多积聚在涂层内部,这不仅会侵蚀并溶解周围的 YSZ,还会进一步增加涂层与混合熔体的接触面积,引发大面积的失效。最终导致 CMAS 和 CMAS+V 腐蚀后,虽然涂层表面发生了较多的相变,但腐蚀物大部分积聚在了涂层的表面和上层部分,对涂层的破坏较为有限;而 CMAS+SS 则会快速渗透并贯穿涂层,使内部发生大面积的破坏,严重影响涂层的使用寿命。随着海盐含量的增加,这种趋势也越来越明显。海盐的引入很可能同样破坏了 CMAS 玻璃中的网格结构,并具有比 NaVO3 更强的能力。这使得 CMAS 熔化温度和黏度发生更大程度的降低,从而大大增强了混合熔体的润湿和渗透能力。这种破坏还会随着海盐含量的增加而加剧。由此可见,虽然 1 250℃下保温 4 h 后,涂层表面受到的损害较小,但 CMAS+SS 会重点攻击涂层内部,导致涂层的失效发生在更深层的位置。当腐蚀时间进一步延长时,涂层有可能直接从内部发生开裂并引发更大面积的剥落。因此,当 CMAS 与海盐共存时,二者产生的多元耦合腐蚀将使热障涂层遭受更大的潜在威胁。后续将针对海盐对 CMAS 玻璃结构的影响以及 CMAS+海盐混合熔体的性质进行更为深入的研究。

  • 由于实际工作环境的复杂性,尤其是在海洋环境下,CMAS 难免会和 NaVO3、海盐等其他腐蚀物共存。随着这些熔盐的共存和含量的增加,热障涂层不仅会更早地遭受腐蚀物的侵蚀,当时间足够长时,拥有更强流动性的混合熔体还会有完全穿透涂层并腐蚀基体的可能。可以预测,CMAS 及熔盐的积聚对抗腐蚀能力十分有限的粘结层无异于雪上加霜。因此,复杂环境下的多元耦合腐蚀会对热障涂层的寿命产生更加严重的威胁。后续的研究中,应重点关注 CMAS+熔盐的热性能,以及涂层材料抗多元耦合腐蚀能力的提高。

  • 3 结论

  • (1)温度会影响 CMAS、CMAS+NaVO3、 CMAS+海盐熔体对 YSZ 涂层的腐蚀行为。热处理温度从 1 200℃升高至 1 250℃后,CMAS、 CMAS+NaVO3、CMAS+海盐熔体对 YSZ 涂层的渗透和破坏明显加剧。

  • (2)NaVO3 和海盐的共存会使 CMAS 对 YSZ 涂层产生更大的威胁。CMAS+NaVO3 和 CMAS+ 海盐熔体会在更低的温度下(1 200℃)熔化并腐蚀涂层,并在高温下具有更强的渗透能力。其中,海盐对 CMAS 混合熔体渗透能力的加剧更为明显。

  • (3)与 CMAS 相比,CMAS+NaVO3 及 CMAS +海盐混合熔体对涂层的内部甚至底部产生的威胁更为严重。未来的研究应集中于对混合熔体性能的研究,并开发具有高抗 CMAS+盐耦合腐蚀能力的涂层材料。

  • 参考文献

    • [1] 郑蕾,郭洪波,郭磊,等.新一代超高温热障涂层研究 [J].航空材料学报,2012,32(6):14-24.ZHENG Lei,GUO Hongbo,GUO Lei,et al.New generation thermal barrier coatings for ultrahigh temperature applications[J].Journal of Aeronautical Materials,2012,32(6):14-24.(in Chinese)

    • [2] CLARKE D R,OECHSNER M,PADTURE N P.Thermal-barrier coatings for more efficient gas-turbine engines[J].Cambridge University Press,2012,37(3):891-898.

    • [3] THAKARE Jayant Gopal,PANDEY Chandan,MAHAPATRA M M,et al.Thermal barrier coatings-a state of the art review[J].Molecular Human Reproduction,2021,27(7):1947-1968.

    • [4] 李灿锋,张盼盼,姚建华,等.热障涂层后处理技术研究进展[J].材料研究与应用,2022,16(1):48-56.LI Canfeng,ZHANG Panpan,YAO Jianhua,et al.Research progress on post-treatment technology of thermal barrier coatings[J].Materials Research and Application,2022,16(1):48-56.(in Chinese)

    • [5] VAßEN Robert,JARLIGO Maria Ophelia,STEINKE Tanja,et al.Overview on advanced thermal barrier coatings[J].Surface and Coatings Technology,2010,205(4):938-942.

