en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王瑞,女,1994年出生,硕士,助理研究员。主要研究方向为装备维修与再制造。E-mail:dzpywangrui@163.com

李嘉杞,男,1996年出生,硕士研究生。主要研究方向为分形维数在超音速等离子喷涂中的应用。E-mail:ljq960620@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20230331001

参考文献 1
徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,2010.XU Binshi,ZHU Shaohua.Theory and technology of surface engineering[M].Beijing:National Defense Industry Press,2010.(in Chinese)
参考文献 2
李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Application and research progress and challenges of thermal spraying technology[J].Thermal Spray Technology,2018,10(4):1-22.(in Chinese)
参考文献 3
徐滨士,刘世参,王海斗.大力发展再制造产业[J].求是,2005,12:46-47.XU Binshi,LIU Shican,WANG Haidou,et al.Vigorously develop the remanufacturing industry[J].Qiushi,2005,12:46-47.(in Chinese)
参考文献 4
刘明,王海军,韩志海,等.内孔等离子喷涂 Ni45-15%Mo 涂层与38CrMoAl渗氮层耐磨性研究[J].中国表面工程,2007,20(2):47-50.LIU Ming,WANG Haijun,HAN Zhihai,et al.Study on wear resistance of inner hole plasma spraying Ni45-15% Mo coating and 38CrMoAl nitriding layer[J].China Surface Engineering,2007,20(2):47-50.(in Chinese)
参考文献 5
徐滨士,王海军,朱胜,等.高效能超音速等离子喷涂技术的研究与开发应用[J].制造技术与机床,2003,16(1):16-18.XU Binshi,WANG Haijun,ZHU Sheng,et al.Research and development of high efficiency supersonic plasma spraying technology[J].Manufacturing Technology & Machine Tool,2003,16(1):16-18.(in Chinese)
参考文献 6
韩玉君,叶福兴,李晓泉.铁基合金基底热喷涂热障涂层的界面化合物演化[J].材料热处理学报,2015,36(10):181-186.HAN Yujun,YE Fuxing,LI Xiaoquan.Interfacial compound evolution of thermal spray thermal barrier coatings on iron-based alloy substrates[J].Transactions of Materials and Heat Treatment,2015,36(10):181-186.(in Chinese)
参考文献 7
惠阳,刘贵民,闫涛,等.超音速等离子喷涂Mo涂层的载流摩擦磨损性能[J].中国表面工程,2019,32(2):109-119.HUI Yang,LIU Guimin,YAN Tao,et al.Current-carrier tribological properties of Mo coating deposited by supersonic plasma spraying[J].China Surface Engineering,2019,32(2):109-119.(in Chinese)
参考文献 8
JIA D,YAN C L,PENG Y,et al.Splat formation mechanism of droplet-filled cold-textured groove during plasma spraying[J].Applied Thermal Engineering,2020,17(3):115-239.
参考文献 9
BROSSARD S,MUNROE P R,TRAN A,et al.Study of the splat-Substrate Interface for a NiCr coating plasma sprayed onto polished aluminum and stainless steel substrates[J].Journal of Thermal Spray Technology,2010,19(1-2):24-30.
参考文献 10
琚正挺,宣天鹏.分形计算方法及在材料表界面中的应用[J].稀有金属快报,2006,25(3):1-5.JU Zhengting,XUAN Tianpeng.Fractal calculation method and its application in material surface interface[J].Rare Metals Letters,2006,25(3):1-5.(in Chinese)
参考文献 11
李权,刘贵才.热喷涂界面的观察与分析[J].电子显微学报,2004,23(4):488-488.LI Quan,LIU Guicai.Observation and analysis of thermal spraying interface[J].Journal of Chinese Electron Microscopy Society,2004,23(4):488-488.(in Chinese)
参考文献 12
王文昌,盛天原,孔德军,等.等离子喷涂 WC-12Co 涂层表面-界面性能[J].材料热处理学报,2015,36(12):190-196.WANG Wenchang,SHENG Tianyuan,KONG Dejun,et al.Surface-interface properties of plasma sprayed WC-12Co coatings[J].Transactions of Materials and Heat Treatment,2015,36(12):190-196.(in Chinese)
参考文献 13
陈亚军,王志平,纪朝辉,等.等离子与电弧喷涂 Ni-Cr-Al 涂层结合强度和磨粒磨损性能[J].材料热处理学报,2011,32(2):119-123.CHEN Yajun,WANG Zhiping,JI Chaohui,et al.Bonding strength and abrasive wear properties of plasma and arc sprayed Ni-Cr-Al coatings[J].Transactions of Materials and Heat Treatment,2011,32(2):119-123.(in Chinese)
参考文献 14
张忠礼,丁勇,杨国强,等.热喷涂涂层与电镀层的结合与界面[J].沈阳工业大学学报,2011,33(4):361-366.ZHANG Zhongli,DING Yong,YANG Guoqiang,et al.Combination and interface of thermal spray coating and plating coating[J].Journal of Shenyang University of Technology,2011,33(4):361-366.(in Chinese)
参考文献 15
黄伟九,李兆峰,刘明,等.热扩散对镁合金锌铝涂层界面组织和性能的影响[J].材料热处理学报,2007,28(2):106-109.HUANG Weijiu,LI Zhaofeng,LIU Ming,et al.Effect of thermal diffusion on microstructure and properties of the interface of magnesium alloy ZnAl coating[J].Transactions of Materials and Heat Treatment,2007,28(2):106-109.(in Chinese)
参考文献 16
VARDELLE,MOREAU C,LI C J,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.
参考文献 17
YADAV R P,DWIVEDI S,MITTAL A K,et al.Fractal and multifractal analysis of LiF thin film surface[J].Applied Surface Science,2012,261:547-553.
参考文献 18
VISCUSI A,ASTARITA A,GENNA S,et al.On the influence of different superficial laser texturing on the deposition of powders through cold spray process[J].Transactions of the Institute of Metal Finishing,2018,96(1):34-40.
参考文献 19
丁坤英,李志远,王者,等.基于分形方法的YSZ热障涂层有效热导率分析[J].中国表面工程,2020,33(3):104-110.DING Kunying,LI Zhiyuan,WANG Zhe,et al. Analysis of YSZ effective thermal conductivity based on fractal theory[J].China Surface Engineering,2020,33(3):104-110.(in Chinese)
参考文献 20
陈书赢,王海斗,徐滨士,等.基于分形理论的超音速等离子喷涂层界面结合行为研究[J].物理学报,2015,63(15):1-7.CHEN Shuying,WANG Haidou,XU Binshi,et al.Study on interface bonding behavior of supersonic plasmasprayed coating based on fractal theory[J].Acta Physica Sinica,2015.63(15):1-7.(in Chinese)
参考文献 21
李小刚,徐滨士,马世宁.基体表面的分数维对电弧喷涂层结合强度的影响[J].中国机械工程,1999(1):90-93.LI Xiaogang,XU Binshi,MA Shining.Influence of fractal dimensions of substrate surface on bonding strength of arc sprayed coatings[J].China Mechanical Engineering,1999(1):90-93.(in Chinese)
参考文献 22
陈玉华,王勇,李新梅.分形理论在材料表界面研究中的应用现状与展望[J].表面技术,2003,32(5):8-11.CHEN Yuhua,WANG Yong,LI Xinmei.Application status and prospect of fractal theory in surface and interface research of materials[J].Surface Technology,2003,32(5):8-11.(in Chinese)
目录contents

