en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴向举,男,1998年出生,硕士。主要研究方向为金属增材制造及再制造。E-mail:wuxiangjuky@163.com

林建军,男,1983年出生,博士,助理教授,硕士研究生导师。主要研究方向为金属增材制造及再制造。E-mail:im.jianjun@szu.edu.cn

通讯作者:

林建军,男,1983年出生,博士,助理教授,硕士研究生导师。主要研究方向为金属增材制造及再制造。E-mail:im.jianjun@szu.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221231003

参考文献 1
龙旭,贾啟普,李娇,等.选区激光熔化成形TC4钛合金力学性能及其工艺关联性[J].中国表面工程,2022,35(2):215-223.LONG Xu,JIA Qipu,LI Jiao,et al.Mechanical properties and parameter optimization of TC4 alloy by additive manufacturing[J].China Surface Engineering,2022,35(2):215-223.(in Chinese)
参考文献 2
伊浩,黄如峰,曹华军,等.基于CMT的钛合金电弧增材制造技术研究现状与展望[J].中国表面工程,2021,34(3):1-15.YI Hao,HUANG Rufeng,CAO Huajun,et al.Research progress and prospects of CMT-based wire arc additive manufacturing technology for titanium alloys[J].China Surface Engineering,2021,34(3):1-15.(in Chinese)
参考文献 3
钱丽艳,王艳虎,戴峰泽,等.激光冲击强化对钛合金疲劳寿命影响综述[J].中国表面工程,2022,35(2):103-112.QIAN Liyan,WANG Yanhu,DAI Fengze,et al.Laser shock processing and its effect on fatigue life of titanium alloys:A review[J].China Surface Engineering,2022,35(2):103-112.(in Chinese)
参考文献 4
尹博,赵鸿,王金彪,等.钛合金电弧增材制造技术研究现状及发展趋势[J].航空精密制造技术,2016,52(4):1-3,44.YIN Bo,ZHAO Hong,WANG Jinbiao,et al.Research status and prospect of wire and arc additive manufactured titanium alloy[J].Aviation Precision Manufacturing Technology,2016,52(4):1-3,44.(in Chinese)
参考文献 5
马驰,刘永红,纪仁杰,等.电弧增材制造综述:技术流派与展望[J].电加工与模具,2020(4):1-11.MA Chi,LIU Yonghong,JI Renjie,et al.Review of wire and arc additive manufacturing:technology genre and Prospect[J].Electromachining & Mould,2020(4):1-11.(in Chinese)
参考文献 6
LIU Shunyu,SHIN Y C.Additive manufacturing of Ti6Al4V alloy:A review[J].Materials & Design,2019,164:107552.
参考文献 7
MARTINA F,MEHNEN J,WILLIANMS S W,et al.Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J].Journal of Materials Processing Technology,2012,212(6):1377-1386.
参考文献 8
LIN J J,LV Y H,LIU Y X,et al.Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,69:19-29.
参考文献 9
LIN Jianjun,GUO Dengji,LV Yaohui,et al.Heterogeneous microstructure evolution in Ti-6Al-4V alloy thin-wall components deposited by plasma arc additive manufacturing[J].Materials & Design,2018,157:200-210.
参考文献 10
王磊磊,张占辉,徐得伟,等.双脉冲电弧增材制造数值模拟与晶粒细化机理[J].焊接学报,2019,40(4):137-140.WANG Leilei,ZHANG Zhanhui,XU Dewei,et al.Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J].Transactions of the China Welding Institution,2019,40(4):137-140.(in Chinese)
参考文献 11
王振宇.等离子堆焊WC及稀土 Y2O3 增强镍基堆焊层组织及性能的研究[D].沈阳:沈阳工业大学,2021.WANG Zhenyu.Study on microstructure and properties of Ni-based surfacing layer enhanced by plasma surfacing WC and rare earth Y2O3[D].Shenyang:Shenyang University of Technology,2021.(in Chinese)
参考文献 12
吴磊.等离子弧熔覆镍基碳化钨涂层组织及性能研究 [D].镇江:江苏科技大学,2021.WU Lei.Microstructure and properties of nickel-based tungsten carbide coating cladding by plasma arc cladding[D].Zhenjiang:Jiangsu University of Science and Technology,2021.(in Chinese)
参考文献 13
刘宁.TC4 钛合金TIG填丝堆焊成型技术研究[D].哈尔滨:哈尔滨工业大学,2013.LIU Ning.Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)
参考文献 14
夏然飞.电弧增材制造成形尺寸及工艺参数优化研究 [D].武汉:华中科技大学,2016.XIA Ranfei.Study on forming dimensions and process parameters optimization of wire arc additive manufacturing[D].Wuhan:Huazhong University of Science and Technology,2016.(in Chinese)
参考文献 15
LIN Zidong,SONG Kaijie,YU Xinghua.A review on wire and arc additive manufacturing of titanium alloy[J].Journal of Manufacturing Processes,2021,70:24-45.
参考文献 16
刘瑞江,张业旺,闻崇炜,等.正交试验设计和分析方法研究[J].实验技术与管理,2010,27(9):52-55.LIU Ruijiang,ZHANG Yewang,WEN Chongwei,et al.Study on the design and analysis methods of orthogonal experiment[J].Experimental Technology and Management,2010,27(9):52-55.(in Chinese)
参考文献 17
郝拉娣,于化东.正交试验设计表的使用分析[J].编辑学报,2005,17(5):334-335.HAO Ladi,YU Huadong.On use of orthogonal experimental design[J].Acta Editologica,2005,17(5):334-335.(in Chinese)
参考文献 18
林建军.脉冲等离子弧增材制造 Ti-6Al-4V 合金组织演变机理及力学性能研究[D].上海:上海交通大学,2017.LIN Jianjun.Study on mechanism of microstructure evolution and mechanical properties of Ti-6Al-4V alloy deposited by pulsed plasma arc additive manufacturing[D].Shanghai:Shanghai Jiaotong University,2017.(in Chinese)
参考文献 19
曹军,连平.正交试验在焊接工艺评定中的应用[J].焊接,2007(12):47-50.CAO Jun,LIAN Ping.Application of orthogonal test to welding procedure qualifications[J].Welding & Joining,2007(12):47-50.(in Chinese)
参考文献 20
PAN Zengqi,DING Donghong,WU Bintao,et al.Arc welding processes for additive manufacturing:A review[J].Transactions on Intelligent Welding Manufacturing,2018:3-24.
参考文献 21
LIN Jianjun,HUANG Haijun,LIU Yuxin,et al.Mechanism of enhanced ductility of Ti-6Al-4V alloy components deposited by pulsed plasma arc additive manufacturing with gradient-changed heat inputs[J].Materials Science and Engineering:A,2023,865:144601.
目录contents

