en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李星亮,男,1987年出生,博士,高级工程师。主要研究方向为摩擦学及表面工程。E-mail:lixing3758@126.com

岳文,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学及表面技术。E-mail:cugbyw@163.com

通讯作者:

岳文,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学及表面技术。E-mail:cugbyw@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221209002

参考文献 1
邹武装.世界钛航空市场及应用概况[J].世界有色金属,2014(12):22-24.ZHOU Wuzhuang.Overview of world titanium aviation market and application[J].World Non-ferrous Metals,2014(12):22-24.(in Chinese)
参考文献 2
鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Progress in research of surface protection technology of materials in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)
参考文献 3
郭纯,陈建敏,姚润钢,等.钛在模拟空间环境下的摩擦学性能[J].中国表面工程,2012,25(3):86-91.GUO Chun,CHEN Jianmin,YAO Rungang,et al.Tribological properties of titanium in simulated space environment[J].China Surface Engineering,2012,25(3):86-91.(in Chinese)
参考文献 4
邹武装.钛及钛合金在航天工业的应用及展望[J].中国有色金属,2016,1(1):70-71.ZHOU Wuzhuang.Application and prospect of titanium and titanium alloy in aerospace industry[J].China Non-ferrous Metals,2016,1(1):70-71.(in Chinese)
参考文献 5
刘全明,张朝晖,刘世锋,等.钛合金在航空航天及武器装备领域的应用与发展[J].钢铁研究学报,2015,27(3):1-4.LIU Quanming,ZHANG Chaohui,LIU Shifeng,et al.Application and development of titanium alloy in aerospace and military hardware[J].Journal of Iron and Steel Research,2015,27(3):1-4.(in Chinese)
参考文献 6
刘世锋,宋玺,薛彤,等.钛合金及钛基复合材料在航空航天的应用和发展[J].航空材料学报,2020,40(3):77-94.LIU Shiqiu,SONG Xi,XUE Tong,et al.Application anddevelopment of titanium alloy and titanium matrix composites in aerospace field[J].Journal of Aeronautical Materials,2020,40(3):77-94.(in Chinese)
参考文献 7
郑超,魏世丞,梁义,等.钛金属材料干摩擦磨损特性研究[J].装备环境工程,2018,15(4):44-50.ZHENG Chao,WEI Shicheng,LIANG Yi,et al.Dry friction wearing characteristics of titanium materials[J].Equipment Environmental Engineering,2018,15(4):44-50.(in Chinese)
参考文献 8
李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,DU Yujing,et al.Advances in optimization design and application of textured surfaces[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)
参考文献 9
侯启敏,杨学锋,王守仁,等.仿生织构类型及其对表面摩擦性能影响[J].中国表面工程,2020,33(3):18-32.HOU Qimin,YANG Xuefeng,WANG Shouren,et al.Bionic texture types and their influence on surface friction properties[J].China Surface Engineering,2020,33(3):18-32.(in Chinese)
参考文献 10
CHAO Caixia,WANG Yan,XIU Shichao.Effects of point grinding surface texture on contact and wear characteristics under dry sliding condition[J].Surface Review and Letters,2022,29(9):1-5.
参考文献 11
WU Ze,XING Youqiang,HUANG Peng,et al.Tribological properties of dimple-textured titanium alloys under dry sliding contact[J].Surface & Coatings Technology,2017,309:21-28.
参考文献 12
缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO Chenwei,GUO Zhiwei,YUAN Chengqing.Effects of bionic multi-scales groove textures on surface tribological properties[J].China Surface Engineering,2019,32(1):22-30.(in Chinese)
参考文献 13
毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)
参考文献 14
AMANOV A,WATABE T,TSUBOI R,et al.Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures[J].Surface andCoatings Technology,2013,232(10):549-560.
参考文献 15
TAKUYA O,MAKOTO M,YUYA E.Using textured-DLC coating to improve the wear resistance of stainless steel plate under dust-containing lubricant condition[J].International Journal of Automation Technology,2020,14(1):99-108.
参考文献 16
KENNETH H,ANSSI L,HELENA R,et al.Topographical orientation effects on friction and wear in sliding DLC and steel contacts,part 1:Experimental[J].Wear,2015,330-331:3-22.
参考文献 17
ARSLAN A,MASJUKI H H,VARMAN M,et al.Effects of texture diameter and depth on the tribological performance of DLC coating under lubricated sliding condition[J].Applied Surface Science,2015,356:1135-1149.
参考文献 18
CHEN Jinlin,TANG Liping,DING Xuexing,et al.Frictional vibration performances of dry gas seal rings with DLC film textured surface via chaos theory[J].Tribology Transactions,2021,64(1):1-14.
参考文献 19
WANG Weizhong,HUANG Zhixiang,SHEN Dian,et al.The effect of triangle-shaped surface textures on the performance of the lubricated point-contacts[J].Journal of Tribology,2013,135(2):021503-1-11.
参考文献 20
DUMITRU G,ROMANO V,WEBER H P,et al.Femtosecond laser ablation of diamond-like carbon films[J].Applied Surface Science,2004,222(1-4):226-233.
参考文献 21
VOEVODIN A,ZABINSKI J.Laser surface texturing for adaptive solid lubrication[J].Wear,2006,261(11-12):1285-1292.
参考文献 22
VILHENA L M,M.SEDLA E,PODGORNIK B,et al.Surface texturing by pulsed Nd:YAG laser[J].Tribology International,2009,42(10):1496-1504.
目录contents

