en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

宋靖东,男,1988年出生,博士研究生。主要研究方向为金属材料表面强化和梯度结构。E-mail:jingdongeagle@163.com

何卫锋,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为航空等离子体表面工程。E-mail:hehe_coco@163.com

罗思海,男,1990年出生,博士,副教授。主要研究方向为航空发动机部件激光制造与结构强度。E-mail:luo_hai@126.com

通讯作者:

罗思海,男,1990年出生,博士,副教授。主要研究方向为航空发动机部件激光制造与结构强度。E-mail:luo_hai@126.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221231004

参考文献 1
PENG Chong,XIAO Yuzhe,WANG Yanzhong,et al.Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear[J].Optics & Laser Technology,2017,94(1):15-24.
参考文献 2
HANDSCHUH R F,KRANTZ T L,LERCH B A,et al.Investigation of low-cycle bending fatigue of AISI 9310 steel spur gears[C]//Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.September 4-7,2007,Las Vegas.New York:ASME,2007,7:871-877.
参考文献 3
FENG Ke,NI Qing,BEER M,et al.A novel similarity-based status characterization methodology for gear surface wear propagation monitoring[J].Tribology International,2022,174:107765.
参考文献 4
LIU Huaiju,WANG Wei,ZHU Caichao,et al.A microstructure sensitive contact fatigue model of a carburized gear[J].Wear,2019,436-437:203035.
参考文献 5
ADACHI S,UEDA N.Wear and corrosion properties of cold-sprayed AISI 316L coatings treated by combined plasma carburizing and nitriding at low temperature[J].Coatings,2018,8(12):456.
参考文献 6
马飞,潘邻,张良界,等.316 奥氏体不锈钢低温渗碳层摩擦学性能[J].材料热处理学报,2014,35(1):181-185.MA Fei,PAN Lin,ZHANG Liangjie,et al.Tribological properties of low-temperature gas carburized layer on 316 austenitic stainless steel[J].Transactions of Materials and Heat Treatment,2014,35(1):181-185.(in Chinese)
参考文献 7
YANG Yang,YAN M F,ZHANG Y X,et al.Catalytic growth of diamond-like carbon on Fe3C-containing carburized layer through a single-step plasma-assisted carburizing process[J].Carbon,2017,122:1-8.
参考文献 8
SUN Y.Kinetics of low temperature plasma carburizing of austenitic stainless steels[J].Journal of Materials Processing Technology,2005,168(2):189-194.
参考文献 9
WANG H L,WANG Z B,LU K.Enhanced reactive diffusion of Zn in a nanostructured Fe produced by means of surface mechanical attrition treatment[J].Acta Materialia,2012,60(4):1762-1770.
参考文献 10
TONG W P,TAO N R,WANG Z B,et al.Nitriding iron at lower temperatures[J].Science,2003,299(5607):686-688.
参考文献 11
TANG Lei,JIA Weiju,HU Jing.An enhanced rapid plasma nitriding by laser shock peening[J].Materials Letters,2018,231:91-93.
参考文献 12
KOVACI H,HAMSALIHOGLU I,YETIM A F,et al.Effects of shot peening pre-treatment and plasma nitriding parameters on,the structural,mechanical and tribological properties of AISI 4140 low-alloy steel[J].Surface & Coatings Technology,2019,358:256-265.
参考文献 13
PEYRE P,FABBRO R,MERRIEN P,et al.Laser shock processing of aluminium alloys.Application to high cycle fatigue behavior[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1996,210(1-2):102-113.
参考文献 14
WU L J,LUO K Y,LIU Y,et al.Effects of laser shock peening on the micro-hardness,tensile properties,and fracture morphologies of CP-Ti alloy at different temperatures[J].Applied Surface Science,2018,431:122-134.
参考文献 15
TONG Zhaopeng,PAN Xuyang,ZHOU Wangfan,et al.Achieving excellent wear and corrosion properties in laser additive manufactured CrMnFeCoNi high-entropy alloy by laser shock peening[J].Surface & Coatings Technology,2021,422:127504.
参考文献 16
CHUKWUIKE V I,ECHEM O G,PRABHAKARAN S,et al.Laser shock peening(LSP):electrochemical and hydrodynamic investigation of corrosion protection pre-treatment for a copper surface in 3.5% NaCl medium[J].Corrosion Science,2021,179:109156.
参考文献 17
ZHOU Liucheng,LONG Changbai,HE Weifeng,et al.Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization[J].Journal of Alloys and Compounds,2018,744:156-164.
参考文献 18
KATTOURA M,MANNAVA S R,QIAN D,et al.Effect of laser shock peening on residual stress,microstructure and fatigue behavior of ATI 718Plus alloy[J].International Journal of Fatigue,2017,102:121-134.
参考文献 19
WANG Changyu,LUO Kaiyu,WANG Jian,et al.Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening[J].International Journal of Plasticity,2022,150:103191.
参考文献 20
SONG Jingdong,LUO Sihai,LIANG Xiaoqing,et al.Rolling contact fatigue and damage characteristic of AISI 9310 steel with pre-laser shock peening treatment[J].International Journal of Fatigue,2022,155:106588.
参考文献 21
SRINIVAS K M,BHARATH S,CHAITANYA P N V K,et al.2020.Improving tribological properties of P91 steels through carburizing process[J],Materials TodayProceedings:1575-1578.
参考文献 22
WANG Bin,HE Yanping,LIU Ye,et al.Mechanism of the microstructural evolution of 18Cr2Ni4WA steel during vacuum low-pressure carburizing heat treatment and its effect on case hardness[J].Materials,2020,13(10):2352.
参考文献 23
RUI Shaoshi,HAN Qinan,WANG Xue,et al.Correlations between two EBSD-based metrics kernel average misorientation and image quality on indicating dislocations of near-failure low alloy steels induced by tensile and cyclic deformations[J].Materials Today Communications,2021,27:102445.
参考文献 24
AN Xiaoxue,TIAN Yong,WANG Bin,et al.Prediction of the formation of carbide network on grain boundaries in carburizing of 18CrNiMo7-6 steel alloys[J].Surface & Coatings Technology,2021,421:127348.
参考文献 25
LUO Sihai,LI Yinghong,ZHOU Liucheng,et al.Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J].Materials & Design,2016,104:320-326.
参考文献 26
TSUJI N,TANAKA S,TAKASUGI T.Evaluation of surface-modified Ti-6Al-4V alloy by combination of plasma-carburizing and deep-rolling[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2008,488(1-2):139-145.
参考文献 27
CAO Xin,HE Weifeng,LIAO Bin,et al.Effect of TiN/Ti coating combined with laser shock peening pre-treatment on the fatigue strength of Ti-6Al-4V titanium alloy[J].Surface & Coatings Technology,2020,403:126393.
参考文献 28
ZHANG Hao,REN Zhencheng,LIU Jun,et al.Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening[J].Journal of Alloys and Compounds,2019,802:573-582.
参考文献 29
LU Jinzhong,LUO Kaiyu,ZHANG Yongkang,et al.Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Materialia,2010,58(11):3984-3994.
参考文献 30
MAISTRO G,OIKONOMOU C,ROGSTROM L,et al.Understanding the microstructure-properties relationship of low-temperature carburized austenitic stainless steels through EBSD analysis[J].Surface and Coatings Technology,2017,322:141-151.
参考文献 31
BEHNAMIAN Y,MOSTAFAEI A,KOHANDEHGAN A,et al.A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 ℃[J].Corrosion Science,2016,106:188-207.
参考文献 32
SHI Lei,CUI Xiufang,JIN Guo,et al.Study on micro-mechanism of carbon atom diffusion in surface nanocrystallization low carbon alloy steel using molecular dynamics simulation[J].Vacuum,2021,184:109889.
参考文献 33
余永宁.金属学原理[M].北京:冶金工业出版社,2000.YU Yongning.Metallography principle[M].Beijing:Metallurgical Industry Press,2000.(in Chinese)
目录contents

