en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张志强,男,1985年出生,博士,副教授,硕士研究生导师。主要研究方向为增材制造、高性能焊接等先进制造与再制造技术的成形理论与腐蚀防护。E-mail:zqzhang@cauc.edu.cn

勾青泽,男,1998年出生,硕士研究生。主要研究方向为电弧增材制造过程传热传质行为的机制。E-mail:gqzcauc@163.com

中图分类号:TG141;TG174

DOI:10.11933/j.issn.1007−9289.20221224001

参考文献 1
张志强,荆洪阳,徐连勇,等.铁素体/奥氏体双相不锈钢组织和耐局部腐蚀性能研究现状[J].材料保护,2021,54(1):136-146.ZHANG Zhiqiang,JING Hongyang,XU Lianyong,et al.Research status on microstructure and localized corrosion resistance of ferrite/austenitic duplex stainless steels[J].Materials Protection,2021,54(1):136-146.(in Chinese)
参考文献 2
XIAO Y,TANG J L,WANG Y Y,et al.Corrosion behaviour of 2205 duplex stainless steel in NaCl solutions containing sulfide ions[J].Corrosion Science,2022,200:110140.
参考文献 3
LIU H F,SUN J B,QIAN J,et al.Revealing the temperature effects on the corrosion behaviour of 2205 duplex stainless steel from passivation to activation in a CO2-containing geothermal environment[J].Corrosion Science,2021,187:109495.
参考文献 4
李新强.熔覆技术在油气管道涂层防护中的应用进展[J].石油库与加油站,2022,31(3):7-10,3-4.LI Xinqiang.Application progress of cladding technology in oil and gas pipeline coating protection[J].Oil Depot and Gas Station,2022,31(3):7-10,3-4.(in Chinese)
参考文献 5
XU L,WANG Y F,MO L,et al.The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines[J].Engineering Failure Analysis,2023,144:106951.
参考文献 6
MAO L J,GAN L K,LI W,et al.Failure analysis on weld joint of centrifugal pump diffuser for oil and gas pipeline transportation[J].Engineering Failure Analysis,2022,140:106620.
参考文献 7
NIE J H,LI Y X,LIU S Y,et al.Evolution of microstructure of Al particle-reinforced NiCoCrAlY coatings fabricated on 304 stainless steel using laser cladding[J].Materials Letters,2021,289:105962.
参考文献 8
VERMA J,TAIWADE R V.Effect of welding processes and conditions on the microstructure,mechanicalproperties and corrosion resistance of duplex stainless steel weldments—a review[J].Journal of Manufacturing Processes,2017,25:134-152.
参考文献 9
伊浩,黄如峰,曹华军,等.基于CMT的钛合金电弧增材制造技术研究现状与展望[J].中国表面工程,2021,34(3):1-15.YI Hao,HUANG Rufeng,CAO Huajun,et al.Research progress and prospects of cmt-based wire arc additive manufacturing technology for titanium alloys[J].China Surface Engineering,2021,34(3):1-15.(in Chinese)
参考文献 10
TASHIRO S,MAMAT S B,MURPHY A B,et al.Numerical analysis of metal transfer process in plasma mig welding[J].Metals,2022,12(2):326.
参考文献 11
PRABHU R,ALWARSAMY T.Effect of process parameters on ferrite number in cladding of 317L stainless steel by pulsed MIG welding[J].Journal of Mechanical Science and Technology,2017,31(3):1341-1347.
参考文献 12
LIAO H P,ZHANG W X,Li X Y,et al.Effect of pulse current on droplet transfer behavior and weld formation of 304 stainless steel in local dry underwater pulse MIG welding[J].The International Journal of Advanced Manufacturing Technology,2022,122(2):869-879.
参考文献 13
宋文鑫,张红霞,闫志峰,等.MIG 焊接304不锈钢电弧物理现象—焊缝形貌组织—力学性能的相关性研究[J].太原理工大学学报,2022,53(5):800-806.SONG Wenxin,ZHANG Hongxia,YAN Zhifeng,et al.Research on the correlation of arc physical phenomenonweld morphology and microstructure mechanical properties of MIG welded 304 stainless steel[J].Journal of Taiyuan University of Technology,2022,53(5):800-806.(in Chinese)
参考文献 14
罗怡,朱亮,韩静韬,等.电弧填丝增材制造过程熔滴射滴过渡特征及其对熔滴沉积成形的影响[J].机械工程学报,2019,55(3):219-225.LUO Yi,ZHU Liang,HAN Jingtao,et al.Analysis on the characteristics of metal droplet transferred by projected transfer mode in wire + arc additive manufacturing process[J].Journal of Mechanical Engineering,2019,55(3):219-225.(in Chinese)
参考文献 15
NOMURA K,YOSHII K,TODA K,et al.3D measurement of temperature and metal vapor concentration in MIG arc plasma using a multidirectional spectroscopic method[J].Journal of Physics D:Applied Physics,2017,50(42):425205.
参考文献 16
HERTEL M,FVSSEL U,SCHNICK M.Numerical simulation of the plasma-MIG process-interactions of thearcs,droplet detachment and weld pool formation[J].Welding in the World,2014,58(1):85-92.
参考文献 17
XIAO L,FAN D,HUANG J K.Numerical Study on arc plasma behaviors in gmaw with applied axial magnetic field[J].Journal of the Physical Society of Japan,2019,88(7):074502.
参考文献 18
李昌,黄庆春,陈馨雪,等.轧辊埋弧堆焊过程多场耦合数值模拟方法研究[J].中国表面工程,2021,34(4):117-128.LI Chang,HUANG Qingchun,CHEN Xinxue,et al.Multi field coupling numerical simulation of roll submerged arc surfacing process[J].China Surface Engineering,2021,34(4):117-128.(in Chinese)
参考文献 19
XIAO L,FAN D,HUANG J K,et al.3D numerical study of external axial magnetic field-controlled high-current gmaw metal transfer behavior[J].Materials(Basel,Switzerland),2020,13(24):5792.
参考文献 20
XIAO L,FAN D,HUANG J K,et al.Numerical study on arc-droplet coupled behavior in magnetic field controlled gmaw process[J].Journal of Physics D:Applied Physics,2020,53(11):115202.
参考文献 21
XU J,MA Y M,WANG L,et al.Numerical investigation on the influence of current waveform on droplet transfer in pulsed gas metal arc welding[J].Vacuum,2022,203:111230.
参考文献 22
IKRAM A,CHUNG H.Numerical simulation of arc,metal transfer and its impingement on weld pool in variable polarity gas metal arc welding[J].Journal of Manufacturing Processes,2021,64:1529-1543.
参考文献 23
MURPHY A B.A comparison of treatments of diffusion in thermal plasmas[J].Journal of Physics,D:Applied Physics,1996,29(7):1922-1932.
参考文献 24
HERTEL M,SPILLE-KOHOFF A,FVSSEL U,et al.Numerical simulation of droplet detachment in pulsed gas-metal arc welding including the influence of metal vapour[J].Journal of Physics D:Applied Physics,2013,46(22):224003.
参考文献 25
张皓庭,武传松.激光-GMAW 复合热源焊接熔池-小孔行为分析[J].航空制造技术,2016(19):45-51.ZHANG Haoting,WU Chuansong.Analysis of weld pool and keyhole behaviors in laser-gmaw hybrid welding[J].Aeronautical Manufacturing Technology,2016(19):45-51.(in Chinese)
参考文献 26
MURPHY A B.The effects of metal vapour in arc welding[J].Journal of Physics D:Applied Physics,2010,43(43):434001.
参考文献 27
HERTEL M,SPILLE-KOHOFF A,FVSSEL U,et al.Modelling of gas-metal arc welding taking into account metal vapour[J].Journal of Physics D:Applied Physics,2010,43(43):434008.
目录contents