    摘要

    钛及其合金具有优良的性能被广泛应用于武器装备领域,但在磨料条件下易黏着、不耐磨的特性限制了其使用。为了提高钛在磨料作用下的减摩抗磨性能,以 TA2 钛为研究对象,使用激光加工技术在 TA2 样品表面上制备点阵微织构,然后采用磁控溅射技术在点阵微织构表面制备类金刚石碳(Diamond-like Carbon, DLC)薄膜,形成 DLC 复合微织构;采用 MS-T3000 摩擦磨损试验机研究了 DLC 复合微织构表面在磨料作用下的摩擦磨损性能,并通过扫描电子显微镜、能谱分析、拉曼测试、有限元分析等手段研究钛表面 DLC 复合微织构的摩擦磨损机理。结果显示 DLC 复合微织构表面可有效提高钛在磨料条件下的减摩抗磨性能,且同等条件下,点阵密度对 DLC 复合微织构样品表面摩擦因数的影响最大,单位面积点阵边缘密度值与样品表面磨损率有关,且二者基本呈正线性关系。揭示了 DLC 复合微织构在磨粒磨损条件下的摩擦磨损性能,并从织构边缘的破坏提出磨损机理,研究结果可为钛在磨料磨损条件下的应用提供理论和设计依据。

    Abstract

    For more than one hundred years, researchers have been investigating the tribological behavior of certain materials. Their studies concentrated mostly on adding lubricants or modifying the material surface. Unfortunately, these methods do not always guarantee effectiveness in special conditions, such as under abrasive wear. The application of surface texturing on rubbing pairs has been demonstrated to improve the abrasive wear property of certain materials. Titanium and its related alloys are one such type of materials that exhibit excellent properties and are widely used in important fields such as weapon equipment, civilian products, and the chemical industry. However, applications of titanium and its related alloys are limited by its easy adhesion and poor wear resistance under abrasive wear conditions. Therefore, it is of great significance to study the friction reduction and wear resistance performance of surface-textured titanium under abrasive conditions. Many scholars have conducted extensive research on the friction and wear properties of textured surfaces. However, the quantitative relationship between the texture edge and wear resistance property has not been further investigated. The purpose of this study is to investigate the effect of the texture edge on abrasive wear performance. The substrate selected is a commercial pure titanium grade 2 (TA2), which has poor tribological behavior under abrasivewear. To prepare the diamond-like carbon (DLC) composite textured surface, an indirect laser processing method (i.e., laser processing before DLC film deposition) is chosen to prevent the DLC film from being damaged by laser exposure. Dimple textures are prepared on the surface of TA2 using laser processing technology. The dimple texture parameters are designed by using orthogonal analysis to equalize sampling so that the results do not depend on subjective factors. Afterward, DLC film is deposited on the dimple textured surface using magnetron sputtering. The DLC composite textured surfaces are obtained through the above processing methods. First, the friction and wear performances of DLC composite textured surfaces are analyzed based on simulation and experimental methods. The stress distribution of the dimple textured surface under dry friction is studied using finite element analysis. In addition, the friction and wear properties of DLC composite textured surfaces under lunar soil conditions are studied using an MS-T3000 friction and wear tester, and the effect of dimple edges on tribological performance is studied. Second, various testing methods are used to analyze the micro properties of the worn surface. Surface analysis technologies, such as scanning electron microscopy, energy dispersive spectrometry, and Raman analysis, are used to study the microstructure, chemical characteristics, and molecular structures of the DLC surfaces before and after the tribotest. Finally, important conclusions are drawn by analyzing the mechanism of friction and wear. The analysis results show that the maximum stress appears at the edge of the texture. Moreover, a mathematical model is established to obtain the formula for the edge density of the texture on a unit area. Under the same friction conditions, the average friction factor of the DLC composite micro-textured surface is lower than that of the untreated surface. The wear rates of samples with different texture parameters are listed in order. Meanwhile, the micro morphology and tribochemical properties of the worn surface are studied. The results reveal that the DLC composite textured surface can effectively play an important role in reducing friction and wear. The dimple density exhibits a noticeable influence on the friction coefficient of the surface while the dimple texture edge density greatly influences on the wear rate. The research results can provide a theoretical and design basis for the application of titanium under abrasive wear conditions. Furthermore, it also has importance for the development of certain materials.

