en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李薇,女,1986年出生,硕士,讲师。主要研究方向为材料成型工艺与模具设计。E-mail:27807769@qq.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20230315002

参考文献 1
侯世忠.舰船用铝合金的研究与应用[J].铝加工,2019(5):4-8.HOU Shizhong.Research and application of aluminum alloy for ships[J].Aluminium Fabrication,2019(5):4-8.(in Chinese)
参考文献 2
管仁国,娄花芬,黄晖,等.铝合金材料发展现状,趋势及展望[J].中国工程科学,2020,22(5):68-75.GUAN Renguo,LOU Huafen,HUANG Hui,et al.Development of aluminum alloy materials:current status,trend,and prospects[J].Strategic Study of CAE,2020,22(5):68-75.(in Chinese)
参考文献 3
宋海林,高萌,邢娜,等.2 种盐雾环境下6061车用铝合金的加速腐蚀行为研究[J].材料保护,2020,53(11):21-25,31.SONG Hailin,GAO Meng,XING Na,et al.Accelerated corrosion behavior research of aluminum alloy 6061 for vehicles during two different salt spray atmospheric environment[J].Materials Protection,2020,53(11):21-25,31.(in Chinese)
参考文献 4
DAN Z,TAKIGAWA S,MUTO I,et al.Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys[J].Corrosion Science,2011,53(5):2006-2014.
参考文献 5
韩孝强.航空铝合金表面复合涂层的制备与防腐性能研究[D].广汉:中国民用航空飞行学院,2018.HAN Xiaoqiang,Study on preparation and properties of composite coatings on aeronautical aluminum alloy surface[D].Guanghan:Civil Aviation Flight University of China,2018.(in Chinese)
参考文献 6
郭红霞.铝及铝合金化学氧化工艺[J].电镀与涂饰,2003(4):17-18.GUO Hongxia.Chemical oxidizing of aluminium and its alloy[J].Electroplating & Finishing,2003(4):17-18.(in Chinese)
参考文献 7
曾善海.铝合金电镀锡层厚度控制方法及应用研究[D].苏州:苏州大学,2016.ZENG Shanhai.Research on control method and application of tin plating thickness on aluminum alloy[D].Soochow:Soochow University,2016.(in Chinese)
参考文献 8
刘希燕,蒋健明,陈正涛,等.铝合金防腐保护研究进展[J].现代涂料与涂装,2007(12):11-14.LIU Xiyan,JIANG Jianming,CHEN Zhengtao,et al.Research progress in anti-corrosive protection for aluminum alloy[J].Modern Paint Finishing,2007(12):11-14.(in Chinese)
参考文献 9
吴庆丹.隔水套管热喷涂铝基防腐涂层的制备与性能研究[D].扬州:扬州大学,2019.WU Qingdan.Study on the preparation and properties of aluminum-based anticorrosive coating by thermal spraying of water-proof casing[D].Yanyzhou:Yangzhou University,2019.(in Chinese)
参考文献 10
隋佳利,李相波,林志峰,等.两种热喷涂锌铝涂层在低温海水介质中防腐性能研究[J].中国腐蚀与防护学报,2016,36(5):471-475.SUI Jiali,LI Xiangbo,LIN Zhifeng,et al.Corrosion resistance of two thermal sprayed Zn-Al alloy coatings in seawater at low temperatures[J].Journal of Chinese Society for Corrosion and Protection,2016,36(5):471-475.(in Chinese)
参考文献 11
苏欣.锌铝涂层在典型模拟海洋环境下的腐蚀行为研究[D].武汉:武汉理工大学,2015.SU Xin.Study on corrosion behavior of Zn-Al coatings in typical simulated environment[D].Wuhan:Wuhan University of Technology,2015.(in Chinese)
参考文献 12
MARTINSONS M,SCHMIEDEBERG M.Stability of particles in two-dimensional quasicrystals against phasonic perturbations[J].Journal of Physics:Conference Series,2020,1458(1):012019.
参考文献 13
FRIEDEL J.On the role of transitional solute elements in Hume-Rothery-Jones phases[J].Philosophical Magazine B,1992,65(6):1125-1129.
参考文献 14
INOUE A,TSAI A P,MASUMOTO T.Stable decagonal and icosahedral quasicrystals[J].Journal of NonCrystalline Solids,1990,117-118:824-827.
参考文献 15
TSAI A P.A test of Hume-Rothery rule for stable quasicrystas[J].Journal of Non-Crystalline Solids,2004,334:317-322.
参考文献 16
RABSON D A.Toward theories of friction and adhesion on quasicrystals[J].Progress in Surface Science,2012,87(9/12):253-271.
参考文献 17
DUBIOS J M.New prospects from potential applications of quasicrystalline materials[J].Materials Science & Engineering A,2000,294-296:4-9.
参考文献 18
LOURDES C L,RODBARI R J,NASCIMENTO L,et al.Al62Cu25Fe12 and quasicrystalline phases and their influence on oxidation[J].Orbital-The Electronic Journal of Chemistry,2017,9(1):27-35.
参考文献 19
WITOR W,GUILHERME Y K,ROBERT S,et al.Wear and corrosion performance of Al-Cu-Fe-(Cr)quasicrystalline coatings produced by HVOF[J].Journal of Thermal Spray Technology,2020,29(5):1195-1207.
参考文献 20
BALBYSHEV V N,KHRAMOV A N,KING D J,et al.Investigation of nanostructured Al-based quasicrystal thin films for corrosion protection[J].Progress in Organic Coatings,2003,47(3-4):357-364.
参考文献 21
丁亚茹,张顺,高思为,等.镁合金AZ91D激光熔覆 Al65Cu20Fe15 涂层的耐腐蚀性[J].热加工工艺,2016,45(14):168-170.DING Yaru,ZHANG Shun,GAO Siwei,et al.Corrosion resistance of laser cladding Al65Cu20Fe15 coatings on AZ91D Mg alloy[J].Hot Working Technology,2016,45(14):168-170.(in Chinese)
参考文献 22
QUIQUANDON M,QUIVY A,DEVAUD J,et al.Quasicrystal and approximant structures in the Al-Cu-Fe system[J].J.Phys.:Condens,1996,8:2487-2512.
参考文献 23
蔡明伟,曲寿江,魏先顺,等.喷涂工艺对超音速火焰喷涂 Al-Cu-Fe-Si 准晶合金涂层性能的影响[J].表面技术,2016,45(2):73-78.CAI Mingwei,QU Shoujiang,WEI Xianshun,et al.Effect of spraying technology on the properties of AC-HVAF sprayed Al-Cu-Fe-Si quasicryatalline alloy coating[J].Surface Technology,2016,45(2):73-78.(in Chinese)
参考文献 24
DUBOIS J M,PRONER A,BUCAILLE B.Plasma sprayed quasicrystalline coatings with reduced adhesion for cookware[J].Annales de Chimie-Science des Materiaux,1994,19:3-25.
参考文献 25
陈跃良,张杨广,卞贵学,等.2A12 铝合金不同阳极氧化膜在NaCl溶液中的电化学演变[J].表面技术,2020,49(9):348-356.CHEN Yueliang,ZHANG Yangguang,BIAN Guixue,et al.Electrochemical evolution of 2A12 aluminum alloy with different anodic films in NaCl solution[J].Surface Technology,2020,49(9):348-356.(in Chinese)
参考文献 26
徐国富,金头男,邹景霞,等.微量Sc元素对 Al-Cu 合金组织与性能的影响[J].材料热处理学报,2004(2):15-18,85-86.XU Guofu,JIN Tounan,ZOU Jingxia,et al.Effect of trace Sc element on microstructure and properties of Al-Cualloy[J].Transactions of Materials and Heat Treatment,2004(2):15-18,85-86.(in Chinese)
参考文献 27
IEFIMOV M O,LOTSKO D V,MILMAN Y V,et al.Structure and high-temperature properties of the alloyed quasicrystalline Al-Cu-Fe powders and thermal-sprayed coatings from them[J].High Temperature Materials and Processes,2006,25(1-2):31-38.
目录contents

