en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

邹兰欣,女,1999年出生,硕士研究生。主要研究方向为热障涂层。E-mail:lxzou21s@imr.ac.cn

通讯作者:

徐娜,女,1982年出生,博士,副研究员,硕士研究生导师。主要研究方向为热喷涂涂层。E-mail:naxu@imr.ac.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20230126001

参考文献 1
汪超,周鑫,解旭阳,等.重型燃气轮机新型热障涂层研究[C]//第二十一届国际热喷涂研讨会(ITSS'2018)暨第二十二届全国热喷涂年会(CNTSC’2018)论文集,2018-09-25,天津.2018:66-76.WANG Chao,ZHOU Xin,XIE Xuyang,et al.Study on new thermal barrier coatings for heavy duty gas turbines [C]//Proceedings of the 21st International Thermal Spraying Symposium(ITSS’ 2018)and the 22nd National Thermal Spraying Annual Conference(CNTSC’ 2018),2018-09-25,Tianjin.2018:66-76.(in Chinese)
参考文献 2
王博,刘洋,王福德,等.航空发动机及燃气轮机涡轮叶片热障涂层技术研究及应用[J].航空发动机,2021(S1):25-31.WANG Bo,LIU Yang,WANG Fude,et al.Research and application of thermal barrier coating technology for aero-engine and gas turbine blades[J].Aeroengine,2021(S1):25-31.(in Chinese)
参考文献 3
GHIGLIAZZA F,TRAVERSO A,MASSARDO A F.Thermoeconomic impact on combined cycle performance of advanced blade cooling systems[J].Applied Energy,2009,86(10):2130-2140.
参考文献 4
崔耀欣,汪超,何磊,等.重型燃气轮机先进热障涂层研究进展[J].航空动力,2019(2):66-69.CUI Yaoxin,WANG Chao,HE Lei,et al.The development of advanced thermal barrier coating for heavy duty gas turbines[J].Aerospace Power,2019(2):66-69.(in Chinese)
参考文献 5
GLEESON B.Thermal barrier coatings for aeroengine applications[J].Journal of Propulsion and Power,2006,22(2):375-383.
参考文献 6
LIU Q,HUANG S,HE A.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J].Journal of Materials Science & Technology,2019,35(12):2814-2823.
参考文献 7
吕伯文,江鹏,李定骏,等.重型燃气轮机高温叶片热障涂层烧结问题研究进展[J].中国材料进展,2020,39(11):855-870.LV Bowen,JIANG Peng,LI Dingjun,et al.Advances on the sintering of thermal barrier coatings for high temperature blades of industrial gas turbines[J].Materials China,2020,39(11):855-870.(in Chinese)
参考文献 8
蒋洪德,任静,李雪英,等.重型燃气轮机现状与发展趋势[J].中国电机工程学报,2014,34(29):5096-5102.JIANG Hongde,REN Jing,LI Xueying,et al.Status and development trend of heavy duty gas turbines[J].Proceedings of the CSEE,2014,34(29):5096-5102.(in Chinese)
参考文献 9
孔祥林,田晓晶,程国强,等.中国首台F级 50 MW 重型燃气轮机的自主研制[J].天然气工业,2020,40(12):12-17.KONG Xianglin,TIAN Xiaojing,CHENG Guoqiang,et al.Independent development of first F-class 50 MW heavy duty gas turbine in China[J].Natural Gas Industry,2020,40(12):12-17.(in Chinese)
参考文献 10
刘帅,刘玉春.重型燃气轮机发展现状及展望[J].电站系统工程,2018,34(5):61-63.LIU Shuai,LIU Yuchun.Development status and prospect of heavy duty gas turbines[J].Power System Engineering,2018,34(5):61-63.(in Chinese)
参考文献 11
汪超,周鑫,解旭阳,等.重型燃气轮机用 La2(Zr0.7Ce0.3)2O7/YSZ 双层热障涂层热循环性能研究[J].热喷涂技术,2019,11(3):14-21.WANG Chao,ZHOU Xin,XIE Xuyang,et al.Research on thermal cycling performance of La2(Zr0.7Ce0.3)2O7/YSZ double-layer thermal barrier coatings for heavy duty gas turbines[J].Thermal Spray Technology,2019,11(3):14-21.(in Chinese)
参考文献 12
伍赛特.重型燃气轮机研究现状与技术发展趋势展望 [J].机电产品开发与创新,2019,32(2):65-67.WU Saite.Research status and technology development trend of heavy duty gas turbines[J].Development & Innovation of Machinery & Electrical Products,2019,32(2):65-67.(in Chinese)
参考文献 13
MAUER G,VAßEN R.Coatings with columnar microstructures for thermal barrier applications[J].Advanced Engineering Materials,2020,22(6):1900988.
参考文献 14
LASHMI P G,ANANTHAPADMANABHAN P V,UNNIKRISHNAN G,et al.Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems[J].Journal of the European Ceramic Society,2020,40(8):2731-2745.
参考文献 15
MAHADE S,JONNALAGADDA K P,CURRY N,et al.Engineered architectures of gadolinium zirconate based thermal barrier coatings subjected to hot corrosion test[J].Surface & Coatings Technology,2017,328:361-370.
参考文献 16
JIANG C,LI S,LIU H,et al.Effect of Hf addition in(Ni,Pt)Al bond coat on thermal cycling behavior of a thermal barrier coating system at 1 100 ℃[J].Corrosion Science,2020,166:108424.
参考文献 17
SCHMITT-THOMAS K G,DIETL U.Thermal barrier coatings with improved oxidation resistance[J].Surface and Coatings Technology,1994,68:113-115.
参考文献 18
FENG Y,DONG T,LI G,et al.High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J].Journal of Alloys and Compounds,2020,828:154266.
参考文献 19
ŁATKA L,PAWŁOWSKI L,WINNICKI M,et al.Review of functionally graded thermal sprayed coatings[J].Applied Sciences,2020,10(15):5153.
参考文献 20
LI F,XIE Y,YANG L,et al.Study on cyclic thermal corrosion behavior of APS-7YSZ thermal barrier coating at room-and high temperature[J].Ceramics International,2021,47(20):29490-29498.
参考文献 21
MEHBOOB G,LIU M J,XU T,et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J].Ceramics International,2020,46(7):8497-8521.
参考文献 22
WU S,ZHAO Y,LI W,et al.Research progresses on ceramic materials of thermal barrier coatings on gas turbine[J].Coatings,2021,11(1):79.
参考文献 23
杨丽.先进热障涂层的强韧和破坏机制的标准规范研究[J].湘潭大学学报(自然科学版),2020,42(3):1-12.YANG Li.Research on the standard specification for the toughness and failure mechanism of advanced thermal barrier coatings[J].Journal of Xiangtan University(Natural Science Edition),2020,42(3):1-12.(in Chinese)
参考文献 24
PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
参考文献 25
THAKARE J G,PANDEY C,MAHAPATRA M M,et al.Thermal barrier coatings—A state of the art review[J].Metals and Materials International,2021,27(7):1947-1968.
参考文献 26
LAKIZA S M,GRECHANYUK M I,RUBAN O K,et al.Thermal barrier coatings:current status,search,and analysis[J].Powder Metallurgy and Metal Ceramics,2018,57(1):82-113.
参考文献 27
SONG D,SONG T,PAIK U,et al.Hot-corrosion resistance and phase stability of Yb2O3–Gd2O3–Y2O3 costabilized zirconia-based thermal barrier coatings against Na2SO4 + V2O5 molten salts[J].Surface and Coatings Technology,2020,400:126197.
参考文献 28
GUO L,ZHANG C,LI M,et al.Hot corrosion evaluation of Gd2O3-Yb2O3 co-doped Y2O3 stabilized ZrO2 thermal barrier oxides exposed to Na2SO4 + V2O5 molten salt[J].Ceramics International,2017,43(2):2780-2785.
参考文献 29
GUO L,LI M,YE F.Phase stability and thermal conductivity of RE2O3(RE= La,Nd,Gd,Yb)and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics[J].Ceramics International,2016,42(6):7360-7365.
参考文献 30
LIU Y,GAO Y F,TAO S Y,et al.La2O3-modified YSZ coatings:High-temperature stability and improved thermal barrier properties[J].Surface and Coatings Technology,2009,203(8):1014-1019.
参考文献 31
KHAN M,ZENG Y,LAN Z,et al.Reduced thermal conductivity of solid solution of 20% CeO2 + ZrO2 and 8% Y2O3 + ZrO2 prepared by atmospheric plasma spray technique[J].Ceramics International,2019,45(1):839-842.
参考文献 32
CHEN D,WANG Q,LIU Y,et al.Microstructure,thermal characteristics,and thermal cycling behavior of the ternary rare earth oxides(La2O3,Gd2O3,and Yb2O3)co-doped YSZ coatings[J].Surface and Coatings Technology,2020,403:126387.
参考文献 33
李嘉,谢铮,何箐,等.Gd2O3-Yb2O3-Y2O3-ZrO2热障涂层材料的热物理性能[J].表面技术,2015,44(9):18-22,42.LI Jia,XIE Zheng,HE Qing,et al.Thermophysical properties of Gd2O3-Yb2O3-Y2O3-ZrO2 thermal barrier coating materials[J].Surface Technology,2015,44(9):18-22,42.(in Chinese)
参考文献 34
DUAN W,SONG P,LI C,et al.Effect of water vapor on the failure behavior of thermal barrier coating with Hf-doped NiCoCrAlY bond coating[J].Journal of Materials Research,2019,34(15):2653-2663.
参考文献 35
YU C,LIU H,JIANG C,et al.Modification of NiCoCrAlY with Pt:Part II.Application in TBC with pure metastable tetragonal(t')phase YSZ and thermal cycling behavior[J].Journal of Materials Science & Technology,2019,35(3):350-359.
参考文献 36
GHADAMI F,ZAKERI A,AGHDAM A S R,et al.Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings[J].Surface and Coatings Technology,2019,373:7-16.
参考文献 37
阳颖飞,任盼,鲍泽斌,等.四种典型高温防护涂层的抗氧化性能[J].表面技术,2020,49(1):49-55,102.YANG Yingfei,REN Pan,BAO Zebin,et al.Antioxidant properties of four typical high temperature protective coatings[J].Surface Technology,2020,49(1):49-55,102.(in Chinese)
参考文献 38
邱琳.热障涂层粘结层成分优化设计研究[D].上海:上海交通大学,2014.QIU Lin.Study on composition optimization design of bond coat in thermal barrier coatings[D].Shanghai:Shanghai Jiao Tong University,2014.(in Chinese)
参考文献 39
LI J,WEI L,HE J,et al.The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy[J].Journal of Materials Science & Technology,2020,58:63-72.
参考文献 40
SAHITH M S,GIRIDHARA G,KUMAR R S.Development and analysis of thermal barrier coatings on gas turbine blades — A review[J].Materials Today:Proceedings,2018,5(1):2746-2751.
参考文献 41
ZHANG X,DENG Z,LI H,et al.Al2O3-modified PS-PVD 7YSZ thermal barrier coatings for advanced gas-turbine engines[J].npj Materials Degradation,2020,4(1):1-6.
参考文献 42
WEE S,DO J,KIM K,et al.Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines[J].Applied Sciences,2020,10(16):5476.
参考文献 43
WU S,ZHAO Y,LI W,et al.Research progresses on ceramic materials of thermal barrier coatings on gas turbine[J].Coatings,2021,11(1):79.
参考文献 44
USTINOV A I,POLISHCHUK S S,DEMCHENKOV S A,et al.Formation of thin foils of high-entropy CrFeCoNiCu alloys by EB-PVD process[J].Surface and Coatings Technology,2020,403:126440.
参考文献 45
吴硕,赵远涛,李文戈,等.氧化锆基双陶瓷层热障涂层表层材料研究进展[J].表面技术,2020,49(9):101-108.WU Shuo,ZHAO Yuantao,LI Wenge,et al.Research progress on top coating materials of thermal barrier coatings with double-ceramic-layer based on zirconia[J].Surface Technology,2020,49(9):101-108.(in Chinese)
参考文献 46
ZHANG B,SONG W,WEI L,et al.Novel thermal barrier coatings repel and resist molten silicate deposits[J].Scripta Materialia,2019,163:71-76.
参考文献 47
CHEN D,DAMBRA C,DORFMAN M.Process and properties of dense and porous vertically-cracked yttria stabilized zirconia thermal barrier coatings[J].Surface and Coatings Technology,2020,404:126467.
参考文献 48
刘延宽,许婧,李尧,等.Eu3+ 掺杂对YSZ热障涂层隔热性能与涂层界面断裂韧性的影响研究[J].稀有金属材料与工程,2021,50(5):1699-1705.LIU Yankuan,XU jing,LI Yao,et al.Effect of Eu3+ doping on thermal insulation property and interfacial fracture toughness of YSZ thermal barrier coatings[J].Rare Metal Materials and Engineering,2021,50(5):1699-1705.(in Chinese)
参考文献 49
QIAO X,WANG Y M,WENG W X,et al.Influence of pores on mechanical properties of plasma sprayed coatings:Case study of YSZ thermal barrier coatings[J].Ceramics International,2018,44(17):21564-21577.
参考文献 50
SUN F,FAN X,ZHANG T,et al.Numerical analysis of the influence of pore microstructure on thermal conductivity and Young’s modulus of thermal barrier coating[J].Ceramics International,2020,46(15):24326-24332.
参考文献 51
NICHOLLS J R,LAWSON K J,JOHNSTONE A,et al.Methods to reduce the thermal conductivity of EB-PVD TBCs[J].Surface and Coatings Technology,2002,151:383-391.
参考文献 52
RÄTZER-SCHEIBE H J,SCHULZ U,KRELL T.The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings[J].Surface and Coatings Technology,2006,200(18-19):5636-5644.
参考文献 53
宫声凯,邓亮,毕晓方,等.陶瓷热障涂层的隔热效果研究[J].航空学报,2000(S1):75-79.GONG Shengkai,DENG Liang,BI Xiaofang,et al.Thermal barrier effect of ceramic thermal barrier coatings[J].Acta Aeronautica ET Astronautica Sinica,2000(S1):75-79.(in Chinese)
参考文献 54
CHEN W R,WU X,MARPLE B R,et al.The growth and influence of thermally grown oxide in a thermal barrier coating[J].Surface and Coatings Technology,2006,201(3-4):1074-1079.
参考文献 55
XIE F,SUN Y,LI D,et al.Modelling of catastrophic stress development due to mixed oxide growth in thermal barrier coatings[J].Ceramics International,2019,45(9):11353-11361.
参考文献 56
LIU P,JIANG P,SUN Y,et al.Numerical Analysis of stress evolution in thermal barrier coating system during two-stage growth of heterogeneous oxide[J].Ceramics International,2021,47(10):14311-14319.
参考文献 57
AN G,LI W,FENG L,et al.Isothermal oxidation and TGO growth behaviors of YAG/YSZ double-ceramiclayer thermal barrier coatings[J].Ceramics International,2021,47(17):24320-24330.
参考文献 58
XU Shiming,ZHANG Xiaofeng,LIU Min,et al.Oxidation resistance of Al-modified APS 7YSZ thermal barrier coating[J].Materials Reports,2019,33(2):283-287.
参考文献 59
FENG Y,DONG T,LI G,et al.High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J].Journal of Alloys and Compounds,2020,828:154266.
参考文献 60
ZHANG Y,GUO L,ZHAO X,et al.Effects of non-stoichiometry on the mechanical properties of Nd2−xZr2+xO7+x/2(x= 0,0.1,0.2,0.3,0.4,0.5)ceramics[J].Materials Letters,2014,136:157-159.
参考文献 61
ZHANG P,LI F,ZHANG X,et al.Thermal shock resistance of thermal barrier coatings with different surface shapes modified by laser remelting[J].Journal of Thermal Spray Technology,2019,28(3):417-432.
参考文献 62
ZHOU X,SONG W,YUAN J,et al.Thermophysical properties and cyclic lifetime of plasma sprayed SrAl12O19 for thermal barrier coating applications[J].Journal of the American Ceramic Society,2020,103(10):5599-5611.
参考文献 63
LIU F,SONG W,ZHOU X,et al.Microstructures,thermophysical properties and thermal cycling behavior of LaZnAl11O19 thermal barrier coatings deposited by atmospheric plasma spraying[J].Inorganic Chemistry Frontiers,2019,6(11):3302-3314.
参考文献 64
HUO P,SONG W,ZHOU X,et al.Microstructures and properties of Sm2(Zr0.7Ce0.3)2O7/8YSZ double-ceramiclayer thermal barrier coatings deposited by atmospheric plasma spraying[J].Journal of Thermal Spray Technology,2019,28:986-999.
参考文献 65
CHEN C,LIANG T,GUO Y,et al.Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4 + V2O5 molten salts at 1 000 ℃ [J].Corrosion Science,2019,158:108094.
参考文献 66
阳颖飞,任盼,鲍泽斌,等.热障涂层体系典型黏结层的抗热腐蚀性能[J].航空制造技术,2020,63(14):34-40,47.YANG Yingfei,REN Pan,BAO Zebin,et al.Hot corrosion resistance of typical bonding layer of thermal barrier coating system[J].Aeronautical Manufacturing Technology,2020,63(14):34-40,47.(in Chinese)
参考文献 67
CAI J,GAO C,LV P,et al.Hot corrosion behaviour of thermally sprayed CoCrAlY coating irradiated by high-current pulsed electron beam[J].Journal of Alloys and Compounds,2019,784:1221-1233.
参考文献 68
SMIALEK J L.The chemistry of Saudi Arabian sand:a deposition problem on helicopter turbine airfoils[C]//Gordon Conference on Corrosion,July 14,1991,New London,New Hampshire.1991.
参考文献 69
KRÄMER S,YANG J,LEVI C G,et al.Thermochemical interaction of thermal barrier coatings with molten CaO– MgO–Al2O3–SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167-3175.
参考文献 70
BOROM M P,JOHNSON C A,PELUSO L A.Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J].Surface and Coatings Technology,1996,86:116-126.
参考文献 71
AYGUN A,VASILIEV A L,PADTURE N P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Materialia,2007,55(20):6734-6745.
参考文献 72
NICHOLLS J R,DEAKIN M J,RICKERBY D S.A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings[J].Wear,1999,233:352-361.
参考文献 73
EVANS A G,FLECK N A,FAULHABER S,et al.Scaling laws governing the erosion and impact resistance of thermal barrier coatings[J].Wear,2006,260(7-8):886-894.
参考文献 74
MERCER C,FAULHABER S,EVANS A G,et al.A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate(CMAS)infiltration[J].Acta Materialia,2005,53(4):1029-1039.
参考文献 75
AYGUN A,VASILIEV A L,PADTURE N P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Materialia,2007,55(20):6734-6745.
参考文献 76
ZHANG X F,ZHOU K S,LIU M,et al.Adsorbability and spreadability of calcium-magnesium-alumino-silicate(CMAS)on Al-modified 7YSZ thermal barrier coating[J].Ceramics International,2016,42(16):19349-19356.
参考文献 77
WELLMAN R,WHITMAN G,NICHOLLS J R.CMAS corrosion of EB PVD TBCs:Identifying the minimum level to initiate damage[J].International Journal of Refractory Metals and Hard Materials,2010,28(1):124-132.
参考文献 78
WU J,GUO H,GAO Y,et al.Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.
参考文献 79
DREXLER J M,ORTIZ A L,PADTURE N P.Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate(CMAS)glass[J].Acta Materialia,2012,60(15):5437-5447.
参考文献 80
ZHENG H,CHEN Z,LI G,et al.High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate(CMAS)deposits:firstprinciples calculations[J].Corrosion Science,2017,126:286-294.
参考文献 81
FANG H,WANG W,HUANG J,et al.Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminumsilicate(CMAS)deposition:Experiments and firstprinciples calculation[J].Corrosion Science,2021,182:109230.
参考文献 82
STOTT F H,WET D J,TAYLOR R.Degradation of thermal barrier coatings at very high temperatures[J].MRS Bulletin,1994,19(10):46-49.
参考文献 83
VASSEN R,CAO X,TIETZ F,et al.Zirconates as new materials for thermal barrier coatings[J].Journal of the American Ceramic Society,2000,83(8):2023-2028.
参考文献 84
SCHULZ U,BRAUE W.Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS(CaO-MgO-Al2O3-SiO2)and volcanic ash deposits[J].Surface and Coatings Technology,2013,235:165-173.
参考文献 85
KRÄMER S,YANG J,LEVI C G.Infiltration‐inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[J].Journal of the American Ceramic Society,2008,91(2):576-583.
参考文献 86
WANG Y,MA Z,LIU L,et al.Reaction products of Sm2Zr2O7 with calcium-magnesium-aluminum-silicate(CMAS)and their evolution[J].Journal of Advanced Ceramics,2021,10(6):1389-1397.
参考文献 87
LEVI C G,HUTCHINSON J W,VIDAL-SÉTIF M H,et al.Environmental degradation of thermal-barrier coatings by molten deposits[J].MRS Bulletin,2012,37(10):932-941.
参考文献 88
GUO L,LI M,CHENG Y,et al.Plasma sprayed nanostructured GdPO4 thermal barrier coatings:preparation microstructure and CMAS corrosion resistance[J].Journal of the American Ceramic Society,2017,100(9):4209-4218.
参考文献 89
GAO L,GUO H,GONG S,et al.Plasma-sprayed La2Ce2O7 thermal barrier coatings against calciummagnesium-alumina-silicate penetration[J].Journal of the European Ceramic Society,2014,34(10):2553-2561.
参考文献 90
LiU J,ZHANG L,LIU Q,et al.Calcium-magnesiumaluminosilicate corrosion behaviors of rare-earth disilicates at 1 400℃[J].Journal of the European Ceramic Society,2013,33(15-16):3419-3428.
参考文献 91
GUO L,YAN Z,WANG X,et al.Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings[J].Ceramics International,2019,45(6):7627-7634.
参考文献 92
TAN Z Y,YANG Z H,ZHU W,et al.Mechanical properties and calcium-magnesium-alumino-silicate(CMAS)corrosion behavior of a promising Hf6Ta2O17 ceramic for thermal barrier coatings[J].Ceramics International,2020,46(16):25242-25248.
参考文献 93
LI M,CHENG Y,GUO L,et al.Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate(CMAS)resistance[J].Journal of the European Ceramic Society,2017,37(10):3425-3434.
参考文献 94
LYU G,SONG D,CHOI B G,et al.Infiltration behavior of CMAS in LZ-YSZ composite thermal barrier coatings[J].JOM,2021,73(2):541-550.
参考文献 95
FAN W,BAI Y,LIU Y F,et al.Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack[J].Ceramics International,2019,45(12):15763-15767.
参考文献 96
DREXLER J M,SHINODA K,ORTIZ A L,et al.Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J].Acta Materialia,2010,58(20):6835-6844.
参考文献 97
YIN B,ZHANG F,ZHU W,et al.Effect of Al2O3 modification on the properties of YSZ:corrosion resistant,wetting and thermal-mechanical properties[J].Surface and Coatings Technology,2019,357:161-171.
参考文献 98
YUAN K,YANG L,WANG Q,et al.Al2O3-TiO2 codoped yttria-stabilized zirconia thermal barrier coatings resistant to damage by molten calcium-magnesium-aluminosilicate(CMAS)glass[J].Advanced Engineering Materials,2021,23(6):2001338.
参考文献 99
RAI A K,BHATTACHARYA R S,WOLFE D E,et al.CMAS-resistant thermal barrier coatings(TBC)[J].International Journal of Applied Ceramic Technology,2010,7(5):662-674.
参考文献 100
HASZ W C,JOHNSON C A,BOROM M P.Protection of thermal barrier coating by a sacrificial surface coating:U.S.Patent 5660885[P].1997-8-26.
参考文献 101
HASZ W C,BOROM M P,JOHNSON C A.Protection of thermal barrier coating with an impermeable barrier coating:U.S.Patent 5871820[P].1999-2-16.
参考文献 102
HASZ W C,BOROM M P,JOHNSON C A.Protected thermal barrier coating composite with multiple coatings:U.S.Patent 6261643[P].2001-7-17.
参考文献 103
MOHAN P,YAO B,PATTERSON T,et al.Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation[J].Surface and Coatings Technology,2009,204(6-7):797-801.
参考文献 104
LIU H,CAI J,ZHU J.CMAS(CaO-MgO-Al2O3-SiO2)resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers[J].Ceramics International,2018,44(1):452-458.
参考文献 105
杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):91-100.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion performance of LZO/8YSZ double ceramic thermal barrier coating CMAS[J].China Surface Engineering,2020,33(1):91-100.(in Chinese)
参考文献 106
OZGURLUK Y,DOLEKER K M,AHLATCI H,et al.Investigation of calcium-magnesium-alumino-silicate(CMAS)resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings(TBCs)produced with CGDS method[J].Surface and Coatings Technology,2021,411:126969.
参考文献 107
ZHANG C,FAN Y,ZHAO J,et al.Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition[J].Journal of Advanced Ceramics,2021,10(3):520-528.
参考文献 108
BAKKAR S,PANTAWANE M V,GU J J,et al.Laser surface modification of porous yttria stabilized zirconia against CMAS degradation[J].Ceramics International,2020,46(5):6038-6045.
参考文献 109
GUO L,LI G,GAN Z.Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications[J].Journal of Advanced Ceramics,2021,10(3):472-481.
参考文献 110
YOST F G,RYE R R,MANN JR J A.Solder wetting kinetics in narrow V-grooves[J].Acta Materialia,1997,45(12):5337-5345.
参考文献 111
YAN Z,GUO L,LI Z,et al.Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J].Corrosion Science,2019,157:450-461.
参考文献 112
GUO L,GAO Y,CHENG Y,et al.Microstructure design of the laser glazed layer on thermal barrier coatings and its effect on the CMAS corrosion[J].Corrosion Science,2021,192:109847.
参考文献 113
ZHANG X,ZHUO X,FAN Z,et al.Al2O3-modified 7YSZ thermal barrier coatings for protection against volcanic ash corrosion[J].npj Materials Degradation,2022,6(1):1-7.
参考文献 114
MORELLI S,TESTA V,BOLELLI G,et al.CMAS corrosion of YSZ thermal barrier coatings obtained by different thermal spray processes[J].Journal of the European Ceramic Society,2020,40(12):4084-4100.
目录contents