    摘要

    AISI 9310 钢是一种高强度渗碳齿轮钢,具有较好的韧性。服役过程中,齿面极易发生磨损和接触疲劳失效损伤。为有效改善 9310 齿轮钢的耐磨损和抗接触疲劳性能,实现磨损和接触疲劳性能协同强化,提出采用激光冲击(LSP)+渗碳(LC) 复合强化的技术思路,采用激光冲击强化技术对 AISI 9310 钢基体进行前处理,再对其开展低温渗碳热处理。为进一步研究 LSP 和 LC 对 9310 齿轮钢微观组织形貌的影响规律,利用光学显微镜、扫描电子显微镜和电子背散射衍射表征渗碳层微观组织形貌和截面方向的晶体学特征,并对试件截面方向的硬度进行考核。研究结果表明,AISI 9310 钢的渗碳层厚度约为 14 μm, 最大硬度约为 305.67 HV,硬化层厚度约 300 μm;LSP 前处理后,渗碳层厚度提升到 23 μm,最大硬度提升到 328.87HV,硬化层厚度提升到约 700 μm。对比发现,LSP 前处理分别可将 9310 钢低温渗碳层厚度提升 64.3%,渗碳层硬度提升 23.17 HV,硬化层深度提升 133%。这主要是低温渗碳对 9310 钢的 Kernel 平均取向差(KAM)和小角度晶界影响较小,但是 LSP 前处理可引入塑性变形并提升小角度晶界比例,有助于碳元素扩散,促进 9310 钢低温渗碳行为,提升渗碳层厚度、硬化层硬度和厚度。初步解决了 LSP 前处理诱导微观组织缺陷促进碳元素扩散的问题,可为 LSP 复合强化提升航空齿轮关键部件服役寿命提供技术支撑。