  • 0 前言

  • 钛及其合金以其优良的性能广泛应用于航空航天领域,但其易黏着、不耐磨的特性,影响了钛构件的安全性和可靠性,特别是在在沙砾、月壤等磨料条件下,钛表面的减摩抗磨工作更难,故研究钛在磨料下的减摩抗磨行为及机理对于航空航天的发展具有重要意义[1-7]

  • 机械零件表面微织构(点阵、凸起、凹槽、脊状等)被证明可以产生特殊的功效,特别是在磨料磨损情况下具有疏导和存储磨损颗粒的作用[8-10]。研究者从理论和试验两个方向研究微织构几何参数与摩擦学性能之间的关系,证明表面具有一定排列方式的微织构能表现出很好的减摩抗磨功效,且在乏油润滑、高速运转等工况下效果尤为明显 [11-12]。此外,关于微织构表面镀制 DLC、TiCN、TiAlCN 以及固体润滑涂层的研究也有报告,微织构的作用是充当固体润滑剂的储藏室,进而改善摩擦磨损性能,这种复合化的表面处理方式在高温、潮湿以及真空环境中的减摩抗磨效果较为明显[13-18]。然而,相关研究主要集中在钢表面复合微织构的摩擦磨损行为,且大多侧重于微织构尺寸参数(如深度、宽度、密度等)对摩擦学性能的影响。

  • 因此,有必要进一步从力学性能方面研究钛表面复合微织构失效机理,故本文重点关注磨料条件下钛表面 DLC 复合微织构的微观磨损机理,结合建模和试验两种手段建立失效方式与摩擦学性能的对应关系,以此来指导表面微织构的设计,为工作于磨料条件下的钛基装备构件设计制造提供基础技术支撑。

  • 1 试验准备

  • 1.1 样品制备

  • 基体材料选择工业纯钛 TA2(铁(wt.%)≤0.30,碳(wt.%)≤0.10,氮(wt.%)≤0.05),样品尺寸为 50 mm×50 mm×3 mm,表面粗糙度 Ra 为 0.28 μm。

  • 采用型号为 YLP-20 的激光器在 TA2 基片上进行点阵微织构加工,激光波长为 1 064 nm,最大功率为 20 W。通过控制激光束班直径、功率百分比和间隔距离来保证点阵的直径、深度和密度。

  • 根据正交试验方法,点阵的直径(D)、深度(h)和密度(ε)为 3 个因素,每个因素下分别设置了 3 个变量,以此设计了 3×3 的点阵微织构参数阵列,如表1 所示。

  • 表1 点阵微织构设计参数

  • Table1 Designed parameters of dimple texture

  • 采用 FJL-560a 型磁控与离子束复合溅射沉积系统对微织构表面进行 DLC 薄膜的镀制。使用氩气作为溅射气体,流量为 40 mL / min,溅射气压为 1.2 Pa,溅射时间为 2 h,基片加热温度为 100℃,详细制备工艺参数见表2。