    摘要

    随着我国“海洋强国”战略目标日益推进,舰船表面使用的铝合金部件面临着海洋腐蚀的风险。为进一步提升铝合金的耐腐蚀性能,增长其使用寿命,通过爆炸喷涂技术于铝合金基体上制备 AlCuFe 和 AlCuFeSc 准晶涂层,借助扫描电子显微镜(SEM)、X 射线衍射仪(XRD)表征准晶粉末及涂层的微观及物相组织结构,进一步利用拉伸试验机、电化学工作站等分析涂层的结合力及耐蚀性能,研究准晶相含量与涂层耐蚀性能间的影响规律。结果表明,爆炸喷涂制备的 AlCuFe 和 AlCuFeSc 涂层致密度高且与基体结合良好,结合强度分别为 51.9 MPa、51.2 MPa。经 700 ℃退火处理后的涂层准晶相含量分别由 49%、38%提升至 93.2%、92.5%。退火前的准晶涂层耐腐蚀性能与基体相近,退火后的准晶涂层自腐蚀电流密度仅为铝合金基体的 1 / 5,证明准晶相含量提升增强了涂层的耐蚀性能。同时盐水静态挂片测试 336 h 后,退火处理的涂层表面未生成明显的腐蚀区域,准晶相含量提升促使表面生成的氧化铝钝化层为基体提供了良好的保护,研究可以为未来舰船使用铝合金表面的腐蚀防护提供新思路,同时也可为铝基准晶涂层的制备应用提供研究基础。

    Abstract

    Considering the development of China’s strategic goal of “ocean power”, aluminum alloy components, such as the deck and keel used on the ship surface, face the risk of corrosion failure during long-term service. Currently, the method of preparing a film or coating on the surface of aluminum alloys is typically used to isolate the corrosive medium and effectively protect the matrix material. Among these, thermal spraying technology is widely used for the preparation of anti-corrosion coatings on the surface of aluminum alloys owing to its simple operation and because it is not limited by the size of the parts. Aluminum reference crystal materials have a high strength and hardness owing to their unique structure and excellent properties such as a low friction and corrosion resistance. Thus, they have high potential as protective coating materials on the surface of a new generation of aluminum alloys; however, the poor bonding strength and corrosion resistance in the preparation of quasicrystalline (QC) coatings limit their application. Therefore, in this study, AlCuFe and AlCuFeSc QC coatings are prepared on aluminum alloy substrates using explosive spraying technology based on the long-term service conditions of aluminum alloy parts in a marine environment to improve the corrosion resistance of aluminum alloys and increase their service life. First, the microstructures and phase structures of the powder and coating are characterized using scanning electron microscopy and X-ray diffraction. Subsequently, the binding force and corrosion resistance of the coating are analyzed using a tensile testing machine and electrochemical workstation, and the influence of the QC phase content and corrosion resistance of the coating are studied. The tests reveal that the powder and coating are composed of a Ⅰ-Al65Cu20Fe15 QC phase and small amount of the β-AlFe phase. The AlCuFe and AlCuFeSc coatings prepared by explosive spraying have a high density and demonstrate good bonding with the substrate; the bonding strengths of the coatings are determined to be 51.9 MPa and 51.2 MPa, respectively. After annealing at 700 ℃, the content of the coating QC phase increases from 49%, 38% to 93.2%, 92.5%, respectively. In addition, the corrosion resistance of the QC coating before annealing is similar to that of the substrate,and the self-corrosion current density of the annealed QC coating is only one-fifth of that of the aluminum alloy substrate. A further comparison of the surface morphologies of the coatings with different QC contents reveales that as the QC content increases, the flatness of the coating surface increases and the pore distribution decreases, which can effectively prevent the entry of corrosive media. This suggests that an increase in the QC content enhances the corrosion resistance of the coating. The salt-water static hanging test simultaneously demonstrates that no apparent corrosion area formes on the annealed coating surface after 336 h, and the aluminum oxide passivating layer that forms on the surface provides a good protection for the substrate as the content of the QC phase increases. The stability of the QC phase I improves by the introduction of the Sc element into the Al-Cu-Fe icosahedron. This study provides a new idea for the corrosion protection of aluminum alloy surfaces used in ships and a basis for the preparation and application of aluminum reference crystal coatings.