    • [6] MILLER R A.Thermal barrier coatings for aircraft engines:history and directions[J].Journal of Thermal Spray Technology,1997,6(1):35.

    • [7] BAKAN Emine,VASSEN Robert.Ceramic top coats of plasma-sprayed thermal barrier coatings:materials,processes,and properties[J].Journal of Thermal Spray Technology,2017,26(12):992-1010.

    • [8] 何箐,吕玉芬,汪瑞军,等.等离子喷涂常规和纳米8YSZ热障涂层的性能[J].中国表面工程,2008,21(6):18-22.HE Jing,LÜ Yufen,WANG Ruijun,et al.Properties of thermal barrier coatings with common and nano 8YSZ powders[J].China Surface Engineering,2008,21(6):18-22.(in Chinese)

    • [9] 唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Sintering-stiffening behavior of plasma sprayed La2Zr2O7 thermal barrier coatings during high temperature exposure[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)

    • [10] 郭磊,李博文,冯佳燚.YSZ 热障涂层表面MAX相 Ti2AlC 防护层的料浆法制备[J].中国表面工程,2021,34(1):16-24.GUO Lei,LI Bowen,FENG Jiayi.Preparation of Ti2AlC MAX phase protective coating on YSZ thermal barrier coatings by slurry method[J].China Surface Engineering,2021,34(1):16-24.(in Chinese)

    • [11] SHI Jia,LIU Senhui,WEI Liangliang,et al.Effects of different nano-agglomerated powders on the microstructures of PS-PVD YSZ coatings[J].Ceramics International,2023,49(2):2157-2166.

    • [12] LI Shan,CHEN Wenbo,ZHAO Lidong,et al.Calcia-magnesia-alumino-silicate-induced degradation of(Gd0.9Yb0.1)2Zr2O7 thermal barrier coatings prepared by plasma spray-physical vapor deposition(PS-PVD)[J].Surface and Coatings Technology,2023,454:129179.

    • [13] 马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)

    • [14] 杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):91-100.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings[J].China Surface Engineering,2020,33(1):91-100.(in Chinese)

    • [15] GUO Lei,LI Guang,WU Jing,et al.Effects of pellet surface roughness and pre-oxidation temperature on CMAS corrosion behavior of Ti2AlC[J].Journal of Advanced Ceramics,2022,11(6):945-960.

    • [16] MEHBOOB Ghazanfar,LIU Meijun,XU Tong,et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J].Ceramics International,2019,46(7):8497–8521.

    • [17] GUO Yiqian,SONG Wenjia,GUO Lei,et al.Molten-volcanic-ash-phobic thermal barrier coating based on biomimetic structure[J].Advanced Science,2023,2205156.

    • [18] WU Yang,SONG Wenjia,DINGWELL Donald B,et al.Silicate ash-resistant novel thermal barrier coatings in gas turbines[J].Corrosion Science,2022,194:109929.

    • [19] 王斯佳,徐彤,刘梅军,等.热障涂层失效行为及长寿命设计研究现状[J].材料研究与应用,2022,16(1):1-18.WANG Sijia,XU Tong,LIU Meijun,et al.Failure behavior and long-life design of thermal barrier coating:a review[J].Materials Research and Application,2022,16(1):1-18.(in Chinese)

    • [20] AFRASIABI Abbas,SAREMI Mohsen,KOBAYASHI Akira.A comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ,YSZ+Al2O3 and YSZ/Al2O3[J].Materials Science and Engineering:A,2008,478(1-2):264-269.

    • [21] XU Zhenhua,HE Limin,MU Rende,et al.Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings[J].Surface and Coatings Technology,2010,204(21):3652-3661.

    • [22] ZHANG Chenguan,FAN Yun,ZHAO Juanli,et al.Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition[J].Journal of Advanced Ceramics,2021,10(3):520-528.

    • [23] 吴杨,郭星晔,贺定勇.航空发动机热障涂层的CMAS腐蚀与防护研究进展[J].中国表面工程,2023,36(5):1-13.WU Yang,GUO Xinye,HE Dingyong.Research progress of cmas corrosion and protection method for thermal barrier coatings in aero-engines[J].China Surface Engineering,2023,36(5):1-13.(in Chinese)

    • [24] YAN Zheng,GUO Lei,LI Zhihua,et al.Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J].Corrosion Science,2019,157:450-461.

    • [25] HU Wanpeng,LEI Yiming,ZHANG Jie,et al.Mechanical and thermal properties of RE4Hf3O12(RE = Ho,Er,Tm)ceramics with defect fluorite structure[J].Journal of Materials Science and Technology,2019,35(9):2064-2069.