    摘要

    国际公认的重型燃气轮机制造尖端技术之一—热障涂层技术,高温下通常面临 CMAS(CaO-MgO-Al2O3-SiO2)腐蚀、氧化、相变与烧结等问题,其抗 CMAS 腐蚀性等关键性能极大地影响涂层寿命,提高热障涂层的性能刻不容缓。对重型燃气轮机用热障涂层的研究进展与发展趋势进行全面总结与分析。首先介绍国内外重型燃气轮机的现状及发展趋势、热障涂层的系统结构、材料和几种典型的制备工艺,然后针对高温下燃气轮机热障涂层遇到的一些问题,对其隔热性、抗氧化性及抗热震性等关键性能的研究进展进行综述,最后分类详述热障涂层的 CMAS 腐蚀机理及其防护研究进展。综述热障涂层的几种关键性能,提出热障涂层的性能与其材料、结构及制备工艺密切相关,据此总结归纳提高热障涂层性能的方法,为热障涂层性能的提高提供参考依据,以弥补燃气轮机热障涂层领域目前缺乏这类综述文章的不足。

    Abstract

    Thermal barrier coating technology, an internationally recognized cutting-edge technology for heavy-duty gas turbine manufacturing, is mainly used on the surface of the hot section components of gas turbines to enhance their efficiency by increasing the working temperature of the hot section components. However, at high temperatures, thermal barrier coatings frequently experience issues including CMAS (CaO-MgO-Al2O3-SiO2) corrosion, oxidation, phase transitions, and sintering. Key properties such as CMAS corrosion resistance affect the coating life, which affects the efficiency of gas turbines. Therefore, this paper first presents the current situation and development trends of heavy-duty gas turbines worldwide. The background of the research on thermal barrier coatings is then presented; thermal barrier coatings are classified according to their different coating structures. The characteristics and properties of commonly used coating materials such as the ceramic top coat and bond coat materials are compared, and the principles, advantages and disadvantages of several typical preparation processes of thermal barrier coatings such as air plasma spraying, electron beam-physical vapor deposition, plasma spraying-physical vapor deposition, and the morphological characteristics of the prepared coatings are summarized and analyzed. Aiming at some challenges that are often encountered in thermal barrier coatings for gas turbines at high temperatures, such as oxidation, CMAS corrosion, among others, the importance of several key properties of thermal barrier coatings, such as thermal insulation, oxidation resistance, and thermal shock resistance, is emphasized, and these key properties are explained and their research progress is reviewed. Finally, focusing on the high-temperature CMAS corrosion resistance of thermal barrier coatings, the mechanism of CMAS corrosion in terms of the thermochemical and thermomechanical aspects is described, along with five protective research methods to improve the CMAS corrosion resistance of thermal barrier coatings: identifying and developing new ceramic top coat materials, doping and modifying thermal barrier coating materials, preparing a protective layer on the surface of the ceramic top coat, adopting a double-layer ceramic top coat structure, and optimizing the coating surface structure. Based on a summary of the research progress and development trends of heavy-duty gas turbines and their thermal barrier coating, the following conclusions are drawn. Compared with developed countries, there is still a wide gap in the manufacturing technology and maintenance level of heavy-duty gas turbines in China, which will be developed towards high parameters, high performance, low pollution, and large-scale in the future. In general, the thermal barrier coating is preferred in the form of a double-layer structure; the material is preferred to be 8YSZ and MCrAlY, and the preparation process is preferred for air plasma spraying. Despite the fact that thermal barrier coatings have been widely used with the rapid development of industry, traditional thermal barrier coatings have failed to meet the service requirements of next-generation heavy-duty gas turbines; therefore, improving the performance of thermal barrier coatings has become a key issue. The materials, structures, and preparation processes of thermal barrier coatings are critical for improving their performance. To ensure the safe operation of heavy-duty gas turbines at higher temperatures for a longer period of time, we should continue to search, design, and develop new thermal barrier coating materials with low thermal conductivity, good oxidation resistance, thermal shock resistance, and corrosion resistance, increase investments in the structural design research of thermal barrier coatings, regulate the structural parameters of thermal barrier coatings, and improve and develop new preparation processes for thermal barrier coatings. This paper reviews several key properties of thermal barrier coatings for gas turbines and proposes that the performance of thermal barrier coatings is closely related to their materials, structures, and preparation processes. Methods to improve the performance of thermal barrier coatings are presented, and there is a lack of such review articles to lead the field of thermal barrier coatings for gas turbines.

  • 0 前言

  • 在重工业领域,比较常见的热-功转换类发电设备—重型燃气轮机,因占地面积小、周期短、效率高、污染少等特点被广泛应用于电网调峰、能源开采和输送、远洋发电、先进舰船动力、航空航天等领域,堪称“工业明珠”。在一定意义上,国家制造业的整体发展水平与重型燃气轮机的研发水平息息相关。

  • 1939 年,瑞士 BBC 公司生产了世界上第一台发电用重型燃气轮机,由此,重型燃气轮机便开始在全球范围内迅速发展。近年来,节能环保需求不断增长,重型燃气轮机的性能要求也随之提高,朝着高效率和低排放的目标发展[1]。影响燃气轮机效率的因素主要有两个:一是涡轮进口温度,二是压气机的压缩比。其中,更为关键的是如何提高涡轮进口温度[2]。因此,涡轮叶片作为燃气轮机的核心部件,提高涡轮进口温度主要依靠三点,即耐高温金属材料、先进冷却技术和热障涂层技术。

  • 近年来,高温合金叶片定向晶 / 单晶成型技术、热障涂层技术及气膜冷却技术等得到大力发展[3]。大量研究发现,使用设计的冷却结构可以使热端部件(涡轮叶片、燃烧室等)的表面温度降低约 500℃,但仍不足以满足要求。然而,为了继续提高透平冷却技术,研究人员设计和制造的冷却结构不仅十分复杂,而且难以加工。除此之外,许多用于制造重型燃气轮机透平叶片的高温合金已经达到了其极限温度,而耐热能力更好的陶瓷基复合材料还未能被成熟应用[4]。相比之下,热障涂层技术的成本较低且隔热效果优良。研究表明,通过热喷涂技术将 100~500 μm 的热障涂层沉积在涡轮叶片表面,可以避免高温燃气与重型燃气轮机涡轮叶片直接接触,使表面温度降低约 100~300℃,从而使重型燃气轮机安全服役[5-6]

  • 因此,综合各种因素考虑,目前要使重型燃气轮机实现高效率、低排放、长寿命的唯一可行和有效的方法是热障涂层技术。该技术在燃气轮机和航空发动机的热端部件中应用广泛。例如:在涡轮叶片表面喷涂热障涂层,从而使之与高温燃气隔开,以此来降低叶片的表面温度,延长叶片的使用寿命,使其能够在更高的温度下工作,从而提高燃气轮机效率。自 20 世纪 40 年代末 50 年代初发展至今,热障涂层引起全球众多科研机构和涂层制造商的高度重视并得到大力推广和发展,现代工业对热障涂层技术的需求也愈加迫切。因此,燃气轮机用热障涂层的研究具有重大的现实和战略意义。

  • 近年来,重型燃气轮机应用最广泛的涂层仍然是质量分数为 6 wt.%~8 wt.%的氧化钇稳定氧化锆 (6-8YSZ),但 YSZ 涂层在 1 200℃以上的温度下,不仅容易发生相变和烧结,还容易发生熔盐腐蚀,即 CMAS 腐蚀(CaO-MgO-Al2O3-SiO2 等硅酸盐物质)和热腐蚀。为了能让涂层在 1 200℃以上的温度下长期工作,研究人员进行了多方面的努力,包括寻找和开发新型热障涂层、改进热障涂层的制备工艺、对涂层的结构进行调控等等。因此,本文在论述重型燃气轮机现状及热障涂层的系统结构、材料、制备方法的基础上,总结归纳了燃机热障涂层抗 CMAS 腐蚀性和其他关键性能的研究现状,为热障涂层的抗 CMAS 腐蚀性研究提供参考依据。

  • 1 重型燃气轮机的现状及发展趋势

  • 自 1920 年世界上首台燃气轮机问世以来,燃气轮机在工业领域内开始迅猛发展。近年来,全球重型燃气轮机市场规模不断增长,各国对重型燃气轮机研发的重视程度不断加大,并不断加大资金和人力投入,重型燃气轮机的技术水平得到了不断的提高。重型燃气轮机的技术水平由涡轮进口温度水平决定,按照温度区间可以分为 E、F、H 级等[7]。其中,E 级功率为 100~200 MW,F 级功率为 200~300 MW,H 级功率则在 300 MW 以上。

  • 1.1 国内重型燃气轮机的现状

  • 20 世纪 50 年代,我国的重型燃气轮机需要由国外公司[美国通用电气(GE)、德国西门子 (Siemens)、日本三菱重工(MHI)]引进,然后进行自主设计研发并制造。这一阶段中,我国的重型燃气轮机技术得到迅速发展。20 世纪 80 年代,我国出现油气短缺的严峻问题,重型燃气轮机技术的发展被迫陷入低迷状态;直至 2002 年,随着西气东输和我国天然气的开发和引进,油气问题得以解决,我国的重型燃气轮机终于又开始了新一轮的大力发展[8]。目前,我国重型燃气轮机的制造主要依靠上海电气、东方电气、哈尔滨电气等几家企业。