    摘要

    随着研究不断深入,分形几何可以用来描述涂层的表面形貌和复杂性,分形维数可实现形貌结构的定性描述向定量表征转变。为研究超音速等离子喷涂层界面结合行为与其分形维数之间的关系,采用对比试验研究喷涂距离、喷涂电流等工艺参数对涂层结合界面形貌和结合强度的影响,并引入分形理论对界面结合行为进行定量表征,进而探究结合界面形貌、结合强度、分形维数三者的对应关系。结果表明:相比于喷涂电流,喷涂距离对分形维数的影响更为显著。当喷涂距离为 80 mm 和 100 mm 时,随着喷涂电流从 400 A 增大到 500 A,分形维数呈先减小后增大趋势,最小为 1.1150;当喷涂距离为 120 mm 时,粒子在等离子焰流中的飞行时间增长,随电流增大,涂层界面分形维数则先增大后减小。界面分形维数与涂层结合强度之间存在着正相关的对应关系。当分形维数在一定范围内呈增大趋势时,涂层 / 基体结合界面处孔隙减少、结合强度增大。因此,涂层 / 基体结合行为的分形特性研究对评价涂层质量具有重要意义。

    Abstract

    Supersonic plasma spraying is a process that uses an extremely high-energy-density supersonic plasma jet to heat and accelerate the spraying of materials to obtain high spray quality. The formation and presence of heterogeneous interfaces significantly affect the operational performance of refurbished parts. In this study, a Ni60A coating renowned for its robustness and wear resistance is employed as the substrate. The morphology of the highly disorganized and irregular coating / substrate bonding interface is quantitatively characterized by fractal theory. Additionally, the relationship between the interface state and the bonding strength of the supersonic plasma coating is explored. A comparative test is performed to generate coatings with distinct deposition morphologies. This is achieved by controlling the spraying distance and current to vary the melting and flight characteristics when the particles makecontact with the matrix. The influences of parameters such as spraying distance, spraying current, and other process variables on the morphology and bonding strength of the coating / substrate bonding interface are studied. Fractal dimensions are calculated using the FracLac plug-in and box-counting methods. Furthermore, the corresponding relationships between the morphology of the binding interface, binding strength, and fractal dimensions are investigated. The results show differences between the pretreated substrate and the bonding interface of the coating / substrate after the spraying process, affecting the bonding strength of the coating. Correspondence related to the deposition process of the coating is found between the surface morphology and fractal dimension. The supersonic plasma-sprayed nickel-based alloy coating and substrate are predominantly mechanically bonded. The bonding occurs though different forms including mosaic, anchoring, spreading, occluding, and compound types. Among these, the mosaic and anchoring types feature barbs, enhancing the contact area between the matrix and the coating. This increased contact area serves to enhance stress distribution, making it more uniform and effectively dispersing concentrated stress. Within a certain range, as the fractal dimension increases, the morphology of the mosaic and anchoring types increases, and the contact area between the substrate and coating also expands. This expansion leads to improved distribution of concentrated stress and a more uniform stress distribution, thereby improving the bonding strength. The spraying distance has a more significant effect on the fractal dimension than the spraying current. At spraying distances of both 80 and 100 mm, an increase in the spraying current from 400 to 500 A initially leads to a reduction in the fractal dimension to a minimum of 1.115, followed by a subsequent increase. At a spraying distance of 120 mm, the flight time of the particles in the plasma flame flow increases, and the fractal dimension of the coating interface exhibits an initial increase followed by a subsequent decrease as the current increases. There is a positive correlation between the fractal dimension of the interface and the bonding strength of the coating when the tensile method is used to measure the coating bonding strength. As the fractal dimension increases within a certain range, the porosity at the coating / substrate interface decreases and the bonding strength increases. During the tensile process, cracks propagate readily at the interface where bonding strength is comparatively weaker. In addition, the presence of voids inside the coating leads to stress concentration, initiating cracks which eventually propagate, destabilize, and expands at the interface, culminating in fracture formation. Within a certain range, there is a positive correlation between the fractal dimension and bonding strength, indicating a degree of dependence between the bonding strength and the fractal dimension of the bonding-interface topography. However, the existence of a functional relationship between the fractal dimension and bonding strength, as well as the extent of the positive correlation, require further exploration. Therefore, studying the fractal characteristics of the coating / substrate bonding behavior is of great significance in the evaluation of coating quality.