  • 0 前言

  • 铝合金因其具有比重小、弹性模量小、非磁性、易于加工等特点,被广泛应用于船舶的甲板、船侧、龙骨等位置[1-2]。铝合金表面会形成一层氧化膜对基体进行保护,但是随着船舶长年累月的行驶,海水中的 Cl 离子会渗透氧化膜并使其失效,进一步导致铝合金表面出现点蚀腐蚀、缝隙腐蚀等损伤[3-4],影响船舶的使用寿命。目前,铝合金防腐方法是在基体表面制备薄膜或涂层,避免基体与腐蚀介质接触。常用的表面防护方法如阳极氧化[5]、化学氧化[6]、电镀[7]、涂覆防腐涂料[8],因受限于各自的设备及工艺特点,存在诸多技术难题。

  • 热喷涂技术因其操作简单、厚度可控、制备效率高、不受零件尺寸限制等优势,被广泛应用于铝合金表面防腐涂层制备。其中,热喷涂制备锌铝涂层技术受到国内外学者们的重点关注。吴庆丹[9]利用高速电弧工艺制备了纯铝及锌铝涂层,平均结合强度为 8.15 MPa。分析涂层在 3.5% NaCl 溶液中的开路电位曲线可知,锌铝涂层具有更低的腐蚀电位,对基体具有更好的保护效果;隋佳利等[10]利用火焰喷涂技术制备了 Zn-2% Al 和 Zn-85% Al 涂层,并进行防腐性能测试。结果表明,在低温海水介质中前者比后者具有更好的防腐性能;苏欣[11]分别利用冷喷涂、火焰喷涂、电弧喷涂技术制备锌铝涂层,涂层结合强度介于 19~25 MPa,其中冷喷涂制备的锌铝涂层更具防腐性能的优势。总结近年来学者们对锌铝涂层的研究,该涂层虽在盐水、盐雾等腐蚀环境下具有较好的防腐性能,但是其结合强度较差,难以满足未来船舶面临复杂耦合工况的服役需求。因此,亟须研制结合力高、耐腐蚀性能好的涂层材料。

  • 准晶材料是同时具有长程准周期性平移序和非晶体学旋转对称性的固态有序相[12]。1987 年FRIEDEL[13]系统阐述了准晶的休姆-罗瑟里规律,他指出准晶的价电子浓度 e / a 使得其费米面刚好与强衍射所定义的布里渊区相切,此时,结构的能量显著降低,这一研究从电子结构出发解释了准晶本质。随后,科学家 INOUE 和 TSAI 等人证实该规律同样适用于其他亚稳定和稳定准晶[14-15]。具体来说,准晶由价电子因素决定,电子浓度在 1.7~1.9。稳定性取决于费米面和强布拉格衍射间的相互作用,即费米球面的直径 2 kf 满足布拉格衍射条件 K≈2 kf

  • 准晶材料独特的原子排列结构使其具有优异的耐磨性[16]、力学性能[17]、抗氧化性[18]、耐腐蚀性,但由于准晶材料在室温下脆性较大,不能作为结构材料直接使用,目前集中应用于表面防护涂层。得益于准晶涂层的低孔隙率,学者们对准晶涂层的耐腐蚀性能进行了探究。WITOR 等[19]采用高速氧气助燃火焰喷涂技术制备了 Al62.5Cu25Fe12.5 和 Al67Cu20Fe5Cr8 两种涂层,研究了两种涂层的摩擦磨损性能和耐蚀性能,两种涂层的腐蚀电流密度在 10−6 A·cm−2 左右,含 Cr 的涂层耐蚀性能更佳;BALBYSHEV 等[20]将 AlCuFeCr 和 AlCoFeCr 涂层浸泡在腐蚀液中 30 d 仍没有腐蚀现象,表现出良好的耐蚀性能;丁亚茹等[21]在镁合金表面制备的准晶涂层因成分不均匀导致腐蚀加剧。准晶材料虽具有作为耐腐蚀涂层材料的潜质,但距离成熟应用还面临诸多挑战。

  • 为了进一步提升铝合金表面准晶涂层的耐腐蚀性能,本文通过爆炸喷涂技术制备了 AlCuFe 和 AlCuFeSc 涂层,并研究了准晶涂层的物相、微观组织及电化学腐蚀性能,可为未来准晶涂层在耐腐蚀方面的应用提供参考。

  • 1 试验准备

  • 1.1 基体材料

  • 选用 2A12 铝合金作为基体材料,其化学成分 (质量分数)如表1 所示,力学性能如表2 所示。

  • 表1 2A12 铝合金化学成分(wt.%)

  • Table1 Chemical composition of 2A12 aluminum alloy (wt. %)

  • 表2 2A12 铝合金力学性能

  • Table2 Mechanical property of 2A12 aluminum alloy

  • 1.2 准晶粉末

  • 采用气雾化制粉工艺制备 Al-Cu-Fe(-Sc)基准晶粉末,根据 700℃条件下平衡相图等温截面图及 AlCuFe 室温成分等电子浓度线示意图分析可知,二十面体准晶相 I-AlCuFe 的存在域接近 Al63Cu25Fe12 成分[22]。AlCuFe 准晶粉末的制备原材料为 1A95 纯铝(99.95%)、阴极铜(99.99%)、工业纯铁(99.92%),制粉时三种原料的质量占比分别为 43%、40.1%、 16.9%;AlCuFeSc 准晶粉末的制备原材料为 1A95 纯铝(99.95%)、阴极铜(99.99%)、工业纯铁 (99.92%)以及工业用中间合金 Al-2.46% Sc,制粉时四种原材料添加的质量占比分别为 32.84%、 40.1%、16.9%、10.16%。

  • 1.3 准晶涂层

  • 本文选用 CCDS 2000 型爆炸喷涂设备制备涂层,燃气为乙炔和丙烷,助燃气体为氧气,保护气及送粉气体为氮气。喷涂前用丙酮擦拭基体表面去除油污并对基体进行喷砂粗化处理,预热基体后制备厚度 0.2~0.25 mm 涂层,制备工艺参数如表3 所示。

  • 表3 爆炸喷涂准晶涂层工艺参数

  • Table3 Process parameters of explosive spraying quasicrystal coating

  • 1.4 热处理工艺

  • 准晶涂层退火温度为 700℃,保温时间 2 h,退火气氛为大气环境。退火处理有利于准晶涂层中准晶相含量上升,还有助于消除热喷涂涂层的残余应力并改善涂层力学性能。升温速率为 10℃ / min,保温温度为 700℃,保温时间为 120 min。保温时间结束后,试样随试验炉冷却到室温,最后取出试样进行后续测试。