  • 2012 年,“863”能源领域重大专项中,由沈阳黎明公司联合我国各大高校研发出 R0110 重型燃气轮机成功完成了 72 h 带负荷试验运行,这标志着我国成功生产了第一台具有自主知识产权的重型燃气轮机,其基本负荷为 114.5 MW,热效率为 36%。自此,我国成为了世界上第五个拥有自主研发重型燃气轮机能力的国家。2014 年,上海电气入股了意大利安萨尔多,打破了国外对燃气轮机产业的垄断,这也使得中国初步实现了 E / F 级重型燃气轮机的国产化。2019 年,由中国重燃牵头,联合多家机构技术成功制造了 F 级 300 MW 燃机的第一级动叶、第一级静叶及燃烧室,这标志着我国已经可以初步制造重型燃气轮机的热端部件;同年,上海电气同安萨尔多成功研制了一台 H 级重型燃气轮机 GT36,成为我国参与研制的首台 H 级重型燃气轮机。2020 年,“973”项目中,由我国东方电气联合西安交通大学自主研制的第一台 F 级 50 MW 重型燃气轮机 (称 G50)成功完成了满负荷稳定试验运行[9],这标志着我国已经可以初步自主研制 F 级重型燃气轮机。2022 年 6 月,江苏永瀚参与研制的 300 MW 重型燃气轮机涡轮叶片经试验后初告成功,标志着我国 300 MW 重型燃气轮机的研发成功更进一步。然而,尽管我国的重型燃气轮机技术水平正不断飞速提高,国内燃气轮机市场中依然主要采用 E / F 级燃气轮机。其中,国内市场上最先进的重型燃气轮机的单循环效率为 42%~44%,联合循环效率为 62%~64%[10]

  • 1.2 国外重型燃气轮机的现状

  • 虽然近些年全球的科技和经济快速发展,重型燃气轮机技术等级也逐步提升,但世界上重型燃气轮机市场的很大部分仍由美国 GE 公司、日本 MHI 公司、法国 Alstom 公司和德国 Siemens 公司瓜分。随着工业技术的发展,重型燃气轮机技术也愈加成熟,研发重心逐渐由航空燃气轮机领域向重型燃气轮机领域转移,并先后研制了 E、F、G、H、J 级燃气轮机。

  • 目前,在重型燃气轮机市场中,日本三菱的许多产品比较受大众欢迎。其中,三菱重工制造的 JAC 型燃气轮机被称为全球发电效率最高的燃气轮机,其联合循环发电效率可以达到 64%甚至更高。而其制造的世界上最高热效率发电用燃气轮机— M701J 燃机,其简单循环发电功率为 470 MW,联合循环发电功率为 680 MW。另外,M501J 型燃气轮机在 50%负荷工况下依旧有 55%的热效率,性能表现十分优异。

  • 德国西门子研发制造的 50 HZ 的 SGT5-9 000HL 级重型燃气轮机为全球范围内单台机组输出功率最强的重型燃气轮机。该重型燃气轮机在联合循环模式下可以产生高达 840 MW 的电力,并且其联合循环效率也高达 63%,但不是联合效率最高的燃气轮机。

  • 2019 年 10 月,美国 GE 公司推出了 7HA.03 重型燃机,该重型燃气轮机的最大联合循环输出功率略低于西门子的 SGT5-9000HL 级重型燃气轮机,达到 821 MW,但是其最大联合循环效率却预估高达 63.9%。2022 年,7HA.03 燃气轮机首次投入商业运行,联合循环发电效率超过 64%,负荷增速率高达 75 MW / min。7HA.03 燃气轮机能够减少 70%的排放,为了进一步减少利用燃气发电的碳排放,GE 公司的 7HA.03 燃气轮机目前已经支持燃烧 50%体积含量的氢气,其拥有 430 MW 的单循环净输出功率,而在联合循环模式下,一个“一拖一”的 7HA.03 重型燃机电厂提供的发电功率可以达到 640 MW,而一个“二拖一”的 7HA.03 重型燃机电厂提供的发电功率则高达 1 282 MW。

  • 如今,全球最先进的重型燃气轮机的透平进口温度已经高达 1 600℃[11]。有专业人士预测过未来燃气轮机的透平进口温度最高可以达到 1 700℃,且单循环效率和联合循环效率可分别达 44%~45% 和 65%[10]

  • 综上所述,我国重型燃气轮机的技术水平虽然较以往有了很大的进步,但与发达国家相比,在制造技术水平及维修水平上仍存在较大差距,如表1 所示。正因如此,国内相关制造商及研究人员首先应该清晰地认识我国重型燃气轮机的发展现状,提高对重型燃气轮机方面进行研发的重视程度,同时借助国家政策的支持,继续加大对重型燃气轮机技术研究的资金投入,集中各方优势对重型燃气轮机进行全力发展,努力缩小我国重型燃气轮机技术水平与其他发达国家的差距。因此,我国重型燃气轮机技术水平仍具有巨大的发展空间,其未来的发展趋势主要朝着这四个方面发展,即高参数、高性能、低污染、大型化[12]

  • 表1 国内外燃气轮机的现状

  • Table1 Comparison of status of gas turbines at home and abroad

  • 2 热障涂层

  • 2.1 热障涂层的研究背景

  • 自 1920 年第一台燃气轮机成功研制至今,在发电和驱动领域,燃气轮机一直拥有着举足轻重的地位。另外,伴随着工业技术的发展,重型燃气轮机技术水平正在不断提高,而如何提高重型燃气轮机的效率显得愈加迫切。透平叶片是重型燃气轮机燃烧系统的重要组成部件之一,提高涡轮进口温度能够有效提高重型燃气轮机效率。因此,相关研究人员可以朝着提高涡轮进口温度的方向努力。为了满足未来高效燃气轮机对运行温度日益增长的需求,人们通常在热端部件表面喷涂热障涂层。

  • 1953 年,热障涂层的概念由美国 NASA-Lewis 研究机构第一次提出[13],即在高温环境下工作的零部件表面通过热喷涂技术喷涂陶瓷涂层,以提供隔热和防护、降低叶片表面的温度、减少发动机的油耗、延长叶片的使用寿命等作用。热障涂层因其制备成本低、隔热防护效果好等优良特性,在工业燃气轮机和航空发动机的热端部件上(透平叶片和燃烧室等)得到了广泛的应用,并被国际公认为重型燃气轮机制造的尖端技术。

  • 2.2 热障涂层的系统结构

  • 随着科技的进步与发展,燃气轮机涡轮进口温度越来越高,为了使热障涂层达到更好的隔热效果,全球各国的研究大多集中在设计热障涂层的结构上,这足以说明热障涂层结构的重要性[14]。根据涂层结构的不同可以分为双层、多层及梯度结构[15]

  • 其中,由陶瓷层和粘结层组成的双层结构热障涂层,作为在所有涂层结构中最简单且制备工艺较成熟的热障涂层,在热障涂层技术中的应用十分广泛。其中,应用最为广泛的双层结构热障涂层是以 6 wt.%~8 wt.%的氧化钇稳定氧化锆(6-8YSZ)为外部陶瓷层材料,MCrAlY(M=Ni,Co,Ni+Co 等)合金为金属粘结层材料[16]。但陶瓷层与金属粘结层因热膨胀系数不匹配,容易在涂层中产生应力从而使涂层提早脱落。

  • 为了提高热障涂层的性能,研究人员制备出一种结构比较复杂的多层结构热障涂层(复合涂层),即在双层结构热障涂层的基础上增加了几层隔热层和阻隔层,一般为五层。其中,研究较多的封阻层主要有 Al2O3、NiAl 等[17]。FENG 等[18]采用 APS 制备 YSZ 热障涂层和 LZ / YSZ 热障涂层 (La2Zr2O7 / ZrO2-Y2O3 双陶瓷层热障涂层),并用激光重熔技术对涂层表面进行重熔,然后在 1 100℃ 下进行高温氧化试验。结果发现:与 YSZ 热障涂层相比,LZ / YSZ 双陶瓷层热障涂层的抗氧化性更好。虽然多层结构热障涂层相对双层结构热障涂层的性能更好,但是由于其结构和制备工艺较为复杂,并且抗热震性能较差,所以在实际应用中处处受到限制。因此,梯度结构热障涂层便应运而生。

  • 梯度结构热障涂层的特点是成分和结构均沿涂层厚度方向呈连续梯度变化,从而导致层间界面不明显。梯度结构热障涂层与双层及多层结构相比,不但具有突出的抗热震性能,而且在性能上也呈连续的梯度变化,因此具有热应力缓和特性,可以应用于严苛的高温环境中。ŁATKA 等[19]综述了功能梯度热障涂层的主要热喷涂技术。尽管制备方法多种多样,但梯度结构热障涂层因为制备工艺复杂、结构成分不易控制、成本较高等,其实际应用情况也较为糟糕。

  • 综上,双层结构热障涂层应用广泛且工艺成熟,仍然是热障涂层的首选结构形式。采用热喷涂技术在合金基体上沉积陶瓷层和粘结层[20],高温氧化条件下,粘结层氧化后在其表面形成一层薄薄的热生长氧化物,如图1 所示。其中,合金基体作为一种被热障涂层保护的部件,可以起到承受外部机械载荷的作用,其材料以耐高温抗氧化的镍基高温合金为主。粘结层的作用是增强陶瓷层和合金基体之间的结合力,厚度一般为 50~150 µm,其材料通常选用与合金基体热膨胀系数差异较小的 MCrAlY (M=Ni / Co / Ni+Co)。热生长氧化物(TGO)主要是一种高温氧化环境下在陶瓷层与粘结层之间形成的α-Al2O3 薄膜,厚度为 1~10 µm,对涂层的影响较大。陶瓷层具有隔热、抗腐蚀和抗冲击等作用[21],厚度通常为 100~400 μm,其材料以低热导率和相对较高的热膨胀系数的 6-8YSZ 为主[22]

  • 图1 传统热障涂层系统[23]

  • Fig.1 Schematic diagram of thermal barrier coating insulation structure[23]

  • 2.3 热障涂层的材料

  • 重型燃气轮机透平叶片前的进口温度与其工作效率息息相关,只有提高透平叶片的进口温度,才能提高其工作效率。然而,随着科技与工业的发展,重型燃气轮机热端部件的工作温度仍在不断提高,而镍基合金透平叶片的极限温度为 1 150℃,已不能在更高温度下工作。因此,寻找和开发具有优良性能的热障涂层材料显得尤为迫切。其中,因为热障涂层的服役条件十分恶劣,所以在实际过程中对热障涂层材料的选择条件更加严格。陶瓷层材料通常要求具备低热导率、高熔点,并且在室温到服役温度范围内不易发生相变,还需要较高的热膨胀系数、突出的抗热震性、抗烧结性及抗腐蚀性等性能[24];粘结层材料则要求具备耐腐蚀抗氧化,结合强度好等性能[25-26]

  • 2.3.1 陶瓷层材料

  • 热障涂层严苛的服役条件限制了对其材料的选择,目前适合实际应用的热障涂层材料非常有限,主要有 YSZ 材料及稀土氧化物掺杂 YSZ 材料。

  • (1)氧化钇稳定氧化锆

  • 目前,在陶瓷材料中,ZrO2 以其具有高熔点、低热导率、高热膨胀系数及良好的断裂韧性等性质脱颖而出。然而,纯 ZrO2具有单斜相(m 相)、立方相 (c 相)和四方相(t 相)三种晶型,而且纯 ZrO2容易发生相变,进而引起体积变化,对涂层寿命具有不利的影响。因此,常采用 Y2O3、CaO、MgO、Sc2O3等稳定剂掺杂 ZrO2 的方法以提高其相稳定性。其中,以8YSZ 的性能最好,其具有足够的硬度(~14 GPa)、较低密度(~6.4 Mg·m−3)、低热导率(1 000℃下为~2.3 W·m−1 ·K−1)、高熔点(~2 700℃)、较高的热膨胀系数(1.1×10−5 K−1)等多种优良性质,因此作为陶瓷层材料被广泛应用于热障涂层中。

  • (2)稀土氧化物掺杂 YSZ

  • 当 YSZ 长时间工作在 1 200℃以上的环境中时,通常会发生相变和烧结。一方面,由非平衡态四方相 t′转变为立方相 c 和四方相 t 的混合物,冷却时 t′又转变为单斜相 m,并随着体积变化而不断发生相变,从而使涂层快速脱落[27];另一方面,烧结使涂层内的孔隙率降低,使得涂层的隔热性能和应变容限降低,并且硬度和弹性模量增大,这极大地影响了涂层的性能和寿命。因此,YSZ 不能应用于下一代重型燃气轮机发动机。

  • 一般而言,可以通过改变或增加氧化锆的稳定剂种类来改善 YSZ 的性能,比如采用稀土氧化物掺杂 YSZ 的方法[28-30]。研究发现, Zr 离子与掺杂的离子之间的半径差越大,导致形成缺陷的浓度更高,从而可以改善声子散射,并且降低热导率[31]。CHEN 等[32]使用 APS 制备了 La2O3、Yb2O3和 Gd2O3共掺杂 YSZ 的热障涂层陶瓷层(LGYYSZ),并通过测量计算得到了该热障涂层的热膨胀系数和热导率,并在 1 400℃下进行热循环试验。结果表明,与 YSZ 涂层相比,LGYYSZ 涂层的热导率更低,热循环寿命更长,且在 1 500℃下相稳定性良好。李嘉等[33]采用化学共沉淀法制备 Gd2O3 和 Yb2O3 共掺杂 YSZ 粉末并采用 APS 制备 Gd2O3和Yb2O3共掺杂 YSZ 涂层,研究不同氧化物掺杂量对涂层相稳定性的影响。结果表明,相比于传统 8YSZ,Gd2O3和 Yb2O3共掺杂 YSZ 涂层的相稳定性更好,掺杂量低时在高温下热处理后相变产生的 m 相更少,掺杂量高时为稳定的立方相。

  • 与传统的 YSZ 相比,新型改性 YSZ 陶瓷材料的热导率更低,使热障涂层具有更好的隔热性能,为高性能热障涂层的研究提供重要的基础;但是传统 YSZ 的综合性能良好,且应用广泛,无法被任何一种改性 YSZ 替代。

  • 2.3.2 粘结层材料

  • 在热障涂层中,粘结层至关重要。除了可以将陶瓷层与合金基体紧密地粘结在一起、减小因热膨胀系数不匹配在涂层中引起的内应力;还能在高温下通过形成一层致密的氧化膜来提高整个涂层系统的抗热腐蚀和抗氧化性,进而使热障涂层的寿命得到延长。目前,粘结层的使用材料通常是 MCrAlY 合金 (M 为 Ni、Co 或 Ni+Co,根据使用情况选择)。其中, NiCoCrAlY 因其抗氧化性和抗腐蚀性等综合性能较好而在重型燃气轮机得到广泛应用。在 MCrAlY 体系中,Ni 和 Co 作为基体元素,由于 Ni 的抗氧化性能良好,并且 Co 的耐疲劳性能优良,因此 Ni+Co 的综合性能(如抗氧化和耐腐蚀等)较好;而 Cr 用于提高涂层的抗腐蚀性,Al 能够增强涂层的抗氧化性, Y 能够改善涂层的抗腐蚀和抗热震性能。

  • MCrAlY 体系的性能优良,但只能用于 1 100℃ 以下工作。为了提高服役温度,相关制造商和科研人员对 MCrAlY 涂层改性进行了大量的研究。例如掺杂其他合金元素如 W、Ta、Hf 和 Zr 等[34]来提高粘结层的性能。YU 等[35]在第二代镍基高温合金上喷涂了由 Pt 改性的 NiCoCrAlY 粘结层和纳米结构的 4 wt.%钇稳定氧化锆(4YSZ)陶瓷层组成的热障涂层,研究了 1 100℃下 NiCoCrAlY-4YSZ 热障涂层在空气中的热循环行为以及 Pt 对 TGO 的形成和抗氧化性的影响。结果表明,与 NiCoCrAlY-4YSZ 相比,Pt 对NiCoCrAlY的改性有利于生成α-Al2O3 和降低TGO 生长速率,从而延长热障涂层寿命。GHADAMI 等[36] 用纳米 CeO2 通过超音速火焰喷涂法制备 NiCoCrAlY 纳米复合涂层,并将分别添加了 0.5、1 和 2 wt.%纳米 CeO2的 NiCoCrAlY 纳米复合涂层与常规 NiCoCrAlY 涂层进行对比。结果表明,NiCoCrAlY-1 wt.%纳米 CeO2 复合涂层具有更好的抗氧化性能,与其他常规 NiCoCrAlY 涂层和 NiCoCrAlY 纳米复合涂层相比,该涂层硬度较高且孔隙率含量较低。

  • 目前,除了 MCrAlY 体系可以应用于粘结层之外,NiAl 也是一种关键的粘结层材料。NiAl 主要由 β-NiAl 组成,高于 1 200℃的温度时在涂层表面会形成连续致密的氧化膜,被公认为最具潜力的新一代金属粘结层的候选材料。相比于 MCrAlY 及传统 β-NiAl 涂层,Pt 改性的 β-NiAl 涂层抗高温氧化性和耐热腐蚀性能更好。然而,高温下形成的氧化膜黏着性差,这将会大大缩短涂层的寿命。因此,为了改善 NiAl 的使用性能,研究人员对 NiAl 进行掺杂改性研究。阳颖飞等[37]制备了 NiCrAlY 涂层、 NiAl 涂层、Pt 改性的 NiAl 涂层,以及 Pt+Hf 共掺杂的 NiAl 涂层,并在温度为 1 100℃下对比研究这四种涂层的抗氧化性。最终结果显示,抗氧化性最好的是 Pt+Hf 共掺杂的 NiAl 涂层。邱琳[38] 采用真空电弧熔炼的方法分别制备了不同 Al 含量的 NiAl 块体合金及不同 Hf / Zr 含量的β-NiAl 块体合金,研究 Al、Hf、Zr 三种元素对 NiAl 合金抗氧化性的影响。结果发现,NiAl 合金的抗氧化性随 Al 含量的增加而增大,在 β-NiAl 合金中添加 Hf / Zr 有利于提高其抗氧化性,其中最佳掺杂量分别为 0.1 at.%和 0.3 at.%。LI 等[39]通过电沉积和低活性渗铝技术,在富含 Mo 的 Ni2Al 基高温合金上,制备了一种新型稀土改性的 β-(Ni,Pt)Al 涂层,比较研究了稀土改性的β-(Ni,Pt)Al涂层和传统的β-(Ni,Pt)Al 涂层在 1 100℃时的等温氧化行为。研究结果表明,稀土元素可以提高涂层的抗氧化性。