  • 0 前言

  • 超音速等离子喷涂是利用能量密度非常高的超音速等离子射流加热、加速喷涂材料而获得高质量喷涂的工艺过程[1]。其热源温度高、粒子速度大,作为一项重要的表面工程和再制造关键技术,可用于改善基体表面的耐磨、耐蚀、耐高温等性能,在材料表面性能提升领域具有广泛的应用前景[2-5]。超音速等离子喷涂再制造过程中,由于喷涂材料与基体材料之间往往是异质材料,会存在一个异质界面问题[6-7]。异质界面的形成与存在对再制造件服役性能有着至关重要的影响,一直是研究者关心和研究的热点问题[8]

  • 界面是材料物理、化学性质发生空间突变的二维区域,对材料的各项性能都有重要的影响,且固体表 / 界面是一个非常混乱复杂、不规则的系界面是材料物理、化学性质发生空间突变的二维区域,对材料的各项性能都有重要的影响,且固体表 / 界面是一个非常混乱复杂、不规则的系统[9-12]。喷涂工艺、基体表面形貌、基体温度以及喷涂后热处理等因素都会影响涂层结合界面处材料成分和界面形貌,进而影响涂层的各项性能,如结合强度、耐磨 / 耐蚀性、涂层应力状态等[13-16]。当涂层的结合强度不高时,极易引发严重的分层失效。 因此,涂层 / 基体结合强度的研究对评价涂层质量具有重要意义。分形是一种有趣的结构,是指各个组成部分以某种方式与整体相似的形体。随着研究不断深入,分形几何可以用来描述涂层的表面形貌和复杂性,分形维数简化了对形貌结构的描述,并实现形貌结构的定性描述向定量表征转变[17-18]

  • 从超音速等离子喷涂工艺过程来讲,熔滴从生成到与基体碰撞并凝固沉积,再到整个涂层的形成,整个过程具有自相似性和周期性变化特点。基于这一特点,有学者尝试采用分形理论对基体界面进行定量化表征,探究分形维数与界面的内在关系。结果显示,基体表面分形维数与涂层结合强度之间有较严格的对应关系[19-22]。本文以强度高、耐磨性好的超音速等离子喷涂 Ni60A 涂层为载体,采用分形理论对高度紊乱、形状不规则的涂层 / 基体结合界面形貌进行定量表征,并探索界面状态与超音速等离子涂层结合强度之间的关系。

  • 1 试验方法

  • 1.1 涂层制备

  • 采用 HEPJ-1 超音速等离子喷涂设备制备镍基合金涂层,喷涂粒子为 Ni60A 高硬度的镍铬硼硅粉末,主要为粒径在 140~325 µm 的规则球形,其主要成分为 C-0.6、B-3、Cr-15.6、Si-3.8、Fe-4.6、Ni余(wt. %)。喷涂所用基体材料为 45 号钢,喷涂前将基材进行预磨处理,采用丙酮对基体表面进行清洗,随后对基体表面进行喷砂粗化及预热处理。通过控制喷涂距离和喷涂电流,调节粒子撞击基体时的熔融和飞行状态,拟得到不同沉积形貌的涂层,进而研究喷涂参数对结合界面行为的影响。喷涂参数及分组如表1 所示。

  • 表1 镍基合金涂层制备参数

  • Table1 Preparation parameters of nickel-based alloy coating

  • 采用 Nova NanoSEM450 型场发射扫描电子显微镜(SEM)观察涂层断口截面微观形貌,并对结合界面处空洞缺陷部分进行 EDS 能谱分析。利用 ImageJ 软件对采集图像进行二值化处理,获取基体表面形貌灰度图,并提取结合界面曲线。参照美国 ASTMC663-01 对偶件拉伸法标准测量涂层的结合强度,如图1 所示。

  • 图1 涂层结合强度测试图

  • Fig.1 Diagram of coating bonding strength test

  • 1.2 分形维数计算

  • 本文利用 FracLac 插件采用盒计数法计算分形维数,盒计数法计算分形维数的公式如下:

  • D=ln Count ln(1/ε)
    (1)
  • 式中,D 为分形维数,ε 为盒子基准尺度,Count 为用基准尺度覆盖的盒子总数。

  • 式(1)中获取数据点(ln(1/ε),lnCount)函数关系图中呈直线关系的基准尺度范围即该表面形貌的分形无标度区间,实现基体表面的分形定量化表征。

  • 利用优化后的软件进行图像处理,对涂层表面和截面的 SEM 图进行二值化处理,并提取结合界面曲线,如图2 所示。可以清晰地看出,成形层与基体结合界面横截面轮廓为一条不规则波浪形曲线,具有自相似特征。根据分形定义和分形维数计算原理,只要 ln(1/ε)和 lnCount 之间存在线性关系,采用最小二乘法拟合数据,其直线斜率 D 即表明所计算对象为分形体,具体公式为:

  • ln Count =Dln(1/ε)+C
    (2)
  • 式中,C 为常数。

  • 图2 ImageJ 软件图像处理过程

  • Fig.2 Image processing process of ImageJ software

  • 采用盒计数法对图2 所示表面和截面图进行分形维数计算,结果分别如图3a、3b 所示,计算可得表面分形维数为 1.838 7,结合界面曲线分形维数为 1.122 8。图3 中 r2 表示分形维数计算的平方差。由此可见,超音速等离子喷涂镍基合金再制造成形层与基体之间的结合界面是一个具有分形特性的复杂结构曲面,可以采用分形维数实现其定量化表征。

  • 图3 分维计算结果

  • Fig.3 Fractal dimension calculation result

  • 2 结果与讨论

  • 2.1 涂层及结合界面状态

  • 超音速等离子喷涂涂层截面如图4 所示,可见涂层由变形带状粒子相互搭接而成,呈典型的层状结构。涂层组织致密,无明显的裂纹和粗大孔隙。但在某些局部存在细微缺陷,如尺寸大小不同的孔隙、微裂纹、未熔化的粉末颗粒等。

  • 图4 层状结构的涂层截面图(放大部分为明显的层状区)

  • Fig.4 A cross-section of the coating of the layered structure (enlarged part shows obvious lamellar area)

  • 孔隙的形成主要存在以下几种形式:

  • (1)两个或多个粒子搭接形成孔洞。这类孔隙的大小主要取决于喷涂粒子理化状态之间的差异。当粒子温度较低时,熔化不完全就易产生半熔颗粒,从而形成较大的孔洞(图4 中的Ⅰ型)。

  • (2)在非规则区域易形成遮蔽效应孔洞。主要由于后续熔融粒子的飞行撞击方向与成形涂层或沉积表面微区形貌间存在夹角,使其无法润湿,从而形成Ⅱ型孔隙。

  • (3)喷涂粒子组成形式存在多样性,使其在熔化过程中产生许多与热力学状态相异的熔滴。由于温度梯度存在,间隙裂纹形成,从而形成Ⅲ型孔洞。

  • (4)喷涂过程中未及时逸出的气体在涂层中形成Ⅳ型孔洞。这类孔隙一般呈规则的圆形。它们大多沿着层间或粒界分布,这些缺陷的存在会降低涂层的连续性,相应降低涂层的性能。

  • 对 C 组喷涂样品进行对比观察,从涂层与基体的结合界面来看,涂层与基体结合主要为机械结合。由于喷涂参数不同,粒子的飞行速度、熔化状态均有所不同,因此结合形貌也不同,主要存在嵌合型、锚合型、铺展型、咬合型、有倒钩状形貌,如图5 所示。从图中可以看出,电流为 400 A 时,结合界面处存在明显的孔隙缺陷,且涂层中存在未熔的粉末夹杂。随着喷涂电流增加,粒子熔化状态良好,涂层层状结构更加扁平化,粒子铺展得更加均匀,熔滴可以渗透到下面的缺陷中,使基体与涂层结合界面的孔隙减少,结合形貌多为嵌合型和锚合型。碰撞粒子的温度和速度是粒子-基体间结合的重要影响因素。显然,喷涂电流主要影响基体表面温度和粒子到达基体表面前的温度和速度。提高喷涂电流使得粒子温度升高,高温有助于熔融粒子撞击到基体上时迅速扩展。这是因为高温降低了粒子在铺展过程中的动力黏度,进而促进粒子的扁平化。同时随着喷涂电流增加,等离子焰流温度升高,对基体表面的加热作用加剧。因此,基体表面温度也随之提高,并且基体表面的吸附物(多为水分)也会部分地被蒸发清除。通常认为基体表面的吸附物会降低熔融粒子与基体间润湿性能,换句话说,通过蒸发移除基体表面吸附物可提高基体表面的润湿性,这无疑会促进粒子与基体间的接触和热交换,并形成良好的粒子-基体结合。

  • 对图5a 中涂层界面结合处的黑色部分进一步放大观察,并对图中的两个点进行 EDS 能谱分析可知,该区域为喷砂处理后残留的 Al2O3 砂砾,从而在粒子沉积过程中形成较大的孔洞缺陷,影响涂层与基体间的结合强度。因此,基体表面预处理的质量与涂层结合强度息息相关。能谱分析如图6 所示。