    • [26] STEINBERG Lars,NARAPARAJU Ravisankar,HECKERT Mirko,et al.Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime:Effect of TBC microstructure and the CMAS chemistry[J].Journal of the European Ceramic Society,2018,38:5101–5112.

    • [27] KRÄMER S,FAULHABER S,CHAMBERS M,et al.Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calciummagnesium-alumino-silicate(CMAS)penetration[J].Materials Science and Engineering:A,2008,490(1-2):26-35.

    • [28] 郭磊,高远,叶福兴,等.航空发动机热障涂层的CMAS腐蚀行为与防护方法[J].金属学报,2021,57(9):1184-1198.GUO Lei,GAO Yuan,YE Fuxing,et al.CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine[J].Acta Metallurgica Sinica,2021,57(9):1184-1198.(in Chinese)

    • [29] NIETO Andy,AGRAWAL Richa,BRAVO Luis,et al.Calciamagnesia-alumina-silicate(CMAS)attack mechanisms and roadmap towards sandphobic thermal and environmental barrier coatings[J].International Materials Reviews,2020,66(11):451-492.

    • [30] KRAUSE A R,GARCES H F,DWIVEDI G,et al.Calciamagnesia-alumino-silicate(CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings[J].Acta Materialia,2016,105:355-366.

    • [31] 华云峰,潘伟,李争显,等.热障涂层抗腐蚀研究进展 [J].稀有金属材料与工程,2013,42(9):1976-1980.HUA Yunfeng,PAN Wei,LI Zhengxian,et al.Research progress on corrosion resistance of thermal barrier coatings[J].Rare Metal Meterials and Engineering,2013,42(9):1976-1980.(in Chinese)

    • [32] NARAPARAJU Ravisankar,MECHNICH Peter,SCHULZ Uwe,et al.The accelerating effect of CaSO4 within CMAS(CaO–MgO–Al2O3–SiO2)and its effect on the infiltration behavior in EB-PVD 7YSZ[J].Journal of the American Ceramic Society,2016,99(4):1398-1403.

    • [33] GUO Lei,ZHANG Xinmu,XIN Hui.Corrosiveness of CMAS and CMAS + salt(NaVO3,Na2SO4 and NaCl)to YSZ thermal barrier coating materials[J].Corrosion Science,2022,209:110738.

    • [34] SHIFLER D A,CHOI S R.CMAS Effects on ship gas-turbine components/materials[C]//Proceedings of ASME Turbo Expo 2018,June 11-15,2018,OsLo,Norway.ASME Paper GT2018-75865,2018.

    • [35] GARCES Hector F,TRAN Anh,STERNLICHT Hadas,et al.Sea-salt-induced moderate-temperature degradation of thermally-sprayed MCrAlY bond-coats[J].Surface and Coatings Technology,2020,404:126459.

    • [36] GUO Lei,LI Mingzhu,YE Fuxing.Phase stability and thermal conductivity of RE2O3(RE=La,Nd,Gd,Yb)and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics[J].Ceramics International,2016,42(6):7360-7365.

    • [37] BOISSONNET G,CHALK C,NICHOLLS J,et al.Thermal insulation of CMAS(calcium-magnesiumalumino-silicates)-attacked plasma-sprayed thermal barrier coatings[J].Journal of the European Ceramic Society,2020,40(5):2042-2049.

    • [38] GUO Lei,XIN Hui,HU Chengwu.Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings[J].Corrosion Science,2020,177(4):108968.

    • [39] GUO Lei,XIN Hui,LI Yanyan,et al.Self-crystallization characteristics of calcium-magnesium-alumina-silicate(CMAS)glass under simulated conditions for thermal barrier coating applications[J].Journal of the European Ceramic Society,2020,40(15):5683-5691.

    • [40] KRÄMER Stephan,YANG James,LEVI Carlos G.Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167–3175.

  • 参考文献

    • [1] 郑蕾,郭洪波,郭磊,等.新一代超高温热障涂层研究 [J].航空材料学报,2012,32(6):14-24.ZHENG Lei,GUO Hongbo,GUO Lei,et al.New generation thermal barrier coatings for ultrahigh temperature applications[J].Journal of Aeronautical Materials,2012,32(6):14-24.(in Chinese)

    • [2] CLARKE D R,OECHSNER M,PADTURE N P.Thermal-barrier coatings for more efficient gas-turbine engines[J].Cambridge University Press,2012,37(3):891-898.

    • [3] THAKARE Jayant Gopal,PANDEY Chandan,MAHAPATRA M M,et al.Thermal barrier coatings-a state of the art review[J].Molecular Human Reproduction,2021,27(7):1947-1968.