    Abstract

    AISI 9310 steel is a kind of high-strength carburized steel with good toughness. Owing to its material properties, this steel is usually used to fabricate gear parts. Gear tooth surface is prone to wear and contact fatigue damage during service processing. Therefore, to effectively resolve the resistance properties and for the synergistic strengthening of the wear and contact fatigue properties, the AISI 9310 steel sample was processed by laser shock peening (LSP) and then treated by low temperature gaseous carburization (LC). The carburized layer and cross-sectional crystallographic characteristics were imaged using optical microscopy(OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD); subsequently, the cross-sectional hardness was measured. The following results were obtained. After LC treatment, a white carburized layer, which was approximately 14-μm thick and uneven, was induced on the 9310 steel matrix surface. The maximum hardness achieved for the carburized layer of 9310 steel was about 305.67 HV with the depth of work hardening being 300 μm. The maximum hardness of the LCed sample was enhanced by 27.56% compared to the as-received sample. However, with pre-LSP treatment, the thickness of the carburized layer of 9310 steel was improved to approximately 23 μm and the maximum hardness to approximately 328.87 HV with the depth of work hardening being 700 μm. The maximum hardness of the LSP-LCed sample was enhanced by 5.46 % compared to the LCed sample. However, in comparison, the pre-LSP treatment improves the thickness of the carburized layer by 64.3%, the maximum hardness by 23.17 HV, and the depth of work hardening by 133%. The underlying reasons for these enhancements are as follows. Generally, LSP treatment induces plastic deformation and improves the proportion of low angle grain boundary (LGB); this enhances the diffusion behavior of the carbon atoms, and consequently improves the hardness of the LCed layer and the depth of work hardening. After pre-LSP treatment, the carbon diffusion behavior and hardness of LC were enhanced. Specifically, combining pre-LSP and LC processing results in cross-sectional work hardening because LC alone can hardly influence the Kernel average misorientation (KAM) and proportion of LGB of as-received 9310 steel. In other words, pre-LSP improves the KAM of the LCed sample by 15.38% (from 0.52° to 0.60°), and the depth from 0-100 μm. Moreover, pre-LSP enhances the KAM of the LCed sample by 15.79 % (to 0.66°) and the depth from 100-200 μm. Finally, the low angle grain boundary was measured. Notably, LC does not affect the proportion of the low angle grain boundary and the cross-sectional distribution for 9310 steel. On the contrary, pre-LSP processing evidently enhances the proportion of the low angle grain boundary. At the depth of 0-100 μm, pre-LSP enhances the total proportion of the LGB of the LCed sample by 13.04% (from 36.8% to 41.6%). Moreover, the total proportions of the LGB of the LCed sample were enhanced from 36.8% to 55.8% and from 38% to 46.2% for the depth ranging from 100-200 μm and 200-300 μm, respectively. Based on the above results, the main conclusions to enhance the carbon atoms diffusion behavior are as follows. Pre-LSP enhances the carbon diffusion behavior of LC by inducing plastic deformation via increased KAM and increasing the proportion of low-angle grain boundary. Consequently, the easier carbon diffusion behavior of LC could induce the thicker carburized layer, the harder work hardening level, and even improves the thickness of work hardening layer. The problem of carbon diffusion enhanced by microstructure defects induced by LSP pretreatment is preliminarily solved. This resolution would provide technical support for LSP compound strengthening to extend the service life of key components of aviation gear.

  • 0 前言

  • AISI 9310 钢是国内外广泛使用的具有优异综合性能的一种低成本传动部件高强度渗碳钢[1]。 AISI 9310 钢具有良好的耐磨损性能,强度高,且韧性好,同时具有较高的淬透性,通常被应用于航空工业齿轮部件[2]。在服役过程中,齿轮极易受到滑动磨损[3]和接触疲劳失效损伤[4],影响航空发动机齿轮结构的表面完整性,降低其服役安全与可靠性。因此,通常采用渗碳或者渗氮对其进行表面强化。

  • 低温渗碳( Low temperature gaseous carburization,LC)是一种在较低温度下(一般在 470℃以下,以防止生成 Cr23C6为主的 M23C6类型碳化物)对奥氏体不锈钢进行渗碳处理,使碳原子固溶到奥氏体晶格中,诱导奥氏体表层形成渗碳层,进而提升其耐磨损性能的表面强化技术[5]。马飞等[6] 研究了 AISI316 奥氏体不锈钢低温(470℃)气体渗碳层的摩擦学性能,发现低温渗碳可以较好提升 316 奥氏体不锈钢的耐磨损性能,磨损机制为磨粒磨损。YANG 等[7]利用低温离子辅助渗碳工艺在含有Fe3C渗碳层的M50NiL钢上制备得到类似金刚石的碳膜(Diamond-like carbon,DLC),此碳膜可以有效提升 M50NiL 钢的耐磨损性能。以上表明,低温渗碳能够提升耐磨损性能,主要是因为渗碳过程中碳元素扩散形成了渗碳层。

  • 从表面前处理技术对元素扩散的影响角度出发,学者们做了大量工作。通常,影响元素扩散效率主要有两方面因素,一是动力,提升温度降低扩散激活能[8],二是结构,引入微观组织缺陷提供更多扩散的通道和路径[9]。TONG 等[10]利用表面纳米化实现将渗氮温度从 500℃降低到 300℃的低温渗氮,其原理是利用剧烈塑性变形实现纳米化,从而为氮元素扩散提供动力基础和结构基础。TANG 等[11]利用激光冲击强化(Laser shock peening,LSP) 促进离子渗氮,他们认为原因是 LSP 提升表面粗糙度和引入预制硬化层。KOVACI 等[12]研究喷丸预处理对离子渗氮的影响,由于喷丸可以细化晶粒,引入残余压应力,提升渗氮的扩散动力,从而促进渗氮。总之,表面前处理技术增渗是利用提高元素扩散动力或者提供更多的扩散通道来实现的。

  • 激光冲击强化是一种能有效改善金属材料表面性能的表面处理技术[13],可以提升金属材料表面硬度[14]、耐磨损性能[15]、耐腐蚀性能[16]和抗疲劳性能[17]等。其原理是诱导等离子体爆炸产生冲击波,利用冲击波的力效应在材料表层产生塑性变形[18],进而使材料微观组织发生变化[19]。另外,LSP 可控性更强,适用性更好。目前,LSP 前处理对低温渗碳的影响机理还不清晰。

  • 本文采用 LSP 对 9310 钢基体进行前处理,然后进行低温渗碳热处理,对渗碳层厚度进行表征,并用 EDS 对渗碳层进行验证,在此基础上对渗碳层进行截面硬度性能测试。由于没有改变渗碳的温度,本文的目的是研究 LSP 前处理引入微观组织结构变化对 9310 钢低温渗碳性能的影响,利用电子背散射衍射(Electron backscatter diffraction,EBSD)技术分析截面微观组织形貌,研究 LSP 前处理对低温渗碳的影响及 LSP 促进低温渗碳机制。

  • 1 试验准备

  • 1.1 激光冲击强化前处理与低温渗碳

  • 试验选用 9310 钢作为基体材料,该材料主要应用于航空齿轮,是一种铁素体单相结构材料,其金相组织如图1 所示,其化学成分(质量分数)见表1,此材料在室温下的基本力学性能为 E=207 GPa,ν=0.3,ρ=7.84 g / cm3σb≥1 078 MPa[20]