  • 综上所述,MCrAlY 和 NiAl 涂层都有各自的优缺点,因此科研人员应该继续坚持不懈地在这两种涂层材料的基础上进行改性研究,寻找开发新型的金属粘结层材料,使重型燃气轮机用热障涂层的服役温度能够更上一级。

  • 2.4 热障涂层的制备

  • 在一定程度上,热障涂层的微观结构不仅影响涂层的隔热、抗氧化等性能,也决定了涂层的寿命。而热障涂层的微观结构不仅取决于所用材料,还取决于其制备工艺。因此,按照不同的制备要求选择合适的制备工艺也很重要。制备热障涂层的方法多种多样,但主要分为两类:一是热喷涂法,二是物理气相沉积法。其中,热喷涂法主要有超音速喷涂法、等离子喷涂法、爆炸喷涂法等。热喷涂法制备的涂层呈片状; 而物理气相沉积法主要是电子束物理气相沉积法 (EB-PVD),其制备的涂层呈柱状。热障涂层中的陶瓷层常采用电子束物理气相沉积法、大气等离子喷涂法等方法;而金属粘结层主要采用大气等离子喷涂法 (APS)、低压等离子喷涂法(LPPS)、超音速火焰喷涂法(HVOF)等[40]热喷涂技术。截至目前,制备燃机热障涂层的方法主要还是以 APS 和 EB-PVD 为主。

  • 2.4.1 大气等离子喷涂

  • APS 是一种利用喷枪产生的直流电弧将 Ar、He、 N2等气体转化为等离子体射流,使由载气输送的陶瓷粉末和金属粉末快速加热熔化成熔融或半熔融的粒子,在电场的作用下以较大的动能(80~300 m / s)冲击高温合金基体表面形成涂层的技术[42]。APS 技术制备的热障涂层是由无数粒子交错堆叠而成的,与基体之间以机械结合为主,呈片层状微观结构,内含有许多平行于合金基体的缺陷,如孔隙和微裂纹等(如图2 所示)。形成的原因如下:在高温条件下陶瓷或金属会熔化形成熔融颗粒,并且会夹带些许环境气体,但涂层的冷却速率极快,这将使得在沉积过程中溶解在熔融颗粒内部的气体不能够及时地析出,进而形成孔隙;与此同吋,熔融颗粒之间搭接得不够充分也会使得涂层内形成孔隙和裂纹。因此,如果采用 APS 制备热障涂层,其孔隙率较高,具有较好的隔热性能,但其缺点是应变容限不足、抗热震性能较差等[43],主要用于工作环境相对较好的零件;另外,APS 制备成本低廉,因此可以应用于较大尺寸的零件。

  • 图2 典型热障涂层[41]

  • Fig.2 Typical TBCs[41]

  • 2.4.2 电子束物理气相沉积

  • EB-PVD 是一种采用高能密度的电子束在真空室中对涂层粉体进行加热,在粉体表面形成熔池,使陶瓷粉末气化后以原子状态沉积到基材表面形成热障涂层的技术[45],如图3 所示。EB-PVD 涂层的组织是一种垂直于合金基体的柱状晶结构,涂层与基体之间主要以冶金结合为主,不仅表面光洁,而且致密性较好,故具有较高的结合强度、应变容限和抗热震性能,主要应用于工作环境恶劣的零部件,如燃机转子叶片;但 EB-PVD 涂层制备成本昂贵,只能制备厚度较薄的涂层,且对零件的结构尺寸有一定要求,因此在燃机中的应用较少。

  • 上述两种制备工艺已然十分成熟,但仍存在着其各自的问题,如表2 所示。近年来,相关科研人员正在不断改进和创造新的热障涂层制备方法。目前,在现在常用的新型热障涂层制备方法中,最为突出是等离子喷涂物理气相沉积技术(PS-PVD),该技术被公认为潜力最大、效果最好的热障涂层制备方法之一。

  • 图3 EB-PVD 工艺原理[44]

  • Fig.3 Schematic diagram of the EB-PVD process[44]

  • 表2 APS 和 EB-PVD 两种制备方法的对比

  • Table2 Comparison of APS and EB-PVD preparation methods

  • 2.4.3 等离子喷涂物理气相沉积

  • PS-PVD 技术是在低压等离子喷涂的基础上发展起来的,该方法制备的涂层结构呈羽-柱状形貌,涂层中的孔隙繁多且间隙较大,如图4 所示。因此,PS-PVD 技术改进了 EB-PVD 涂层的隔热性不足和 APS 涂层的抗热震性较差的问题,而且 PS-PVD 技术制备的热障涂层具有较高的结合强度、较好的隔热性能及良好的抗热震性能等,但是抗 CMAS 腐蚀性和抗氧化性较差。在此基础上,ZHANG 等[41]提出了经 Al2O3改性 PS-PVD 7YSZ 热障涂层的方法。试验结果表明,对采用 PS-PVD 技术制备的 7YSZ 热障涂层进行镀铝改性,能够增强涂层的抗氧化性和抗 CMAS 腐蚀性。

  • 图4 抗 CMAS 腐蚀的 PS-PVD 涂层[46]

  • Fig.4 Fabrication of molten-CMAS-repellent TBCs by PS-PVD[46]

  • 综上,尽管PS-PVD技术能汲取EB-PVD和APS 这两种技术的优点,但对于国内燃气轮机而言, PS-PVD 技术不够成熟、操作复杂且成本较高; EB-PVD 技术沉积效率低、成本较高,制备涂层的厚度有限制、不能制备较厚的涂层,且对零件尺寸有一定要求,对于形状复杂的零件有“遮挡”效应; 而 APS 技术成本低廉,制备的涂层隔热性能优良,现阶段仍是燃气轮机燃烧室和涡轮叶片等热端部件热障涂层的首选制备工艺。CHEN 等[47]采用 APS 在不同的 APS 工艺参数下成功地在 8YSZ 热障涂层中分别引入了高密度垂直裂纹(DVC)和多孔性垂直裂纹(PVC)。结果发现,与 DVC 涂层相比,PVC 涂层的孔隙率更大,PVC 涂层的热导率较低且抗热震性较好。因此,研究人员应该加大在提高 APS 技术方面的成本和时间的投入,通过持续优化 APS 参数、完善 APS 技术来调控热障涂层的微观结构,从而改善 APS 热障涂层的性能。

  • 3 燃机热障涂层的关键性能

  • 由于地面重型燃气轮机的工作一般处于复杂的环境中,并且维修周期长,可高达 5 万 h。因此,为了提高燃气轮机热障涂层技术、延长热障涂层的服役寿命,近年来,科研人员对热障涂层的关键性能进行了大量的研究,如隔热性、抗氧化性、抗热震性以及抗 CMAS 腐蚀性等。其中,热障涂层的隔热性、抗氧化性及抗热震性等的研究和进展较为充分,而抗 CMAS 腐蚀性相对匮乏。与此同时,CMAS 腐蚀已经成为热障涂层的一种主要的失效方式,阻碍了下一代高性能燃气轮机发展。因此,本节先简略地介绍热障涂层的隔热性、抗氧化性及抗热震性,随后在第 4 节重点阐述热障涂层的 CMAS 腐蚀机理及其防护技术的研究进展。

  • 3.1 隔热性

  • 随着工业的发展,高性能燃气轮机对涡轮进口温度提出了更高的要求。因此,提高热障涂层的隔热性至关重要。热障涂层的隔热性与涂层的材料、结构及制备工艺有关。另外,热障涂层的服役环境也会影响其隔热性能。

  • 热障涂层的隔热性能一般选用热导率来作为其评价指标。刘延宽等 [48] 采用 APS 制备了 2 mol.% Eu3+掺杂 YSZ 涂层,并与 YSZ 涂层对比,结果发现 2 mol.% Eu3+掺杂 YSZ 涂层的热导率更低,即 2 mol.% Eu3+掺杂 YSZ 涂层的隔热性更好。研究发现,涂层中孔隙的空间和几何特性对热导率影响很大[49]。SUN 等[50]对具有不同孔隙结构的热障涂层的热导率和弹性模量进行了比较研究。结果显示:随着孔径的减小,热障涂层的热导率和弹性模量不断减小,而孔隙率越大则说明热导率越低。大量研究表明,相较于 EB-PVD 涂层,APS 涂层的隔热性更好,这是因为 APS 涂层的孔隙率更高,热导率较低[51]。RÄTZER-SCHEIBE 等[52]研究了 EB-PVD PYSZ 的涂层厚度对热导率的影响,结果显示 EB-PVD PYSZ 的涂层厚度很大程度上影响其热导率,即涂层的厚度也是影响热障涂层隔热性能的重要因素之一。宫凯声等[53]的研究结果也表明,在实际涂层应用的厚度范围内,涂层的隔热性能与其厚度及环境温差成正比。尽管热障涂层的隔热性能会随着厚度的增加而增强,但当涂层厚度不断增大到一定值时,涂层中容易引起应力集中,从而提早失效。因此,为了增强涂层的隔热性能和延长其使用寿命,应该对涂层厚度进行合理的调控。

  • 3.2 抗氧化性

  • 在高温氧化条件下,热障涂层中易形成一层 TGO。TGO 对热障涂层的影响[54]具有两面性:一方面,已形成的 TGO 可以阻止氧气继续向内扩散,减少外界对合金基体的氧化等影响;另一方面,随着 TGO 不断增厚,因其弹性模量较大,并且其热膨胀系数与粘结层均存在较大的差异,在冷却过程中也比较容易产生较大的应力,这会使得涂层迅速地脱落。因此,为了延长热障涂层的寿命,提高涂层的抗氧化性迫在眉睫。

  • XIE 等[55]对 TGO 形成和生长行为进行了研究,主要分为两个阶段:先在粘结层上形成一层致密的 α-Al2O3薄膜,随后在陶瓷层与 α-Al2O3之间形成一层多孔的混合氧化物。研究结果表明,使热障涂层产生裂纹的主要物质是 TGO 中多孔的混合氧化物,并非α-Al2O3。LIU 等[56]提出了一种改进的方法,通过对两阶段的应力演变进行数值分析来模拟 TGO 的生长速率,以准确预测热障涂层的寿命。因此,可以通过控制多孔有害混合氧化物的生长速率来有效控制 TGO 的厚度,从而避免热障涂层过早失效。研究表明,采用双陶瓷层热障涂层、在涂层表面沉积保护层、提高涂层表面致密性等方法可以延缓 TGO 的生长,在一定程度上提高涂层的抗氧化性。 AN 等[57]采用 APS 技术制备了两种热障涂层:一是钇铝石榴石 / 钇稳定氧化锆(YAG / YSZ)双陶瓷层热障涂层(DCL TBC),二是 YSZ 单陶瓷层热障涂层 (SCL TBC),并在 1 100℃下进行等温氧化试验来研究 TGO 的形成和生长行为。研究结果显示,TGO 的形成和生长过程遵循热力学定律,如图5 所示:按照式(1)~(8),最先形成 Al2O3,然后 Y 离子氧化在 Al2O3 TGO 表面形成一层极薄的 Y2O3,两者相互反应生成钇铝石榴石 Y3Al5O12;当 Al 离子降低到某特定值时,粘结层中的其他金属元素前后发生氧化形成混合氧化物(Cr2O3、CoO、NiO 和尖晶石氧化物等),先形成 Cr2O3、CoO、NiO,随后(Ni,Co)O 和 Al2O3反应形成(Ni,Co)Al2O4,(Ni,Co)O 和 Cr2O3 反应形成(Ni,Co)Al2O4。与 SCL TBC 相比,DCL TBC 中 TGO 的形成和生长速率较缓慢,因此具有更好的高温抗氧化性能。许世鸣等[58]采用磁控溅射的方法在 7YSZ 涂层表面沉积一层膜,热处理后原位反应生成α-Al2O3层,研究表明涂层表面形成的α-Al2O3层可以通过阻碍氧离子扩散来提高涂层的抗氧化性。FENG 等[59]的研究表明,对 APS YSZ 涂层表面进行激光重熔可以提高涂层的抗氧化性,主要是因为激光重熔能提高涂层的致密性,从而延缓 TGO 的生长。

  • 2[Al]+3[O]α-Al2O3
    (1)
  • 2[Y]+3[O]Y2O3
    (2)
  • Al2O3+3Y2O3Y3Al5O12
    (3)
  • 2[Cr]+3[O]Cr2O3
    (4)
  • [Co]+[O]CoO
    (5)
  • [Ni]+[O]NiO
    (6)
  • Al2O3+(Ni,Co)O(Ni,Co)Al2O4
    (7)
  • Cr2O3+(Ni,Co)O(Ni,Co)Cr2O4
    (8)
  • 图5 SCL TBC 和 DCL TBC 在高温下的氧化机理图[57]

  • Fig.5 Schematic illustration of the formation and growth mechanisms of TGO during the high-temperature oxidation of SCL and DCL TBC [57]

  • 3.3 抗热震性

  • 重型燃气轮机的热端部件在高温环境中服役时,经常承受因温度的快速变化引起的热冲击。因此,可以通过提高热障涂层的抗热震性能来保护合金部件。热障涂层的抗热震性能一般通过进行热循环(热震)试验来检验,先在高温下保温一段时间,然后取出进行空冷 / 水冷即为一次热循环。涂层在高温和低温之间不断循环多次后会发生失效,通过比较涂层失效时所经历的热循环次数来评价热障涂层的抗热震性能。有研究表明,梯度结构热障涂层的抗热震性较好,这主要是因为梯度结构热障涂层的厚度较小,可以延缓涂层中的热应力[60]。ZHANG 等[61]对 NiCrAlY / 7YSZ 热障涂层激光重熔后得到的点、条纹和网格三种形态的热障涂层在 1 000℃下进行热循环试验,对喷涂态试样及经激光处理的三种不同形状的试样的抗热震性进行了研究。结果表明:点状试样的抗热震性最好,热循环寿命是喷涂态试样的两倍;而条纹及网格状试样的抗热震性较喷涂试样差,如图6 所示。此外,大量研究表明,一些新型涂层材料的抗热震性较好,如 ZHOU 等提出的 SrAl12O19 [62]、LIU 等提出的 LaMgAl11O19 [63]及 HUO 等提出的 Sm2(Zr0.7Ce0.32O7 [64]等。因此,为了提高热障涂层的抗热震性,除了对涂层进行结构设计和优化,还可以寻找和开发新型的抗热震性较好的材料。

  • 图6 经热循环试验后几种涂层的截面形貌[61]

  • Fig.6 Cross-sectional morphology of several coatings after thermal shock test[61]

  • 4 燃机热障涂层的抗 CMAS 腐蚀性

  • 受外界环境的影响,重型燃气轮机热端部件(如涡轮叶片)表面经常产生一些环境沉积物,主要来源于海洋环境的熔盐,低级燃料的燃烧产物钒酸盐、硫酸盐及空气中的砂砾、飞灰、跑道碎屑等,这些沉积物对涂层的寿命具有很大的影响,高温下会渗入涂层中,进而引起熔盐腐蚀。因此,熔盐腐蚀在重型燃气轮机热障涂层的实际应用中是难以避免的。

  • 在燃气轮机中,热腐蚀是一种重要的失效形式。主要是燃料中的杂质 S 和一些碱金属在高温燃烧下发生氧化,并与环境中的 NaCl、KCl 等反应形成一些熔盐混合物附着在叶片表面,从而侵蚀叶片,影响叶片寿命。因此,提高涂层的抗热腐蚀性显得极为重要。CHEN 等[65]研究了 Sc2O3 掺杂 YSZ 在 Na2SO4 / V2O5(质量分数 50%∶50%)下的抗热腐蚀性,发现 Sc2O3 含量较高的 ScYSZ 具有较好的抗热腐蚀性。阳颖飞等 [66] 制备了 NiAl 涂层、 NiCoCrAlY 涂层、Pt 改性 NiAl 涂层及 Pt+Hf 共改性 NiAl 涂层等四种典型的粘结层,然后涂覆 Na2SO4 / NaCl(质量分数 75%∶25%)在 900℃下进行热腐蚀试验,结果显示 Pt 改性 NiAl 涂层的抗热腐蚀性最好。CAI 等[67]采用等离子体脉冲电子束 (HCPEB)对 CoCrAlY 粘结层进行辐照并涂覆 Na2SO4 / K2SO4(质量分数 75%∶25%)在 900℃下进行热腐蚀试验,结果显示辐照能促进了涂层中 Al2O3 薄膜的形成,因此提高了 CoCrAlY 涂层的抗热腐蚀性。

  • CMAS 腐蚀[68-70]是在燃气轮机的使用过程中由空气中摄入的砂石、灰尘、火山灰等杂质微粒引起的,这些杂质微粒主要由 CaO、MgO、Al2O3、SiO2 等成分组成,因此称为 CMAS。CMAS 除了具有 CaO、MgO、Al2O3、SiO2等成分外,通常还包含少量其他成分,如 Fe2O3和 MgO 等,故 CMAS 的成分比较复杂。并且,研究发现 CMAS 的成分受位置、环境、气候等外界因素的影响会发生变化,导致其熔点也随之改变,通常位于一个区间(1 150~1 250℃)内[70-72]