  • 1.5 分析及测试方法

  • 使用 FEI 公司的 QUANTA200 环境扫描电子显微镜观测涂层微观形貌,该仪器配备的能量色散光谱仪(Energy dispersive spectrometer,EDS) 用于分析涂层的元素组成;采用 Philips 公司的 X’Pert Pro MPD型 X射线衍射仪(X-ray diffraction,XRD)对涂层做物相分析;对于热喷涂涂层,利用 ImageJ 软件对喷涂涂层截面的 2D 金相照片进行计算得出涂层孔隙率;按照《热喷涂涂层拉伸结合强度试验方法(Q / AVIC 06020—2013)》标准要求,采用的试验设备为 INSTRON 公司 5882 型电子拉力试验机测试涂层抗拉结合强度,每种涂层分别选取五个试样进行测试,计算五个试样测试结果的算数平均值作为最终结果;采用 CH1600E 电化学工作站测试涂层的耐蚀性能,所用介质为 3.5% NaCl 溶液;盐水静态挂片试验采用浓度为 3.5% NaCl 溶液,测试时间为 336 h。

  • 2 结果与讨论

  • 2.1 准晶粉末的组织及物相分析

  • 图1a、1b 分别为 AlCuFe 及 AlCuFeSc 准晶粉末的扫描电镜图片。从图中可以看出准晶粉末均具有良好的球形度,异性颗粒较少,说明粉末具有较好的流动性,有利于爆炸喷涂设备的涂层制备。但是粉末粒径跨度较大,AlCuFe 粉末粒径分布在 16~80 μm,AlCuFeSc 粉末粒径分布在 20~76 μm。由于制粉过程中冷却速度的差异,准晶粉末表面有少量的卫星颗粒[23]。准晶粉末的 EDS 测试结果如表4 所示,测试结果与设计的 Al63Cu25Fe12成分比例基本保持一致。

  • 图1 AlCuFe 及 AlCuFeSc 准晶粉末的扫描电镜图片

  • Fig.1 SEM images of AlCuFe and AlCuFeSc quasicrystals

  • 表4 准晶粉末元素分析结果(at. %)

  • Table4 Elemental analysis results of quasicrystalline powder (at. %)

  • 图2 为 AlCuFe 及 AlCuFeSc 粉末的 XRD 图谱。粉末主要由Ⅰ-Al65Cu20Fe15 准晶相及少量 β-AlFe 相组成,本文采用准晶峰峰强度总和占总峰强度总和之比来表示准晶相含量,通过计算得出 AlCuFe 及 AlCuFeSc 粉末的准晶相含量分别为 64%和 69%。

  • 图2 AlCuFe 及 AlCuFeSc 粉末的 XRD 图谱

  • Fig.2 XRD patterns of AlCuFe and AlCuFeSc powder

  • 2.2 准晶涂层的组织及物相分析

  • 利用爆炸喷涂制备的 AlCuFe 及 AlCuFeSc 涂层截面形貌如图3 所示。两种准晶涂层均具有较低的孔隙率且与基体结合良好,这是由于喷涂参数选用了较大的氧燃充枪,比使粉末熔融得更加充分,同时适中的喷涂距离使粉末粒子经过爆轰后充分加速,在基体表面层层堆叠形成致密度极高的涂层。同时观察到涂层内部存在少许微小裂纹(图3a、3b 方框位置),可能的原因在于喷涂粒子能量较高,导致过多的热量集中,并通过裂纹的方式释放应力。准晶涂层的元素分析结果如表5 所示,涂层成分与粉末相近,证明喷涂过程对粉末成分没有造成影响。进一步采用拉拔试验机对准晶涂层的结合强度进行表征,测试结果如表6 所示,结合强度均大于 50 MPa,证明涂层与基体间实现了良好的机械结合。

  • 图3 AlCuFe 及 AlCuFeSc 准晶涂层截面照片

  • Fig.3 Cross sections of AlCuFe and AlCuFeSc quasicrystal coatings

  • 表5 准晶涂层元素分析结果(at. %)

  • Table5 Analysis results of quasicrystal coating elements (at. %)

  • 表6 准晶涂层结合强度结果(MPa)

  • Table6 Bonding strength of quasicrystal coating (MPa)

  • 图4 为爆炸喷涂制备的 AlCuFe 及 AlCuFeSc 准晶涂层 XRD 图谱。由图谱可知,虽然准晶粒子在喷涂过程中准晶相含量有所减少(计算两种涂层准晶相含量分别为 49%和 38%),但是相组成没有明显变化,依然是由准晶相 I-Al65Cu20Fe15 和 β-AlFe 组成。

  • 图4 AlCuFe 及 AlCuFeSc 准晶涂层退火前后的 XRD 图谱

  • Fig.4 XRD patterns of AlCuFe and AlCuFeSc quasicrystal coatings before and after annealing

  • 如大多数准晶体的形成过程相同,在喷涂时由粉末熔化至凝固形成涂层,I-AlCuFe 相通过包晶反应凝固聚集。在结晶化的初始阶段,从熔融体中析出不同的 Al-Fe 基 β 相与 Al13Fe4λ 相,准晶相的形成需在固态相中进行大量的元素扩散。通常在制取准晶体铸锭过程中,准晶相的扩散十分缓慢。在熔融体形成铸锭时,在 I 相的聚集区域,同时还存在以 Al2Cu 正方晶相形成的 β 相、λ 相等晶体,准晶相难以扩散,导致准晶相含量低[24]。在爆炸喷涂过程中,准晶粉末在即热-即冷的制动过程中快速穿过两相衰变温度区间,极具缩短了固态扩散的路径。但由于无法完全抑制衰减,因此,喷涂制备的准晶涂层通常具有 I+β 两相组成。同时考虑到热喷涂制备涂层是一个非稳态过程,准晶粉末在喷涂过程中将受到多元热力学因素,导致涂层中的准晶相含量较粉末中有所降低。

  • 进一步对准晶涂层进行 700℃、2 h 退火处理。处理后 XRD 图谱中 β 相的衍射峰强度下降较为明显,准晶相 I 的衍射峰明显升高,同时图谱中的衍射峰逐渐变得更加尖锐,衍射峰半高宽逐渐减小,说明退火处理使得涂层中相的尺寸有所增加,退火处理后的 AlCuFe 及 AlCuFeSc 涂层准晶相含量分别为 93.2%和 92.5%。