  • 表2 DLC 制备工艺参数

  • Table2 Preparation parameters of DLC

  • 1.2 性能测试及结构表征

  • 为了对不同点阵参数的 DLC 复合微织构的在磨料条件下的摩擦磨损性能及机理进行深入分析,特设计以下分析测试方法。

  • (1)选择 MS-T3000 球盘摩擦磨损试验机进行磨料条件下摩擦因数的测定,摩擦磨损试验完成后使用三维白光干涉仪测量样品的磨损量。摩擦磨损试验中,上试样为 AISI 52100 球,球直径为 6 mm,维氏硬度值为 770 HV0.2,表面粗糙度 Ra 为 0.025 μm。下试样为 DLC 复合微织构样片,摩擦副之间加入磨料(粒度为 60~100 μm 的模拟月壤),体积为 100~150 cm3,保证磨料完全淹没微织构。摩擦载荷为 2 N(赫兹应力:0.39 GPa),滑动线速度为 0.062 8 m / s,试验时间为 30 min(行程: 113.04 m)。所有同工况的试验重复 3 次,结果取平均值。

  • (2)使用 NanoMap-D 三维白光干涉仪测试样品的磨损率,通过公式 V=k·F·s 进行计算而得,其中 V 为磨损体积(m 3),F 为正压力(N),s 为滑动距离(m),k 为单位载荷单位滑动距离下的磨损率 (m 3 ·N−1 ·m−1)。

  • (3)使用共聚焦显微镜(Confocal laser scanning microscope,CLSM)测试微织构的三维形貌。

  • (4)采用 JSM-7001F 场发射扫描电子显微镜 ( Field-emission scanning electron microscope, FE-SEM)和能谱仪(Energy dispersive spectroscopy, EDS)测试微织构 TA2 样品磨损后的磨痕形貌及元素组成,观察样品在放大倍数为 100 倍和 3 000 倍下的形貌,并对 3 000 倍下形貌的元素组成进行分析。

  • (5)采用 LabRAM HR Evolution 型拉曼光谱仪测试 DLC 中非晶碳的组成,使用 532 nm 激光器, 50 倍物镜(相当于束斑直径 1.25 um),5%功率 (532 nm 激光器 100%功率相当于 20 mW / cm2),扫描时间 60 s,累加次数 1 次。

  • (6)采用 Ansys Workbench 软件进行点阵微织构表面的瞬态滑动摩擦应力分析。设置摩擦副接触类型为销-盘面接触形式,假设摩擦副接触面积始终大于点阵区域面积,采用局部最大网格控制和自由网格划分两种模式配合。

  • 2 结果与讨论

  • 2.1 点阵微织构在滑动摩擦下的应力

  • 为了分析样品表面在摩擦过程中的等效应力分布情况,采用有限元分析软件对摩擦过程进行仿真,研究摩擦滑动路径上的等效应力分布情况。

  • 首先建立基于点阵表面的仿真模型,设定下摩擦副为含有点阵表面的钛,该部件施加固定约束; 上摩擦副为柱状滑块,该部件施加垂直指向下摩擦副表面的作用力(2 N),以及平行于下摩擦副表面的瞬态滑移距离(8 mm),摩擦副模型示意图如图1 所示。

  • 图1 摩擦副模型示意图

  • Fig.1 Schematic diagram of friction pair model

  • 仿真结果查看下摩擦副表面的应力分布状态,如图2 所示的沿滑动方向各点坑的应力分布情况。可以看出,在摩擦滑动方向上,微织构点阵内部的应力最小,点阵边缘处出现应力的极值点。

  • 图2 点阵处的应力分布

  • Fig.2 Stress distribution at the dimple

  • 一般情况下,应力最大处往往是最容易发生磨损破坏的部位,因此对样品表面点阵边缘的分布特点进行分析,建立如图3 所示的数学模型。假设点坑的直径为 D,两个点坑边缘的距离为 J,两个点坑中心间距为 L,如图3 所示。

  • 图3 点阵微织构的平面布局模型

  • Fig.3 Plane layout model for dimple texture

  • 由图3 所示的几何关系,可以得出:

  • L=D+J
    (1)
  • 点阵微织构的密度ε 为:

  • ε=πD24(D+J)2
    (2)
  • 由式(1)和式(2)可以计算点坑边缘距离 J

  • J=π4ε-1D
    (3)
  • 单位面积上点阵边缘密度δ 为:

  • δ=πD(D+J)2
    (4)
  • 进而可得单位面积上点阵边缘密度δ 为:

  • δ=4εD
    (5)
  • 根据本文设计的点阵微织构尺寸参数,可计算出每个样品单位面积点阵边缘的密度,按样品编号从小到大的顺序为:#7<#4#<#8<#9=#5=#1<#6<#2 <#3。

  • 2.2 DLC 复合微织构钛的微观形貌

  • 图4 所示为编号为#3的样品二维和三维形貌图。从图中可以看出,DLC 复合微织构表面形貌清晰,与设计值相符合。对点阵凹坑内和凹坑之间的区域进行 EDS 元素分析(表3),发现两个分析区域都含有碳元素,说明整个微织构表面被碳所覆盖。

  • 图4 DLC 复合微织构的形貌图

  • Fig.4 Morphology of DLC composite texture

  • 表3 镀制 DLC 的微织构表面 EDS 分析(wt.%)

  • Table3 EDS analysis of textured surface after DLC deposition (wt.%)

  • 2.3 DLC 复合微织构表面拉曼光谱

  • 使用拉曼光谱仪分析样品表面所覆盖的碳的结构,结果如图5 所示,从图中可以看出,表面生成标准的 DLC 薄膜,其 D 峰位处于 1 340 cm−1,而 G 峰处于 1 550 cm−1。D 峰与 G 峰的强度比 ID / IG=0.64。

  • 图5 DLC 复合微织构表面拉曼分析图谱

  • Fig.5 Raman spectra of the textured DLC surface

  • 2.4 DLC 复合微织构的摩擦学性能

  • 图6a 所示为 DLC 复合微织构表面与未镀 DLC 的微织构表面在磨料作用下的摩擦因数对比情况。从图中可以看出,DLC 复合微织构样品表面摩擦因数都介于 0.3~0.4,相同摩擦条件下,DLC 复合微织构表面平均摩擦因数都低于未镀 DLC 的微织构表面。当点阵密度从 10%变化到 20%再到 30%,摩擦因数先降低后升高。

  • 图6b 所示为 DLC 复合微织构表面与未镀 DLC 微织构表面在磨料作用下的磨损率对比图。从图中可以看出,DLC 复合微织构表面的抗磨损性能有明显的改善,其最小磨损率为 0.15×10−3 mm 3 ·N−1 ·m−1,最大降幅达到 90%以上。但部分 DLC 复合微织构表面的磨损率不降反而增大,如编号为#2、#5 和#8 的样品,这可能与微织构表面的微观形貌以及 DLC 薄膜在表面的存在方式有关。所有样品表面的磨损率,按样品编号从小到大的排列顺序为:#7<#9<#8<#4 <#5<#2<#1<#6<#3。

  • 图6 磨料条件下的摩擦因数和磨损量

  • Fig.6 Friction factors and wear loss under abrasive wear

  • 2.5 磨痕形貌

  • 图7所示为采用扫描电镜分析的DLC复合微织构表面磨损后的磨痕表面形貌,其中每幅图左下角为磨痕截面轮廓线。可以看出,点阵直径越小,表面磨痕越明显,磨损更严重,这也与磨损率相对应。

  • 图7 磨痕形貌图

  • Fig.7 Morphology of wear track

  • 采用能谱仪对关键区域的元素进行分析(见表4),发现磨痕表面的点阵区域含有岛状堆积物,其主要组成元素为 C、O、Si(主要来自于磨料介质),非点阵区域主要组成元素为 Ti 和 O(主要来自于基体),说明点阵可以积累磨料介质和磨损氧化物,而非点阵区域只发生犁削和氧化。

  • 表4 磨痕表面元素分析(wt.%)

  • Table4 Elements on the wear track (wt.%)

  • 根据磨损表面形貌可知,点阵微织构形貌在摩擦磨损过程中并未消失,主要是由于激光加工后的点阵形貌类似于菜花的形貌,这种形貌对于 DLC 薄膜具有比较好的结合性能,故在摩擦磨损过程中点阵位置处的 DLC 薄膜不会轻易破坏[19-20]