  • 4.1 CMAS 腐蚀机理

  • CMAS 对热障涂层的危害很大,严重影响了涂层的寿命,如图7 所示。低温下,沉积物 CMAS 附着在涡轮叶片的热障涂层上,不断撞击涂层,使涂层磨损甚至失效[72-73];高温下 CMAS 发生熔化,对 YSZ 热障涂层的影响主要分为两方面,即热化学和热机械作用。

  • 图7 近东沙漠涡轮轴护罩后缘陶瓷层经 CMAS 腐蚀后的横截面[70]

  • Fig.7 Cross-section image of a ceramic coating from the trailing edge of the turbo-shaft shroud from the desert Near East after CMAS corrosion

  • 热机械方面[74-75]:CMAS 熔化后,在毛细管作用下渗入陶瓷层中,在冷却后凝固,进而填充了涂层的孔隙和裂纹,导致涂层变得更加致密。涂层的致密化造成了以下四个方面的损害:第一,降低涂层的应力容限,增大涂层的杨氏模量[76],加速涂层的剥落失效;第二,降低涂层的孔隙率,提高涂层的热导率[77],导致隔热性能下降;第三, CMAS 渗透区域与未渗透区域之间的热膨胀系数存在较大差异,冷却过程中会促进涂层产生热应力,加速涂层剥落;第四,增大涂层的硬度[78],降低涂层的绝缘性能。

  • 热化学方面[6979]:高温下 CMAS 渗入陶瓷层中,主要通过溶解-再沉淀对涂层进行腐蚀,即 CMAS 与陶瓷层反应,使 YSZ 溶解于 CMAS,随后重新沉淀出来,形成新的晶体。一方面,溶解过程中破坏了 YSZ 晶粒中的 Y-O 和 Zr-O 键,导致 Y 和 Zr 的扩散速率增大,又因为 Y 离子比 Zr 的扩散系数大[80-81],这使得YSZ晶粒中分离出来了更多的Y,进而导致一些晶粒中的 Y 含量较低;另一方面,由于 Y2O3在熔融 CMAS 中的溶解度比 ZrO2[82],即 CMAS 与 YSZ 反应消耗更多 Y2O3,故重新沉淀的晶体中 ZrO2含量高、Y2O3 含量极少。因此,这些 Y 含量较少的 YSZ 晶体因缺乏稳定剂导致相稳定性降低,由 t 相转变为 m 相,引起涂层内 3%~5%的体积变化,进而改变涂层中的应力分布,促使涂层失效;且不同区域的反应程度不同,生成的产物具有差异性,导致热膨胀系数、弹性模量等热物理性能不同,加剧热机械失效,从而使涂层提前失效。

  • 4.2 CMAS 腐蚀防护

  • 近年来,随着全球工业的发展,重型燃气轮机的燃气进口温度不断提高,已经超过了 CMAS 的熔点,致使燃气轮机中的 CMAS 腐蚀问题愈加严重,严重威胁热障涂层的寿命,引起了世界各国研究人员愈来愈广泛的关注。因此,研究 CMAS 腐蚀问题并努力提高热障涂层的抗CMAS腐蚀性具有重大意义。为了增强热障涂层的抗 CMAS 腐蚀性,科研人员主要对陶瓷层在五个方向上进行了大量的研究,即开发新型陶瓷层材料、对陶瓷层材料进行掺杂改性、在陶瓷层表面制备防护层、设计双层陶瓷层结构以及对陶瓷层表面进行优化处理等。

  • 4.2.1 新型陶瓷层材料

  • 稀土锆酸盐(RE2Zr2O7[83-84]的优点是熔点高、热导率低、相稳定性好,作为热障涂层候选材料是一种较好的选择,抗 CMAS 腐蚀性较好。KRÄMER 等[85]采用 EB-PVD 在 Al2O3 陶瓷基体上制备一层 Gd2Zr2O7(GZO),并在 1 300℃下进行 4 h 的 CMAS 腐蚀试验。首先提出 Gd2Zr2O7 陶瓷层具有较好的抗 CMAS 腐蚀性,并提出 GZO 溶解到 CMAS 中,相比于对熔体粘度的影响,对促进熔体结晶的影响更重要,即 GZO 通过促进 CMAS 结晶抑制渗透。如图8 所示,明显可以看出相较于 YSZ 涂层,Gd2Zr2O7 涂层在 CMAS 腐蚀下的损伤较小。WANG 等[86]通过将 Sm2Zr2O7粉末均匀地撒在 CMAS 玻璃表面(质量比为 1∶10),在 1 350℃下热处理以研究 Sm2Zr2O7 与 CMAS 的产物。结果发现:尽管 Sm2Zr2O7 具有较好的抗 CMAS 性,但当 CMAS 过量的情况下,Sm2Zr2O7 与 CMAS 反应形成的结晶产物 Sm-磷灰石相(Ca2Sm8(SiO46O2)会不断减少直至消失,破坏了反应层的致密结构,从而不能达到阻碍 CMAS 渗透的作用。

  • 图8 比较 YSZ 涂层与 Gd2Zr2O7涂层在 CMAS 下所受的损伤[87]

  • Fig.8 Comparison of typical distress of YSZ coating and Gd2Zr2O7 coating under CMAS[87]

  • 稀土磷酸盐(REPO4)也是一种抗 CMAS 腐蚀性良好的陶瓷材料。GUO 等[88]采用 APS 制备独立的 GdPO4 涂层,在 1 250℃下热处理以观察涂层内组织变化及微观结构的变化。结果发现:腐蚀后的涂层内形成一层由磷灰石相、钙长石(CaAl2Si2O8)、尖晶石相(MgAl2O4)组成的致密的反应层,可以阻碍 CMAS 的继续渗透。

  • 除此之外,还有如 La2Ce2O7 [89]、RE2Si2O7 [90]、 Ti2AlC[91]等抗 CMAS 腐蚀性较好的陶瓷材料。TAN 等[92]通过固相烧结法制备了 Hf6Ta2O17陶瓷层材料,并对 Hf6Ta2O17和 8YSZ 热障涂层的 CMAS 腐蚀行为进行了比较研究。研究结果显示:Hf6Ta2O17的抗CMAS 腐蚀性比 8YSZ 更好,当 CMAS 开始渗透时, Hf6Ta2O17 表面会形成反应层和致密层,可以防止熔融的 CMAS 进一步渗透。

  • 4.2.2 对热障涂层材料进行掺杂改性

  • 众所周知,稀土锆酸盐、稀土磷酸盐等新型陶瓷材料的断裂韧性较差,因此抗热震性能不足;通常在稀土锆酸盐中掺杂稀土磷酸盐来改善材料的断裂韧性,提高其综合性能。LI 等[93]采用 APS 技术制备了 30 wt.% LaPO4 掺杂 Gd2Zr2O7 的热障涂层(Gd2Zr2O7-LaPO4),并在涂层微观结构中嵌入纳米区,然后将试样在 1 250℃下进行了 CMAS 腐蚀试验研究涂层的抗 CMAS 腐蚀性。结果表明, Gd2Zr2O7-LaPO4 热障涂层由于具有纳米结构而拥有较好的抗 CMAS 腐蚀性,因为 Gd2Zr2O7-LaPO4 热障涂层和CMAS反应会形成一层致密的反应层来阻碍 CMAS 继续渗透,并且纳米区能够聚集熔融的 CMAS 来增强涂层的抗 CMAS 腐蚀性,如图9 所示。 LYU 等[94]采用 APS 制备 La2Zr2O7掺杂 YSZ 涂层,并在 1 250℃下进行腐蚀试验。结果显示:与 YSZ 涂层和 LZ 涂层相比,抗 CMAS 腐蚀性最好的是 LZ 掺杂 YSZ 的热障涂层。FAN 等[95]采用超音速大气等离子喷涂制备 Sc2O3 掺杂 YSZ(ScYSZ)热障涂层,然后在 1 320℃下进行 CMAS 腐蚀试验。结果显示:与 YSZ 涂层相比,ScYSZ 的相稳定性更好且抗 CMAS 腐蚀性更好,为了更大程度地提高涂层的抗 CMAS 腐蚀性,可以通过提高 ScYSZ 涂层的致密性能来实现。另外,大量研究表明,Al2O3、TiO2 掺杂改性 YSZ 涂层[96-98]也具有较好的抗 CMAS 腐蚀性。

  • 图9 CMAS 渗入 Gd2Zr2O7-LaPO4涂层纳米区周围的截面形貌[93]

  • Fig.9 Cross-sectional image around the CMAS infiltrated nanozones in the Gd2Zr2O7-LaPO4 coating after 8 h CMAS corrosion at 1 250℃[93]

  • 由此可得,新型陶瓷材料以及掺杂改性陶瓷材料的抗 CMAS 腐蚀机理:高温下 CMAS 渗透到涂层内,涂层内的稀土元素扩散到 CMAS 中,促进磷灰石相的形成,消耗了较多的 Ca 和 Si,导致 CMAS 沉积物中 Al 和 Mg 局部富集,使 CMAS 玻璃的成分从“难以结晶”的成分[71]转变为“可结晶”的成分,即促进 CMAS 结晶,如图10 所示。由此导致 CaAl2Si2O8和 MgAl2O4的形成。一方面,与 CMAS 反应消耗了部分 CMAS 熔体,且填充了部分孔隙,由此形成了由腐蚀产物组成的致密反应层,进而使得 CMAS 的进一步渗透被阻碍;另一方面,形成的腐蚀产物磷灰石、钙长石等晶体具有较高熔点,降低了 CMAS 的流动性,从而延缓了 CMAS 腐蚀。

  • 图10 CaO-Al2O2-SiO2(wt.%)三元相图 (箭头表示 CMAS 的成分变化)[71]

  • Fig.10 CaO-Al2O2-SiO2 (wt.%) ternary phase diagram showing composition of the simulated CMAS glass, and the psuedowollastonite and anorthite field. (The arrow indicates composition shift in the CMAS glass) [71]

  • 涂层的抗 CMAS 腐蚀性主要取决于 CMAS 的渗透速率和反应层的形成速率。只有当反应层的形成速率大于 CMAS 渗透速率时,才能抑制 CMAS渗透。例如:传统的YSZ与CMAS反应形成m-ZrO2,但由于溶解–再沉淀过程太缓慢,即反应层的形成速率较慢,无法形成致密的反应层,故不能阻碍 CMAS 渗透;而新型陶瓷层和改性涂层的抗 CMAS 腐蚀性较好是因为能迅速和 CMAS 反应,形成致密的结晶层,即反应层的形成速率大于 CMAS 渗透速率。

  • 4.2.3 陶瓷层表面制备防护层

  • RAI 等[99]提出防护涂层主要包括三种,即牺牲性、不渗透性和不润湿性涂层。其中,牺牲性涂层指防护涂层先与 CMAS 反应形成反应产物以提高 CMAS 熔点或黏度,从而延缓 CMAS 渗透。例如: Al2O3、MgO、CaO、Sc2O2、SiO2、MgAlO4 及其混合物;不渗透性涂层主要指具有致密结构、无裂纹和孔隙的涂层,CMAS 熔体难以渗入涂层;Pd-Ag (80 wt.%~20 wt.%)、Pd、Pt、SiC、SiO2、Ta2O5、 CaZrO3、MgAlO4、SiOC 及其混合物;不润湿性涂层指防护涂层对 CMAS 熔体具有不润湿性,即通过避免和 CMAS 接触从而延缓腐蚀;Pd-Ag(80 wt.%~20 wt.%)、Pd、Pt、AlN、BN、SiC、MoSi2、SiO2、 ZrSiO4、SiOC 及其混合物[100-102]。MOHAN 等[103] 采用电泳沉积(EPD)在 APS YSZ 涂层上制备一层 Al2O3,在 1 200℃下进行烧结,并在 1 300℃下进行 CMAS 腐蚀试验。结果发现:CMAS 与 Al2O3反应结晶形成钙长石和尖晶石相,从而阻碍 CMAS 的渗透。LIU 等[104]通过 EB-PVD 制备 YSZ 热障涂层,并采用多弧离子镀在涂层表面沉积具有不润湿性和不渗透性的 Pt 层,将试样在 1 250℃下进行 CMAS 腐蚀试验并对腐蚀过程中 YSZ 涂层的微观结构变化进行研究。结果显示:Pt 层一定程度上能提高热障涂层的抗 CMAS 腐蚀性,但长时间腐蚀后,Pt 层会溶解变薄,从而失去保护性,如图11 所示。

  • 4.2.4 双层陶瓷层结构

  • 新型陶瓷材料的抗 CMAS 腐蚀性较好、断裂韧性较差,而 YSZ 的抗 CMAS 腐蚀性较差、断裂韧性较好,一般在 YSZ 层表面制备一层新型陶瓷层,从而形成双陶瓷层结构,以此增强热障涂层的综合性能。杨乐馨等[105]和 OZGURLUK 等[106]分别采用 APS、EB-PVD 制备 La2Zr2O7 / 8YSZ(LZ-YSZ)双陶瓷层热障涂层,在高温下进行 CMAS 腐蚀试验,并与 YSZ 涂层进行对比。结果显示:与 YSZ 单陶瓷热障涂层相比,LZ-YSZ 双陶瓷层热障涂层因 LZ 层与CMAS反应生成的由磷灰石相组成的致密层能够阻碍熔融 CMAS 进一步渗入涂层,且 LZ 层可以作为牺牲层保护底部的 YSZ 涂层,故抗 CMAS 腐蚀性更好。

  • 图11 1 250℃下 CMAS 腐蚀 8h 后的热障涂层[104]

  • Fig.11 Pt-coated YSZ TBC after CMAS attack at 1 250℃ for 8 h[104]

  • 4.2.5 对涂层表面进行优化处理

  • 有研究表明,采用抛光、激光改性[107-108]等方式可对热障涂层表面进行优化处理,即降低涂层的表面粗糙度能提高涂层的抗 CMAS 腐蚀性。GUO 等[109] 通过对制备好的块体和抛光后的 YSZ、GdPO4 和 LaPO4块体在 1 250℃下进行 1 h 和 4 h 的 CMAS 腐蚀试验,比较表面粗糙度对 CMAS 熔体的润湿性和扩散性的影响。结果发现,与未抛光的试样相比,抛光后的试样中 CMAS 熔体的润湿性和扩散面积更小,可能是因为抛光后的试样表面更光滑,V 槽数量更少,减少了毛细管作用[110],使 CMAS 不易渗透。故得出结论:提高涂层的抗 CMAS 腐蚀性可以通过降低涂层表面粗糙度来实现。YAN 等[111]通过优化激光参数,在 APS YSZ 涂层表面沉积一层 25 um 的釉层,并对激光改性涂层和未改性涂层进行 CMAS 腐蚀试验。研究显示,激光改性涂层的相稳定性和完整性更好,几乎不发生降解,但激光釉层引入了垂直裂纹,加速了底部未改性涂层的腐蚀,如图12 所示,因此需要进一步优化激光参数。如图13 所示,GUO 等[112]采用脉冲 Nd:YAG 激光器在 APS YSZ 涂层表面设计了具有分叉交错柱状裂纹的双层釉层结构,涂覆 CMAS 在 1 250℃下进行热处理,并与具有单层釉层结构的涂层对比。结果显示:与具有单层釉层的涂层相比,具有双层釉层结果的YSZ 涂层的抗 CMAS 腐蚀性能更好。分析原因可知:双层釉层结构使两层激光釉层中的裂纹交错,间接阻止了 CMAS 的穿透;同时因保留了裂纹,增大涂层的应变容限,有利于涂层的抗热震性能等。 ZHANG 等[113]提出一种 Al2O3 改性技术可以提高涂层的抗 CMAS 腐蚀性,即采用磁控溅射在 7YSZ 涂层表面沉积一层 Al 膜并真空热处理以形成具有微 / 纳米颗粒的 Al2O3层,然后在 CMAS 下进行热循环试验。结果显示,相较于未改性涂层,Al2O3 改性涂层完整性更好,未发生剥落;且热处理过程中 CMAS 在 Al2O3 改性涂层表面的接触角更大。因此,Al2O3 改性涂层具有更好的抗 CMAS 腐蚀性。

  • 图12 激光改性涂层经 CMAS 腐蚀后的截面形貌及对应的 EDS 映射结果[111]

  • Fig.12 Cross-sectional image of the laser modified coating after CMAS corrosion and the corresponding EDS mapping results[111]

  • 图13 单层激光釉层涂层和双层激光釉层涂层的截面形貌[112]

  • Fig.13 Cross-sectional image of single laser-glazed layer coatings and double laser-glazed layer coatings[112]

  • 综上,通过开发新型陶瓷材料、优化设计涂层结构、对涂层进行掺杂改性在一定程度上能延缓涂层的 CMAS 腐蚀,从而减少涂层过早失效的情况。另外,MORELLI 等[114]通过不同热障涂层制备技术及不同纯度的粉末制备了四种 YSZ 涂层,即 APS 和普通纯度制备的涂层、APS 和高纯度粉末制备的涂层、APS 和高纯度粉末制备的具有致密垂直裂纹 (DVC)涂层、悬浮等离子喷涂(SPS)和高纯度粉末制备的涂层,然后在 1 250℃下进行 CMAS 腐蚀试验。结果发现,高纯度粉末制备的涂层抗 CMAS 腐蚀性更好,分析原因可知,涂层粉末纯度(涂层中的杂质)影响 YSZ 的稳定性,进而影响抗腐蚀性; 而 SPS 涂层的抗 CMAS 腐蚀性最差,说明 SPS 不适合应用于抗 CMAS 腐蚀涂层的制备。但在实际应用中,因涂层存在因热膨胀系数失配而发生剥落等潜在问题,这些方法只能在短时间内有效。因此,研究人员应该继续努力开发出新的在热障涂层实际工况下能有效延缓 CMAS 腐蚀的方法,热障涂层制造商和科研机构也需要加大对热障涂层CMAS腐蚀方面研究的投入。