    摘要

    等离子弧增材制造技术具有低成本、高沉积率和高材料利用率等优势,对航空航天、海洋工程及军事医学等领域的大型复杂零件制造具有重要意义。但等离子弧能量密度高及钛合金热导率低的特性,导致钛合金沉积零件成形性差,且易生成粗大柱状晶。另外,等离子弧增材制造工艺参数多和调控难的特点,限制了满足力学标准的增材制造工艺参数的快速制定。采用正交试验法、金相组织分析及组织与力学能关系表征等手段,研究等离子弧增材制造 Ti-6Al-4V 工艺参数对成形性、显微组织及显微硬度的影响规律。研究结果表明,等离子弧工艺参数对成形性的影响程度依次为基值电流(Ib)>峰值电流(Ip) >占空比(Idcy)>送丝速度(TWFS)>沉积速度(Ts)>脉冲频率(FP),且基值电流对单道沉积层的熔宽、余高和成形性的影响最大;对平均晶粒尺寸的影响程度依次为 TsFPTWFSIbIpIdcy,沉积速度越大,晶粒尺寸越小,脉冲频率影响次之;对显微硬度影响程度依次为 TsIdcyTWFSIbFPIp,沉积速度对平均晶粒尺寸和显微硬度影响最大,峰值电流对平均晶粒尺寸及显微硬度的影响有限。研究结果可为等离子弧增材制造及再制造工艺提供理论依据,并为野外矿山机械、海洋船舶、工程装备平台及石油化工装备等受损零件的快速修复提供工艺调控技术参考。