  • 2.6 磨料作用下 DLC 复合微织构的摩擦学机理

  • 存储于点阵中的 DLC 薄膜充当摩擦副之间的固体润滑剂,可以不断供应到摩擦副之间,降低摩擦因数并使其良好的润滑性能得以延续。在摩擦磨损的开始阶段,DLC 薄膜先从点阵的圆周边缘开始破坏,随着摩擦磨损的进行,DLC 薄膜不断破坏,具有润滑性质的薄膜物质会不断填充到摩擦副之间。因此,影响摩擦磨损性能的主要因素为 DLC 薄膜与基体材料的结合能力,以及 DLC 薄膜在微织构表面的分布密度。

  • 随着点阵密度增大,微织构表面镀制的 DLC 薄膜分布密度也会增大,进而摩擦因数会降低。所以本试验中点阵密度为 20%的样品摩擦因数小于点阵密度为 10%的样品;但由于钛基底本身硬度低、易发生黏着,当点阵密度继续增大时,具有微织构的表面不足以抵抗由滑动摩擦引起的塑性剪切力,表面点坑状微织构发生破坏,DLC 薄膜失去依附的基础,摩擦因数反而增大,故本试验中点阵密度继续增大为 30%时,摩擦因数变大。

  • 根据应力分析结果,微织构表面点阵圆周沿线的边缘处应力最大,且随着滑动的进行,点阵边缘的最大应力呈逐渐上升的趋势。因此,点阵边缘的 DLC 薄膜最容易发生破坏,微织构也是从点阵的圆周沿线开始发生破坏。其原因有二,一是微织构边缘一般是激光加工过程中的材料堆积而成,本身比较疏松,容易磨损,二是微织构边缘在摩擦磨损过程中是应力集中的部位[21-22]

  • 将 DLC 复合微织构样品表面的点阵边缘密度和磨损率的对比情况列于图8,可以看出,单位面积点阵边缘的含量与样品表面的磨损率变化趋势基本一致。

  • 图8 单位面积点阵边缘密度与样品磨损率对比情况

  • Fig.8 Comparison of lattice edge density and wear rate

  • 对于同等面积的表面分布的点阵微织构,点阵直径越大,点阵的数量越少,相同滑动行程内对应的点阵边缘数也少,其累积的应力也小,点阵表面发生磨损破坏的几率会变低。故点阵直径从 100 μm增加到 300 μm 时,样品表面的磨损率逐渐变小。

  • 3 结论

  • (1)设计的 DLC 复合微织构能够大幅提高 TA2 表面在磨料作用下的减摩抗磨性能。

  • (2)点阵的 3 个因素中,点阵密度对 DLC 复合微织构的摩擦因数影响最大。

  • (3)单位面积点阵边缘密度与 DLC 复合微织构样品表面磨损率的大小有关,且二者基本呈正线性关系。

  • 参考文献

    • [1] 邹武装.世界钛航空市场及应用概况[J].世界有色金属,2014(12):22-24.ZHOU Wuzhuang.Overview of world titanium aviation market and application[J].World Non-ferrous Metals,2014(12):22-24.(in Chinese)

    • [2] 鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Progress in research of surface protection technology of materials in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)

    • [3] 郭纯,陈建敏,姚润钢,等.钛在模拟空间环境下的摩擦学性能[J].中国表面工程,2012,25(3):86-91.GUO Chun,CHEN Jianmin,YAO Rungang,et al.Tribological properties of titanium in simulated space environment[J].China Surface Engineering,2012,25(3):86-91.(in Chinese)

    • [4] 邹武装.钛及钛合金在航天工业的应用及展望[J].中国有色金属,2016,1(1):70-71.ZHOU Wuzhuang.Application and prospect of titanium and titanium alloy in aerospace industry[J].China Non-ferrous Metals,2016,1(1):70-71.(in Chinese)

    • [5] 刘全明,张朝晖,刘世锋,等.钛合金在航空航天及武器装备领域的应用与发展[J].钢铁研究学报,2015,27(3):1-4.LIU Quanming,ZHANG Chaohui,LIU Shifeng,et al.Application and development of titanium alloy in aerospace and military hardware[J].Journal of Iron and Steel Research,2015,27(3):1-4.(in Chinese)

    • [6] 刘世锋,宋玺,薛彤,等.钛合金及钛基复合材料在航空航天的应用和发展[J].航空材料学报,2020,40(3):77-94.LIU Shiqiu,SONG Xi,XUE Tong,et al.Application anddevelopment of titanium alloy and titanium matrix composites in aerospace field[J].Journal of Aeronautical Materials,2020,40(3):77-94.(in Chinese)