  • 5 结论与展望

  • 通过对地面重型燃气轮机及其热障涂层研究进展及发展趋势的分类疏理,可以得出以下结论:

  • (1)与发达国家相比,我国重型燃气轮机在制造技术水平及维修水平上仍存在较大差距,未来将朝着高参数、高性能、低污染、大型化进行发展。

  • (2)一般情况下,热障涂层首选双层结构形式,材料首选 8YSZ 和 MCrAlY,制备工艺首选 APS。

  • (3)尽管热障涂层已经得到了广泛的应用,然而随着工业的迅猛发展,传统的热障涂层已经达不到下一代重型燃气轮机的服役要求,提高热障涂层的性能成为当前的重点课题。

  • (4)热障涂层的材料、结构以及制备工艺对性能的提高至关重要。为了确保重型燃气轮机能在更高温度下长时间安全运作,应该继续寻找、设计和开发具有低热导率、抗氧化性、抗热震性及抗腐蚀性能好的新型热障涂层材料;加大对热障涂层的结构设计研究的投入,调控热障涂层的结构参数;改进和发展新的热障涂层制备工艺等。

  • 除此之外,对热障涂层在恶劣复杂的服役环境下的失效机理的探究也至关重要。随着信息技术的快速发展,未来可以从以下几个方面进行:

  • (1)采用数值计算的方法,如第一性原理计算涂层材料的性能,并结合表征技术建立性能数据库,以此来设计具有优良性能的新型涂层材料;有限元模拟计算涂层内残余应力分布和裂纹扩展规律,预测涂层的失效形式、失效位置和服役寿命;

  • (2)采用机器学习进行挖掘和分析数据,建立涂层成分、工艺参数和性能之间的关系,可以优化热障涂层的制备工艺参数,进而优化热障涂层的结构及其性能;

  • (3)采用无损检测技术,如声发射技术和数字图像相关技术(digital image correlation,DIC)实时监测涂层的失效过程,判断涂层的失效原因; Micro-CT 技术分析涂层的失效行为,对涂层进行质量评估等。

  • 总之,结合数值计算、机器学习、无损检测技术以及大数据分析等手段对热障涂层进行研究,可以更加清楚地了解涂层的失效形式、探究涂层的失效机理并预测涂层的服役寿命。在此基础上再对热障涂层的结构进行优化、改善热障涂层的性能、开发性能更加优良的新型涂层材料,使其能满足于下一代燃气轮机的要求,并在复杂的工作环境下服役更长时间。

  • 参考文献

    • [1] 汪超,周鑫,解旭阳,等.重型燃气轮机新型热障涂层研究[C]//第二十一届国际热喷涂研讨会(ITSS'2018)暨第二十二届全国热喷涂年会(CNTSC’2018)论文集,2018-09-25,天津.2018:66-76.WANG Chao,ZHOU Xin,XIE Xuyang,et al.Study on new thermal barrier coatings for heavy duty gas turbines [C]//Proceedings of the 21st International Thermal Spraying Symposium(ITSS’ 2018)and the 22nd National Thermal Spraying Annual Conference(CNTSC’ 2018),2018-09-25,Tianjin.2018:66-76.(in Chinese)

    • [2] 王博,刘洋,王福德,等.航空发动机及燃气轮机涡轮叶片热障涂层技术研究及应用[J].航空发动机,2021(S1):25-31.WANG Bo,LIU Yang,WANG Fude,et al.Research and application of thermal barrier coating technology for aero-engine and gas turbine blades[J].Aeroengine,2021(S1):25-31.(in Chinese)

    • [3] GHIGLIAZZA F,TRAVERSO A,MASSARDO A F.Thermoeconomic impact on combined cycle performance of advanced blade cooling systems[J].Applied Energy,2009,86(10):2130-2140.

    • [4] 崔耀欣,汪超,何磊,等.重型燃气轮机先进热障涂层研究进展[J].航空动力,2019(2):66-69.CUI Yaoxin,WANG Chao,HE Lei,et al.The development of advanced thermal barrier coating for heavy duty gas turbines[J].Aerospace Power,2019(2):66-69.(in Chinese)

    • [5] GLEESON B.Thermal barrier coatings for aeroengine applications[J].Journal of Propulsion and Power,2006,22(2):375-383.

    • [6] LIU Q,HUANG S,HE A.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J].Journal of Materials Science & Technology,2019,35(12):2814-2823.

    • [7] 吕伯文,江鹏,李定骏,等.重型燃气轮机高温叶片热障涂层烧结问题研究进展[J].中国材料进展,2020,39(11):855-870.LV Bowen,JIANG Peng,LI Dingjun,et al.Advances on the sintering of thermal barrier coatings for high temperature blades of industrial gas turbines[J].Materials China,2020,39(11):855-870.(in Chinese)

    • [8] 蒋洪德,任静,李雪英,等.重型燃气轮机现状与发展趋势[J].中国电机工程学报,2014,34(29):5096-5102.JIANG Hongde,REN Jing,LI Xueying,et al.Status and development trend of heavy duty gas turbines[J].Proceedings of the CSEE,2014,34(29):5096-5102.(in Chinese)

    • [9] 孔祥林,田晓晶,程国强,等.中国首台F级 50 MW 重型燃气轮机的自主研制[J].天然气工业,2020,40(12):12-17.KONG Xianglin,TIAN Xiaojing,CHENG Guoqiang,et al.Independent development of first F-class 50 MW heavy duty gas turbine in China[J].Natural Gas Industry,2020,40(12):12-17.(in Chinese)

    • [10] 刘帅,刘玉春.重型燃气轮机发展现状及展望[J].电站系统工程,2018,34(5):61-63.LIU Shuai,LIU Yuchun.Development status and prospect of heavy duty gas turbines[J].Power System Engineering,2018,34(5):61-63.(in Chinese)

    • [11] 汪超,周鑫,解旭阳,等.重型燃气轮机用 La2(Zr0.7Ce0.3)2O7/YSZ 双层热障涂层热循环性能研究[J].热喷涂技术,2019,11(3):14-21.WANG Chao,ZHOU Xin,XIE Xuyang,et al.Research on thermal cycling performance of La2(Zr0.7Ce0.3)2O7/YSZ double-layer thermal barrier coatings for heavy duty gas turbines[J].Thermal Spray Technology,2019,11(3):14-21.(in Chinese)

    • [12] 伍赛特.重型燃气轮机研究现状与技术发展趋势展望 [J].机电产品开发与创新,2019,32(2):65-67.WU Saite.Research status and technology development trend of heavy duty gas turbines[J].Development & Innovation of Machinery & Electrical Products,2019,32(2):65-67.(in Chinese)

    • [13] MAUER G,VAßEN R.Coatings with columnar microstructures for thermal barrier applications[J].Advanced Engineering Materials,2020,22(6):1900988.

    • [14] LASHMI P G,ANANTHAPADMANABHAN P V,UNNIKRISHNAN G,et al.Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems[J].Journal of the European Ceramic Society,2020,40(8):2731-2745.

    • [15] MAHADE S,JONNALAGADDA K P,CURRY N,et al.Engineered architectures of gadolinium zirconate based thermal barrier coatings subjected to hot corrosion test[J].Surface & Coatings Technology,2017,328:361-370.

    • [16] JIANG C,LI S,LIU H,et al.Effect of Hf addition in(Ni,Pt)Al bond coat on thermal cycling behavior of a thermal barrier coating system at 1 100 ℃[J].Corrosion Science,2020,166:108424.

    • [17] SCHMITT-THOMAS K G,DIETL U.Thermal barrier coatings with improved oxidation resistance[J].Surface and Coatings Technology,1994,68:113-115.

    • [18] FENG Y,DONG T,LI G,et al.High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J].Journal of Alloys and Compounds,2020,828:154266.

    • [19] ŁATKA L,PAWŁOWSKI L,WINNICKI M,et al.Review of functionally graded thermal sprayed coatings[J].Applied Sciences,2020,10(15):5153.

    • [20] LI F,XIE Y,YANG L,et al.Study on cyclic thermal corrosion behavior of APS-7YSZ thermal barrier coating at room-and high temperature[J].Ceramics International,2021,47(20):29490-29498.

    • [21] MEHBOOB G,LIU M J,XU T,et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J].Ceramics International,2020,46(7):8497-8521.

    • [22] WU S,ZHAO Y,LI W,et al.Research progresses on ceramic materials of thermal barrier coatings on gas turbine[J].Coatings,2021,11(1):79.

    • [23] 杨丽.先进热障涂层的强韧和破坏机制的标准规范研究[J].湘潭大学学报(自然科学版),2020,42(3):1-12.YANG Li.Research on the standard specification for the toughness and failure mechanism of advanced thermal barrier coatings[J].Journal of Xiangtan University(Natural Science Edition),2020,42(3):1-12.(in Chinese)

    • [24] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.

    • [25] THAKARE J G,PANDEY C,MAHAPATRA M M,et al.Thermal barrier coatings—A state of the art review[J].Metals and Materials International,2021,27(7):1947-1968.

    • [26] LAKIZA S M,GRECHANYUK M I,RUBAN O K,et al.Thermal barrier coatings:current status,search,and analysis[J].Powder Metallurgy and Metal Ceramics,2018,57(1):82-113.

    • [27] SONG D,SONG T,PAIK U,et al.Hot-corrosion resistance and phase stability of Yb2O3–Gd2O3–Y2O3 costabilized zirconia-based thermal barrier coatings against Na2SO4 + V2O5 molten salts[J].Surface and Coatings Technology,2020,400:126197.

    • [28] GUO L,ZHANG C,LI M,et al.Hot corrosion evaluation of Gd2O3-Yb2O3 co-doped Y2O3 stabilized ZrO2 thermal barrier oxides exposed to Na2SO4 + V2O5 molten salt[J].Ceramics International,2017,43(2):2780-2785.

    • [29] GUO L,LI M,YE F.Phase stability and thermal conductivity of RE2O3(RE= La,Nd,Gd,Yb)and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics[J].Ceramics International,2016,42(6):7360-7365.

    • [30] LIU Y,GAO Y F,TAO S Y,et al.La2O3-modified YSZ coatings:High-temperature stability and improved thermal barrier properties[J].Surface and Coatings Technology,2009,203(8):1014-1019.

    • [31] KHAN M,ZENG Y,LAN Z,et al.Reduced thermal conductivity of solid solution of 20% CeO2 + ZrO2 and 8% Y2O3 + ZrO2 prepared by atmospheric plasma spray technique[J].Ceramics International,2019,45(1):839-842.

    • [32] CHEN D,WANG Q,LIU Y,et al.Microstructure,thermal characteristics,and thermal cycling behavior of the ternary rare earth oxides(La2O3,Gd2O3,and Yb2O3)co-doped YSZ coatings[J].Surface and Coatings Technology,2020,403:126387.

    • [33] 李嘉,谢铮,何箐,等.Gd2O3-Yb2O3-Y2O3-ZrO2热障涂层材料的热物理性能[J].表面技术,2015,44(9):18-22,42.LI Jia,XIE Zheng,HE Qing,et al.Thermophysical properties of Gd2O3-Yb2O3-Y2O3-ZrO2 thermal barrier coating materials[J].Surface Technology,2015,44(9):18-22,42.(in Chinese)

    • [34] DUAN W,SONG P,LI C,et al.Effect of water vapor on the failure behavior of thermal barrier coating with Hf-doped NiCoCrAlY bond coating[J].Journal of Materials Research,2019,34(15):2653-2663.

    • [35] YU C,LIU H,JIANG C,et al.Modification of NiCoCrAlY with Pt:Part II.Application in TBC with pure metastable tetragonal(t')phase YSZ and thermal cycling behavior[J].Journal of Materials Science & Technology,2019,35(3):350-359.

    • [36] GHADAMI F,ZAKERI A,AGHDAM A S R,et al.Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings[J].Surface and Coatings Technology,2019,373:7-16.

    • [37] 阳颖飞,任盼,鲍泽斌,等.四种典型高温防护涂层的抗氧化性能[J].表面技术,2020,49(1):49-55,102.YANG Yingfei,REN Pan,BAO Zebin,et al.Antioxidant properties of four typical high temperature protective coatings[J].Surface Technology,2020,49(1):49-55,102.(in Chinese)

    • [38] 邱琳.热障涂层粘结层成分优化设计研究[D].上海:上海交通大学,2014.QIU Lin.Study on composition optimization design of bond coat in thermal barrier coatings[D].Shanghai:Shanghai Jiao Tong University,2014.(in Chinese)

    • [39] LI J,WEI L,HE J,et al.The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy[J].Journal of Materials Science & Technology,2020,58:63-72.

    • [40] SAHITH M S,GIRIDHARA G,KUMAR R S.Development and analysis of thermal barrier coatings on gas turbine blades — A review[J].Materials Today:Proceedings,2018,5(1):2746-2751.

    • [41] ZHANG X,DENG Z,LI H,et al.Al2O3-modified PS-PVD 7YSZ thermal barrier coatings for advanced gas-turbine engines[J].npj Materials Degradation,2020,4(1):1-6.

    • [42] WEE S,DO J,KIM K,et al.Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines[J].Applied Sciences,2020,10(16):5476.

    • [43] WU S,ZHAO Y,LI W,et al.Research progresses on ceramic materials of thermal barrier coatings on gas turbine[J].Coatings,2021,11(1):79.

    • [44] USTINOV A I,POLISHCHUK S S,DEMCHENKOV S A,et al.Formation of thin foils of high-entropy CrFeCoNiCu alloys by EB-PVD process[J].Surface and Coatings Technology,2020,403:126440.

    • [45] 吴硕,赵远涛,李文戈,等.氧化锆基双陶瓷层热障涂层表层材料研究进展[J].表面技术,2020,49(9):101-108.WU Shuo,ZHAO Yuantao,LI Wenge,et al.Research progress on top coating materials of thermal barrier coatings with double-ceramic-layer based on zirconia[J].Surface Technology,2020,49(9):101-108.(in Chinese)

    • [46] ZHANG B,SONG W,WEI L,et al.Novel thermal barrier coatings repel and resist molten silicate deposits[J].Scripta Materialia,2019,163:71-76.

    • [47] CHEN D,DAMBRA C,DORFMAN M.Process and properties of dense and porous vertically-cracked yttria stabilized zirconia thermal barrier coatings[J].Surface and Coatings Technology,2020,404:126467.

    • [48] 刘延宽,许婧,李尧,等.Eu3+ 掺杂对YSZ热障涂层隔热性能与涂层界面断裂韧性的影响研究[J].稀有金属材料与工程,2021,50(5):1699-1705.LIU Yankuan,XU jing,LI Yao,et al.Effect of Eu3+ doping on thermal insulation property and interfacial fracture toughness of YSZ thermal barrier coatings[J].Rare Metal Materials and Engineering,2021,50(5):1699-1705.(in Chinese)

    • [49] QIAO X,WANG Y M,WENG W X,et al.Influence of pores on mechanical properties of plasma sprayed coatings:Case study of YSZ thermal barrier coatings[J].Ceramics International,2018,44(17):21564-21577.

    • [50] SUN F,FAN X,ZHANG T,et al.Numerical analysis of the influence of pore microstructure on thermal conductivity and Young’s modulus of thermal barrier coating[J].Ceramics International,2020,46(15):24326-24332.

    • [51] NICHOLLS J R,LAWSON K J,JOHNSTONE A,et al.Methods to reduce the thermal conductivity of EB-PVD TBCs[J].Surface and Coatings Technology,2002,151:383-391.

    • [52] RÄTZER-SCHEIBE H J,SCHULZ U,KRELL T.The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings[J].Surface and Coatings Technology,2006,200(18-19):5636-5644.

    • [53] 宫声凯,邓亮,毕晓方,等.陶瓷热障涂层的隔热效果研究[J].航空学报,2000(S1):75-79.GONG Shengkai,DENG Liang,BI Xiaofang,et al.Thermal barrier effect of ceramic thermal barrier coatings[J].Acta Aeronautica ET Astronautica Sinica,2000(S1):75-79.(in Chinese)

    • [54] CHEN W R,WU X,MARPLE B R,et al.The growth and influence of thermally grown oxide in a thermal barrier coating[J].Surface and Coatings Technology,2006,201(3-4):1074-1079.

    • [55] XIE F,SUN Y,LI D,et al.Modelling of catastrophic stress development due to mixed oxide growth in thermal barrier coatings[J].Ceramics International,2019,45(9):11353-11361.

    • [56] LIU P,JIANG P,SUN Y,et al.Numerical Analysis of stress evolution in thermal barrier coating system during two-stage growth of heterogeneous oxide[J].Ceramics International,2021,47(10):14311-14319.

    • [57] AN G,LI W,FENG L,et al.Isothermal oxidation and TGO growth behaviors of YAG/YSZ double-ceramiclayer thermal barrier coatings[J].Ceramics International,2021,47(17):24320-24330.

    • [58] XU Shiming,ZHANG Xiaofeng,LIU Min,et al.Oxidation resistance of Al-modified APS 7YSZ thermal barrier coating[J].Materials Reports,2019,33(2):283-287.

    • [59] FENG Y,DONG T,LI G,et al.High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J].Journal of Alloys and Compounds,2020,828:154266.

    • [60] ZHANG Y,GUO L,ZHAO X,et al.Effects of non-stoichiometry on the mechanical properties of Nd2−xZr2+xO7+x/2(x= 0,0.1,0.2,0.3,0.4,0.5)ceramics[J].Materials Letters,2014,136:157-159.

    • [61] ZHANG P,LI F,ZHANG X,et al.Thermal shock resistance of thermal barrier coatings with different surface shapes modified by laser remelting[J].Journal of Thermal Spray Technology,2019,28(3):417-432.

    • [62] ZHOU X,SONG W,YUAN J,et al.Thermophysical properties and cyclic lifetime of plasma sprayed SrAl12O19 for thermal barrier coating applications[J].Journal of the American Ceramic Society,2020,103(10):5599-5611.