    摘要

    基于电磁动力学、流体力学及热力学等理论以及高速摄像与电信号采集原位测试手段,考虑等离子体中的金属蒸汽行为建立电弧熔滴一体化多物理场耦合仿真模型,研究双相不锈钢脉冲电弧等离子体的传热传质行为。结果表明,电弧等离子体温度峰值分布在熔滴轴线两侧并与电流值呈正相关,在熔滴缩颈至过渡阶段,基板上表面由电弧等离子体的非对称性影响造成温度分布不均匀;电弧等离子体的流场分布结果与温度场类似,但不同时刻速度峰值除与电流值相关,还与熔滴的过渡状态有关,随着熔滴过渡进行,电弧等离子体的高温区和高速区皆向基板压缩;在熔滴缩颈之前,铁蒸汽随着电流增大逐渐向轴线压缩,在熔滴下方质量分数可以达到 100%;在熔滴缩颈之后,熔滴上下的高浓度铁蒸汽会增大等离子体的电导率,进而促进熔滴过渡。

    Abstract

    Duplex stainless steels contain nearly equal proportions of ferrite (δ) and austenite (γ). Its unique organizational characteristics enable it to combine the good plastic toughness and uniform corrosion resistance of austenitic stainless steel with the high strength and stress corrosion resistance of ferritic stainless steel. Consequently, it is widely used in marine engineering, petrochemical, and other important energy fields. Oil and gas pipelines are the most reliable and cost-effective means for safely transporting energy over long distances. To extend the service life of duplex stainless-steel oil and gas pipelines, arc additive remanufacturing has been developed based on overlay welding technology with special advantages such as high efficiency and low cost, and thus has broader application prospects. Hence, it is necessary to have the capability to effectively control the heat and mass transfer characteristics of the arc plasma and to elucidate the interaction mechanisms between the arc plasma and droplets. These factors have significant effects on the stability, forming quality, and microstructure of the arc additive repair process of duplex stainless steel. However, the high enthalpy, strong arc light characteristics, and non-equilibrium physicochemical reactions of arc plasma impede the quantitative analysis of the heat and mass transfer mechanisms of arc plasma via in situ testing methods. A multiphysics coupling simulation model of arc-droplet integration was established in this study. The model is based on the theories of electromagnetism, fluid dynamics, thermodynamics, and in situ experiments using a high-speed camera and electrical signal acquisition, while considering the behavior of metal vapor in plasma. The Eulerian multiphase flow model was used to improve the computational convergence of the two-phase mixing region of the arc plasma and metallic droplets. The physical fields of the gas and metal were solved separately using two sets of governing equations, and a species transport model was used to calculate the distribution of the metal vapor. This study thus sought to investigate the heat and mass transfer behavior of a pulsed arc plasma with duplex stainless steel and reveal the interaction mechanism between the arc plasma and droplets. A cycle in the pulsed arc additive manufacturing process of duplex stainless steel was selected to study the heat and mass transfer behavior. The temperature field, velocity field, metal vapor behavior, and experimental results at six characteristic moments of the arc plasma additive manufacturing process were analyzed separately. The results indicate that the peak arc plasma temperature was distributed on both sides of the droplet axis and was positively correlated with the current. The temperature distribution on the substrate surface was not uniform owing to the asymmetric effect of the arc plasma during necking to the transition stage of the droplet. In addition, the results of the flow-field distribution of the arc plasma were similar to those of the temperature field. However, the velocity peaks at different instances were not only related to the corresponding values of current but also to the transition states of the droplets. With the droplet transition, both the high-temperature and high-speed regions of the arc plasma were compressed toward the substrate. Before the droplet necking, the iron vapor was gradually compressed toward the axis as the current increased, and the mass fraction below the droplet could reach 100%. Following the droplet necking, the high concentration of iron vapor above and below the droplet increased the electrical conductivity of the plasma, which in turn accelerated the droplet transition. On the substrate surface axis, the mass fractions of iron vapor at different instances of times were between 20% and 60%. The simulation results of the pulsed arc plasma with duplex stainless steel droplets were generally consistent with the experimental results in terms of heat and mass transfer behavior, although complex electromagnetic thermal effects occurred between the arc plasma and the molten metal.