    • [7] 郑超,魏世丞,梁义,等.钛金属材料干摩擦磨损特性研究[J].装备环境工程,2018,15(4):44-50.ZHENG Chao,WEI Shicheng,LIANG Yi,et al.Dry friction wearing characteristics of titanium materials[J].Equipment Environmental Engineering,2018,15(4):44-50.(in Chinese)

    • [8] 李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,DU Yujing,et al.Advances in optimization design and application of textured surfaces[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)

    • [9] 侯启敏,杨学锋,王守仁,等.仿生织构类型及其对表面摩擦性能影响[J].中国表面工程,2020,33(3):18-32.HOU Qimin,YANG Xuefeng,WANG Shouren,et al.Bionic texture types and their influence on surface friction properties[J].China Surface Engineering,2020,33(3):18-32.(in Chinese)

    • [10] CHAO Caixia,WANG Yan,XIU Shichao.Effects of point grinding surface texture on contact and wear characteristics under dry sliding condition[J].Surface Review and Letters,2022,29(9):1-5.

    • [11] WU Ze,XING Youqiang,HUANG Peng,et al.Tribological properties of dimple-textured titanium alloys under dry sliding contact[J].Surface & Coatings Technology,2017,309:21-28.

    • [12] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO Chenwei,GUO Zhiwei,YUAN Chengqing.Effects of bionic multi-scales groove textures on surface tribological properties[J].China Surface Engineering,2019,32(1):22-30.(in Chinese)

    • [13] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)

    • [14] AMANOV A,WATABE T,TSUBOI R,et al.Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures[J].Surface andCoatings Technology,2013,232(10):549-560.

    • [15] TAKUYA O,MAKOTO M,YUYA E.Using textured-DLC coating to improve the wear resistance of stainless steel plate under dust-containing lubricant condition[J].International Journal of Automation Technology,2020,14(1):99-108.

    • [16] KENNETH H,ANSSI L,HELENA R,et al.Topographical orientation effects on friction and wear in sliding DLC and steel contacts,part 1:Experimental[J].Wear,2015,330-331:3-22.

    • [17] ARSLAN A,MASJUKI H H,VARMAN M,et al.Effects of texture diameter and depth on the tribological performance of DLC coating under lubricated sliding condition[J].Applied Surface Science,2015,356:1135-1149.

    • [18] CHEN Jinlin,TANG Liping,DING Xuexing,et al.Frictional vibration performances of dry gas seal rings with DLC film textured surface via chaos theory[J].Tribology Transactions,2021,64(1):1-14.

    • [19] WANG Weizhong,HUANG Zhixiang,SHEN Dian,et al.The effect of triangle-shaped surface textures on the performance of the lubricated point-contacts[J].Journal of Tribology,2013,135(2):021503-1-11.

    • [20] DUMITRU G,ROMANO V,WEBER H P,et al.Femtosecond laser ablation of diamond-like carbon films[J].Applied Surface Science,2004,222(1-4):226-233.

    • [21] VOEVODIN A,ZABINSKI J.Laser surface texturing for adaptive solid lubrication[J].Wear,2006,261(11-12):1285-1292.

    • [22] VILHENA L M,M.SEDLA E,PODGORNIK B,et al.Surface texturing by pulsed Nd:YAG laser[J].Tribology International,2009,42(10):1496-1504.

  • 参考文献

    • [1] 邹武装.世界钛航空市场及应用概况[J].世界有色金属,2014(12):22-24.ZHOU Wuzhuang.Overview of world titanium aviation market and application[J].World Non-ferrous Metals,2014(12):22-24.(in Chinese)

    • [2] 鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Progress in research of surface protection technology of materials in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)

    • [3] 郭纯,陈建敏,姚润钢,等.钛在模拟空间环境下的摩擦学性能[J].中国表面工程,2012,25(3):86-91.GUO Chun,CHEN Jianmin,YAO Rungang,et al.Tribological properties of titanium in simulated space environment[J].China Surface Engineering,2012,25(3):86-91.(in Chinese)

    • [4] 邹武装.钛及钛合金在航天工业的应用及展望[J].中国有色金属,2016,1(1):70-71.ZHOU Wuzhuang.Application and prospect of titanium and titanium alloy in aerospace industry[J].China Non-ferrous Metals,2016,1(1):70-71.(in Chinese)