    Abstract

    Titanium alloys offer the advantages of low density, high specific strength, and good corrosion resistance, making them widely used in aerospace, ocean engineering, military medicine, and other fields. However, the high cost, low thermal conductivity, and low elastic modulus of titanium alloys result in poor quality, low efficiency, and high cost of traditional processing, which seriously restricts their application and development. Plasma-arc additive manufacturing technology provides a cost-effective solution with high deposition and material utilization rates, which is crucial for the production of large and complex parts. However, owing to the high energy density of the plasma arc and the low thermal conductivity of titanium alloys, the formability of titanium alloy-deposited parts is compromised, resulting in the growth of coarse columnar grains. In addition, the characteristics of many parameters and the difficulty in controlling plasma-arc additive manufacturing limit the rapid formulation of additive manufacturing process parameters that meet mechanical standards. The influence of plasma arc additive manufacturing of Ti-6Al-4V alloy process parameters on formability, microstructure, and microhardness was investigated by orthogonal experiments, metallographic analysis, and characterization of the relationship between the microstructure and mechanical properties. The experiment was conducted in an inert argon gas environment using a plasma arc additive manufacturing system, which consists of a Kuka robot, main power supply, plasma power supply, and wire feeding system. The main process parameters included deposition speed, wire feeding speed, pulse base current, pulse peak current, pulse frequency, and duty cycle. The three main evaluation parameters of formability were evaluated using the melting width, reinforcement, and aspect ratio of the deposited layer as indicators. In addition, the average grain size and microhardness were used as indices to evaluate the effect of microstructure on mechanical properties. The results indicate that the degree of influence of the plasma arc process parameters on the formability is as follows: base current (Ib) > peak current (Ip) > duty cycle (Idcy) > wire feed speed (TWFS) > deposition speed (Ts) > pulse frequency (FP). Ib has the greatest influence on the deposited width, deposited height, and formability of a single layer, with a more pronounced effect when Ib is 50%-70% Ip. The deposition speed and duty cycle exhibited the following relationships: the faster the deposition speed, the smaller the width and height of the deposition layer. The effect of the duty cycle on the width and formability of the single-pass deposited layers was positively correlated. The effect of process parameters on the average grain size was TsFPTWFSIbIpIdcy, with larger deposition speeds resulting in smaller grain sizes. Pulse frequency was the second most influential parameter on average grain size, demonstrating that pulse disturbance aids in grain refinement. Moreover, the degree of influence of the process parameters on microhardness was Ts > Idcy > TWFS > Ib > FP > Ip. The deposition speed had the greatest influence on average grain size and microhardness, with Ip having limited influence on these two aspects. Although the influence of the deposition speed on microhardness was the greatest, the degree of influence was only 4%, indicating that the influence of the selected plasma-arc process parameters on microhardness was not significant. These findings provide a theoretical basis for plasma arc additive manufacturing and additive remanufacturing processes and offer technical support for the rapid repair of damaged parts in applications such as field mining machinery, marine ships, engineering equipment platforms, and petroleum and chemical equipment.

  • 0 前言

  • 钛合金因其密度低、比强度高、耐蚀性好等优点,广泛应用于航空航天、石油化工及军事医疗等领域,其中 Ti-6Al-4V 合金应用占比最多[1-3]。但因钛合金成本高、低热导率及低弹性模量等特性造成传统加工成型差、效率低及成本高,进一步限制了钛合金的使用[4]。增材制造技术的发展促进传统高价值、难加工材料在重点装备零部件上的应用,特别是钛合金的加工成形。当前,金属增材制造技术包括电子束(Electron beam melting,EBM)、激光 (Selective laser melting,SLM)和电弧(Wire arc additive manufacturing,WAAM)等。对比增材制造技术中的成本[5-6]和沉积率等因素,如表1 所示。电弧增材制造的沉积率是电子束和激光的几十倍,而成本却仅为后者的几十分之一。此外,根据 MARTINA 等[7]的研究发现,等离子弧增材制造 (Plasm arc additive manufacturing,PAM)薄壁零件具有更大的材料利用率。所以,等离子弧增材制造技术成为制造大型零件的首选,尤其是薄壁零件。

  • 表1 不同增材制造技术的优势[5-6]

  • Table1 Advantages of different additive manufacturing technologies[5-6]

  • +: Good; ++: More positive effects.

  • 通过工艺调控在线实时改善增材制造沉积态钛合金零件的力学性能是当前国内外研究的重点和热点。LIN 等[8-9]研究脉冲等离子弧对增材制造钛合金的组织演变和力学性能,发现脉冲可有效细化晶粒并显著提高成形零件的强度和韧性;王磊磊等[10]通过数值模拟研究双脉冲金属极气体保护焊对增材制造零件的影响,发现双脉冲可获得更高的冷却速度,进而有效细化晶粒;王振宇[11]采用正交试验法研究等离子堆焊中焊接电流、焊接速度和等离子其流量对堆焊层的影响,确定了镍基合金堆焊层的最佳工艺参数;吴磊[12]通过正交试验法优化等离子弧覆镍基碳化钨涂层的工艺,获得工艺参数对熔覆层成形、稀释率和硬度的影响规律,并发现各因素对熔覆层成型质量的影响程度依次为电流>送粉速度>离子气流量>熔覆速度,对熔覆层硬度的影响程度依次为离子气流量>电流>送粉速度>熔覆速度;刘宁[13]利用正交试验研究钨极氩弧增材制造中各工艺参数对单道单层成形尺寸的影响,结果表明沉积电流是熔宽最显著的影响因素,送丝速度是余高最显著的影响因素;夏然飞[14]研究熔化极电弧增材制造的工艺参数和单道单层成形尺寸的关系,发现沉积速度和送丝速度对沉积层宽度的影响规律,并建立单道单层尺寸模型。然而,综合研究等离子弧增材制造工艺参数对沉积态零件的成形性及力学性能影响的研究,尚未见报道。