  • 2.3 准晶涂层的电化学性能

  • 图5 和图6 分别为 2A12 基体、AlCuFe 涂层热处理前后及 AlCuFeSc 涂层热处理前后的极化曲线图。可以看出 AlCuFe 涂层与 AlCuFeSc 涂层的极化曲线呈类似规律。未退火处理的 AlCuFe、 AlCuFeSc 准晶涂层(图5、6 中 a 线)与 2A12 基体(图5、6 中 c 线)相比,自腐蚀电位 Ecorr 更靠近正方向,而两者的电流密度相差较小;退火处理后的准晶涂层与退火前涂层相比,自腐蚀电位向正方向略微移动(图5、6 中 b 线),自腐蚀电流密度 Icorr 向负方向移动。同时,退火前后准晶涂层的极化曲线中都存在钝化区(如图5、6 中 CD 段和 EF 段所示)。

  • 图5 AlCuFe 准晶涂层和 2A12 基体的极化曲线

  • Fig.5 Polarization curves of AlCuFe-coating and 2A12 matrix

  • 图6 AlCuFeSc 涂层和 2A12 基体的极化曲线

  • Fig.6 Polarization curves of AlCuFeSc-coating and 2A12 matrix

  • 拟合基体、AlCuFe 和 AlCuFeSc 涂层的极化曲线,得到自腐蚀电位和自腐蚀电流密度,如表7 所示。相比于基体的自腐蚀电位与自腐蚀电流密度,未退火处理的 AlCuFe 涂层的自腐蚀电位略大于基体,自腐蚀电流密度略小于基体,AlCuFeSc 涂层的自腐蚀电位略小于基体,自腐蚀电流密度略大于基体。自腐蚀电位越正表明腐蚀越难以发生,自腐蚀电流密度越小则表明材料耐蚀性越好[25]。拟合结果证明,AlCuFe 涂层的耐蚀性能优于 AlCuFeSc 涂层,分析原因在于准晶涂层在制备过程中,微量 Sc 元素的加入在铝基合金的凝固中容易产生成分过冷,导致粉末熔融至凝固过程变短,AlCuFeSc 涂层的准晶相含量低于 AlCuFe 涂层[26],进而导致涂层耐蚀性较差。进一步分析退火后的准晶涂层耐蚀性能,退火处理提升了 AlCuFe 和 AlCuFeSc 涂层的准晶相含量(分别为 93.2%和 92.5%),自腐蚀电位向正方向移动,自腐蚀电流密度也进一步降低,仅为基体的 1 / 5,同时涂层退火后钝化区击破电位向正方向移动,维钝电流密度下降,表明退火处理有助于提高涂层的耐蚀性。退火处理后 AlCuFe 和 AlCuFeSc 涂层自腐蚀电流密度相近,AlCuFeSc 涂层的自腐蚀电位较 AlCuFe 涂层更小,Sc 元素的掺杂提升了 Al-Cu-Fe 准晶合金化及准晶相含量[27],有效提升了准晶涂层的耐蚀性能。

  • 表7 2A12 基体和热处理前后 AlCuFe 涂层的自腐蚀电位和自腐蚀电流密度

  • Table7 Corrosion potential and Corrosion current densit of 2A12 substrate and AlCuFe coating before and after heat treatment

  • 为探究准晶相含量对涂层耐蚀性能的影响机制,针对上述研究中耐蚀性能较佳 AlCuFeSc 涂层,通过控制退火处理时间,制备两种准晶相含量(60% QC 和 90% QC)涂层。电化学测试表明,基体表面涂覆 60%及 90%准晶相含量的涂层后,自腐蚀电位均比基体小,两种准晶相含量的涂层相较准晶相含量更高的涂层自腐蚀电位更低(图7)。进一步计算AlCuFeSc涂层在3.5% NaCl水溶液中的线性极化电阻率曲线(如图8 所示,其中 i 为电流密度,∆E 为自腐蚀电位在±20 mV 范围内的变化),线性曲线斜率与在给定应用电位下产生的极化电阻(Rp)成反比。可以看出,与基体(0.97 kΩ·cm 2)相比,准晶相含量 60%涂层(Rp(QC-75))和准晶相含量 90% 涂层(Rp(QC-100))的 Rp 值分别为基体(Rp(st3))两倍(1.76 kΩ·cm 2)和三倍(3.01 kΩ·cm2),证明准晶涂层可以为基体提供良好的保护,同时随着准晶相含量提升,保护效果更为明显。对比不同准晶相含量的涂层表面形貌(图9),当准晶相含量为 60%时,涂层表面分布网格状裂纹。随着准晶相含量提升,涂层表面趋于平整,涂层表面的平整度高且孔隙分布较小,可以有效阻挡外界腐蚀因子的进入,更有利于涂层耐蚀性能的提升。

  • 图7 不同准晶相含量的 AlCuFeSc 涂层和 2A12 基体的极化曲线(QC:准晶相含量)

  • Fig.7 Polarization curves of AlCuFeSc coating and 2A12 matrix with different quasicrystalline phase content (QC: Quasicrystalline phase content)

  • 图8 不同准晶相含量的 AlCuFeSc 涂层和 2A12 基体的线性极化曲线

  • Fig.8 Linear polarization curves of AlCuFeSc coating and 2A12 matrix with different quasicrystalline phase content

  • 图9 不同准晶相含量的 AlCuFeSc 准晶涂层表面

  • Fig.9 Surface of AlCuFeSc quasicrystal coatings with different content of quasicrystal phases

  • 2.4 准晶涂层耐盐水腐蚀性能

  • 进一步考核准晶涂层的耐腐蚀性能,对 2A12 基体、退火处理后的 AlCuFe 和 AlCuFeSc 涂层进行 336 h 盐水静态挂片测试,测试前后的试样宏观形貌如图10 所示。2A12 基体表面出现了较多点蚀,相较于基体,准晶涂层的表面变暗,但仍保持光泽,涂层表面并未出现明显的腐蚀损伤。图11 为准晶涂层盐水挂片 0、118、336 h 后的表面微观形貌,涂层表面没有明显的腐蚀区域,随着时间增加,涂层表面逐渐被钝化防护层覆盖。