  • 0 前言

  • 双相不锈钢(Duplex stainless steel,DSS)具有近相等比例的铁素体(δ)和奥氏体(γ),独特的组织特点使其兼具奥氏体不锈钢良好的塑韧性和耐均匀腐蚀性能,以及铁素体不锈钢的高强度和耐应力腐蚀性能,因而被广泛地应用于海洋工程、石油化工等重要能源领域[1-3]。油气管道是可靠性最高、经济成本最低的能源远距离安全输送方式。然而,敷设的双相不锈钢油气管道不可避免会穿越海洋、酸性沼泽、盐碱地等腐蚀性强的复杂工况地带,还会受到城镇轨道交通杂散电流的影响,极易发生点蚀,甚至点蚀穿孔致裂[4-6]。为了延长双相不锈钢油气管道的服役寿命,可采用电弧、激光、电子束等热源技术进行再制造修复。其中,基于堆焊技术发展起来的电弧增材再制造具有高效、低成本等特殊优势,因而具有更加广阔的应用前景[7-9]

  • 电弧等离子体传热传质特性、熔滴与熔池演变行为对双相不锈钢电弧增材修复过程稳定性、成形质量以及微观组织具有重要影响,也是目前有待解决的科学难题[10-12]。原位测试和仿真分析是探究电弧等离子体传热传质行为的主要技术手段。但是,电弧等离子体的高焓、强弧光特性以及非平衡物化反应,致使难以采用原位测试的方法定量分析电弧等离子体的传热传质机理[13-15]。国内外学者主要采用数值模拟方法从单一角度研究电弧等离子体热效应、熔滴过渡或熔池演变行为[16-18]。近几年,一些学者逐步尝试采用电弧-熔滴耦合数值模拟方法揭示电弧等离子体的传热传质行为[19-22]。但是,针对双相不锈钢电弧等离子体与熔滴一体化耦合的全流程传热传质行为的研究报道较少,双相不锈钢电弧增材修复过程中电弧等离子体热力效应和熔滴过渡行为尚不清晰。

  • 因此,本文以双相不锈钢为研究对象,融合电磁动力学、流体力学及热力学等多学科理论,基于高速摄像与电信号原位采集手段,同时考虑等离子体中的金属蒸汽行为,建立电弧-熔滴一体化多物理场耦合仿真模型,研究电弧等离子体的传热传质行为,揭示电弧等离子体与熔滴之间的相互作用机制。

  • 1 数学物理模型

  • 1.1 基本假设

  • 为了减少计算时间,增加求解过程的稳定性,需要根据实际情况进行一定程度的简化,在数值模拟过程中做以下基本假设[19-20]

  • 对于电弧等离子体:

  • (1)电弧等离子体是连续的、层流的牛顿流体;

  • (2)电弧等离子体处于局部热力学平衡状态;

  • (3)电弧等离子体为非稳态且满足光学薄;

  • 对于熔融金属:

  • (1)忽略熔丝阳极内部多物理场变化情况以及金属固液相变过程;

  • (2)熔融金属为层流、非稳态的不可压缩流体;

  • (3)考虑金属蒸汽仅为铁蒸汽,并忽略由金属蒸发造成的质量损失。

  • 1.2 控制方程

  • 为提高电弧等离子体与金属熔滴两相混合区域的计算收敛性,采用多相流模型中的 Eularian 模型进行处理,通过两套控制方程分别对气相和金属相的物理场进行求解,并使用组分输运模型来计算金属蒸汽的分布情况。

  • 1.2.1 质量守恒方程

  • 气相质量守恒方程:

  • ρgt+ρgvg=0
    (1)
  • 金属相质量守恒方程:

  • ρmt+ρmvm=0
    (2)
  • 式中,t 为时间;ρgρm分别为气相和金属相的密度;vgvm分别为气相和金属相的速度矢量;∇ 是哈密顿算子。

  • 1.2.2 动量守恒方程

  • 气相动量守恒方程:

  • ρgvgt+ρgvgvg=-P+τ+j×B
    (3)
  • 金属相动量守恒方程包括压力梯度、电磁力、重力、等离子体流剪切力和表面张力。

  • ρmvmt+ρmvmvm=-P+τ+j×B+ρmg+μgvgs×Fm+γkcFm
    (4)
  • 式中,P 为压强;τ 为黏性剪切应力张量;j 为电流密度矢量;B 为磁感应强度矢量;g 为重力加速度矢量;μg 为气相的动态粘性系数;s 为自由表面切向单位向量;Fm 为金属相的体积分数;γ 为表面张力系数;kc为曲率。

  • 1.2.3 能量守恒方程

  • 气相能量守恒方程中包括焦耳热、金属蒸发带入的热量以及电弧热传导带走的热量。

  • ρghgFgt+ρgvghgFg=kgTg+j˙2σgFg+MvCgTm-TmTg kgdTg/δgmFm
    (5)
  • 金属液相能量守恒方程包括焦耳热、金属蒸发带走的热量及蒸发潜热、电弧热传导带入的热量,以及阳极吸收电子产热。

  • ρmhmFmt+ρmvmhmFm=kmTm+j2σmFm-MvCmTm+hv+TmTg kgdTg/δgmFm+jFmφa
    (6)
  • 式中,hghm分别为气相和金属相的比焓;Fg 为气相的体积分数;kgkm分别为气相和金属相的热导率;TgTm分别为气相和金属相的温度;σgσm 分别为气相和金属相的电导率;Mv为铁蒸汽的质量源项;CgCm分别为气相和金属相的比热容;δgm 为混合相区域的厚度;hv 是蒸发热;φa 为阳极金属材料的功函数。