  • 因此,本文以等离子弧增材制造技术为手段,研究等离子弧增材制造 Ti-6Al-4V 合金的工艺参数对单道单层成形性及显微硬度的影响规律,为金属增材制造或增材再制造钛合金零件提供技术参考。

  • 1 材料与方法

  • 1.1 材料及设备

  • 本试验采用直径 1 mm 的 Ti-6Al-4V 焊丝,主要成分(质量分数)为 0.007H、0.01N、0.02C、0.07Fe、 0.14O、3.95V、6.11Al,其余为 Ti。基板选用 Ti-6Al-4V 热轧板,其尺寸为 2 000 mm×1 500 mm×8 mm,预先使用 150~400 目砂纸打磨,再使用丙酮和乙醇进行脱脂处理。试验在惰性气体氩气环境保护下,采用等离子弧增材制造系统设备进行,增材制造系统由 Kuka 机器人、主电源(Fronius magic wave5000 Job G/F)、等离子电源(Fronius plasma module10) 和送丝系统组成,如图1 所示。

  • 图1 等离子弧增材制造系统

  • Fig.1 Plasma arc additive manufacturing system

  • 1.2 试验方法

  • 试验采用正交试验法进行试验设计[15-17],研究等离子弧增材制造工艺参数对零件成形性及显微硬度的影响规律。等离子弧增材制造(Plasm arc additive manufacturing,PAM)主要工艺参数包括沉积速度(Ts)、送丝速度(TWFS)、脉冲基值电流(Ib)、脉冲峰值电流(Ip)、脉冲频率(FP)和占空比(Idcy,即 Tp /(TbTp),即脉冲峰值电流时间 Tp 与脉冲电流单位周期 T 的比值)等[18-19],其他参数如进气量、保护气量等,将作为满足工艺要求的固定值,不参与试验分析。

  • 选取等离子弧增材制造的 6 个主要参数 TsTWFSIpIbIdcyFP。考虑到交互作用及其他未考虑随机因素,设置一个空白项 C 参与试验设计。依据试验设备参数范围及研究现状[1820],设定试验主要因素参数水平取值范围如表2 所示。

  • 表2 试验主要参数及取值范围

  • Table2 Main parameters and value rang of experiment

  • 根据各参数取值范围,取等分的 3 个水平,各因素及参数水平如表3 所示。主要因素增加空白项共 7 项,每个因素设 3 个参数水平,则该试验需用 L18(37)正交表,共计试验 18 次,试验方案如表4 所示。

  • 表3 主要参数及水平

  • Table3 Main parameters and levels

  • 表4 试验方案

  • Table4 Experimental schemes

  • 评价指标是分析试验结果的依据。该试验将单道沉积层的熔宽(W)、余高(H)和宽高比(W/H) 作为 3 个主要评价成形性的指标。另外,以晶粒尺寸{平均晶粒宽度,即熔宽/柱状晶粒数(N)}和平均显微硬度作为组织对力学性能影响程度的评价指标。平均晶粒尺寸依据金属平均晶粒尺寸测量方法 (GB / T6394 — 2017)中的截点法在沉积层中部进行测量,其熔宽、余高和测量平均柱状晶粒尺寸的测试位置,如图2 所示。

  • 图2 试样的测试位置

  • Fig.2 Test location of the sample

  • 1.3 试样制备

  • 选取试样中部位置,垂直沉积方向横向切取厚度约 1.5 cm 的试样。将试样依次打磨、抛光和腐蚀 (腐蚀剂:1 mL 氢氟酸+2 mL 硝酸+50 mL 水),腐蚀后的试样组织显示为魏氏体组织和马氏体组织,沉积试样的显微组织如图3 所示。

  • 图3 沉积试样的显微组织

  • Fig.3 Microstructure of deposited sample

  • 采用扫描电子显微镜(TESCAN,LYRA3)观察并测量试样的熔宽和余高的尺寸,分别计算宽高比。采用超景深三维显微镜(Keyence,VHX-2000E) 观察并测量晶粒数目,计算平均晶粒尺寸,即熔宽/ 柱状晶粒数。将显微硬度作为评价力学性能指标,采用显微硬度计(FUTURE-TECH,FM-ARS9000) 对试样不同组织区域的马氏体组织、魏氏体组织和晶界分别选取 3 个点进行显微硬度测量,测量载荷设定为 200 g,加载时间为 10 s。