    • [63] LIU F,SONG W,ZHOU X,et al.Microstructures,thermophysical properties and thermal cycling behavior of LaZnAl11O19 thermal barrier coatings deposited by atmospheric plasma spraying[J].Inorganic Chemistry Frontiers,2019,6(11):3302-3314.

    • [64] HUO P,SONG W,ZHOU X,et al.Microstructures and properties of Sm2(Zr0.7Ce0.3)2O7/8YSZ double-ceramiclayer thermal barrier coatings deposited by atmospheric plasma spraying[J].Journal of Thermal Spray Technology,2019,28:986-999.

    • [65] CHEN C,LIANG T,GUO Y,et al.Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4 + V2O5 molten salts at 1 000 ℃ [J].Corrosion Science,2019,158:108094.

    • [66] 阳颖飞,任盼,鲍泽斌,等.热障涂层体系典型黏结层的抗热腐蚀性能[J].航空制造技术,2020,63(14):34-40,47.YANG Yingfei,REN Pan,BAO Zebin,et al.Hot corrosion resistance of typical bonding layer of thermal barrier coating system[J].Aeronautical Manufacturing Technology,2020,63(14):34-40,47.(in Chinese)

    • [67] CAI J,GAO C,LV P,et al.Hot corrosion behaviour of thermally sprayed CoCrAlY coating irradiated by high-current pulsed electron beam[J].Journal of Alloys and Compounds,2019,784:1221-1233.

    • [68] SMIALEK J L.The chemistry of Saudi Arabian sand:a deposition problem on helicopter turbine airfoils[C]//Gordon Conference on Corrosion,July 14,1991,New London,New Hampshire.1991.

    • [69] KRÄMER S,YANG J,LEVI C G,et al.Thermochemical interaction of thermal barrier coatings with molten CaO– MgO–Al2O3–SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167-3175.

    • [70] BOROM M P,JOHNSON C A,PELUSO L A.Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J].Surface and Coatings Technology,1996,86:116-126.

    • [71] AYGUN A,VASILIEV A L,PADTURE N P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Materialia,2007,55(20):6734-6745.

    • [72] NICHOLLS J R,DEAKIN M J,RICKERBY D S.A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings[J].Wear,1999,233:352-361.

    • [73] EVANS A G,FLECK N A,FAULHABER S,et al.Scaling laws governing the erosion and impact resistance of thermal barrier coatings[J].Wear,2006,260(7-8):886-894.

    • [74] MERCER C,FAULHABER S,EVANS A G,et al.A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate(CMAS)infiltration[J].Acta Materialia,2005,53(4):1029-1039.

    • [75] AYGUN A,VASILIEV A L,PADTURE N P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Materialia,2007,55(20):6734-6745.

    • [76] ZHANG X F,ZHOU K S,LIU M,et al.Adsorbability and spreadability of calcium-magnesium-alumino-silicate(CMAS)on Al-modified 7YSZ thermal barrier coating[J].Ceramics International,2016,42(16):19349-19356.

    • [77] WELLMAN R,WHITMAN G,NICHOLLS J R.CMAS corrosion of EB PVD TBCs:Identifying the minimum level to initiate damage[J].International Journal of Refractory Metals and Hard Materials,2010,28(1):124-132.

    • [78] WU J,GUO H,GAO Y,et al.Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.

    • [79] DREXLER J M,ORTIZ A L,PADTURE N P.Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate(CMAS)glass[J].Acta Materialia,2012,60(15):5437-5447.

    • [80] ZHENG H,CHEN Z,LI G,et al.High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate(CMAS)deposits:firstprinciples calculations[J].Corrosion Science,2017,126:286-294.

    • [81] FANG H,WANG W,HUANG J,et al.Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminumsilicate(CMAS)deposition:Experiments and firstprinciples calculation[J].Corrosion Science,2021,182:109230.

    • [82] STOTT F H,WET D J,TAYLOR R.Degradation of thermal barrier coatings at very high temperatures[J].MRS Bulletin,1994,19(10):46-49.

    • [83] VASSEN R,CAO X,TIETZ F,et al.Zirconates as new materials for thermal barrier coatings[J].Journal of the American Ceramic Society,2000,83(8):2023-2028.

    • [84] SCHULZ U,BRAUE W.Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS(CaO-MgO-Al2O3-SiO2)and volcanic ash deposits[J].Surface and Coatings Technology,2013,235:165-173.

    • [85] KRÄMER S,YANG J,LEVI C G.Infiltration‐inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[J].Journal of the American Ceramic Society,2008,91(2):576-583.

    • [86] WANG Y,MA Z,LIU L,et al.Reaction products of Sm2Zr2O7 with calcium-magnesium-aluminum-silicate(CMAS)and their evolution[J].Journal of Advanced Ceramics,2021,10(6):1389-1397.

    • [87] LEVI C G,HUTCHINSON J W,VIDAL-SÉTIF M H,et al.Environmental degradation of thermal-barrier coatings by molten deposits[J].MRS Bulletin,2012,37(10):932-941.

    • [88] GUO L,LI M,CHENG Y,et al.Plasma sprayed nanostructured GdPO4 thermal barrier coatings:preparation microstructure and CMAS corrosion resistance[J].Journal of the American Ceramic Society,2017,100(9):4209-4218.

    • [89] GAO L,GUO H,GONG S,et al.Plasma-sprayed La2Ce2O7 thermal barrier coatings against calciummagnesium-alumina-silicate penetration[J].Journal of the European Ceramic Society,2014,34(10):2553-2561.

    • [90] LiU J,ZHANG L,LIU Q,et al.Calcium-magnesiumaluminosilicate corrosion behaviors of rare-earth disilicates at 1 400℃[J].Journal of the European Ceramic Society,2013,33(15-16):3419-3428.

    • [91] GUO L,YAN Z,WANG X,et al.Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings[J].Ceramics International,2019,45(6):7627-7634.

    • [92] TAN Z Y,YANG Z H,ZHU W,et al.Mechanical properties and calcium-magnesium-alumino-silicate(CMAS)corrosion behavior of a promising Hf6Ta2O17 ceramic for thermal barrier coatings[J].Ceramics International,2020,46(16):25242-25248.

    • [93] LI M,CHENG Y,GUO L,et al.Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate(CMAS)resistance[J].Journal of the European Ceramic Society,2017,37(10):3425-3434.

    • [94] LYU G,SONG D,CHOI B G,et al.Infiltration behavior of CMAS in LZ-YSZ composite thermal barrier coatings[J].JOM,2021,73(2):541-550.

    • [95] FAN W,BAI Y,LIU Y F,et al.Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack[J].Ceramics International,2019,45(12):15763-15767.

    • [96] DREXLER J M,SHINODA K,ORTIZ A L,et al.Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J].Acta Materialia,2010,58(20):6835-6844.

    • [97] YIN B,ZHANG F,ZHU W,et al.Effect of Al2O3 modification on the properties of YSZ:corrosion resistant,wetting and thermal-mechanical properties[J].Surface and Coatings Technology,2019,357:161-171.

    • [98] YUAN K,YANG L,WANG Q,et al.Al2O3-TiO2 codoped yttria-stabilized zirconia thermal barrier coatings resistant to damage by molten calcium-magnesium-aluminosilicate(CMAS)glass[J].Advanced Engineering Materials,2021,23(6):2001338.

    • [99] RAI A K,BHATTACHARYA R S,WOLFE D E,et al.CMAS-resistant thermal barrier coatings(TBC)[J].International Journal of Applied Ceramic Technology,2010,7(5):662-674.

    • [100] HASZ W C,JOHNSON C A,BOROM M P.Protection of thermal barrier coating by a sacrificial surface coating:U.S.Patent 5660885[P].1997-8-26.

    • [101] HASZ W C,BOROM M P,JOHNSON C A.Protection of thermal barrier coating with an impermeable barrier coating:U.S.Patent 5871820[P].1999-2-16.

    • [102] HASZ W C,BOROM M P,JOHNSON C A.Protected thermal barrier coating composite with multiple coatings:U.S.Patent 6261643[P].2001-7-17.

    • [103] MOHAN P,YAO B,PATTERSON T,et al.Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation[J].Surface and Coatings Technology,2009,204(6-7):797-801.

    • [104] LIU H,CAI J,ZHU J.CMAS(CaO-MgO-Al2O3-SiO2)resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers[J].Ceramics International,2018,44(1):452-458.

    • [105] 杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):91-100.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion performance of LZO/8YSZ double ceramic thermal barrier coating CMAS[J].China Surface Engineering,2020,33(1):91-100.(in Chinese)

    • [106] OZGURLUK Y,DOLEKER K M,AHLATCI H,et al.Investigation of calcium-magnesium-alumino-silicate(CMAS)resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings(TBCs)produced with CGDS method[J].Surface and Coatings Technology,2021,411:126969.

    • [107] ZHANG C,FAN Y,ZHAO J,et al.Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition[J].Journal of Advanced Ceramics,2021,10(3):520-528.

    • [108] BAKKAR S,PANTAWANE M V,GU J J,et al.Laser surface modification of porous yttria stabilized zirconia against CMAS degradation[J].Ceramics International,2020,46(5):6038-6045.

    • [109] GUO L,LI G,GAN Z.Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications[J].Journal of Advanced Ceramics,2021,10(3):472-481.

    • [110] YOST F G,RYE R R,MANN JR J A.Solder wetting kinetics in narrow V-grooves[J].Acta Materialia,1997,45(12):5337-5345.

    • [111] YAN Z,GUO L,LI Z,et al.Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J].Corrosion Science,2019,157:450-461.

    • [112] GUO L,GAO Y,CHENG Y,et al.Microstructure design of the laser glazed layer on thermal barrier coatings and its effect on the CMAS corrosion[J].Corrosion Science,2021,192:109847.

    • [113] ZHANG X,ZHUO X,FAN Z,et al.Al2O3-modified 7YSZ thermal barrier coatings for protection against volcanic ash corrosion[J].npj Materials Degradation,2022,6(1):1-7.

    • [114] MORELLI S,TESTA V,BOLELLI G,et al.CMAS corrosion of YSZ thermal barrier coatings obtained by different thermal spray processes[J].Journal of the European Ceramic Society,2020,40(12):4084-4100.

  • 参考文献

    • [1] 汪超,周鑫,解旭阳,等.重型燃气轮机新型热障涂层研究[C]//第二十一届国际热喷涂研讨会(ITSS'2018)暨第二十二届全国热喷涂年会(CNTSC’2018)论文集,2018-09-25,天津.2018:66-76.WANG Chao,ZHOU Xin,XIE Xuyang,et al.Study on new thermal barrier coatings for heavy duty gas turbines [C]//Proceedings of the 21st International Thermal Spraying Symposium(ITSS’ 2018)and the 22nd National Thermal Spraying Annual Conference(CNTSC’ 2018),2018-09-25,Tianjin.2018:66-76.(in Chinese)

    • [2] 王博,刘洋,王福德,等.航空发动机及燃气轮机涡轮叶片热障涂层技术研究及应用[J].航空发动机,2021(S1):25-31.WANG Bo,LIU Yang,WANG Fude,et al.Research and application of thermal barrier coating technology for aero-engine and gas turbine blades[J].Aeroengine,2021(S1):25-31.(in Chinese)

    • [3] GHIGLIAZZA F,TRAVERSO A,MASSARDO A F.Thermoeconomic impact on combined cycle performance of advanced blade cooling systems[J].Applied Energy,2009,86(10):2130-2140.

    • [4] 崔耀欣,汪超,何磊,等.重型燃气轮机先进热障涂层研究进展[J].航空动力,2019(2):66-69.CUI Yaoxin,WANG Chao,HE Lei,et al.The development of advanced thermal barrier coating for heavy duty gas turbines[J].Aerospace Power,2019(2):66-69.(in Chinese)

    • [5] GLEESON B.Thermal barrier coatings for aeroengine applications[J].Journal of Propulsion and Power,2006,22(2):375-383.

    • [6] LIU Q,HUANG S,HE A.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J].Journal of Materials Science & Technology,2019,35(12):2814-2823.

    • [7] 吕伯文,江鹏,李定骏,等.重型燃气轮机高温叶片热障涂层烧结问题研究进展[J].中国材料进展,2020,39(11):855-870.LV Bowen,JIANG Peng,LI Dingjun,et al.Advances on the sintering of thermal barrier coatings for high temperature blades of industrial gas turbines[J].Materials China,2020,39(11):855-870.(in Chinese)

    • [8] 蒋洪德,任静,李雪英,等.重型燃气轮机现状与发展趋势[J].中国电机工程学报,2014,34(29):5096-5102.JIANG Hongde,REN Jing,LI Xueying,et al.Status and development trend of heavy duty gas turbines[J].Proceedings of the CSEE,2014,34(29):5096-5102.(in Chinese)

    • [9] 孔祥林,田晓晶,程国强,等.中国首台F级 50 MW 重型燃气轮机的自主研制[J].天然气工业,2020,40(12):12-17.KONG Xianglin,TIAN Xiaojing,CHENG Guoqiang,et al.Independent development of first F-class 50 MW heavy duty gas turbine in China[J].Natural Gas Industry,2020,40(12):12-17.(in Chinese)

    • [10] 刘帅,刘玉春.重型燃气轮机发展现状及展望[J].电站系统工程,2018,34(5):61-63.LIU Shuai,LIU Yuchun.Development status and prospect of heavy duty gas turbines[J].Power System Engineering,2018,34(5):61-63.(in Chinese)

    • [11] 汪超,周鑫,解旭阳,等.重型燃气轮机用 La2(Zr0.7Ce0.3)2O7/YSZ 双层热障涂层热循环性能研究[J].热喷涂技术,2019,11(3):14-21.WANG Chao,ZHOU Xin,XIE Xuyang,et al.Research on thermal cycling performance of La2(Zr0.7Ce0.3)2O7/YSZ double-layer thermal barrier coatings for heavy duty gas turbines[J].Thermal Spray Technology,2019,11(3):14-21.(in Chinese)

    • [12] 伍赛特.重型燃气轮机研究现状与技术发展趋势展望 [J].机电产品开发与创新,2019,32(2):65-67.WU Saite.Research status and technology development trend of heavy duty gas turbines[J].Development & Innovation of Machinery & Electrical Products,2019,32(2):65-67.(in Chinese)

    • [13] MAUER G,VAßEN R.Coatings with columnar microstructures for thermal barrier applications[J].Advanced Engineering Materials,2020,22(6):1900988.

    • [14] LASHMI P G,ANANTHAPADMANABHAN P V,UNNIKRISHNAN G,et al.Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems[J].Journal of the European Ceramic Society,2020,40(8):2731-2745.

    • [15] MAHADE S,JONNALAGADDA K P,CURRY N,et al.Engineered architectures of gadolinium zirconate based thermal barrier coatings subjected to hot corrosion test[J].Surface & Coatings Technology,2017,328:361-370.

    • [16] JIANG C,LI S,LIU H,et al.Effect of Hf addition in(Ni,Pt)Al bond coat on thermal cycling behavior of a thermal barrier coating system at 1 100 ℃[J].Corrosion Science,2020,166:108424.

    • [17] SCHMITT-THOMAS K G,DIETL U.Thermal barrier coatings with improved oxidation resistance[J].Surface and Coatings Technology,1994,68:113-115.

    • [18] FENG Y,DONG T,LI G,et al.High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J].Journal of Alloys and Compounds,2020,828:154266.

    • [19] ŁATKA L,PAWŁOWSKI L,WINNICKI M,et al.Review of functionally graded thermal sprayed coatings[J].Applied Sciences,2020,10(15):5153.

    • [20] LI F,XIE Y,YANG L,et al.Study on cyclic thermal corrosion behavior of APS-7YSZ thermal barrier coating at room-and high temperature[J].Ceramics International,2021,47(20):29490-29498.

    • [21] MEHBOOB G,LIU M J,XU T,et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J].Ceramics International,2020,46(7):8497-8521.

    • [22] WU S,ZHAO Y,LI W,et al.Research progresses on ceramic materials of thermal barrier coatings on gas turbine[J].Coatings,2021,11(1):79.

    • [23] 杨丽.先进热障涂层的强韧和破坏机制的标准规范研究[J].湘潭大学学报(自然科学版),2020,42(3):1-12.YANG Li.Research on the standard specification for the toughness and failure mechanism of advanced thermal barrier coatings[J].Journal of Xiangtan University(Natural Science Edition),2020,42(3):1-12.(in Chinese)

    • [24] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.

    • [25] THAKARE J G,PANDEY C,MAHAPATRA M M,et al.Thermal barrier coatings—A state of the art review[J].Metals and Materials International,2021,27(7):1947-1968.

    • [26] LAKIZA S M,GRECHANYUK M I,RUBAN O K,et al.Thermal barrier coatings:current status,search,and analysis[J].Powder Metallurgy and Metal Ceramics,2018,57(1):82-113.

    • [27] SONG D,SONG T,PAIK U,et al.Hot-corrosion resistance and phase stability of Yb2O3–Gd2O3–Y2O3 costabilized zirconia-based thermal barrier coatings against Na2SO4 + V2O5 molten salts[J].Surface and Coatings Technology,2020,400:126197.

    • [28] GUO L,ZHANG C,LI M,et al.Hot corrosion evaluation of Gd2O3-Yb2O3 co-doped Y2O3 stabilized ZrO2 thermal barrier oxides exposed to Na2SO4 + V2O5 molten salt[J].Ceramics International,2017,43(2):2780-2785.

    • [29] GUO L,LI M,YE F.Phase stability and thermal conductivity of RE2O3(RE= La,Nd,Gd,Yb)and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics[J].Ceramics International,2016,42(6):7360-7365.

    • [30] LIU Y,GAO Y F,TAO S Y,et al.La2O3-modified YSZ coatings:High-temperature stability and improved thermal barrier properties[J].Surface and Coatings Technology,2009,203(8):1014-1019.