  • 图1 9310 钢的金相组织

  • Fig.1 Metallographic structure of 9310 steel

  • 表1 AISI 9310 钢化学成分(wt. %)

  • Table1 Chemical compositions of 9310 steel (wt. %)

  • 利用 YAG 激光器(西安天瑞达光电技术股份有限公司,中国)对 2000 目砂纸打磨过的试样表面进行 LSP 前处理。LSP 参数为:波长 1 064 nm,脉宽 20 ns,光斑直径 2.2 mm,激光光斑能量高斯分布,约束层为水,热保护层为 3M 胶带,搭接率为 50%,冲击次数为 3 次,冲击能量为 3 J。LSP 处理后,对试样进行低温渗碳热处理,采用真空气体渗碳法。渗碳气氛选用一氧化碳、氢气和氮气混合气体,其中气氛比例为 CO∶H2∶N2=1∶1.5∶2.5。渗碳温度为 470℃,保温时间 40 h,在 N2 中随炉冷却至室温。

  • 1.2 结构表征及力学性能测试

  • 采用 ZEISS AXIO 型光学显微镜(OM)观察试样截面微观组织形貌,金相侵蚀剂为 4%硝酸+96% 酒精,渗层的侵蚀剂为 Marble’s 溶液(5g CuSO4+ 50 mL HCl+50 mL H2O),渗层厚度为水平分布 5 次测试的平均值;采用钨灯丝扫描电子显微镜 EVO10 的能谱仪对试样截面进行 EDS 面扫测定试样表面渗碳层碳元素分布;利用电解抛光制备 EBSD 试样,温度−20℃,电流 200~300 mA,电压 10~20 V,时间 30 s;采用钨灯丝扫描电子显微镜 Hitachi SU3500 测试 EBSD,步长 0.6 μm;截面硬度测试利用维氏硬度仪(MH-UT,中国),载荷为 50 g,保载时间 10 s,每个深度位置取 3 个有效数据,间隔 50 μm。

  • 2 结果与讨论

  • 2.1 渗层

  • 由图2 可见,经过 Marble’ s 溶液侵蚀后,有无 LSP 前处理的低温渗碳 9310 钢试样为单一铁素体相。低温渗碳试样最表层出现约 14 μm 的白亮渗碳层。LSP 前处理后,再进行低温渗碳的 9310 钢试样渗层厚度大约 23 μm,即 LSP 前处理大约提升 64.3% 的渗碳层厚度。可以看出,LSP 前处理可以明显促进 9310 钢的低温渗碳作用,即提升温渗碳层厚度。这是因为 LSP 前处理可以预制微观组织结构缺陷,有助于促进碳原子扩散[11]。另一方面,LSP 诱导的微观组织缺陷也会贡献一部分加工硬化,详见 2.2 节。

  • 图2 有无 LSP 前处理的低温渗碳 9310 钢试样截面微观组织

  • Fig.2 Cross-sectional microstructure of LCed 9310 steel with or without pre-LSP

  • 为进一步验证 LSP 前处理对 9310 钢低温渗碳的促进作用,利用 EDS 面扫对渗层的碳元素分布进行表征,如图3 所示。可以看出,低温渗碳后,红色的碳元素分布比较稀疏,没有在局部位置发生碳元素富集现象。但是经过 LSP 前处理后,低温渗碳的碳原子在 9310 钢表层发生一定程度的富集。另外,在水平方向上,此富集现象分布也不均匀,进一步佐证图2b 中 LSP-LC 渗层的分布不均匀性。这是因为 LSP 前处理无法实现在试样水平方向上预制完全一致的均匀塑性变形,所以低温渗碳在试样水平方向上的扩散作用存在不同。

  • 图3 有无 LSP 前处理的低温渗碳 9310 钢试样截面碳元素 EDS 面扫图

  • Fig.3 Carbon EDS surface scanning of LCed 9310 steel sample with or without pre-LSP

  • 2.2 截面梯度硬度

  • 为研究低温渗碳和 LSP 前处理对低温渗碳试样的截面力学性能的影响,对截面进行维氏硬度测试,原始状态、低温渗碳和 LSP 前处理的低温渗碳 9310 钢试样的截面硬度测试结果如图4 所示。原始状态 9310 钢试样的硬度为 239.63±2.54 HV0.05。低温渗碳后,9310 钢试样的表层硬度提升到 305.67± 4.46 HV0.05,较原始状态试样的硬度提升 27.56%,这是由低温渗碳后引入的渗碳层所致[21]。随着距离表面深度增加,硬度逐渐降低,下降速率不断减慢; 在深度为 300 μm 左右处,硬度值趋于稳定,约为 260 HV0.05,比基体高 20 HV0.05 左右。这是由于用金相方法观测到渗层的厚度虽然只有几十微米,但是低温渗碳热处理的热效应对 9310 钢试样的热影响可以使试样的截面硬度得到整体提升[22]。LSP 前处理后,促进碳原子扩散作用,低温渗碳的渗层厚度得到提升。在深度为 20 μm 时,LSP 可以将低温渗碳试样的硬度从 311.83 HV0.05 提升到 328.87 HV0.05,提升 5.46%。随着深度的提升,LSP 前处理的低温渗碳试样的硬度逐渐降低。当深度降低到 700 μm 时,硬度趋于稳定,后续随着深度增加硬度基本保持不变。LSP 前处理后,低温渗碳的扩散作用得到提升,渗层对硬度的提升作用进一步提升。同时,LSP 处理后发生塑性变形从而引起微观组织变化,也会引起硬度的提升。截面硬度是 LSP 前处理和低温渗碳共同作用的结果。