  • 2 结果与讨论

  • 2.1 单道沉积层宏观形貌

  • 正交试验结果 18 道单道沉积宏观形貌,如图4 所示。从图中可以看出,4#和 11#试样整体沉积形貌并不完整。4#试样前段保持完整,中后段基本消失,11#试样起弧和收弧段沉积层不能成形。试样形貌不连续可能是沉积速度高或送丝速度低造成的。从形貌整体完整性观察,1#、2#、3#、5#、10#、13# 及 15#成形质量更好。

  • 图4 18 道单道沉积宏观形貌

  • Fig.4 Macrostructure of 18 single deposition

  • 表5 为统计试样的熔宽、余高及宽高比的结果。由表5 可知,沉积宽度最大的为 11.11 mm(10#),最小的为 5.11 mm(4#),最大沉积高度为 2.83 mm (3#),最小沉积高度为 1.48 mm(13#),宽高比是表征成形性的指标,宽高比范围为 7.11~2.08。

  • 表5 试样的熔宽、余高及宽高比

  • Table5 Fusion width, deposited height and aspect ratio of the test samples

  • 2.2 工艺参数对成形性的影响

  • 由表5 所得数据对应试验方案安排表4,统计结果如表6 所示。表中 Ki 为因素在水平 i 时所对应的全部数据之和。ki 为所对应 Ki 的均值。极差 R 即同因素 Ki 的极差,即极差 R=max Ki – min Ki。在选定水平区间内,极差 R 越大代表对成形尺寸影响能力越大。由此,得到各参数对成形性的影响规律。

  • 由表6 可知,工艺参数对成形性影响程度依次为基值电流(Ib)>峰值电流(Ip)>占空比(Idcy) >送丝速度(TWFS)>沉积速度(Ts)>脉冲频率 (FP),且基值电流对单道单层的熔宽、余高和宽高比(成形性)的影响最大。图5 所示为基值电流对熔宽、余高和宽高比的影响,从图中可知,Ib 数值越高,熔宽越大,而基值电流对余高呈现出先升后降的趋势,当 Ib=50% Ip时,平均余高达到最大值为 2.14 mm。另外,对比横轴上 30% Ip 和 50% Ip,在数值上相差 20%,但对熔宽、余高和宽高比的影响程度的变化却只有 6.4%、5.6%和 2.6%,然而对比 50% Ip 和 70% Ip,熔宽、余高和宽高比影响程度的变化分别达到 20%、17.2%和 32.9%。显然,基值电流取峰值电流的 50%~70%对单道沉积层成形尺寸的影响最大。

  • 表6 工艺参数对成形性的影响

  • Table6 Effect of process parameters on formability

  • 图5 基值电流对熔宽、余高和宽高比的影响

  • Fig.5 Effect of base current on fusion wdth, deposited height, and aspect ratio

  • 2.3 工艺参数对晶粒尺寸和显微硬度的影响

  • 表7 所示为试样平均晶粒尺寸和显微硬度的统计结果,晶粒数的统计位置如图6 所示,测量显微硬度的典型组织和晶界的微观形貌如图7 所示。由表7 结果可知同一水平截面上晶粒数目最多为 34 个,即晶粒最细(17#),晶粒数目最少的为 16 个,即晶粒最粗(4#、8#)。表8 所示为工艺参数对平均晶粒尺寸和显微硬度的影响规律,由表8 极差数据表明,沉积速度对平均晶粒尺寸和显微硬度影响最大。沉积速度越大,平均晶粒尺寸宽度越小,由此可知,沉积速度越大,组织凝固速度越大,其平均晶粒尺寸越小,脉冲频率对晶粒尺寸影响次之。空白项对晶粒尺寸的影响位于脉冲频率之后,可知各主要因素之间可能存在交互作用,沉积速度的快慢和脉冲频率的扰动相互之间影响到沉积层的冷却速率[918],进而对沉积层的晶粒尺寸和显微硬度产生不同程度影响。考虑交互因素需采用二次回归分析进一步研究,本文暂探讨主要因素的非交互影响规律。另一方面,沉积速度对显微硬度影响最大,但其影响程度仅为 4%左右(如图8 所示),LIN 等[21]进行等离子弧增材制造薄壁零件组织演变,发现随着沉积层增加,基体的冷却效应减弱,脉冲扰动作用增强,表现为沉积零件底部硬度值较沉积零件顶部更高。由此可知,单道单层基板的冷却速度的影响程度高于沉积速度对凝固组织的影响程度。