    • [4] 李灿锋,张盼盼,姚建华,等.热障涂层后处理技术研究进展[J].材料研究与应用,2022,16(1):48-56.LI Canfeng,ZHANG Panpan,YAO Jianhua,et al.Research progress on post-treatment technology of thermal barrier coatings[J].Materials Research and Application,2022,16(1):48-56.(in Chinese)

    • [5] VAßEN Robert,JARLIGO Maria Ophelia,STEINKE Tanja,et al.Overview on advanced thermal barrier coatings[J].Surface and Coatings Technology,2010,205(4):938-942.

    • [6] MILLER R A.Thermal barrier coatings for aircraft engines:history and directions[J].Journal of Thermal Spray Technology,1997,6(1):35.

    • [7] BAKAN Emine,VASSEN Robert.Ceramic top coats of plasma-sprayed thermal barrier coatings:materials,processes,and properties[J].Journal of Thermal Spray Technology,2017,26(12):992-1010.

    • [8] 何箐,吕玉芬,汪瑞军,等.等离子喷涂常规和纳米8YSZ热障涂层的性能[J].中国表面工程,2008,21(6):18-22.HE Jing,LÜ Yufen,WANG Ruijun,et al.Properties of thermal barrier coatings with common and nano 8YSZ powders[J].China Surface Engineering,2008,21(6):18-22.(in Chinese)

    • [9] 唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Sintering-stiffening behavior of plasma sprayed La2Zr2O7 thermal barrier coatings during high temperature exposure[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)

    • [10] 郭磊,李博文,冯佳燚.YSZ 热障涂层表面MAX相 Ti2AlC 防护层的料浆法制备[J].中国表面工程,2021,34(1):16-24.GUO Lei,LI Bowen,FENG Jiayi.Preparation of Ti2AlC MAX phase protective coating on YSZ thermal barrier coatings by slurry method[J].China Surface Engineering,2021,34(1):16-24.(in Chinese)

    • [11] SHI Jia,LIU Senhui,WEI Liangliang,et al.Effects of different nano-agglomerated powders on the microstructures of PS-PVD YSZ coatings[J].Ceramics International,2023,49(2):2157-2166.

    • [12] LI Shan,CHEN Wenbo,ZHAO Lidong,et al.Calcia-magnesia-alumino-silicate-induced degradation of(Gd0.9Yb0.1)2Zr2O7 thermal barrier coatings prepared by plasma spray-physical vapor deposition(PS-PVD)[J].Surface and Coatings Technology,2023,454:129179.

    • [13] 马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)

    • [14] 杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):91-100.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings[J].China Surface Engineering,2020,33(1):91-100.(in Chinese)

    • [15] GUO Lei,LI Guang,WU Jing,et al.Effects of pellet surface roughness and pre-oxidation temperature on CMAS corrosion behavior of Ti2AlC[J].Journal of Advanced Ceramics,2022,11(6):945-960.

    • [16] MEHBOOB Ghazanfar,LIU Meijun,XU Tong,et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J].Ceramics International,2019,46(7):8497–8521.

    • [17] GUO Yiqian,SONG Wenjia,GUO Lei,et al.Molten-volcanic-ash-phobic thermal barrier coating based on biomimetic structure[J].Advanced Science,2023,2205156.

    • [18] WU Yang,SONG Wenjia,DINGWELL Donald B,et al.Silicate ash-resistant novel thermal barrier coatings in gas turbines[J].Corrosion Science,2022,194:109929.

    • [19] 王斯佳,徐彤,刘梅军,等.热障涂层失效行为及长寿命设计研究现状[J].材料研究与应用,2022,16(1):1-18.WANG Sijia,XU Tong,LIU Meijun,et al.Failure behavior and long-life design of thermal barrier coating:a review[J].Materials Research and Application,2022,16(1):1-18.(in Chinese)

    • [20] AFRASIABI Abbas,SAREMI Mohsen,KOBAYASHI Akira.A comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ,YSZ+Al2O3 and YSZ/Al2O3[J].Materials Science and Engineering:A,2008,478(1-2):264-269.

    • [21] XU Zhenhua,HE Limin,MU Rende,et al.Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings[J].Surface and Coatings Technology,2010,204(21):3652-3661.

    • [22] ZHANG Chenguan,FAN Yun,ZHAO Juanli,et al.Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition[J].Journal of Advanced Ceramics,2021,10(3):520-528.