  • 1.2.4 蒸汽质量分数守恒方程

  • 双相不锈钢的主要成分是铁和铬,并且铁相对铬更容易蒸发,故金属蒸汽只考虑铁蒸汽。通过组分输运模型和用户自定义函数将以下金属蒸汽质量分数守恒方程的扩散系数和质量源项耦合至计算体系,以实现金属蒸汽的运动过程。

  • ρgC0Fgt+ρgC0vgFg=DC0Fg+Mv
    (7)
  • D=221/M1+1/M20.5ρ12/β12μ12M10.25+ρ22/β22μ22M20.252
    (8)
  • 式中,C0 为铁蒸汽在气相中的质量分数;M1M2 是铁和氩原子的摩尔质量;ρ1μ1ρ2μ2 分别是铁蒸汽和氩气的密度及黏度;β1β2 是无量纲的常数;D 为二元扩散系数[23]

  • 铁蒸汽的质量源项可由其质量流量 mv 得到,采用 Hertz-Knudsen-Langmuir 方程[24]计算得到:

  • Mv=mvFm
    (9)
  • mv=M12πRPvTm-X0P0Tg
    (10)
  • Pv=P0exp-HvM1R1Tm-1Tv
    (11)
  • X0=C0M1C0M1+1-C0M2-1
    (12)
  • 式中,P0为外界大气压强;Pv为铁蒸汽分压;X0是铁蒸汽的摩尔分数,根据铁蒸汽的质量分数 C0 转换得到;Hv为铁蒸汽的汽化潜热;Tv为熔丝材料的沸点。

  • 1.2.5 电磁学

  • 为计算电弧等离子体的传热传质行为,还需要结合电磁学的相关理论以模拟复杂的物理过程。

  • 电流连续方程:

  • (σφ)=0
    (13)
  • 欧姆定律;

  • j=-σφ
    (14)
  • 由安培-麦克斯韦定律和库伦规范条件可以得到磁矢势的泊松方程:

  • 2A=-μ0j
    (15)
  • 亥姆霍兹定理建立磁感应强度和磁矢势的关系:

  • B=×A
    (16)
  • 式中,σ 为电导率;φ 为电势;A 为磁矢势矢量;μ0 为真空磁导率。

  • 1.3 计算域和边界条件

  • 为研究双相不锈钢脉冲电弧等离子体的传热传质行为,综合考虑铁蒸汽和熔滴,建立无基板的三维电弧-熔滴一体化模型,主要包括气体域及其边界,几何模型如图1 所示。

  • 图1 三维电弧-熔滴一体化模型

  • Fig.1 Three-dimensional integrated model of arc and droplets

  • 对计算域采用“O”型结构化网格进行离散,离散单元共 105 600 个,网格质量满足计算需求。在数值模拟计算时,金属相由 Wire inlet 边界以一定速度送进[25],速度计算如下:

  • vd=vw2+2adLa
    (17)
  • 式中,vd 为金属相生成速度;vw 为送丝速度;ad 为金属轴向的加速度;La为电弧等离子体长度。

  • 在保护气的入口,流量由下式转化为速度[21]

  • v (r) =2QgπRn2-r2+Rn2-Rw2lnr/RnlnRn/RwRn4-Rw4+Rn2-Rw22lnRn/Rw+

  • vwlnRn/rlnRn/Rw
    (18)
  • 式中,Qg 为保护气流量;r 为到熔丝轴线的径向距离;Rn 为气体喷嘴内径;Rw为熔丝半径。

  • 其他具体边界条件设置如表1 所示。

  • 表1 边界条件

  • Table1 Boundary conditions

  • 1.4 数值模拟计算处理

  • 1.4.1 材料物性参数

  • 脉冲电弧等离子体增材修复试验的基板采用超级双相不锈钢 SAF2507,熔丝采用 ER2594 双相不锈钢,保护气采用纯氩气。因忽略基板重点揭示电弧等离子体与熔滴之间的相互作用机制,故只考虑熔丝和等离子体的材料参数,如表2 所示。

  • 表2 ER2594 双相不锈钢熔丝和保护气材料参数

  • Table2 Material parameters of ER2594 duplex stainless steel wire and shielding gas

  • 1.4.2 工艺参数

  • 为满足双相不锈钢脉冲电弧等离子体与熔滴之间协同作用的传热传质行为的研究需要,开展电弧增材原位观测试验以提供基础数据并与数值模拟结果进行对比分析,电弧增材工艺参数如表3 所示。

  • 表3 电弧增材工艺参数

  • Table3 Process parameters of arc additive manufacturing

  • 基于工艺参数,由电信号采集系统得到完整的电流信号数据,结合高速摄像机拍摄的具有代表性的电弧等离子体与熔滴图像,取两个周期的脉冲电流波形如图2 所示。

  • 图2 脉冲电流波形

  • Fig.2 Waveform of pulse current

  • 1.4.3 数值计算处理

  • 基于 Fluent 软件,采用 Eulerian 模型和组分输运模型进行电弧-熔滴一体化多相流数值模拟研究。不同于常规 VOF 模型使用一套控制方程计算不同的相域,Eularian 模型采用两套控制方程分别计算电弧等离子体和熔滴的物理场,可以更容易解决等离子体和金属热物性参数相差梯度大而引起的发散问题。由于双相不锈钢的电弧增材修复过程中主要产生铁蒸汽影响等离子体的热物性参数,故利用组分输运模型和蒸汽质量分数守恒方程计算等离子体域中氩气和铁蒸汽的分布情况,进而实现电弧-熔滴一体化强耦合模型的建立。

  • 进行计算时,初始化气相温度为 10 000 K,时间步长为 50 μs。为减弱前一个液滴对传热传质过程的影响,使电弧-熔滴一体化模型计算更具有普适性。故在初始计算时,进行了预计算以满足独立周期内的电弧等离子体与熔滴状态。首先采用固定电流值 80 A 只对流体控制方程进行计算 50 步,然后只对电磁场和金属蒸汽组分输运控制方程进行计算50 步,最后将控制方程全部打开进行耦合求解,直至电弧熔滴达到稳定的耦合状态。以上计算过程完成后,可以理解为一个脉冲周期的初始状态,然后加载脉冲电流的程序进行计算。