  • 表7 试样平均晶粒尺寸及显微硬度

  • Table7 Grain size and microhardness

  • 图6 晶粒数的统计位置

  • Fig.6 Statistical position of grain number

  • 图7 Ti-6Al-4V 合金典型微观组织形貌

  • Fig.7 Typical microstructure morphology of Ti-6Al-4V alloy

  • 表8 工艺参数对平均晶粒尺寸和显微硬度的影响规律

  • Table8 Influence of process parameters on grain size and microhardness

  • 图8 沉积速度对晶粒尺寸和显微硬度的影响

  • Fig.8 Effect of deposition speed on grain size and microhardness

  • 3 结论

  • 通过等离子弧增材制造 Ti-6Al-4V 合金的单道单层试验,以沉积速度、送丝速度、峰值电流、基值电流、占空比和脉冲频率等六个主要参数为研究对象,采用正交试验法,研究工艺参数对单道沉积层成形性及力学性能的影响规律,为金属增材制造提供技术参考。研究得出以下结论:

  • (1)等离子弧增材制造 Ti-6Al-4V 合金工艺参数对成形性影响程度依次为基值电流(Ib)>峰值电流(Ip)>占空比(Idcy)>送丝速度(TWFS)>沉积速度(Ts)>脉冲频率(FP),且基值电流对单道单层的熔宽、余高和宽高比的影响最大。基值电流对单道沉积层熔宽、余高和宽高比的影响最大,其中基值电流取峰值电流的 50%~70%对成形尺寸的影响最大。

  • (2)工艺参数对平均晶粒尺寸的影响依次为 TsFPTWFSIbIpIdcy。沉积速度对平均晶粒尺寸最大,沉积速度越大,晶粒宽度越小,脉冲频率对平均晶粒尺寸影响次之,相对比其他工艺参数,电流值对晶粒尺寸的影响稍弱。

  • (3)工艺参数对显微硬度影响程度依次为 TsIdcyTWFSIbFPIp。沉积速度对晶粒尺寸和显微硬度影响均为最大,而峰值电流对晶粒尺寸及显微硬度的影响有限。

  • 参考文献

    • [1] 龙旭,贾啟普,李娇,等.选区激光熔化成形TC4钛合金力学性能及其工艺关联性[J].中国表面工程,2022,35(2):215-223.LONG Xu,JIA Qipu,LI Jiao,et al.Mechanical properties and parameter optimization of TC4 alloy by additive manufacturing[J].China Surface Engineering,2022,35(2):215-223.(in Chinese)

    • [2] 伊浩,黄如峰,曹华军,等.基于CMT的钛合金电弧增材制造技术研究现状与展望[J].中国表面工程,2021,34(3):1-15.YI Hao,HUANG Rufeng,CAO Huajun,et al.Research progress and prospects of CMT-based wire arc additive manufacturing technology for titanium alloys[J].China Surface Engineering,2021,34(3):1-15.(in Chinese)

    • [3] 钱丽艳,王艳虎,戴峰泽,等.激光冲击强化对钛合金疲劳寿命影响综述[J].中国表面工程,2022,35(2):103-112.QIAN Liyan,WANG Yanhu,DAI Fengze,et al.Laser shock processing and its effect on fatigue life of titanium alloys:A review[J].China Surface Engineering,2022,35(2):103-112.(in Chinese)

    • [4] 尹博,赵鸿,王金彪,等.钛合金电弧增材制造技术研究现状及发展趋势[J].航空精密制造技术,2016,52(4):1-3,44.YIN Bo,ZHAO Hong,WANG Jinbiao,et al.Research status and prospect of wire and arc additive manufactured titanium alloy[J].Aviation Precision Manufacturing Technology,2016,52(4):1-3,44.(in Chinese)

    • [5] 马驰,刘永红,纪仁杰,等.电弧增材制造综述:技术流派与展望[J].电加工与模具,2020(4):1-11.MA Chi,LIU Yonghong,JI Renjie,et al.Review of wire and arc additive manufacturing:technology genre and Prospect[J].Electromachining & Mould,2020(4):1-11.(in Chinese)

    • [6] LIU Shunyu,SHIN Y C.Additive manufacturing of Ti6Al4V alloy:A review[J].Materials & Design,2019,164:107552.

    • [7] MARTINA F,MEHNEN J,WILLIANMS S W,et al.Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J].Journal of Materials Processing Technology,2012,212(6):1377-1386.

    • [8] LIN J J,LV Y H,LIU Y X,et al.Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,69:19-29.

    • [9] LIN Jianjun,GUO Dengji,LV Yaohui,et al.Heterogeneous microstructure evolution in Ti-6Al-4V alloy thin-wall components deposited by plasma arc additive manufacturing[J].Materials & Design,2018,157:200-210.