    • [5] 刘全明,张朝晖,刘世锋,等.钛合金在航空航天及武器装备领域的应用与发展[J].钢铁研究学报,2015,27(3):1-4.LIU Quanming,ZHANG Chaohui,LIU Shifeng,et al.Application and development of titanium alloy in aerospace and military hardware[J].Journal of Iron and Steel Research,2015,27(3):1-4.(in Chinese)

    • [6] 刘世锋,宋玺,薛彤,等.钛合金及钛基复合材料在航空航天的应用和发展[J].航空材料学报,2020,40(3):77-94.LIU Shiqiu,SONG Xi,XUE Tong,et al.Application anddevelopment of titanium alloy and titanium matrix composites in aerospace field[J].Journal of Aeronautical Materials,2020,40(3):77-94.(in Chinese)

    • [7] 郑超,魏世丞,梁义,等.钛金属材料干摩擦磨损特性研究[J].装备环境工程,2018,15(4):44-50.ZHENG Chao,WEI Shicheng,LIANG Yi,et al.Dry friction wearing characteristics of titanium materials[J].Equipment Environmental Engineering,2018,15(4):44-50.(in Chinese)

    • [8] 李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,DU Yujing,et al.Advances in optimization design and application of textured surfaces[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)

    • [9] 侯启敏,杨学锋,王守仁,等.仿生织构类型及其对表面摩擦性能影响[J].中国表面工程,2020,33(3):18-32.HOU Qimin,YANG Xuefeng,WANG Shouren,et al.Bionic texture types and their influence on surface friction properties[J].China Surface Engineering,2020,33(3):18-32.(in Chinese)

    • [10] CHAO Caixia,WANG Yan,XIU Shichao.Effects of point grinding surface texture on contact and wear characteristics under dry sliding condition[J].Surface Review and Letters,2022,29(9):1-5.

    • [11] WU Ze,XING Youqiang,HUANG Peng,et al.Tribological properties of dimple-textured titanium alloys under dry sliding contact[J].Surface & Coatings Technology,2017,309:21-28.

    • [12] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO Chenwei,GUO Zhiwei,YUAN Chengqing.Effects of bionic multi-scales groove textures on surface tribological properties[J].China Surface Engineering,2019,32(1):22-30.(in Chinese)

    • [13] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)

    • [14] AMANOV A,WATABE T,TSUBOI R,et al.Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures[J].Surface andCoatings Technology,2013,232(10):549-560.

    • [15] TAKUYA O,MAKOTO M,YUYA E.Using textured-DLC coating to improve the wear resistance of stainless steel plate under dust-containing lubricant condition[J].International Journal of Automation Technology,2020,14(1):99-108.

    • [16] KENNETH H,ANSSI L,HELENA R,et al.Topographical orientation effects on friction and wear in sliding DLC and steel contacts,part 1:Experimental[J].Wear,2015,330-331:3-22.

    • [17] ARSLAN A,MASJUKI H H,VARMAN M,et al.Effects of texture diameter and depth on the tribological performance of DLC coating under lubricated sliding condition[J].Applied Surface Science,2015,356:1135-1149.

    • [18] CHEN Jinlin,TANG Liping,DING Xuexing,et al.Frictional vibration performances of dry gas seal rings with DLC film textured surface via chaos theory[J].Tribology Transactions,2021,64(1):1-14.

    • [19] WANG Weizhong,HUANG Zhixiang,SHEN Dian,et al.The effect of triangle-shaped surface textures on the performance of the lubricated point-contacts[J].Journal of Tribology,2013,135(2):021503-1-11.

    • [20] DUMITRU G,ROMANO V,WEBER H P,et al.Femtosecond laser ablation of diamond-like carbon films[J].Applied Surface Science,2004,222(1-4):226-233.

    • [21] VOEVODIN A,ZABINSKI J.Laser surface texturing for adaptive solid lubrication[J].Wear,2006,261(11-12):1285-1292.

    • [22] VILHENA L M,M.SEDLA E,PODGORNIK B,et al.Surface texturing by pulsed Nd:YAG laser[J].Tribology International,2009,42(10):1496-1504.

  • 手机扫一扫看