  • 图4 截面硬度分布

  • Fig.4 Cross-sectional hardness distributions

  • 2.3 微观组织形貌

  • 为研究 LSP 前处理对 9310 钢低温渗碳的影响机理,利用 EBSD 对原始试样、低温渗碳试样、LSP 前处理的低温渗碳试样截面显微组织开展详细的晶体学表征。图5a 为原始试样的局部取向差(Kernel average misorientation,KAM)分布,表征晶体材料局部应变分布,也可以用来计算晶体材料的几何必须位错密度。临界角度为 0°~4.97°,图中颜色从蓝色依次到红色表示局部取向差不断增大,表示对应位置的位错密度不断增大[23]。可以看出,在试样表面到材料心部方向上,原始状态试样的 KAM 较大值分布在次表层 200~300 μm。原始态 9310 钢试样的 KAM 值为 0.61°。晶界扩散是渗碳扩散过程中的主要途径[24]。可以发现,大角度晶界绝大部分集中在晶粒边缘周围,少量大角晶界分布在独立的铁素体晶粒内部。小角度晶界分布在晶界边缘较少,晶粒内部较多。

  • 图5 原始状态 9310 钢试样截面 EBSD 分布图

  • Fig.5 Cross-sectional EBSD distribution of as-received 9310 steel sample

  • 图6 所示为 LSP 处理试样的截面 EBSD 分布。从图6a 可以看出,晶粒内部的 KAM 高亮区域面积明显多于原始状态试样,平均 KAM 值为 0.71°。 LSP 可以在 9310 钢试样内引入明显塑性变形,从而引起微观组织变化[25]。从图5b 中也可以看出,小角度晶界在晶粒内部的分布占比明显比原始试样的小角晶界大。

  • 图6 LSP 状态 9310 钢试样截面 EBSD 分布图

  • Fig.6 Cross-sectional EBSD distribution of LSPed 9310 steel sample

  • 图7 所示为低温渗碳 9310 钢试样的截面 EBSD 分布。可以看出,低温渗碳 9310 钢试样的平均 KAM值为 0.58°。深度 150~300 μm 的平均 KAM 值大于近表层深度为 0~100 μm 的平均 KAM 值,表明次表层的塑性变形较大。这部分变形主要是低温渗碳热处理诱导晶粒变形引起的[26]。从图7b 的低温渗碳试样的大小角晶界图可以看出,大角度晶界主要沿着晶界边缘分布,晶粒内部分布较少;小角度晶界主要分布在晶粒内部,也有少量沿着晶粒边缘分布。

  • 图7 低温渗碳 9310 钢试样截面 EBSD 分布图

  • Fig.7 Cross-sectional EBSD distribution of LCed 9310 steel sample

  • 图8 所示为 LSP 预处理的低温渗碳 9310 钢试样的截面 EBSD 分布。从图8a 可以看出,复合强化后, KAM 值在深度方向的分布不再像单一低温渗碳试样在次表层出现较大 KAM 分布。LSP 前处理后,低温渗碳试样在深度方向上的变形程度更加均匀,这是因为 LSP 利用等离子体爆炸产生的冲击波压力实现对材料的预变形处理[27]。图8b 可以看出,小角晶界的比例得到提升,这主要是 LSP 前处理的结果。

  • 图8 激光冲击强化前处理的低温渗碳 9310 钢试样截面 EBSD 分布图

  • Fig.8 Cross-sectional EBSD distribution ofLCed 9310 steel sample with pre-LSP

  • 对上述 4 种试样的 EBSD 小角度晶界之和与平均 KAM 进行统计,如图9 所示。小角度晶界之和与平均 KAM 呈现正相关,原始状态试样的小角度晶界之和为 37.0%,平均 KAM 值为 0.61°。对于 LSP处理试样,小角度晶界之和为41.9%,平均KAM 值为 0.71°,分别比原始状态试样提升 13.24%和 16.39%。对于低温渗碳试样,小角度晶界之和为 37.3%,平均 KAM 值为 0.58°,即低温渗碳对小角度晶界和 KAM 没有显著影响。LSP 前处理后,开展低温渗碳处理,小角度晶界之和为 48%,平均 KAM 值为 0.64°。与低温渗碳试样相比,LSP 前处理同时提升了小角度晶界之和与 KAM。一般地,更大的 KAM 值代表更大的平均取向差,即更大程度的塑性变形[28]。这表明 LSP 引入了塑性变形,诱导形成了更多的小角度晶界,促进低温渗碳的碳原子扩散作用。

  • 图9 小角晶界之和与 KAM

  • Fig.9 Sum of low angle grain boundary and KAM

  • 图10 所示为截面 KAM 分布。可以看出,低温渗碳试样和有 LSP 前处理的低温渗碳试样的平均 KAM 值都是在次表层较大,近表层较小,呈现从表层到心部递增的趋势。这是因为,LSP 引入大量位错诱导塑性变形[29]。这一结果也佐证了图5、图6 和图7 中 KAM 在次表层较大的分布现象。此外,在深度 0~100 μm 区间内,LSP 前处理将低温渗碳试样的 KAM 从 0.52°提升到 0.60°,提升 15.38%。在深度 100~200 μm 区间内,LSP 前处理将低温渗碳试样的 KAM 从 0.57°提升到 0.66°,提升 15.79%。因此,经过 LSP 前处理后,低温渗碳试样的 KAM 在近表层可以得到提升。KAM 是利用平均变形程度来表征微米尺度的塑性变形。对 9310 钢体心立方的多晶体金属材料而言,本质是位错的变化诱导宏观变形。研究表明,KAM 值的提升,同时对应着位错的增多[30-31]