  • 图5 不同喷涂电流下涂层结合形貌

  • Fig.5 Coating bonding morphology under different spraying current

  • 图6 结合界面处能谱分析点测图

  • Fig.6 Energy spectrum analysis diagram at the interface

  • 2.2 结合界面分形维数表征

  • 基体表面的形貌直接影响后续喷涂微滴的沉积,即基体表面形貌结构直接影响涂层的形成过程,决定涂层的结构性能。通过对基体表面分别进行 10 s、30 s、50 s 不同时间的喷砂预处理,得到不同的基体表面形貌。不同基体表面形貌的试样在同参数下进行喷涂,对涂层 / 基体结合界面形貌进行观察,可以发现随着喷涂时间延长,基体表面变得凹凸不平。提取结合界面处的曲线进行分形维数计算,发现随着喷砂时间延长,分形维数增大,从 1.118 7 增大到 1.137 9。表2 为不同喷砂预处理下得到的样品涂层 / 基体结合界面分形维数。由此可见,预处理后的基体表面形貌不同,喷涂后的涂层 / 基体结合界面形貌也会有所差异,进而影响涂层的结合强度。表面形貌与分形维数间有一定的对应关系,与涂层的沉积过程存在联系。

  • 表2 不同喷砂预处理下样品涂层 / 基体结合界面的分形维数

  • Table2 Fractal dimension of coating / base binding interface of sample under different sandblasting pretreatment

  • 不同喷涂电流下,涂层与基体结合界面是不同的。对喷涂距离为 120 mm、喷枪扫过五遍样品截面 SEM 图像二值化后提取轮廓曲线,并进行分形维数计算,过程如图7 所示。根据分形维数计算结果可知,随着喷涂电流的增大,结合界面处分形维数先增大后减小。这是由于电流增大,等离子焰流温度升高,粉末粒子的熔化更充分,到达基体时的结合状态更丰富,结合界面结构越复杂,因此分形维数越大。当喷涂电流足够大时,粒子对基体夯实作用明显,且充分熔化的粒子在基体上的润湿效果更好,能够填补部分孔隙,因此分形维数又会减小。

  • 图7 不同喷涂电流下结合界面分形维数

  • Fig.7 Fractal dimension of interface binding under different spraying current

  • 采用同样的方法计算三组超音速等离子喷涂样品结合界面的分形维数,计算结果如表3 所示。可以看出,喷涂距离对分形维数的影响大于喷涂电流的影响。当喷涂距离为 80 mm 和 100 mm 时,随着喷涂电流的增大,分形维数先减小后增大。在喷涂距离为 100 mm、喷涂电流为 450 A 时,分形维数达最小值 1.115 0。即随着喷涂电流的增大,涂层 / 基体结合界面的形貌先趋于平整,后变得复杂不规则。

  • 表3 喷涂样品分形维数计算

  • Table3 Calculation of fractal dimension of spray samples

  • 这是由于在超音速等离子喷涂过程中,熔融粒子高速撞击基体或已成形的涂层表面之后,在极短的时间内经历熔融润湿、扁平铺展以及少量反弹飞溅等过程,随后熔融粒子迅速冷却。当喷涂电流增大时,由于喷涂距离较近,焰流对涂层及基体的加热作用更明显,涂层更为致密,使得结合界面更为平整。而当喷涂电压继续增大时,焰流温度足够高,使得基体软化,在粒子作用下发生变形,从而导致冷却后的结合界面变得复杂不规则。从分形维数的计算结果来看,同样在 500 A 电流作用下,喷涂距离越近,分形维数越大,也能证实上述结论。

  • 当喷涂距离为 120 mm 时,分形维数的变化趋势与上述有所不同。随着电流增大,分形维数先增大后减小。这主要是由于喷涂距离过大,粒子在等离子焰流中的飞行时间增长,达到基体时的状态更为丰富。

  • 2.3 结合强度测试结果

  • 为深入分析超音速等离子喷涂的喷涂电流对涂层结合强度的影响,本文采用拉伸法测量涂层结合强度。每组试验测量三个试件,取平均值作为最后结果,如表4 所示。

  • 表4 涂层结合强度及结合界面曲线分形维数

  • Table4 Coating bonding strength and fractal dimension of bonding interface curve

  • 涂层的结合强度随喷涂电流发生变化,如图8 所示。随着喷涂电流的增加,涂层的结合强度先增大后减小,分形维数先增大后减小,由此可见分形维数与结合强度之间存在正相关对应关系。经过对断裂后的样品进行观察发现,断口均位于镍基合金涂层与基体结合界面处。这是因为粉末粒子撞击在基体上层层堆叠后,与基体多为机械结合,且结合界面属于异质金属结合面,存在孔洞、裂纹等缺陷,缺陷复杂程度高于其他部位。在拉伸过程中,裂纹易在结合能力相对较弱的界面处萌生并扩展。另外,涂层内部由于孔隙存在会产生应力集中,从而诱发裂纹萌生,最终在界面处失稳扩展形成断裂。