  • 以 AlCuFeSc 涂层为例,分析腐蚀机制。图12 显示了在盐水腐蚀试验前(图12a)和腐蚀 336 h 后 (图12d~12f)准晶涂层的表面微观形貌,结合图12b、12c 为其对应位置的 EDS 分析。336 h 盐水腐蚀后,涂层表面的主要特征是覆盖在涂层表面的氧化膜(图12d,“光谱 2 及光谱 4”)的形成,光谱 3 与光谱 5 位置涂层中的 Al 元素也已部分氧化,氧化铝的生成可以增强涂层的耐腐蚀性能。同时观察到光谱 6 中形成了“富铜”区域,铜作为一种电正极金属,可以提高铝合金的耐腐蚀性。然而,铜也会导致微电流腐蚀,因此,与纯铝的耐腐蚀性相比,铝-铜合金的耐腐蚀性会降低。铁具有相当高的标准电极电位和相对较低的溶解能力,但在有 Cl 离子的环境中表现出强烈的点腐蚀。Sc 具有最负的电化学电位(2.077 V),所以它应该增加腐蚀率。然而, Sc 的微合金化导致基于 Al 的准晶相的稳定化。由于 Sc 原子被纳入 Al-Cu-Fe 的二十面体结构中,并位于准晶簇之间的“孔隙”中,它们减少了二十面体准晶晶格的不匹配。因此,Sc 元素的加入显著提高 Al-Cu-Fe 准晶涂层的耐腐蚀性能。

  • 图10 336 h 盐水静态挂片测试前后试样的宏观形貌

  • Fig.10 Macroscopic morphologies of samples before and after 336 h saline static hanging test

  • 图11 AlCuFe 和 AlCuFeSc 涂层盐水静态挂片表面微观形貌

  • Fig.11 Static surface morphology of AlCuFe and AlCuFeSc coated brine

  • 图12 AlCuFeSc 涂层盐水静态挂片试验前后表面形貌及能谱分析

  • Fig.12 Surface morphology of AlCuFeSc coated brine before and after static hanging test and Energy spectrum analysis

  • 3 结论

  • (1)利用爆炸喷涂技术制备孔隙率低、结合强度高的 AlCuFe 和 AlCuFeSc 涂层,结合强度达到 51.9、51.2 MPa,可为未来准晶涂层制备提供参考。

  • (2)通过 700℃退火处理可以有效提升涂层的准晶相含量,经退火处理后的 AlCuFe 和 AlCuFeSc 涂层准晶相含量分别由 49%、38%提升至 93.2%、 92.5%。

  • (3)准晶含量的提升可促使涂层表面平整度变高、孔隙分布变小,有效阻挡外界腐蚀因子的进入,更有利于涂层耐蚀性能的提升。同时涂层表面生成的氧化铝钝化层为铝合金基体提供了良好的保护,其中,Sc 元素的加入提升了准晶相含量,可进一步提升了涂层的耐蚀性能。

  • (4)准晶涂层良好的耐蚀性能具有未来铝合金表面防护涂层的应用潜力,未来需结合具体的服役工况开展进一步应用验证。

  • 参考文献

    • [1] 侯世忠.舰船用铝合金的研究与应用[J].铝加工,2019(5):4-8.HOU Shizhong.Research and application of aluminum alloy for ships[J].Aluminium Fabrication,2019(5):4-8.(in Chinese)

    • [2] 管仁国,娄花芬,黄晖,等.铝合金材料发展现状,趋势及展望[J].中国工程科学,2020,22(5):68-75.GUAN Renguo,LOU Huafen,HUANG Hui,et al.Development of aluminum alloy materials:current status,trend,and prospects[J].Strategic Study of CAE,2020,22(5):68-75.(in Chinese)

    • [3] 宋海林,高萌,邢娜,等.2 种盐雾环境下6061车用铝合金的加速腐蚀行为研究[J].材料保护,2020,53(11):21-25,31.SONG Hailin,GAO Meng,XING Na,et al.Accelerated corrosion behavior research of aluminum alloy 6061 for vehicles during two different salt spray atmospheric environment[J].Materials Protection,2020,53(11):21-25,31.(in Chinese)

    • [4] DAN Z,TAKIGAWA S,MUTO I,et al.Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys[J].Corrosion Science,2011,53(5):2006-2014.

    • [5] 韩孝强.航空铝合金表面复合涂层的制备与防腐性能研究[D].广汉:中国民用航空飞行学院,2018.HAN Xiaoqiang,Study on preparation and properties of composite coatings on aeronautical aluminum alloy surface[D].Guanghan:Civil Aviation Flight University of China,2018.(in Chinese)

    • [6] 郭红霞.铝及铝合金化学氧化工艺[J].电镀与涂饰,2003(4):17-18.GUO Hongxia.Chemical oxidizing of aluminium and its alloy[J].Electroplating & Finishing,2003(4):17-18.(in Chinese)

    • [7] 曾善海.铝合金电镀锡层厚度控制方法及应用研究[D].苏州:苏州大学,2016.ZENG Shanhai.Research on control method and application of tin plating thickness on aluminum alloy[D].Soochow:Soochow University,2016.(in Chinese)

    • [8] 刘希燕,蒋健明,陈正涛,等.铝合金防腐保护研究进展[J].现代涂料与涂装,2007(12):11-14.LIU Xiyan,JIANG Jianming,CHEN Zhengtao,et al.Research progress in anti-corrosive protection for aluminum alloy[J].Modern Paint Finishing,2007(12):11-14.(in Chinese)

    • [9] 吴庆丹.隔水套管热喷涂铝基防腐涂层的制备与性能研究[D].扬州:扬州大学,2019.WU Qingdan.Study on the preparation and properties of aluminum-based anticorrosive coating by thermal spraying of water-proof casing[D].Yanyzhou:Yangzhou University,2019.(in Chinese)

    • [10] 隋佳利,李相波,林志峰,等.两种热喷涂锌铝涂层在低温海水介质中防腐性能研究[J].中国腐蚀与防护学报,2016,36(5):471-475.SUI Jiali,LI Xiangbo,LIN Zhifeng,et al.Corrosion resistance of two thermal sprayed Zn-Al alloy coatings in seawater at low temperatures[J].Journal of Chinese Society for Corrosion and Protection,2016,36(5):471-475.(in Chinese)

    • [11] 苏欣.锌铝涂层在典型模拟海洋环境下的腐蚀行为研究[D].武汉:武汉理工大学,2015.SU Xin.Study on corrosion behavior of Zn-Al coatings in typical simulated environment[D].Wuhan:Wuhan University of Technology,2015.(in Chinese)

    • [12] MARTINSONS M,SCHMIEDEBERG M.Stability of particles in two-dimensional quasicrystals against phasonic perturbations[J].Journal of Physics:Conference Series,2020,1458(1):012019.