    • [10] 王磊磊,张占辉,徐得伟,等.双脉冲电弧增材制造数值模拟与晶粒细化机理[J].焊接学报,2019,40(4):137-140.WANG Leilei,ZHANG Zhanhui,XU Dewei,et al.Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J].Transactions of the China Welding Institution,2019,40(4):137-140.(in Chinese)

    • [11] 王振宇.等离子堆焊WC及稀土 Y2O3 增强镍基堆焊层组织及性能的研究[D].沈阳:沈阳工业大学,2021.WANG Zhenyu.Study on microstructure and properties of Ni-based surfacing layer enhanced by plasma surfacing WC and rare earth Y2O3[D].Shenyang:Shenyang University of Technology,2021.(in Chinese)

    • [12] 吴磊.等离子弧熔覆镍基碳化钨涂层组织及性能研究 [D].镇江:江苏科技大学,2021.WU Lei.Microstructure and properties of nickel-based tungsten carbide coating cladding by plasma arc cladding[D].Zhenjiang:Jiangsu University of Science and Technology,2021.(in Chinese)

    • [13] 刘宁.TC4 钛合金TIG填丝堆焊成型技术研究[D].哈尔滨:哈尔滨工业大学,2013.LIU Ning.Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)

    • [14] 夏然飞.电弧增材制造成形尺寸及工艺参数优化研究 [D].武汉:华中科技大学,2016.XIA Ranfei.Study on forming dimensions and process parameters optimization of wire arc additive manufacturing[D].Wuhan:Huazhong University of Science and Technology,2016.(in Chinese)

    • [15] LIN Zidong,SONG Kaijie,YU Xinghua.A review on wire and arc additive manufacturing of titanium alloy[J].Journal of Manufacturing Processes,2021,70:24-45.

    • [16] 刘瑞江,张业旺,闻崇炜,等.正交试验设计和分析方法研究[J].实验技术与管理,2010,27(9):52-55.LIU Ruijiang,ZHANG Yewang,WEN Chongwei,et al.Study on the design and analysis methods of orthogonal experiment[J].Experimental Technology and Management,2010,27(9):52-55.(in Chinese)

    • [17] 郝拉娣,于化东.正交试验设计表的使用分析[J].编辑学报,2005,17(5):334-335.HAO Ladi,YU Huadong.On use of orthogonal experimental design[J].Acta Editologica,2005,17(5):334-335.(in Chinese)

    • [18] 林建军.脉冲等离子弧增材制造 Ti-6Al-4V 合金组织演变机理及力学性能研究[D].上海:上海交通大学,2017.LIN Jianjun.Study on mechanism of microstructure evolution and mechanical properties of Ti-6Al-4V alloy deposited by pulsed plasma arc additive manufacturing[D].Shanghai:Shanghai Jiaotong University,2017.(in Chinese)

    • [19] 曹军,连平.正交试验在焊接工艺评定中的应用[J].焊接,2007(12):47-50.CAO Jun,LIAN Ping.Application of orthogonal test to welding procedure qualifications[J].Welding & Joining,2007(12):47-50.(in Chinese)

    • [20] PAN Zengqi,DING Donghong,WU Bintao,et al.Arc welding processes for additive manufacturing:A review[J].Transactions on Intelligent Welding Manufacturing,2018:3-24.

    • [21] LIN Jianjun,HUANG Haijun,LIU Yuxin,et al.Mechanism of enhanced ductility of Ti-6Al-4V alloy components deposited by pulsed plasma arc additive manufacturing with gradient-changed heat inputs[J].Materials Science and Engineering:A,2023,865:144601.

  • 参考文献

    • [1] 龙旭,贾啟普,李娇,等.选区激光熔化成形TC4钛合金力学性能及其工艺关联性[J].中国表面工程,2022,35(2):215-223.LONG Xu,JIA Qipu,LI Jiao,et al.Mechanical properties and parameter optimization of TC4 alloy by additive manufacturing[J].China Surface Engineering,2022,35(2):215-223.(in Chinese)

    • [2] 伊浩,黄如峰,曹华军,等.基于CMT的钛合金电弧增材制造技术研究现状与展望[J].中国表面工程,2021,34(3):1-15.YI Hao,HUANG Rufeng,CAO Huajun,et al.Research progress and prospects of CMT-based wire arc additive manufacturing technology for titanium alloys[J].China Surface Engineering,2021,34(3):1-15.(in Chinese)

    • [3] 钱丽艳,王艳虎,戴峰泽,等.激光冲击强化对钛合金疲劳寿命影响综述[J].中国表面工程,2022,35(2):103-112.QIAN Liyan,WANG Yanhu,DAI Fengze,et al.Laser shock processing and its effect on fatigue life of titanium alloys:A review[J].China Surface Engineering,2022,35(2):103-112.(in Chinese)

    • [4] 尹博,赵鸿,王金彪,等.钛合金电弧增材制造技术研究现状及发展趋势[J].航空精密制造技术,2016,52(4):1-3,44.YIN Bo,ZHAO Hong,WANG Jinbiao,et al.Research status and prospect of wire and arc additive manufactured titanium alloy[J].Aviation Precision Manufacturing Technology,2016,52(4):1-3,44.(in Chinese)

    • [5] 马驰,刘永红,纪仁杰,等.电弧增材制造综述:技术流派与展望[J].电加工与模具,2020(4):1-11.MA Chi,LIU Yonghong,JI Renjie,et al.Review of wire and arc additive manufacturing:technology genre and Prospect[J].Electromachining & Mould,2020(4):1-11.(in Chinese)

    • [6] LIU Shunyu,SHIN Y C.Additive manufacturing of Ti6Al4V alloy:A review[J].Materials & Design,2019,164:107552.