  • 图10 截面 KAM 分布

  • Fig.10 Cross-sectional KAM distribution

  • 图11 是截面小角晶界之和分布,可以发现,低温渗碳对 9310 钢的小角晶界之和的截面分布几乎没有影响。但是,LSP 前处理后,低温渗碳试样的的小角晶界占比明显提升。在 0~100 μm 区间内, LSP 前处理可以将低温渗碳的 9310 钢试样小角度晶界之和从 36.8%提升到 41.6%,提升 13.04%;在 100~200 μm 区间内,LSP 前处理可以将低温渗碳 9310 钢试样的小角度晶界之和从 36.8%提升到 55.8%,提升 51.63%,在 200~300 μm 区间内,LSP 前处理可以将低温渗碳 9310 钢试样的小角度晶界从 38%提升到 46.2%,提升 21.58%。可以看出,LSP 前处理可以提升 9310 钢的小角度晶界之和,特别是 100~200 μm 的次表层内,影响渗层的厚度[32]。根据小角度晶界的位错模型理论[33],位错与小角度晶界存在三角函数关系,即在一定范围内是正相关。从结构增渗的角度解释了 LSP 诱导塑性变形为碳元素扩散提供更多路径,从而促进渗碳。

  • 图11 截面小角晶界之和分布

  • Fig.11 Sum of cross-sectional low angle GB distribution

  • 3 结论

  • 研究了 LSP 前处理对 9310 钢基体的低温渗碳作用的影响,结合截面渗层特征和晶体学特征,探究了 LSP 前处理促进 9310 钢试样低温渗碳的机制,主要结论如下:

  • (1)低温渗碳在 9310 钢基体表面形成约 14 μm 厚的渗碳层,低温渗碳在 LSP 前处理的 9310 钢表面形成约 23 μm 厚的渗碳层。

  • (2)低温渗碳将 9310 钢试样的表层硬度从 239.63 HV0.05 提升到 305.67 HV0.05,比原始状态试样硬度提升了 27.56%;LSP 前处理后,低温渗碳试样的硬度从 311.83 HV0.05提升到 328.87 HV0.05,提升了 17.04 HV;LSP 前处理将低温渗碳试样硬度的影响厚度从 300 μm 提升到 700 μm。

  • (3)单纯的低温渗碳对 9310 钢试样的平均 KAM 值和小角晶界之和影响很小;LSP 前处理引入塑性变形,提升了表层不同深度的小角度晶界比例,促进低温渗碳的碳原子扩散作用,实现渗碳层的增大,进而进一步提升低温渗碳表层硬化水平和硬化层厚度。

  • 参考文献

    • [1] PENG Chong,XIAO Yuzhe,WANG Yanzhong,et al.Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear[J].Optics & Laser Technology,2017,94(1):15-24.

    • [2] HANDSCHUH R F,KRANTZ T L,LERCH B A,et al.Investigation of low-cycle bending fatigue of AISI 9310 steel spur gears[C]//Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.September 4-7,2007,Las Vegas.New York:ASME,2007,7:871-877.

    • [3] FENG Ke,NI Qing,BEER M,et al.A novel similarity-based status characterization methodology for gear surface wear propagation monitoring[J].Tribology International,2022,174:107765.

    • [4] LIU Huaiju,WANG Wei,ZHU Caichao,et al.A microstructure sensitive contact fatigue model of a carburized gear[J].Wear,2019,436-437:203035.

    • [5] ADACHI S,UEDA N.Wear and corrosion properties of cold-sprayed AISI 316L coatings treated by combined plasma carburizing and nitriding at low temperature[J].Coatings,2018,8(12):456.

    • [6] 马飞,潘邻,张良界,等.316 奥氏体不锈钢低温渗碳层摩擦学性能[J].材料热处理学报,2014,35(1):181-185.MA Fei,PAN Lin,ZHANG Liangjie,et al.Tribological properties of low-temperature gas carburized layer on 316 austenitic stainless steel[J].Transactions of Materials and Heat Treatment,2014,35(1):181-185.(in Chinese)

    • [7] YANG Yang,YAN M F,ZHANG Y X,et al.Catalytic growth of diamond-like carbon on Fe3C-containing carburized layer through a single-step plasma-assisted carburizing process[J].Carbon,2017,122:1-8.

    • [8] SUN Y.Kinetics of low temperature plasma carburizing of austenitic stainless steels[J].Journal of Materials Processing Technology,2005,168(2):189-194.

    • [9] WANG H L,WANG Z B,LU K.Enhanced reactive diffusion of Zn in a nanostructured Fe produced by means of surface mechanical attrition treatment[J].Acta Materialia,2012,60(4):1762-1770.

    • [10] TONG W P,TAO N R,WANG Z B,et al.Nitriding iron at lower temperatures[J].Science,2003,299(5607):686-688.

    • [11] TANG Lei,JIA Weiju,HU Jing.An enhanced rapid plasma nitriding by laser shock peening[J].Materials Letters,2018,231:91-93.

    • [12] KOVACI H,HAMSALIHOGLU I,YETIM A F,et al.Effects of shot peening pre-treatment and plasma nitriding parameters on,the structural,mechanical and tribological properties of AISI 4140 low-alloy steel[J].Surface & Coatings Technology,2019,358:256-265.

    • [13] PEYRE P,FABBRO R,MERRIEN P,et al.Laser shock processing of aluminium alloys.Application to high cycle fatigue behavior[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1996,210(1-2):102-113.

    • [14] WU L J,LUO K Y,LIU Y,et al.Effects of laser shock peening on the micro-hardness,tensile properties,and fracture morphologies of CP-Ti alloy at different temperatures[J].Applied Surface Science,2018,431:122-134.