    • [13] FRIEDEL J.On the role of transitional solute elements in Hume-Rothery-Jones phases[J].Philosophical Magazine B,1992,65(6):1125-1129.

    • [14] INOUE A,TSAI A P,MASUMOTO T.Stable decagonal and icosahedral quasicrystals[J].Journal of NonCrystalline Solids,1990,117-118:824-827.

    • [15] TSAI A P.A test of Hume-Rothery rule for stable quasicrystas[J].Journal of Non-Crystalline Solids,2004,334:317-322.

    • [16] RABSON D A.Toward theories of friction and adhesion on quasicrystals[J].Progress in Surface Science,2012,87(9/12):253-271.

    • [17] DUBIOS J M.New prospects from potential applications of quasicrystalline materials[J].Materials Science & Engineering A,2000,294-296:4-9.

    • [18] LOURDES C L,RODBARI R J,NASCIMENTO L,et al.Al62Cu25Fe12 and quasicrystalline phases and their influence on oxidation[J].Orbital-The Electronic Journal of Chemistry,2017,9(1):27-35.

    • [19] WITOR W,GUILHERME Y K,ROBERT S,et al.Wear and corrosion performance of Al-Cu-Fe-(Cr)quasicrystalline coatings produced by HVOF[J].Journal of Thermal Spray Technology,2020,29(5):1195-1207.

    • [20] BALBYSHEV V N,KHRAMOV A N,KING D J,et al.Investigation of nanostructured Al-based quasicrystal thin films for corrosion protection[J].Progress in Organic Coatings,2003,47(3-4):357-364.

    • [21] 丁亚茹,张顺,高思为,等.镁合金AZ91D激光熔覆 Al65Cu20Fe15 涂层的耐腐蚀性[J].热加工工艺,2016,45(14):168-170.DING Yaru,ZHANG Shun,GAO Siwei,et al.Corrosion resistance of laser cladding Al65Cu20Fe15 coatings on AZ91D Mg alloy[J].Hot Working Technology,2016,45(14):168-170.(in Chinese)

    • [22] QUIQUANDON M,QUIVY A,DEVAUD J,et al.Quasicrystal and approximant structures in the Al-Cu-Fe system[J].J.Phys.:Condens,1996,8:2487-2512.

    • [23] 蔡明伟,曲寿江,魏先顺,等.喷涂工艺对超音速火焰喷涂 Al-Cu-Fe-Si 准晶合金涂层性能的影响[J].表面技术,2016,45(2):73-78.CAI Mingwei,QU Shoujiang,WEI Xianshun,et al.Effect of spraying technology on the properties of AC-HVAF sprayed Al-Cu-Fe-Si quasicryatalline alloy coating[J].Surface Technology,2016,45(2):73-78.(in Chinese)

    • [24] DUBOIS J M,PRONER A,BUCAILLE B.Plasma sprayed quasicrystalline coatings with reduced adhesion for cookware[J].Annales de Chimie-Science des Materiaux,1994,19:3-25.

    • [25] 陈跃良,张杨广,卞贵学,等.2A12 铝合金不同阳极氧化膜在NaCl溶液中的电化学演变[J].表面技术,2020,49(9):348-356.CHEN Yueliang,ZHANG Yangguang,BIAN Guixue,et al.Electrochemical evolution of 2A12 aluminum alloy with different anodic films in NaCl solution[J].Surface Technology,2020,49(9):348-356.(in Chinese)

    • [26] 徐国富,金头男,邹景霞,等.微量Sc元素对 Al-Cu 合金组织与性能的影响[J].材料热处理学报,2004(2):15-18,85-86.XU Guofu,JIN Tounan,ZOU Jingxia,et al.Effect of trace Sc element on microstructure and properties of Al-Cualloy[J].Transactions of Materials and Heat Treatment,2004(2):15-18,85-86.(in Chinese)

    • [27] IEFIMOV M O,LOTSKO D V,MILMAN Y V,et al.Structure and high-temperature properties of the alloyed quasicrystalline Al-Cu-Fe powders and thermal-sprayed coatings from them[J].High Temperature Materials and Processes,2006,25(1-2):31-38.

  • 参考文献

    • [1] 侯世忠.舰船用铝合金的研究与应用[J].铝加工,2019(5):4-8.HOU Shizhong.Research and application of aluminum alloy for ships[J].Aluminium Fabrication,2019(5):4-8.(in Chinese)

    • [2] 管仁国,娄花芬,黄晖,等.铝合金材料发展现状,趋势及展望[J].中国工程科学,2020,22(5):68-75.GUAN Renguo,LOU Huafen,HUANG Hui,et al.Development of aluminum alloy materials:current status,trend,and prospects[J].Strategic Study of CAE,2020,22(5):68-75.(in Chinese)

    • [3] 宋海林,高萌,邢娜,等.2 种盐雾环境下6061车用铝合金的加速腐蚀行为研究[J].材料保护,2020,53(11):21-25,31.SONG Hailin,GAO Meng,XING Na,et al.Accelerated corrosion behavior research of aluminum alloy 6061 for vehicles during two different salt spray atmospheric environment[J].Materials Protection,2020,53(11):21-25,31.(in Chinese)

    • [4] DAN Z,TAKIGAWA S,MUTO I,et al.Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys[J].Corrosion Science,2011,53(5):2006-2014.