  • 2 结果与讨论

  • 选取双相不锈钢脉冲电弧增材过程中的一个周期进行传热传质行为的研究。分别对电弧等离子体增材过程中温度场、速度场、金属蒸汽行为以及试验结果的六个特征时刻进行分析。

  • 2.1 电弧等离子体与熔滴温度场

  • 在一个脉冲周期内,取特征时刻的温度场云图进行分析,电弧等离子体和熔滴温度场如图3 所示。在 0.5 ms 时,电弧燃烧呈圆锥形,在轴线两侧温度升高速率最快。熔滴越靠近底部温度越高,呈锥形。随着电流值的增大,电弧等离子体作用于熔滴的电磁收缩力逐渐增大。同时,由于电磁收缩力和热收缩效应,电弧等离子体向熔滴轴线靠拢,温度迅速升高。在 2.5 ms 时,脉冲电流达到峰值,电弧等离子体整体呈钟罩形,在大电磁收缩力作用下熔滴开始出现颈缩。在熔滴轴线附近,电弧等离子体的高温区呈现束状分布,并且在靠近基板上表面的轴线上存在低温区。在 3.5 ms 时,由于重力、电磁收缩力和等离子体流力逐渐克服表面张力作用,熔滴缩颈得到促进,同时熔滴与轴线发生偏离,使电弧等离子体温度分布不再关于轴线对称。在 4.5 ms 时,电弧等离子体温度持续降低,并且随着熔滴位置的下降,电弧高温区域缩小。在 5 ms 时,金属液桥完全断裂,熔滴进行射滴过渡,而大部分熔融金属依旧附着在丝端。在熔滴过渡的一瞬间,电弧熄灭并且温度降到最低,随后向下一个周期过渡,电弧重新燃烧。

  • 为了解电弧等离子体在熔滴状态影响下的临近基板表面的传热情况,取基板表面以上 0.1 mm 处横向截面电弧等离子体的温度场分布结果进行分析,如图4 所示。将不同时刻中心的温度进行对比分析,可以发现,基板上表面的温度分布规律是不断变化的。在0.5 ms时,基板上表面温度等值线呈同心圆分布,在圆心区域存在低温区。随着电流增大,在 2.5 ms 的峰值电流作用下,基板上表面的圆心附近温度峰值不再是规则的圆形。随后在电流下降的 2.5 ms 内,电弧等离子体的分布不再关于轴对称,尤其是在熔滴缩颈至过渡阶段,基板上表面的温度分布是不均匀的。这说明基板上表面电弧等离子体传热行为会受熔滴状态影响。在熔滴过渡的不同阶段,电弧等离子体对熔池的热力作用是周期性变化的。

  • 图3 电弧等离子体和熔滴温度场

  • Fig.3 Temperature field of the arc plasma and droplets

  • 图4 基板上表面温度场

  • Fig.4 Temperature field on the substrate surface

  • 熔滴轴线上的温度分布如图5 所示。在熔滴缩颈之前,靠近阳极的熔滴温度在 3 000 K 以下。随着熔滴颈缩的形成,在 4.5 ms 时,熔滴的缩颈处截面面积减小,电流密度骤增,在焦耳热的作用下温度升高。在 5 ms 时,金属液桥断裂,原本的熔滴空间由 4 000 K 左右的电弧等离子体填充。另外可以发现,熔滴轴向上的温度峰值出现在熔滴底部附近,越远离熔滴温度越低,并且随着熔滴的过渡,电弧等离子体高温区域逐渐向基板压缩。

  • 图5 熔滴轴线上的温度分布

  • Fig.5 Distribution of temperature on the axis of droplets

  • 2.2 电弧等离子体流场

  • 电弧等离子体在电磁收缩力、温度梯度、密度梯度以及压强梯度等作用下,电弧等离子体速度场如图6 所示。电弧等离子体的流场分布结果与温度场类似,但是由演变过程可以发现,不同时刻速度峰值除与电流值相关,还与熔滴的过渡状态有关。保护气在靠近阳极端部时受到强电磁收缩力和热收缩效应进入电弧区被电离。在 0.5~2.5 ms,速度峰值随着电流的增大而增大,在脉冲峰值电流的作用下,速度可达 260 m / s。在熔滴颈缩之后,电流密度集中在熔滴底部,电弧等离子体的速度依旧主要受电流影响。而在金属液桥断裂后,电弧等离子体迅速熄灭,在一瞬间电流密度集中在脱落熔滴的底部,造成电弧等离子体的速度峰值比 0.5 ms 时刻更低。

  • 图6 电弧等离子体速度场

  • Fig.6 Velocity field of the arc plasma

  • 在熔滴轴线上电弧等离子体的速度分布结果如图7 所示。各个时刻电弧等离子体的速度峰值皆出现在熔滴的下方,并呈先增大后减小的分布规律。随着熔滴过渡进行,速度峰值随电流增大而增大,出现的位置也逐渐向基板靠近。

  • 图7 轴线上电弧等离子体速分布

  • Fig.7 Distribution of arc plasma velocity on the axis

  • 2.3 金属蒸汽行为

  • 由于熔滴的高温区主要分布在底端,故金属蒸汽的分布主要集中在熔滴下方,计算得到铁蒸汽的质量分数等值线如图8 所示。在 0.5 ms 时,熔滴下方的铁蒸汽质量分数即可达到 100%,并关于轴线对称分布。根据式(10)可知,电弧等离子体与熔滴温度差值越大,产生的铁蒸汽越多。随着电流增大,铁蒸汽向轴线压缩,靠近基板上表面的区域沿径向扩展。在 2.5 ms 达到峰值电流后,熔滴内电流密度急剧增大,在焦耳热及电弧等离子体的热传导作用下,生成大量的铁蒸汽,由电磁收缩力进一步压缩至轴线附近,并呈束状分布。在熔滴颈缩之后,电弧等离子体温度随电流降低,电磁收缩力减小,铁蒸汽分布范围的逐渐扩大。