    • [23] 吴杨,郭星晔,贺定勇.航空发动机热障涂层的CMAS腐蚀与防护研究进展[J].中国表面工程,2023,36(5):1-13.WU Yang,GUO Xinye,HE Dingyong.Research progress of cmas corrosion and protection method for thermal barrier coatings in aero-engines[J].China Surface Engineering,2023,36(5):1-13.(in Chinese)

    • [24] YAN Zheng,GUO Lei,LI Zhihua,et al.Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J].Corrosion Science,2019,157:450-461.

    • [25] HU Wanpeng,LEI Yiming,ZHANG Jie,et al.Mechanical and thermal properties of RE4Hf3O12(RE = Ho,Er,Tm)ceramics with defect fluorite structure[J].Journal of Materials Science and Technology,2019,35(9):2064-2069.

    • [26] STEINBERG Lars,NARAPARAJU Ravisankar,HECKERT Mirko,et al.Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime:Effect of TBC microstructure and the CMAS chemistry[J].Journal of the European Ceramic Society,2018,38:5101–5112.

    • [27] KRÄMER S,FAULHABER S,CHAMBERS M,et al.Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calciummagnesium-alumino-silicate(CMAS)penetration[J].Materials Science and Engineering:A,2008,490(1-2):26-35.

    • [28] 郭磊,高远,叶福兴,等.航空发动机热障涂层的CMAS腐蚀行为与防护方法[J].金属学报,2021,57(9):1184-1198.GUO Lei,GAO Yuan,YE Fuxing,et al.CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine[J].Acta Metallurgica Sinica,2021,57(9):1184-1198.(in Chinese)

    • [29] NIETO Andy,AGRAWAL Richa,BRAVO Luis,et al.Calciamagnesia-alumina-silicate(CMAS)attack mechanisms and roadmap towards sandphobic thermal and environmental barrier coatings[J].International Materials Reviews,2020,66(11):451-492.

    • [30] KRAUSE A R,GARCES H F,DWIVEDI G,et al.Calciamagnesia-alumino-silicate(CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings[J].Acta Materialia,2016,105:355-366.

    • [31] 华云峰,潘伟,李争显,等.热障涂层抗腐蚀研究进展 [J].稀有金属材料与工程,2013,42(9):1976-1980.HUA Yunfeng,PAN Wei,LI Zhengxian,et al.Research progress on corrosion resistance of thermal barrier coatings[J].Rare Metal Meterials and Engineering,2013,42(9):1976-1980.(in Chinese)

    • [32] NARAPARAJU Ravisankar,MECHNICH Peter,SCHULZ Uwe,et al.The accelerating effect of CaSO4 within CMAS(CaO–MgO–Al2O3–SiO2)and its effect on the infiltration behavior in EB-PVD 7YSZ[J].Journal of the American Ceramic Society,2016,99(4):1398-1403.

    • [33] GUO Lei,ZHANG Xinmu,XIN Hui.Corrosiveness of CMAS and CMAS + salt(NaVO3,Na2SO4 and NaCl)to YSZ thermal barrier coating materials[J].Corrosion Science,2022,209:110738.

    • [34] SHIFLER D A,CHOI S R.CMAS Effects on ship gas-turbine components/materials[C]//Proceedings of ASME Turbo Expo 2018,June 11-15,2018,OsLo,Norway.ASME Paper GT2018-75865,2018.

    • [35] GARCES Hector F,TRAN Anh,STERNLICHT Hadas,et al.Sea-salt-induced moderate-temperature degradation of thermally-sprayed MCrAlY bond-coats[J].Surface and Coatings Technology,2020,404:126459.

    • [36] GUO Lei,LI Mingzhu,YE Fuxing.Phase stability and thermal conductivity of RE2O3(RE=La,Nd,Gd,Yb)and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics[J].Ceramics International,2016,42(6):7360-7365.

    • [37] BOISSONNET G,CHALK C,NICHOLLS J,et al.Thermal insulation of CMAS(calcium-magnesiumalumino-silicates)-attacked plasma-sprayed thermal barrier coatings[J].Journal of the European Ceramic Society,2020,40(5):2042-2049.

    • [38] GUO Lei,XIN Hui,HU Chengwu.Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings[J].Corrosion Science,2020,177(4):108968.

    • [39] GUO Lei,XIN Hui,LI Yanyan,et al.Self-crystallization characteristics of calcium-magnesium-alumina-silicate(CMAS)glass under simulated conditions for thermal barrier coating applications[J].Journal of the European Ceramic Society,2020,40(15):5683-5691.

    • [40] KRÄMER Stephan,YANG James,LEVI Carlos G.Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167–3175.

  • 手机扫一扫看