    • [15] TONG Zhaopeng,PAN Xuyang,ZHOU Wangfan,et al.Achieving excellent wear and corrosion properties in laser additive manufactured CrMnFeCoNi high-entropy alloy by laser shock peening[J].Surface & Coatings Technology,2021,422:127504.

    • [16] CHUKWUIKE V I,ECHEM O G,PRABHAKARAN S,et al.Laser shock peening(LSP):electrochemical and hydrodynamic investigation of corrosion protection pre-treatment for a copper surface in 3.5% NaCl medium[J].Corrosion Science,2021,179:109156.

    • [17] ZHOU Liucheng,LONG Changbai,HE Weifeng,et al.Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization[J].Journal of Alloys and Compounds,2018,744:156-164.

    • [18] KATTOURA M,MANNAVA S R,QIAN D,et al.Effect of laser shock peening on residual stress,microstructure and fatigue behavior of ATI 718Plus alloy[J].International Journal of Fatigue,2017,102:121-134.

    • [19] WANG Changyu,LUO Kaiyu,WANG Jian,et al.Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening[J].International Journal of Plasticity,2022,150:103191.

    • [20] SONG Jingdong,LUO Sihai,LIANG Xiaoqing,et al.Rolling contact fatigue and damage characteristic of AISI 9310 steel with pre-laser shock peening treatment[J].International Journal of Fatigue,2022,155:106588.

    • [21] SRINIVAS K M,BHARATH S,CHAITANYA P N V K,et al.2020.Improving tribological properties of P91 steels through carburizing process[J],Materials TodayProceedings:1575-1578.

    • [22] WANG Bin,HE Yanping,LIU Ye,et al.Mechanism of the microstructural evolution of 18Cr2Ni4WA steel during vacuum low-pressure carburizing heat treatment and its effect on case hardness[J].Materials,2020,13(10):2352.

    • [23] RUI Shaoshi,HAN Qinan,WANG Xue,et al.Correlations between two EBSD-based metrics kernel average misorientation and image quality on indicating dislocations of near-failure low alloy steels induced by tensile and cyclic deformations[J].Materials Today Communications,2021,27:102445.

    • [24] AN Xiaoxue,TIAN Yong,WANG Bin,et al.Prediction of the formation of carbide network on grain boundaries in carburizing of 18CrNiMo7-6 steel alloys[J].Surface & Coatings Technology,2021,421:127348.

    • [25] LUO Sihai,LI Yinghong,ZHOU Liucheng,et al.Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J].Materials & Design,2016,104:320-326.

    • [26] TSUJI N,TANAKA S,TAKASUGI T.Evaluation of surface-modified Ti-6Al-4V alloy by combination of plasma-carburizing and deep-rolling[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2008,488(1-2):139-145.

    • [27] CAO Xin,HE Weifeng,LIAO Bin,et al.Effect of TiN/Ti coating combined with laser shock peening pre-treatment on the fatigue strength of Ti-6Al-4V titanium alloy[J].Surface & Coatings Technology,2020,403:126393.

    • [28] ZHANG Hao,REN Zhencheng,LIU Jun,et al.Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening[J].Journal of Alloys and Compounds,2019,802:573-582.

    • [29] LU Jinzhong,LUO Kaiyu,ZHANG Yongkang,et al.Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Materialia,2010,58(11):3984-3994.

    • [30] MAISTRO G,OIKONOMOU C,ROGSTROM L,et al.Understanding the microstructure-properties relationship of low-temperature carburized austenitic stainless steels through EBSD analysis[J].Surface and Coatings Technology,2017,322:141-151.

    • [31] BEHNAMIAN Y,MOSTAFAEI A,KOHANDEHGAN A,et al.A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 ℃[J].Corrosion Science,2016,106:188-207.

    • [32] SHI Lei,CUI Xiufang,JIN Guo,et al.Study on micro-mechanism of carbon atom diffusion in surface nanocrystallization low carbon alloy steel using molecular dynamics simulation[J].Vacuum,2021,184:109889.

    • [33] 余永宁.金属学原理[M].北京:冶金工业出版社,2000.YU Yongning.Metallography principle[M].Beijing:Metallurgical Industry Press,2000.(in Chinese)

  • 参考文献

    • [1] PENG Chong,XIAO Yuzhe,WANG Yanzhong,et al.Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear[J].Optics & Laser Technology,2017,94(1):15-24.

    • [2] HANDSCHUH R F,KRANTZ T L,LERCH B A,et al.Investigation of low-cycle bending fatigue of AISI 9310 steel spur gears[C]//Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.September 4-7,2007,Las Vegas.New York:ASME,2007,7:871-877.

    • [3] FENG Ke,NI Qing,BEER M,et al.A novel similarity-based status characterization methodology for gear surface wear propagation monitoring[J].Tribology International,2022,174:107765.

    • [4] LIU Huaiju,WANG Wei,ZHU Caichao,et al.A microstructure sensitive contact fatigue model of a carburized gear[J].Wear,2019,436-437:203035.

    • [5] ADACHI S,UEDA N.Wear and corrosion properties of cold-sprayed AISI 316L coatings treated by combined plasma carburizing and nitriding at low temperature[J].Coatings,2018,8(12):456.

    • [6] 马飞,潘邻,张良界,等.316 奥氏体不锈钢低温渗碳层摩擦学性能[J].材料热处理学报,2014,35(1):181-185.MA Fei,PAN Lin,ZHANG Liangjie,et al.Tribological properties of low-temperature gas carburized layer on 316 austenitic stainless steel[J].Transactions of Materials and Heat Treatment,2014,35(1):181-185.(in Chinese)

    • [7] YANG Yang,YAN M F,ZHANG Y X,et al.Catalytic growth of diamond-like carbon on Fe3C-containing carburized layer through a single-step plasma-assisted carburizing process[J].Carbon,2017,122:1-8.