    • [31] KHAN M,ZENG Y,LAN Z,et al.Reduced thermal conductivity of solid solution of 20% CeO2 + ZrO2 and 8% Y2O3 + ZrO2 prepared by atmospheric plasma spray technique[J].Ceramics International,2019,45(1):839-842.

    • [32] CHEN D,WANG Q,LIU Y,et al.Microstructure,thermal characteristics,and thermal cycling behavior of the ternary rare earth oxides(La2O3,Gd2O3,and Yb2O3)co-doped YSZ coatings[J].Surface and Coatings Technology,2020,403:126387.

    • [33] 李嘉,谢铮,何箐,等.Gd2O3-Yb2O3-Y2O3-ZrO2热障涂层材料的热物理性能[J].表面技术,2015,44(9):18-22,42.LI Jia,XIE Zheng,HE Qing,et al.Thermophysical properties of Gd2O3-Yb2O3-Y2O3-ZrO2 thermal barrier coating materials[J].Surface Technology,2015,44(9):18-22,42.(in Chinese)

    • [34] DUAN W,SONG P,LI C,et al.Effect of water vapor on the failure behavior of thermal barrier coating with Hf-doped NiCoCrAlY bond coating[J].Journal of Materials Research,2019,34(15):2653-2663.

    • [35] YU C,LIU H,JIANG C,et al.Modification of NiCoCrAlY with Pt:Part II.Application in TBC with pure metastable tetragonal(t')phase YSZ and thermal cycling behavior[J].Journal of Materials Science & Technology,2019,35(3):350-359.

    • [36] GHADAMI F,ZAKERI A,AGHDAM A S R,et al.Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings[J].Surface and Coatings Technology,2019,373:7-16.

    • [37] 阳颖飞,任盼,鲍泽斌,等.四种典型高温防护涂层的抗氧化性能[J].表面技术,2020,49(1):49-55,102.YANG Yingfei,REN Pan,BAO Zebin,et al.Antioxidant properties of four typical high temperature protective coatings[J].Surface Technology,2020,49(1):49-55,102.(in Chinese)

    • [38] 邱琳.热障涂层粘结层成分优化设计研究[D].上海:上海交通大学,2014.QIU Lin.Study on composition optimization design of bond coat in thermal barrier coatings[D].Shanghai:Shanghai Jiao Tong University,2014.(in Chinese)

    • [39] LI J,WEI L,HE J,et al.The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy[J].Journal of Materials Science & Technology,2020,58:63-72.

    • [40] SAHITH M S,GIRIDHARA G,KUMAR R S.Development and analysis of thermal barrier coatings on gas turbine blades — A review[J].Materials Today:Proceedings,2018,5(1):2746-2751.

    • [41] ZHANG X,DENG Z,LI H,et al.Al2O3-modified PS-PVD 7YSZ thermal barrier coatings for advanced gas-turbine engines[J].npj Materials Degradation,2020,4(1):1-6.

    • [42] WEE S,DO J,KIM K,et al.Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines[J].Applied Sciences,2020,10(16):5476.

    • [43] WU S,ZHAO Y,LI W,et al.Research progresses on ceramic materials of thermal barrier coatings on gas turbine[J].Coatings,2021,11(1):79.

    • [44] USTINOV A I,POLISHCHUK S S,DEMCHENKOV S A,et al.Formation of thin foils of high-entropy CrFeCoNiCu alloys by EB-PVD process[J].Surface and Coatings Technology,2020,403:126440.

    • [45] 吴硕,赵远涛,李文戈,等.氧化锆基双陶瓷层热障涂层表层材料研究进展[J].表面技术,2020,49(9):101-108.WU Shuo,ZHAO Yuantao,LI Wenge,et al.Research progress on top coating materials of thermal barrier coatings with double-ceramic-layer based on zirconia[J].Surface Technology,2020,49(9):101-108.(in Chinese)

    • [46] ZHANG B,SONG W,WEI L,et al.Novel thermal barrier coatings repel and resist molten silicate deposits[J].Scripta Materialia,2019,163:71-76.

    • [47] CHEN D,DAMBRA C,DORFMAN M.Process and properties of dense and porous vertically-cracked yttria stabilized zirconia thermal barrier coatings[J].Surface and Coatings Technology,2020,404:126467.

    • [48] 刘延宽,许婧,李尧,等.Eu3+ 掺杂对YSZ热障涂层隔热性能与涂层界面断裂韧性的影响研究[J].稀有金属材料与工程,2021,50(5):1699-1705.LIU Yankuan,XU jing,LI Yao,et al.Effect of Eu3+ doping on thermal insulation property and interfacial fracture toughness of YSZ thermal barrier coatings[J].Rare Metal Materials and Engineering,2021,50(5):1699-1705.(in Chinese)

    • [49] QIAO X,WANG Y M,WENG W X,et al.Influence of pores on mechanical properties of plasma sprayed coatings:Case study of YSZ thermal barrier coatings[J].Ceramics International,2018,44(17):21564-21577.

    • [50] SUN F,FAN X,ZHANG T,et al.Numerical analysis of the influence of pore microstructure on thermal conductivity and Young’s modulus of thermal barrier coating[J].Ceramics International,2020,46(15):24326-24332.

    • [51] NICHOLLS J R,LAWSON K J,JOHNSTONE A,et al.Methods to reduce the thermal conductivity of EB-PVD TBCs[J].Surface and Coatings Technology,2002,151:383-391.

    • [52] RÄTZER-SCHEIBE H J,SCHULZ U,KRELL T.The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings[J].Surface and Coatings Technology,2006,200(18-19):5636-5644.

    • [53] 宫声凯,邓亮,毕晓方,等.陶瓷热障涂层的隔热效果研究[J].航空学报,2000(S1):75-79.GONG Shengkai,DENG Liang,BI Xiaofang,et al.Thermal barrier effect of ceramic thermal barrier coatings[J].Acta Aeronautica ET Astronautica Sinica,2000(S1):75-79.(in Chinese)

    • [54] CHEN W R,WU X,MARPLE B R,et al.The growth and influence of thermally grown oxide in a thermal barrier coating[J].Surface and Coatings Technology,2006,201(3-4):1074-1079.

    • [55] XIE F,SUN Y,LI D,et al.Modelling of catastrophic stress development due to mixed oxide growth in thermal barrier coatings[J].Ceramics International,2019,45(9):11353-11361.

    • [56] LIU P,JIANG P,SUN Y,et al.Numerical Analysis of stress evolution in thermal barrier coating system during two-stage growth of heterogeneous oxide[J].Ceramics International,2021,47(10):14311-14319.

    • [57] AN G,LI W,FENG L,et al.Isothermal oxidation and TGO growth behaviors of YAG/YSZ double-ceramiclayer thermal barrier coatings[J].Ceramics International,2021,47(17):24320-24330.

    • [58] XU Shiming,ZHANG Xiaofeng,LIU Min,et al.Oxidation resistance of Al-modified APS 7YSZ thermal barrier coating[J].Materials Reports,2019,33(2):283-287.

    • [59] FENG Y,DONG T,LI G,et al.High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J].Journal of Alloys and Compounds,2020,828:154266.

    • [60] ZHANG Y,GUO L,ZHAO X,et al.Effects of non-stoichiometry on the mechanical properties of Nd2−xZr2+xO7+x/2(x= 0,0.1,0.2,0.3,0.4,0.5)ceramics[J].Materials Letters,2014,136:157-159.

    • [61] ZHANG P,LI F,ZHANG X,et al.Thermal shock resistance of thermal barrier coatings with different surface shapes modified by laser remelting[J].Journal of Thermal Spray Technology,2019,28(3):417-432.

    • [62] ZHOU X,SONG W,YUAN J,et al.Thermophysical properties and cyclic lifetime of plasma sprayed SrAl12O19 for thermal barrier coating applications[J].Journal of the American Ceramic Society,2020,103(10):5599-5611.

    • [63] LIU F,SONG W,ZHOU X,et al.Microstructures,thermophysical properties and thermal cycling behavior of LaZnAl11O19 thermal barrier coatings deposited by atmospheric plasma spraying[J].Inorganic Chemistry Frontiers,2019,6(11):3302-3314.

    • [64] HUO P,SONG W,ZHOU X,et al.Microstructures and properties of Sm2(Zr0.7Ce0.3)2O7/8YSZ double-ceramiclayer thermal barrier coatings deposited by atmospheric plasma spraying[J].Journal of Thermal Spray Technology,2019,28:986-999.

    • [65] CHEN C,LIANG T,GUO Y,et al.Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4 + V2O5 molten salts at 1 000 ℃ [J].Corrosion Science,2019,158:108094.

    • [66] 阳颖飞,任盼,鲍泽斌,等.热障涂层体系典型黏结层的抗热腐蚀性能[J].航空制造技术,2020,63(14):34-40,47.YANG Yingfei,REN Pan,BAO Zebin,et al.Hot corrosion resistance of typical bonding layer of thermal barrier coating system[J].Aeronautical Manufacturing Technology,2020,63(14):34-40,47.(in Chinese)

    • [67] CAI J,GAO C,LV P,et al.Hot corrosion behaviour of thermally sprayed CoCrAlY coating irradiated by high-current pulsed electron beam[J].Journal of Alloys and Compounds,2019,784:1221-1233.

    • [68] SMIALEK J L.The chemistry of Saudi Arabian sand:a deposition problem on helicopter turbine airfoils[C]//Gordon Conference on Corrosion,July 14,1991,New London,New Hampshire.1991.

    • [69] KRÄMER S,YANG J,LEVI C G,et al.Thermochemical interaction of thermal barrier coatings with molten CaO– MgO–Al2O3–SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167-3175.

    • [70] BOROM M P,JOHNSON C A,PELUSO L A.Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J].Surface and Coatings Technology,1996,86:116-126.

    • [71] AYGUN A,VASILIEV A L,PADTURE N P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Materialia,2007,55(20):6734-6745.

    • [72] NICHOLLS J R,DEAKIN M J,RICKERBY D S.A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings[J].Wear,1999,233:352-361.

    • [73] EVANS A G,FLECK N A,FAULHABER S,et al.Scaling laws governing the erosion and impact resistance of thermal barrier coatings[J].Wear,2006,260(7-8):886-894.

    • [74] MERCER C,FAULHABER S,EVANS A G,et al.A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate(CMAS)infiltration[J].Acta Materialia,2005,53(4):1029-1039.

    • [75] AYGUN A,VASILIEV A L,PADTURE N P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Materialia,2007,55(20):6734-6745.

    • [76] ZHANG X F,ZHOU K S,LIU M,et al.Adsorbability and spreadability of calcium-magnesium-alumino-silicate(CMAS)on Al-modified 7YSZ thermal barrier coating[J].Ceramics International,2016,42(16):19349-19356.

    • [77] WELLMAN R,WHITMAN G,NICHOLLS J R.CMAS corrosion of EB PVD TBCs:Identifying the minimum level to initiate damage[J].International Journal of Refractory Metals and Hard Materials,2010,28(1):124-132.

    • [78] WU J,GUO H,GAO Y,et al.Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.

    • [79] DREXLER J M,ORTIZ A L,PADTURE N P.Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate(CMAS)glass[J].Acta Materialia,2012,60(15):5437-5447.

    • [80] ZHENG H,CHEN Z,LI G,et al.High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate(CMAS)deposits:firstprinciples calculations[J].Corrosion Science,2017,126:286-294.

    • [81] FANG H,WANG W,HUANG J,et al.Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminumsilicate(CMAS)deposition:Experiments and firstprinciples calculation[J].Corrosion Science,2021,182:109230.

    • [82] STOTT F H,WET D J,TAYLOR R.Degradation of thermal barrier coatings at very high temperatures[J].MRS Bulletin,1994,19(10):46-49.

    • [83] VASSEN R,CAO X,TIETZ F,et al.Zirconates as new materials for thermal barrier coatings[J].Journal of the American Ceramic Society,2000,83(8):2023-2028.

    • [84] SCHULZ U,BRAUE W.Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS(CaO-MgO-Al2O3-SiO2)and volcanic ash deposits[J].Surface and Coatings Technology,2013,235:165-173.

    • [85] KRÄMER S,YANG J,LEVI C G.Infiltration‐inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[J].Journal of the American Ceramic Society,2008,91(2):576-583.

    • [86] WANG Y,MA Z,LIU L,et al.Reaction products of Sm2Zr2O7 with calcium-magnesium-aluminum-silicate(CMAS)and their evolution[J].Journal of Advanced Ceramics,2021,10(6):1389-1397.

    • [87] LEVI C G,HUTCHINSON J W,VIDAL-SÉTIF M H,et al.Environmental degradation of thermal-barrier coatings by molten deposits[J].MRS Bulletin,2012,37(10):932-941.

    • [88] GUO L,LI M,CHENG Y,et al.Plasma sprayed nanostructured GdPO4 thermal barrier coatings:preparation microstructure and CMAS corrosion resistance[J].Journal of the American Ceramic Society,2017,100(9):4209-4218.

    • [89] GAO L,GUO H,GONG S,et al.Plasma-sprayed La2Ce2O7 thermal barrier coatings against calciummagnesium-alumina-silicate penetration[J].Journal of the European Ceramic Society,2014,34(10):2553-2561.

    • [90] LiU J,ZHANG L,LIU Q,et al.Calcium-magnesiumaluminosilicate corrosion behaviors of rare-earth disilicates at 1 400℃[J].Journal of the European Ceramic Society,2013,33(15-16):3419-3428.

    • [91] GUO L,YAN Z,WANG X,et al.Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings[J].Ceramics International,2019,45(6):7627-7634.

    • [92] TAN Z Y,YANG Z H,ZHU W,et al.Mechanical properties and calcium-magnesium-alumino-silicate(CMAS)corrosion behavior of a promising Hf6Ta2O17 ceramic for thermal barrier coatings[J].Ceramics International,2020,46(16):25242-25248.

    • [93] LI M,CHENG Y,GUO L,et al.Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate(CMAS)resistance[J].Journal of the European Ceramic Society,2017,37(10):3425-3434.

    • [94] LYU G,SONG D,CHOI B G,et al.Infiltration behavior of CMAS in LZ-YSZ composite thermal barrier coatings[J].JOM,2021,73(2):541-550.

    • [95] FAN W,BAI Y,LIU Y F,et al.Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack[J].Ceramics International,2019,45(12):15763-15767.

    • [96] DREXLER J M,SHINODA K,ORTIZ A L,et al.Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J].Acta Materialia,2010,58(20):6835-6844.

    • [97] YIN B,ZHANG F,ZHU W,et al.Effect of Al2O3 modification on the properties of YSZ:corrosion resistant,wetting and thermal-mechanical properties[J].Surface and Coatings Technology,2019,357:161-171.

    • [98] YUAN K,YANG L,WANG Q,et al.Al2O3-TiO2 codoped yttria-stabilized zirconia thermal barrier coatings resistant to damage by molten calcium-magnesium-aluminosilicate(CMAS)glass[J].Advanced Engineering Materials,2021,23(6):2001338.

    • [99] RAI A K,BHATTACHARYA R S,WOLFE D E,et al.CMAS-resistant thermal barrier coatings(TBC)[J].International Journal of Applied Ceramic Technology,2010,7(5):662-674.

    • [100] HASZ W C,JOHNSON C A,BOROM M P.Protection of thermal barrier coating by a sacrificial surface coating:U.S.Patent 5660885[P].1997-8-26.

    • [101] HASZ W C,BOROM M P,JOHNSON C A.Protection of thermal barrier coating with an impermeable barrier coating:U.S.Patent 5871820[P].1999-2-16.

    • [102] HASZ W C,BOROM M P,JOHNSON C A.Protected thermal barrier coating composite with multiple coatings:U.S.Patent 6261643[P].2001-7-17.

    • [103] MOHAN P,YAO B,PATTERSON T,et al.Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation[J].Surface and Coatings Technology,2009,204(6-7):797-801.

    • [104] LIU H,CAI J,ZHU J.CMAS(CaO-MgO-Al2O3-SiO2)resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers[J].Ceramics International,2018,44(1):452-458.

    • [105] 杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):91-100.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion performance of LZO/8YSZ double ceramic thermal barrier coating CMAS[J].China Surface Engineering,2020,33(1):91-100.(in Chinese)

    • [106] OZGURLUK Y,DOLEKER K M,AHLATCI H,et al.Investigation of calcium-magnesium-alumino-silicate(CMAS)resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings(TBCs)produced with CGDS method[J].Surface and Coatings Technology,2021,411:126969.

    • [107] ZHANG C,FAN Y,ZHAO J,et al.Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition[J].Journal of Advanced Ceramics,2021,10(3):520-528.

    • [108] BAKKAR S,PANTAWANE M V,GU J J,et al.Laser surface modification of porous yttria stabilized zirconia against CMAS degradation[J].Ceramics International,2020,46(5):6038-6045.

    • [109] GUO L,LI G,GAN Z.Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications[J].Journal of Advanced Ceramics,2021,10(3):472-481.

    • [110] YOST F G,RYE R R,MANN JR J A.Solder wetting kinetics in narrow V-grooves[J].Acta Materialia,1997,45(12):5337-5345.

    • [111] YAN Z,GUO L,LI Z,et al.Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J].Corrosion Science,2019,157:450-461.

    • [112] GUO L,GAO Y,CHENG Y,et al.Microstructure design of the laser glazed layer on thermal barrier coatings and its effect on the CMAS corrosion[J].Corrosion Science,2021,192:109847.

    • [113] ZHANG X,ZHUO X,FAN Z,et al.Al2O3-modified 7YSZ thermal barrier coatings for protection against volcanic ash corrosion[J].npj Materials Degradation,2022,6(1):1-7.

    • [114] MORELLI S,TESTA V,BOLELLI G,et al.CMAS corrosion of YSZ thermal barrier coatings obtained by different thermal spray processes[J].Journal of the European Ceramic Society,2020,40(12):4084-4100.

  • 手机扫一扫看