    • [5] 韩孝强.航空铝合金表面复合涂层的制备与防腐性能研究[D].广汉:中国民用航空飞行学院,2018.HAN Xiaoqiang,Study on preparation and properties of composite coatings on aeronautical aluminum alloy surface[D].Guanghan:Civil Aviation Flight University of China,2018.(in Chinese)

    • [6] 郭红霞.铝及铝合金化学氧化工艺[J].电镀与涂饰,2003(4):17-18.GUO Hongxia.Chemical oxidizing of aluminium and its alloy[J].Electroplating & Finishing,2003(4):17-18.(in Chinese)

    • [7] 曾善海.铝合金电镀锡层厚度控制方法及应用研究[D].苏州:苏州大学,2016.ZENG Shanhai.Research on control method and application of tin plating thickness on aluminum alloy[D].Soochow:Soochow University,2016.(in Chinese)

    • [8] 刘希燕,蒋健明,陈正涛,等.铝合金防腐保护研究进展[J].现代涂料与涂装,2007(12):11-14.LIU Xiyan,JIANG Jianming,CHEN Zhengtao,et al.Research progress in anti-corrosive protection for aluminum alloy[J].Modern Paint Finishing,2007(12):11-14.(in Chinese)

    • [9] 吴庆丹.隔水套管热喷涂铝基防腐涂层的制备与性能研究[D].扬州:扬州大学,2019.WU Qingdan.Study on the preparation and properties of aluminum-based anticorrosive coating by thermal spraying of water-proof casing[D].Yanyzhou:Yangzhou University,2019.(in Chinese)

    • [10] 隋佳利,李相波,林志峰,等.两种热喷涂锌铝涂层在低温海水介质中防腐性能研究[J].中国腐蚀与防护学报,2016,36(5):471-475.SUI Jiali,LI Xiangbo,LIN Zhifeng,et al.Corrosion resistance of two thermal sprayed Zn-Al alloy coatings in seawater at low temperatures[J].Journal of Chinese Society for Corrosion and Protection,2016,36(5):471-475.(in Chinese)

    • [11] 苏欣.锌铝涂层在典型模拟海洋环境下的腐蚀行为研究[D].武汉:武汉理工大学,2015.SU Xin.Study on corrosion behavior of Zn-Al coatings in typical simulated environment[D].Wuhan:Wuhan University of Technology,2015.(in Chinese)

    • [12] MARTINSONS M,SCHMIEDEBERG M.Stability of particles in two-dimensional quasicrystals against phasonic perturbations[J].Journal of Physics:Conference Series,2020,1458(1):012019.

    • [13] FRIEDEL J.On the role of transitional solute elements in Hume-Rothery-Jones phases[J].Philosophical Magazine B,1992,65(6):1125-1129.

    • [14] INOUE A,TSAI A P,MASUMOTO T.Stable decagonal and icosahedral quasicrystals[J].Journal of NonCrystalline Solids,1990,117-118:824-827.

    • [15] TSAI A P.A test of Hume-Rothery rule for stable quasicrystas[J].Journal of Non-Crystalline Solids,2004,334:317-322.

    • [16] RABSON D A.Toward theories of friction and adhesion on quasicrystals[J].Progress in Surface Science,2012,87(9/12):253-271.

    • [17] DUBIOS J M.New prospects from potential applications of quasicrystalline materials[J].Materials Science & Engineering A,2000,294-296:4-9.

    • [18] LOURDES C L,RODBARI R J,NASCIMENTO L,et al.Al62Cu25Fe12 and quasicrystalline phases and their influence on oxidation[J].Orbital-The Electronic Journal of Chemistry,2017,9(1):27-35.

    • [19] WITOR W,GUILHERME Y K,ROBERT S,et al.Wear and corrosion performance of Al-Cu-Fe-(Cr)quasicrystalline coatings produced by HVOF[J].Journal of Thermal Spray Technology,2020,29(5):1195-1207.

    • [20] BALBYSHEV V N,KHRAMOV A N,KING D J,et al.Investigation of nanostructured Al-based quasicrystal thin films for corrosion protection[J].Progress in Organic Coatings,2003,47(3-4):357-364.

    • [21] 丁亚茹,张顺,高思为,等.镁合金AZ91D激光熔覆 Al65Cu20Fe15 涂层的耐腐蚀性[J].热加工工艺,2016,45(14):168-170.DING Yaru,ZHANG Shun,GAO Siwei,et al.Corrosion resistance of laser cladding Al65Cu20Fe15 coatings on AZ91D Mg alloy[J].Hot Working Technology,2016,45(14):168-170.(in Chinese)

    • [22] QUIQUANDON M,QUIVY A,DEVAUD J,et al.Quasicrystal and approximant structures in the Al-Cu-Fe system[J].J.Phys.:Condens,1996,8:2487-2512.

    • [23] 蔡明伟,曲寿江,魏先顺,等.喷涂工艺对超音速火焰喷涂 Al-Cu-Fe-Si 准晶合金涂层性能的影响[J].表面技术,2016,45(2):73-78.CAI Mingwei,QU Shoujiang,WEI Xianshun,et al.Effect of spraying technology on the properties of AC-HVAF sprayed Al-Cu-Fe-Si quasicryatalline alloy coating[J].Surface Technology,2016,45(2):73-78.(in Chinese)

    • [24] DUBOIS J M,PRONER A,BUCAILLE B.Plasma sprayed quasicrystalline coatings with reduced adhesion for cookware[J].Annales de Chimie-Science des Materiaux,1994,19:3-25.

    • [25] 陈跃良,张杨广,卞贵学,等.2A12 铝合金不同阳极氧化膜在NaCl溶液中的电化学演变[J].表面技术,2020,49(9):348-356.CHEN Yueliang,ZHANG Yangguang,BIAN Guixue,et al.Electrochemical evolution of 2A12 aluminum alloy with different anodic films in NaCl solution[J].Surface Technology,2020,49(9):348-356.(in Chinese)

    • [26] 徐国富,金头男,邹景霞,等.微量Sc元素对 Al-Cu 合金组织与性能的影响[J].材料热处理学报,2004(2):15-18,85-86.XU Guofu,JIN Tounan,ZOU Jingxia,et al.Effect of trace Sc element on microstructure and properties of Al-Cualloy[J].Transactions of Materials and Heat Treatment,2004(2):15-18,85-86.(in Chinese)

    • [27] IEFIMOV M O,LOTSKO D V,MILMAN Y V,et al.Structure and high-temperature properties of the alloyed quasicrystalline Al-Cu-Fe powders and thermal-sprayed coatings from them[J].High Temperature Materials and Processes,2006,25(1-2):31-38.

  • 手机扫一扫看