    • [7] MARTINA F,MEHNEN J,WILLIANMS S W,et al.Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J].Journal of Materials Processing Technology,2012,212(6):1377-1386.

    • [8] LIN J J,LV Y H,LIU Y X,et al.Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,69:19-29.

    • [9] LIN Jianjun,GUO Dengji,LV Yaohui,et al.Heterogeneous microstructure evolution in Ti-6Al-4V alloy thin-wall components deposited by plasma arc additive manufacturing[J].Materials & Design,2018,157:200-210.

    • [10] 王磊磊,张占辉,徐得伟,等.双脉冲电弧增材制造数值模拟与晶粒细化机理[J].焊接学报,2019,40(4):137-140.WANG Leilei,ZHANG Zhanhui,XU Dewei,et al.Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J].Transactions of the China Welding Institution,2019,40(4):137-140.(in Chinese)

    • [11] 王振宇.等离子堆焊WC及稀土 Y2O3 增强镍基堆焊层组织及性能的研究[D].沈阳:沈阳工业大学,2021.WANG Zhenyu.Study on microstructure and properties of Ni-based surfacing layer enhanced by plasma surfacing WC and rare earth Y2O3[D].Shenyang:Shenyang University of Technology,2021.(in Chinese)

    • [12] 吴磊.等离子弧熔覆镍基碳化钨涂层组织及性能研究 [D].镇江:江苏科技大学,2021.WU Lei.Microstructure and properties of nickel-based tungsten carbide coating cladding by plasma arc cladding[D].Zhenjiang:Jiangsu University of Science and Technology,2021.(in Chinese)

    • [13] 刘宁.TC4 钛合金TIG填丝堆焊成型技术研究[D].哈尔滨:哈尔滨工业大学,2013.LIU Ning.Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)

    • [14] 夏然飞.电弧增材制造成形尺寸及工艺参数优化研究 [D].武汉:华中科技大学,2016.XIA Ranfei.Study on forming dimensions and process parameters optimization of wire arc additive manufacturing[D].Wuhan:Huazhong University of Science and Technology,2016.(in Chinese)

    • [15] LIN Zidong,SONG Kaijie,YU Xinghua.A review on wire and arc additive manufacturing of titanium alloy[J].Journal of Manufacturing Processes,2021,70:24-45.

    • [16] 刘瑞江,张业旺,闻崇炜,等.正交试验设计和分析方法研究[J].实验技术与管理,2010,27(9):52-55.LIU Ruijiang,ZHANG Yewang,WEN Chongwei,et al.Study on the design and analysis methods of orthogonal experiment[J].Experimental Technology and Management,2010,27(9):52-55.(in Chinese)

    • [17] 郝拉娣,于化东.正交试验设计表的使用分析[J].编辑学报,2005,17(5):334-335.HAO Ladi,YU Huadong.On use of orthogonal experimental design[J].Acta Editologica,2005,17(5):334-335.(in Chinese)

    • [18] 林建军.脉冲等离子弧增材制造 Ti-6Al-4V 合金组织演变机理及力学性能研究[D].上海:上海交通大学,2017.LIN Jianjun.Study on mechanism of microstructure evolution and mechanical properties of Ti-6Al-4V alloy deposited by pulsed plasma arc additive manufacturing[D].Shanghai:Shanghai Jiaotong University,2017.(in Chinese)

    • [19] 曹军,连平.正交试验在焊接工艺评定中的应用[J].焊接,2007(12):47-50.CAO Jun,LIAN Ping.Application of orthogonal test to welding procedure qualifications[J].Welding & Joining,2007(12):47-50.(in Chinese)

    • [20] PAN Zengqi,DING Donghong,WU Bintao,et al.Arc welding processes for additive manufacturing:A review[J].Transactions on Intelligent Welding Manufacturing,2018:3-24.

    • [21] LIN Jianjun,HUANG Haijun,LIU Yuxin,et al.Mechanism of enhanced ductility of Ti-6Al-4V alloy components deposited by pulsed plasma arc additive manufacturing with gradient-changed heat inputs[J].Materials Science and Engineering:A,2023,865:144601.

  • 手机扫一扫看