  • 图8 涂层结合强度与喷涂电流的关系

  • Fig.8 Relationship between coating bond strength and spraying current

  • 2.4 界面形貌与结合强度的关系

  • 由上面计算结果可知,在一定范围内,分形维数与结合强度之间存在正相关的对应关系,结合强度与结合界面形貌的分形维数存在一定的依赖关系。且经过结合界面形貌定量分形计算表征可知,分形维数越大,形貌越复杂且不规则;分形维数越小,形貌越平整有序。如图5 所示,典型的机械结合形貌主要分为嵌合型、锚合型、铺展型、咬合型、铺展型、咬合型以及复合型几种形态。其中,嵌合型和锚合型有倒钩状存在,基体与涂层之间的接触面积增大,能够改善集中应力的分布,使应力分布趋于均匀化;咬合型的典型特征是结合界面有较大的凸起,能够有效承受界面的剪切应力[17];铺展型形貌较为平整,产生Ⅲ型孔洞的可能性较大,机械结合效果差。对不同喷涂参数下的截面形貌所含有的不同形式的孔隙类型、典型的机械结合方式进行统计发现,分形维数越大,嵌合型和锚合型形貌所占比例越大,结合强度越大;随着分形维数降低,嵌合型和全锚合型形貌比例降低,而铺展型和咬合型比例上升,结合强度减小。但由此分析,随着分形维数不断增大,到一定程度时,孔洞等缺陷的比例增加,势必会影响结合强度。因此,正相关对应关系仅仅在一定的分形维数范围内存在。

  • 3 结论

  • (1)超音速等离子喷涂镍基合金涂层与基体主要为机械结合。在一定范围内随着分形维数的增大,嵌合型和锚合型的形貌增多,基体与涂层之间的接触面积增大,能够改善集中应力的分布,使其趋于均匀化,从而有利于提高结合强度。

  • (2)喷涂距离对分形维数的影响大于喷涂电流的影响。当喷涂距离为 80 mm 和 100 mm 时,随着喷涂电流增大,分形维数先减小后增大;当喷涂距离为 120 mm 时,随着电流增大,分形维数先增大后减小。

  • (3)在一定范围内,分形维数与结合强度之间存在正相关的对应关系,结合强度与结合界面形貌的分形维数存在一定的依赖关系。但分形维数与结合强度之间是否存在某种函数对应关系,以及在什么范围内存在正相关对应关系,都应进行深入探索。

  • 参考文献

    • [1] 徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,2010.XU Binshi,ZHU Shaohua.Theory and technology of surface engineering[M].Beijing:National Defense Industry Press,2010.(in Chinese)

    • [2] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Application and research progress and challenges of thermal spraying technology[J].Thermal Spray Technology,2018,10(4):1-22.(in Chinese)

    • [3] 徐滨士,刘世参,王海斗.大力发展再制造产业[J].求是,2005,12:46-47.XU Binshi,LIU Shican,WANG Haidou,et al.Vigorously develop the remanufacturing industry[J].Qiushi,2005,12:46-47.(in Chinese)

    • [4] 刘明,王海军,韩志海,等.内孔等离子喷涂 Ni45-15%Mo 涂层与38CrMoAl渗氮层耐磨性研究[J].中国表面工程,2007,20(2):47-50.LIU Ming,WANG Haijun,HAN Zhihai,et al.Study on wear resistance of inner hole plasma spraying Ni45-15% Mo coating and 38CrMoAl nitriding layer[J].China Surface Engineering,2007,20(2):47-50.(in Chinese)

    • [5] 徐滨士,王海军,朱胜,等.高效能超音速等离子喷涂技术的研究与开发应用[J].制造技术与机床,2003,16(1):16-18.XU Binshi,WANG Haijun,ZHU Sheng,et al.Research and development of high efficiency supersonic plasma spraying technology[J].Manufacturing Technology & Machine Tool,2003,16(1):16-18.(in Chinese)

    • [6] 韩玉君,叶福兴,李晓泉.铁基合金基底热喷涂热障涂层的界面化合物演化[J].材料热处理学报,2015,36(10):181-186.HAN Yujun,YE Fuxing,LI Xiaoquan.Interfacial compound evolution of thermal spray thermal barrier coatings on iron-based alloy substrates[J].Transactions of Materials and Heat Treatment,2015,36(10):181-186.(in Chinese)

    • [7] 惠阳,刘贵民,闫涛,等.超音速等离子喷涂Mo涂层的载流摩擦磨损性能[J].中国表面工程,2019,32(2):109-119.HUI Yang,LIU Guimin,YAN Tao,et al.Current-carrier tribological properties of Mo coating deposited by supersonic plasma spraying[J].China Surface Engineering,2019,32(2):109-119.(in Chinese)

    • [8] JIA D,YAN C L,PENG Y,et al.Splat formation mechanism of droplet-filled cold-textured groove during plasma spraying[J].Applied Thermal Engineering,2020,17(3):115-239.

    • [9] BROSSARD S,MUNROE P R,TRAN A,et al.Study of the splat-Substrate Interface for a NiCr coating plasma sprayed onto polished aluminum and stainless steel substrates[J].Journal of Thermal Spray Technology,2010,19(1-2):24-30.