  • 在两电极之间熔滴轴线上的铁蒸汽分布如图9 所示,熔滴缩颈前后铁蒸汽分布明显不同。在缩颈之前,铁蒸汽在熔滴下方质量分数可以达到 100%;在缩颈之后,熔滴上下皆有高浓度铁蒸汽,这会增大等离子体的电导率,进而促进熔滴过渡。在基板表面的轴线上,不同时刻的铁蒸汽质量分数在 20%至 60%之间。

  • 图8 铁蒸汽质量分数等值线图

  • Fig.8 Contours of mass factor of iron vapor

  • 图9 轴线上铁蒸汽质量分数的分布

  • Fig.9 Mass factor distribution of iron vapor on axis

  • 2.4 试验与模拟结果对比分析

  • 利用高速摄像机原位同步采集双相不锈钢脉冲电弧增材修复的传热传质过程,得到电弧等离子体与熔滴的图像,取特征时刻结果与仿真结果进行对比分析,如图10 所示。在 0.5 ms 时,试验结果中上一脉冲周期的熔滴刚接触熔池,电弧开始起弧燃烧,由于倾斜熔滴和熔池的存在,电弧等离子体高温区域非对称。在 1.5 ms 时,随着电流增大,更多的光子逸出,电弧等离子体可视区域增大,呈钟罩形。当电流达到峰值,电弧等离子体温度进一步升高,电弧区有明显的弧线边界,仿真结果与之对比吻合。随着电流下降,电弧等离子体温度降低且可视区域面积减小。在3.5 ms 时,金属液滴在峰值电流作用之后受电磁收缩力作用逐渐出现缩颈。在 4.5 ms 时,在熔融金属底部形成球状小液滴,仿真结果熔滴对比状态一致。在 5 ms 时刻,熔滴在表面张力、电磁力、重力以及等离子体流剪切力的综合作用下进行一脉一滴射滴过渡。综上所述,虽然电弧等离子体与熔融金属之间有复杂的电磁热力效应,但是双相不锈钢脉冲电弧等离子体与熔滴的试验与仿真结果在传热传质行为上基本一致。

  • 图10 传热传质过程试验与仿真结果对比

  • Fig.10 Comparison of experimental and simulated results of heat and mass transfer processes

  • 3 结论

  • (1)电弧等离子体温度峰值分布在熔滴轴线两侧并与电流值呈正相关,在熔滴缩颈至过渡阶段,基板上表面由电弧等离子体的非对称性影响造成温度分布不均匀。

  • (2)电弧等离子体的流场分布结果与温度场类似,但不同时刻速度峰值除与电流值相关,还与熔滴的过渡状态有关,随着熔滴过渡的进行,电弧等离子体的高温区和高速区皆向基板压缩。

  • (3)在熔滴缩颈之前,铁蒸汽随着电流增大逐渐向轴线压缩,在熔滴下方质量分数可以达到 100%;在熔滴缩颈之后,熔滴上下的高浓度铁蒸汽会增大等离子体的电导率,进而促进熔滴过渡。

  • 参考文献

    • [1] 张志强,荆洪阳,徐连勇,等.铁素体/奥氏体双相不锈钢组织和耐局部腐蚀性能研究现状[J].材料保护,2021,54(1):136-146.ZHANG Zhiqiang,JING Hongyang,XU Lianyong,et al.Research status on microstructure and localized corrosion resistance of ferrite/austenitic duplex stainless steels[J].Materials Protection,2021,54(1):136-146.(in Chinese)

    • [2] XIAO Y,TANG J L,WANG Y Y,et al.Corrosion behaviour of 2205 duplex stainless steel in NaCl solutions containing sulfide ions[J].Corrosion Science,2022,200:110140.

    • [3] LIU H F,SUN J B,QIAN J,et al.Revealing the temperature effects on the corrosion behaviour of 2205 duplex stainless steel from passivation to activation in a CO2-containing geothermal environment[J].Corrosion Science,2021,187:109495.

    • [4] 李新强.熔覆技术在油气管道涂层防护中的应用进展[J].石油库与加油站,2022,31(3):7-10,3-4.LI Xinqiang.Application progress of cladding technology in oil and gas pipeline coating protection[J].Oil Depot and Gas Station,2022,31(3):7-10,3-4.(in Chinese)

    • [5] XU L,WANG Y F,MO L,et al.The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines[J].Engineering Failure Analysis,2023,144:106951.

    • [6] MAO L J,GAN L K,LI W,et al.Failure analysis on weld joint of centrifugal pump diffuser for oil and gas pipeline transportation[J].Engineering Failure Analysis,2022,140:106620.

    • [7] NIE J H,LI Y X,LIU S Y,et al.Evolution of microstructure of Al particle-reinforced NiCoCrAlY coatings fabricated on 304 stainless steel using laser cladding[J].Materials Letters,2021,289:105962.

    • [8] VERMA J,TAIWADE R V.Effect of welding processes and conditions on the microstructure,mechanicalproperties and corrosion resistance of duplex stainless steel weldments—a review[J].Journal of Manufacturing Processes,2017,25:134-152.

    • [9] 伊浩,黄如峰,曹华军,等.基于CMT的钛合金电弧增材制造技术研究现状与展望[J].中国表面工程,2021,34(3):1-15.YI Hao,HUANG Rufeng,CAO Huajun,et al.Research progress and prospects of cmt-based wire arc additive manufacturing technology for titanium alloys[J].China Surface Engineering,2021,34(3):1-15.(in Chinese)

    • [10] TASHIRO S,MAMAT S B,MURPHY A B,et al.Numerical analysis of metal transfer process in plasma mig welding[J].Metals,2022,12(2):326.