    • [8] SUN Y.Kinetics of low temperature plasma carburizing of austenitic stainless steels[J].Journal of Materials Processing Technology,2005,168(2):189-194.

    • [9] WANG H L,WANG Z B,LU K.Enhanced reactive diffusion of Zn in a nanostructured Fe produced by means of surface mechanical attrition treatment[J].Acta Materialia,2012,60(4):1762-1770.

    • [10] TONG W P,TAO N R,WANG Z B,et al.Nitriding iron at lower temperatures[J].Science,2003,299(5607):686-688.

    • [11] TANG Lei,JIA Weiju,HU Jing.An enhanced rapid plasma nitriding by laser shock peening[J].Materials Letters,2018,231:91-93.

    • [12] KOVACI H,HAMSALIHOGLU I,YETIM A F,et al.Effects of shot peening pre-treatment and plasma nitriding parameters on,the structural,mechanical and tribological properties of AISI 4140 low-alloy steel[J].Surface & Coatings Technology,2019,358:256-265.

    • [13] PEYRE P,FABBRO R,MERRIEN P,et al.Laser shock processing of aluminium alloys.Application to high cycle fatigue behavior[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1996,210(1-2):102-113.

    • [14] WU L J,LUO K Y,LIU Y,et al.Effects of laser shock peening on the micro-hardness,tensile properties,and fracture morphologies of CP-Ti alloy at different temperatures[J].Applied Surface Science,2018,431:122-134.

    • [15] TONG Zhaopeng,PAN Xuyang,ZHOU Wangfan,et al.Achieving excellent wear and corrosion properties in laser additive manufactured CrMnFeCoNi high-entropy alloy by laser shock peening[J].Surface & Coatings Technology,2021,422:127504.

    • [16] CHUKWUIKE V I,ECHEM O G,PRABHAKARAN S,et al.Laser shock peening(LSP):electrochemical and hydrodynamic investigation of corrosion protection pre-treatment for a copper surface in 3.5% NaCl medium[J].Corrosion Science,2021,179:109156.

    • [17] ZHOU Liucheng,LONG Changbai,HE Weifeng,et al.Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization[J].Journal of Alloys and Compounds,2018,744:156-164.

    • [18] KATTOURA M,MANNAVA S R,QIAN D,et al.Effect of laser shock peening on residual stress,microstructure and fatigue behavior of ATI 718Plus alloy[J].International Journal of Fatigue,2017,102:121-134.

    • [19] WANG Changyu,LUO Kaiyu,WANG Jian,et al.Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening[J].International Journal of Plasticity,2022,150:103191.

    • [20] SONG Jingdong,LUO Sihai,LIANG Xiaoqing,et al.Rolling contact fatigue and damage characteristic of AISI 9310 steel with pre-laser shock peening treatment[J].International Journal of Fatigue,2022,155:106588.

    • [21] SRINIVAS K M,BHARATH S,CHAITANYA P N V K,et al.2020.Improving tribological properties of P91 steels through carburizing process[J],Materials TodayProceedings:1575-1578.

    • [22] WANG Bin,HE Yanping,LIU Ye,et al.Mechanism of the microstructural evolution of 18Cr2Ni4WA steel during vacuum low-pressure carburizing heat treatment and its effect on case hardness[J].Materials,2020,13(10):2352.

    • [23] RUI Shaoshi,HAN Qinan,WANG Xue,et al.Correlations between two EBSD-based metrics kernel average misorientation and image quality on indicating dislocations of near-failure low alloy steels induced by tensile and cyclic deformations[J].Materials Today Communications,2021,27:102445.

    • [24] AN Xiaoxue,TIAN Yong,WANG Bin,et al.Prediction of the formation of carbide network on grain boundaries in carburizing of 18CrNiMo7-6 steel alloys[J].Surface & Coatings Technology,2021,421:127348.

    • [25] LUO Sihai,LI Yinghong,ZHOU Liucheng,et al.Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J].Materials & Design,2016,104:320-326.

    • [26] TSUJI N,TANAKA S,TAKASUGI T.Evaluation of surface-modified Ti-6Al-4V alloy by combination of plasma-carburizing and deep-rolling[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2008,488(1-2):139-145.

    • [27] CAO Xin,HE Weifeng,LIAO Bin,et al.Effect of TiN/Ti coating combined with laser shock peening pre-treatment on the fatigue strength of Ti-6Al-4V titanium alloy[J].Surface & Coatings Technology,2020,403:126393.

    • [28] ZHANG Hao,REN Zhencheng,LIU Jun,et al.Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening[J].Journal of Alloys and Compounds,2019,802:573-582.

    • [29] LU Jinzhong,LUO Kaiyu,ZHANG Yongkang,et al.Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Materialia,2010,58(11):3984-3994.

    • [30] MAISTRO G,OIKONOMOU C,ROGSTROM L,et al.Understanding the microstructure-properties relationship of low-temperature carburized austenitic stainless steels through EBSD analysis[J].Surface and Coatings Technology,2017,322:141-151.

    • [31] BEHNAMIAN Y,MOSTAFAEI A,KOHANDEHGAN A,et al.A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 ℃[J].Corrosion Science,2016,106:188-207.

    • [32] SHI Lei,CUI Xiufang,JIN Guo,et al.Study on micro-mechanism of carbon atom diffusion in surface nanocrystallization low carbon alloy steel using molecular dynamics simulation[J].Vacuum,2021,184:109889.

    • [33] 余永宁.金属学原理[M].北京:冶金工业出版社,2000.YU Yongning.Metallography principle[M].Beijing:Metallurgical Industry Press,2000.(in Chinese)

  • 手机扫一扫看