    • [10] 琚正挺,宣天鹏.分形计算方法及在材料表界面中的应用[J].稀有金属快报,2006,25(3):1-5.JU Zhengting,XUAN Tianpeng.Fractal calculation method and its application in material surface interface[J].Rare Metals Letters,2006,25(3):1-5.(in Chinese)

    • [11] 李权,刘贵才.热喷涂界面的观察与分析[J].电子显微学报,2004,23(4):488-488.LI Quan,LIU Guicai.Observation and analysis of thermal spraying interface[J].Journal of Chinese Electron Microscopy Society,2004,23(4):488-488.(in Chinese)

    • [12] 王文昌,盛天原,孔德军,等.等离子喷涂 WC-12Co 涂层表面-界面性能[J].材料热处理学报,2015,36(12):190-196.WANG Wenchang,SHENG Tianyuan,KONG Dejun,et al.Surface-interface properties of plasma sprayed WC-12Co coatings[J].Transactions of Materials and Heat Treatment,2015,36(12):190-196.(in Chinese)

    • [13] 陈亚军,王志平,纪朝辉,等.等离子与电弧喷涂 Ni-Cr-Al 涂层结合强度和磨粒磨损性能[J].材料热处理学报,2011,32(2):119-123.CHEN Yajun,WANG Zhiping,JI Chaohui,et al.Bonding strength and abrasive wear properties of plasma and arc sprayed Ni-Cr-Al coatings[J].Transactions of Materials and Heat Treatment,2011,32(2):119-123.(in Chinese)

    • [14] 张忠礼,丁勇,杨国强,等.热喷涂涂层与电镀层的结合与界面[J].沈阳工业大学学报,2011,33(4):361-366.ZHANG Zhongli,DING Yong,YANG Guoqiang,et al.Combination and interface of thermal spray coating and plating coating[J].Journal of Shenyang University of Technology,2011,33(4):361-366.(in Chinese)

    • [15] 黄伟九,李兆峰,刘明,等.热扩散对镁合金锌铝涂层界面组织和性能的影响[J].材料热处理学报,2007,28(2):106-109.HUANG Weijiu,LI Zhaofeng,LIU Ming,et al.Effect of thermal diffusion on microstructure and properties of the interface of magnesium alloy ZnAl coating[J].Transactions of Materials and Heat Treatment,2007,28(2):106-109.(in Chinese)

    • [16] VARDELLE,MOREAU C,LI C J,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.

    • [17] YADAV R P,DWIVEDI S,MITTAL A K,et al.Fractal and multifractal analysis of LiF thin film surface[J].Applied Surface Science,2012,261:547-553.

    • [18] VISCUSI A,ASTARITA A,GENNA S,et al.On the influence of different superficial laser texturing on the deposition of powders through cold spray process[J].Transactions of the Institute of Metal Finishing,2018,96(1):34-40.

    • [19] 丁坤英,李志远,王者,等.基于分形方法的YSZ热障涂层有效热导率分析[J].中国表面工程,2020,33(3):104-110.DING Kunying,LI Zhiyuan,WANG Zhe,et al. Analysis of YSZ effective thermal conductivity based on fractal theory[J].China Surface Engineering,2020,33(3):104-110.(in Chinese)

    • [20] 陈书赢,王海斗,徐滨士,等.基于分形理论的超音速等离子喷涂层界面结合行为研究[J].物理学报,2015,63(15):1-7.CHEN Shuying,WANG Haidou,XU Binshi,et al.Study on interface bonding behavior of supersonic plasmasprayed coating based on fractal theory[J].Acta Physica Sinica,2015.63(15):1-7.(in Chinese)

    • [21] 李小刚,徐滨士,马世宁.基体表面的分数维对电弧喷涂层结合强度的影响[J].中国机械工程,1999(1):90-93.LI Xiaogang,XU Binshi,MA Shining.Influence of fractal dimensions of substrate surface on bonding strength of arc sprayed coatings[J].China Mechanical Engineering,1999(1):90-93.(in Chinese)

    • [22] 陈玉华,王勇,李新梅.分形理论在材料表界面研究中的应用现状与展望[J].表面技术,2003,32(5):8-11.CHEN Yuhua,WANG Yong,LI Xinmei.Application status and prospect of fractal theory in surface and interface research of materials[J].Surface Technology,2003,32(5):8-11.(in Chinese)

  • 参考文献

    • [1] 徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,2010.XU Binshi,ZHU Shaohua.Theory and technology of surface engineering[M].Beijing:National Defense Industry Press,2010.(in Chinese)

    • [2] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Application and research progress and challenges of thermal spraying technology[J].Thermal Spray Technology,2018,10(4):1-22.(in Chinese)

    • [3] 徐滨士,刘世参,王海斗.大力发展再制造产业[J].求是,2005,12:46-47.XU Binshi,LIU Shican,WANG Haidou,et al.Vigorously develop the remanufacturing industry[J].Qiushi,2005,12:46-47.(in Chinese)

    • [4] 刘明,王海军,韩志海,等.内孔等离子喷涂 Ni45-15%Mo 涂层与38CrMoAl渗氮层耐磨性研究[J].中国表面工程,2007,20(2):47-50.LIU Ming,WANG Haijun,HAN Zhihai,et al.Study on wear resistance of inner hole plasma spraying Ni45-15% Mo coating and 38CrMoAl nitriding layer[J].China Surface Engineering,2007,20(2):47-50.(in Chinese)

    • [5] 徐滨士,王海军,朱胜,等.高效能超音速等离子喷涂技术的研究与开发应用[J].制造技术与机床,2003,16(1):16-18.XU Binshi,WANG Haijun,ZHU Sheng,et al.Research and development of high efficiency supersonic plasma spraying technology[J].Manufacturing Technology & Machine Tool,2003,16(1):16-18.(in Chinese)

    • [6] 韩玉君,叶福兴,李晓泉.铁基合金基底热喷涂热障涂层的界面化合物演化[J].材料热处理学报,2015,36(10):181-186.HAN Yujun,YE Fuxing,LI Xiaoquan.Interfacial compound evolution of thermal spray thermal barrier coatings on iron-based alloy substrates[J].Transactions of Materials and Heat Treatment,2015,36(10):181-186.(in Chinese)

    • [7] 惠阳,刘贵民,闫涛,等.超音速等离子喷涂Mo涂层的载流摩擦磨损性能[J].中国表面工程,2019,32(2):109-119.HUI Yang,LIU Guimin,YAN Tao,et al.Current-carrier tribological properties of Mo coating deposited by supersonic plasma spraying[J].China Surface Engineering,2019,32(2):109-119.(in Chinese)

    • [8] JIA D,YAN C L,PENG Y,et al.Splat formation mechanism of droplet-filled cold-textured groove during plasma spraying[J].Applied Thermal Engineering,2020,17(3):115-239.