    • [11] PRABHU R,ALWARSAMY T.Effect of process parameters on ferrite number in cladding of 317L stainless steel by pulsed MIG welding[J].Journal of Mechanical Science and Technology,2017,31(3):1341-1347.

    • [12] LIAO H P,ZHANG W X,Li X Y,et al.Effect of pulse current on droplet transfer behavior and weld formation of 304 stainless steel in local dry underwater pulse MIG welding[J].The International Journal of Advanced Manufacturing Technology,2022,122(2):869-879.

    • [13] 宋文鑫,张红霞,闫志峰,等.MIG 焊接304不锈钢电弧物理现象—焊缝形貌组织—力学性能的相关性研究[J].太原理工大学学报,2022,53(5):800-806.SONG Wenxin,ZHANG Hongxia,YAN Zhifeng,et al.Research on the correlation of arc physical phenomenonweld morphology and microstructure mechanical properties of MIG welded 304 stainless steel[J].Journal of Taiyuan University of Technology,2022,53(5):800-806.(in Chinese)

    • [14] 罗怡,朱亮,韩静韬,等.电弧填丝增材制造过程熔滴射滴过渡特征及其对熔滴沉积成形的影响[J].机械工程学报,2019,55(3):219-225.LUO Yi,ZHU Liang,HAN Jingtao,et al.Analysis on the characteristics of metal droplet transferred by projected transfer mode in wire + arc additive manufacturing process[J].Journal of Mechanical Engineering,2019,55(3):219-225.(in Chinese)

    • [15] NOMURA K,YOSHII K,TODA K,et al.3D measurement of temperature and metal vapor concentration in MIG arc plasma using a multidirectional spectroscopic method[J].Journal of Physics D:Applied Physics,2017,50(42):425205.

    • [16] HERTEL M,FVSSEL U,SCHNICK M.Numerical simulation of the plasma-MIG process-interactions of thearcs,droplet detachment and weld pool formation[J].Welding in the World,2014,58(1):85-92.

    • [17] XIAO L,FAN D,HUANG J K.Numerical Study on arc plasma behaviors in gmaw with applied axial magnetic field[J].Journal of the Physical Society of Japan,2019,88(7):074502.

    • [18] 李昌,黄庆春,陈馨雪,等.轧辊埋弧堆焊过程多场耦合数值模拟方法研究[J].中国表面工程,2021,34(4):117-128.LI Chang,HUANG Qingchun,CHEN Xinxue,et al.Multi field coupling numerical simulation of roll submerged arc surfacing process[J].China Surface Engineering,2021,34(4):117-128.(in Chinese)

    • [19] XIAO L,FAN D,HUANG J K,et al.3D numerical study of external axial magnetic field-controlled high-current gmaw metal transfer behavior[J].Materials(Basel,Switzerland),2020,13(24):5792.

    • [20] XIAO L,FAN D,HUANG J K,et al.Numerical study on arc-droplet coupled behavior in magnetic field controlled gmaw process[J].Journal of Physics D:Applied Physics,2020,53(11):115202.

    • [21] XU J,MA Y M,WANG L,et al.Numerical investigation on the influence of current waveform on droplet transfer in pulsed gas metal arc welding[J].Vacuum,2022,203:111230.

    • [22] IKRAM A,CHUNG H.Numerical simulation of arc,metal transfer and its impingement on weld pool in variable polarity gas metal arc welding[J].Journal of Manufacturing Processes,2021,64:1529-1543.

    • [23] MURPHY A B.A comparison of treatments of diffusion in thermal plasmas[J].Journal of Physics,D:Applied Physics,1996,29(7):1922-1932.

    • [24] HERTEL M,SPILLE-KOHOFF A,FVSSEL U,et al.Numerical simulation of droplet detachment in pulsed gas-metal arc welding including the influence of metal vapour[J].Journal of Physics D:Applied Physics,2013,46(22):224003.

    • [25] 张皓庭,武传松.激光-GMAW 复合热源焊接熔池-小孔行为分析[J].航空制造技术,2016(19):45-51.ZHANG Haoting,WU Chuansong.Analysis of weld pool and keyhole behaviors in laser-gmaw hybrid welding[J].Aeronautical Manufacturing Technology,2016(19):45-51.(in Chinese)

    • [26] MURPHY A B.The effects of metal vapour in arc welding[J].Journal of Physics D:Applied Physics,2010,43(43):434001.

    • [27] HERTEL M,SPILLE-KOHOFF A,FVSSEL U,et al.Modelling of gas-metal arc welding taking into account metal vapour[J].Journal of Physics D:Applied Physics,2010,43(43):434008.

  • 参考文献

    • [1] 张志强,荆洪阳,徐连勇,等.铁素体/奥氏体双相不锈钢组织和耐局部腐蚀性能研究现状[J].材料保护,2021,54(1):136-146.ZHANG Zhiqiang,JING Hongyang,XU Lianyong,et al.Research status on microstructure and localized corrosion resistance of ferrite/austenitic duplex stainless steels[J].Materials Protection,2021,54(1):136-146.(in Chinese)

    • [2] XIAO Y,TANG J L,WANG Y Y,et al.Corrosion behaviour of 2205 duplex stainless steel in NaCl solutions containing sulfide ions[J].Corrosion Science,2022,200:110140.

    • [3] LIU H F,SUN J B,QIAN J,et al.Revealing the temperature effects on the corrosion behaviour of 2205 duplex stainless steel from passivation to activation in a CO2-containing geothermal environment[J].Corrosion Science,2021,187:109495.

    • [4] 李新强.熔覆技术在油气管道涂层防护中的应用进展[J].石油库与加油站,2022,31(3):7-10,3-4.LI Xinqiang.Application progress of cladding technology in oil and gas pipeline coating protection[J].Oil Depot and Gas Station,2022,31(3):7-10,3-4.(in Chinese)

    • [5] XU L,WANG Y F,MO L,et al.The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines[J].Engineering Failure Analysis,2023,144:106951.