    • [9] BROSSARD S,MUNROE P R,TRAN A,et al.Study of the splat-Substrate Interface for a NiCr coating plasma sprayed onto polished aluminum and stainless steel substrates[J].Journal of Thermal Spray Technology,2010,19(1-2):24-30.

    • [10] 琚正挺,宣天鹏.分形计算方法及在材料表界面中的应用[J].稀有金属快报,2006,25(3):1-5.JU Zhengting,XUAN Tianpeng.Fractal calculation method and its application in material surface interface[J].Rare Metals Letters,2006,25(3):1-5.(in Chinese)

    • [11] 李权,刘贵才.热喷涂界面的观察与分析[J].电子显微学报,2004,23(4):488-488.LI Quan,LIU Guicai.Observation and analysis of thermal spraying interface[J].Journal of Chinese Electron Microscopy Society,2004,23(4):488-488.(in Chinese)

    • [12] 王文昌,盛天原,孔德军,等.等离子喷涂 WC-12Co 涂层表面-界面性能[J].材料热处理学报,2015,36(12):190-196.WANG Wenchang,SHENG Tianyuan,KONG Dejun,et al.Surface-interface properties of plasma sprayed WC-12Co coatings[J].Transactions of Materials and Heat Treatment,2015,36(12):190-196.(in Chinese)

    • [13] 陈亚军,王志平,纪朝辉,等.等离子与电弧喷涂 Ni-Cr-Al 涂层结合强度和磨粒磨损性能[J].材料热处理学报,2011,32(2):119-123.CHEN Yajun,WANG Zhiping,JI Chaohui,et al.Bonding strength and abrasive wear properties of plasma and arc sprayed Ni-Cr-Al coatings[J].Transactions of Materials and Heat Treatment,2011,32(2):119-123.(in Chinese)

    • [14] 张忠礼,丁勇,杨国强,等.热喷涂涂层与电镀层的结合与界面[J].沈阳工业大学学报,2011,33(4):361-366.ZHANG Zhongli,DING Yong,YANG Guoqiang,et al.Combination and interface of thermal spray coating and plating coating[J].Journal of Shenyang University of Technology,2011,33(4):361-366.(in Chinese)

    • [15] 黄伟九,李兆峰,刘明,等.热扩散对镁合金锌铝涂层界面组织和性能的影响[J].材料热处理学报,2007,28(2):106-109.HUANG Weijiu,LI Zhaofeng,LIU Ming,et al.Effect of thermal diffusion on microstructure and properties of the interface of magnesium alloy ZnAl coating[J].Transactions of Materials and Heat Treatment,2007,28(2):106-109.(in Chinese)

    • [16] VARDELLE,MOREAU C,LI C J,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.

    • [17] YADAV R P,DWIVEDI S,MITTAL A K,et al.Fractal and multifractal analysis of LiF thin film surface[J].Applied Surface Science,2012,261:547-553.

    • [18] VISCUSI A,ASTARITA A,GENNA S,et al.On the influence of different superficial laser texturing on the deposition of powders through cold spray process[J].Transactions of the Institute of Metal Finishing,2018,96(1):34-40.

    • [19] 丁坤英,李志远,王者,等.基于分形方法的YSZ热障涂层有效热导率分析[J].中国表面工程,2020,33(3):104-110.DING Kunying,LI Zhiyuan,WANG Zhe,et al. Analysis of YSZ effective thermal conductivity based on fractal theory[J].China Surface Engineering,2020,33(3):104-110.(in Chinese)

    • [20] 陈书赢,王海斗,徐滨士,等.基于分形理论的超音速等离子喷涂层界面结合行为研究[J].物理学报,2015,63(15):1-7.CHEN Shuying,WANG Haidou,XU Binshi,et al.Study on interface bonding behavior of supersonic plasmasprayed coating based on fractal theory[J].Acta Physica Sinica,2015.63(15):1-7.(in Chinese)

    • [21] 李小刚,徐滨士,马世宁.基体表面的分数维对电弧喷涂层结合强度的影响[J].中国机械工程,1999(1):90-93.LI Xiaogang,XU Binshi,MA Shining.Influence of fractal dimensions of substrate surface on bonding strength of arc sprayed coatings[J].China Mechanical Engineering,1999(1):90-93.(in Chinese)

    • [22] 陈玉华,王勇,李新梅.分形理论在材料表界面研究中的应用现状与展望[J].表面技术,2003,32(5):8-11.CHEN Yuhua,WANG Yong,LI Xinmei.Application status and prospect of fractal theory in surface and interface research of materials[J].Surface Technology,2003,32(5):8-11.(in Chinese)

  • 手机扫一扫看