    • [6] MAO L J,GAN L K,LI W,et al.Failure analysis on weld joint of centrifugal pump diffuser for oil and gas pipeline transportation[J].Engineering Failure Analysis,2022,140:106620.

    • [7] NIE J H,LI Y X,LIU S Y,et al.Evolution of microstructure of Al particle-reinforced NiCoCrAlY coatings fabricated on 304 stainless steel using laser cladding[J].Materials Letters,2021,289:105962.

    • [8] VERMA J,TAIWADE R V.Effect of welding processes and conditions on the microstructure,mechanicalproperties and corrosion resistance of duplex stainless steel weldments—a review[J].Journal of Manufacturing Processes,2017,25:134-152.

    • [9] 伊浩,黄如峰,曹华军,等.基于CMT的钛合金电弧增材制造技术研究现状与展望[J].中国表面工程,2021,34(3):1-15.YI Hao,HUANG Rufeng,CAO Huajun,et al.Research progress and prospects of cmt-based wire arc additive manufacturing technology for titanium alloys[J].China Surface Engineering,2021,34(3):1-15.(in Chinese)

    • [10] TASHIRO S,MAMAT S B,MURPHY A B,et al.Numerical analysis of metal transfer process in plasma mig welding[J].Metals,2022,12(2):326.

    • [11] PRABHU R,ALWARSAMY T.Effect of process parameters on ferrite number in cladding of 317L stainless steel by pulsed MIG welding[J].Journal of Mechanical Science and Technology,2017,31(3):1341-1347.

    • [12] LIAO H P,ZHANG W X,Li X Y,et al.Effect of pulse current on droplet transfer behavior and weld formation of 304 stainless steel in local dry underwater pulse MIG welding[J].The International Journal of Advanced Manufacturing Technology,2022,122(2):869-879.

    • [13] 宋文鑫,张红霞,闫志峰,等.MIG 焊接304不锈钢电弧物理现象—焊缝形貌组织—力学性能的相关性研究[J].太原理工大学学报,2022,53(5):800-806.SONG Wenxin,ZHANG Hongxia,YAN Zhifeng,et al.Research on the correlation of arc physical phenomenonweld morphology and microstructure mechanical properties of MIG welded 304 stainless steel[J].Journal of Taiyuan University of Technology,2022,53(5):800-806.(in Chinese)

    • [14] 罗怡,朱亮,韩静韬,等.电弧填丝增材制造过程熔滴射滴过渡特征及其对熔滴沉积成形的影响[J].机械工程学报,2019,55(3):219-225.LUO Yi,ZHU Liang,HAN Jingtao,et al.Analysis on the characteristics of metal droplet transferred by projected transfer mode in wire + arc additive manufacturing process[J].Journal of Mechanical Engineering,2019,55(3):219-225.(in Chinese)

    • [15] NOMURA K,YOSHII K,TODA K,et al.3D measurement of temperature and metal vapor concentration in MIG arc plasma using a multidirectional spectroscopic method[J].Journal of Physics D:Applied Physics,2017,50(42):425205.

    • [16] HERTEL M,FVSSEL U,SCHNICK M.Numerical simulation of the plasma-MIG process-interactions of thearcs,droplet detachment and weld pool formation[J].Welding in the World,2014,58(1):85-92.

    • [17] XIAO L,FAN D,HUANG J K.Numerical Study on arc plasma behaviors in gmaw with applied axial magnetic field[J].Journal of the Physical Society of Japan,2019,88(7):074502.

    • [18] 李昌,黄庆春,陈馨雪,等.轧辊埋弧堆焊过程多场耦合数值模拟方法研究[J].中国表面工程,2021,34(4):117-128.LI Chang,HUANG Qingchun,CHEN Xinxue,et al.Multi field coupling numerical simulation of roll submerged arc surfacing process[J].China Surface Engineering,2021,34(4):117-128.(in Chinese)

    • [19] XIAO L,FAN D,HUANG J K,et al.3D numerical study of external axial magnetic field-controlled high-current gmaw metal transfer behavior[J].Materials(Basel,Switzerland),2020,13(24):5792.

    • [20] XIAO L,FAN D,HUANG J K,et al.Numerical study on arc-droplet coupled behavior in magnetic field controlled gmaw process[J].Journal of Physics D:Applied Physics,2020,53(11):115202.

    • [21] XU J,MA Y M,WANG L,et al.Numerical investigation on the influence of current waveform on droplet transfer in pulsed gas metal arc welding[J].Vacuum,2022,203:111230.

    • [22] IKRAM A,CHUNG H.Numerical simulation of arc,metal transfer and its impingement on weld pool in variable polarity gas metal arc welding[J].Journal of Manufacturing Processes,2021,64:1529-1543.

    • [23] MURPHY A B.A comparison of treatments of diffusion in thermal plasmas[J].Journal of Physics,D:Applied Physics,1996,29(7):1922-1932.

    • [24] HERTEL M,SPILLE-KOHOFF A,FVSSEL U,et al.Numerical simulation of droplet detachment in pulsed gas-metal arc welding including the influence of metal vapour[J].Journal of Physics D:Applied Physics,2013,46(22):224003.

    • [25] 张皓庭,武传松.激光-GMAW 复合热源焊接熔池-小孔行为分析[J].航空制造技术,2016(19):45-51.ZHANG Haoting,WU Chuansong.Analysis of weld pool and keyhole behaviors in laser-gmaw hybrid welding[J].Aeronautical Manufacturing Technology,2016(19):45-51.(in Chinese)

    • [26] MURPHY A B.The effects of metal vapour in arc welding[J].Journal of Physics D:Applied Physics,2010,43(43):434001.

    • [27] HERTEL M,SPILLE-KOHOFF A,FVSSEL U,et al.Modelling of gas-metal arc welding taking into account metal vapour[J].Journal of Physics D:Applied Physics,2010,43(43):434008.

  • 手机扫一扫看