en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张绍筠,女,1991年出生,博士研究生。主要研究方向为润滑及DLC涂层。E-mail:aoyojun@163.com

岳文,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为润滑机理。E-mail:cugbyw@163.com

通讯作者:

岳文,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为润滑机理。E-mail:cugbyw@163.com

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20221229002

参考文献 1
阿合波塔·巴合提,杜雪岭,鄂红军等.润滑油添加剂对活塞环-缸套摩擦副摩擦学性能的影响[J].材料保护,2023,56(1):191-5.AHEBOTA Baheti,DU Xueling,E Hongjun,et al.Effects of lubricant additives on tribological properties of pistion ring-cylinder liner friciton pair[J].Material Protection,2023,56(1):191-5.(in Chinese)
参考文献 2
王艳艳.发动机用类金刚石涂层与润滑油添加剂的摩擦适配性能研究[D].北京:中国地质大学(北京),2021.WANG Yanyan.Study of tribological compatibility between diamond-like carbon coatings for engine application and lubricant additives[D].Beijing:China University of Geosciences(Beijing),2021.(in Chinese)
参考文献 3
SPIKES H.The history and mechanisms of ZDDP[J].Tribology Letters,2004,17(3):469-89.
参考文献 4
CHEN Y,RENNER P,LIANG H.A review of current understanding in tribochemical reactions involving lubricant additives[J].Friction,2023,11(4):489-512.
参考文献 5
ZHANG Weiran,JIANG Haiyun,CHANG Zigong,et al.Recent achievements in self-healing materials based on ionic liquids:a review[J].Journal of Materials Science,2020,55(28):13543-58.
参考文献 6
TOPOLOVEC M K,FORBUS T R,SPIKES H.Film forming and friction properties of overbased calciumsulphonate detergents[J].Tribology Letters,2008,29(1):33-44.
参考文献 7
CHINAS C F,SPIKES H A.Film formation by colloidal overbased detergents in lubricated contacts[J].Tribology Transactions,2000,43(3):357-66.
参考文献 8
YU L G,YAMAGUCHI E S,KASRAI M,et al.The chemical characterization of tribofilms using XANES-Interaction of nanosize calcium-containing detergents with zinc dialkyldithiophosphate[J].Canadian Journal of Chemistry,2007,85(10):675-84.
参考文献 9
COSTELLO M T,URREGO R A.Study of surface films of the ZDDP and the MoDTC with crystalline and amorphous overbased calcium sulfonates by XPS[J].Tribology Transactions,2007,50(2):217-26.
参考文献 10
ZHANG J,YAMAGUCHI E,SPIKES H.The antagonism between succinimide dispersants and a secondary zinc dialkyl dithiophosphate[J].Tribology & Lubrication Technology,2014,57(1):57-65.
参考文献 11
MARTIN J M,GROSSIORD C,LE MOGNE T,et al.Role of nitrogen in tribochemical interaction between zndtp and succinimide in boundary lubrication[J].Tribology International,2000,33(7):453-9.
参考文献 12
蒲吉斌,王立平,薛群基.多尺度强韧化碳基润滑薄膜的研究进展[J].中国表面工程,2014,27(6):4-27.PU Jibin,WANG Liping,XUE Qunji.Progress in strengthening and toughening carbon-base films[J].China Surface Engineering,2014,27(6):4-27.(in Chinese)
参考文献 13
WANG L P,CUI L C,LU Z B,et al.Understanding the unusual friction behavior of hydrogen-free diamond-like carbon films in oxygen atmosphere by first-principles calculations[J].Carbon,2016,100:556-63.
参考文献 14
HOLMBERG K,ANDERSSON P,ERDEMIR A.Global energy consumption due to friction in passenger cars[J].Tribology International,2012,47:221-34.
参考文献 15
刘康,康嘉杰,岳文,等.金属掺杂DLC薄膜与润滑油添加剂协同作用的研究现状[J].材料导报,2019,33(19):3251-6.lIU Kang,KANG Jiajie,YUE Wen,et al.Research status of synergistic effect of metal-doped DLC film and lubricating oil additives[J].Material Reports,2019,33(19):3251-6.(in Chinese)
参考文献 16
VENGUDUSAMY B,GREEN J H,LAMB G D,et al.Tribological properties of tribofilms formed from ZDDP in DLC/DLC and DLC/steel contacts[J].Tribology International,2011,44(2):165-74.
参考文献 17
EQUEY S,ROOS S,MUELLER U,et al.Tribofilmformation from ZnDTP on diamond-like carbon[J].Wear,2008,264(3-4):316-21.
参考文献 18
DOBRENIZKI L,TREMMEL S,WARTZACK S,et al.Efficiency improvement in automobile bucket tappet/camshaft contacts by DLC coatings-influence of engine oil,temperature and camshaft speed[J].Surface & Coatings Technology,2016,308:360-73.
参考文献 19
GAO Kaixiong,ZHANG Lifang,WANG Jian,et al.Further improving the mechanical and tribological properties of low content Ti-doped DLC film by W incorporating[J].Applied Surface Science,2015,353:522-9.
参考文献 20
TUCUREANU V,MATEI A,AVRAM A M.FTIR spectroscopy for carbon family study[J].Critical Reviews in Analytical Chemistry,2016,46(6):502-20.
参考文献 21
GUO Jun,WANG Huaiyong,MENG Fanping,et al.Tuning the H/E ratio and E of AlN coatings by copper addition[J].Surface & Coatings Technology,2013,228:68-75.
参考文献 22
GALVAN D,PEI Y T,DE HOSSON J T M.Deformationand failure mechanism of nano-composite coatings under nano-indentation[J].Surface & Coatings Technology,2006,200(24):6718-26.
参考文献 23
ZHANG Z,YAMAGUCHI E S,KASRAI M,et al.Interaction of ZDDP with borated dispersant using XANES and XPS[J].Tribology Transactions,2004,47(4):527-36.
参考文献 24
KONTOU A,SOUTHBY M,MORGAN N,et al.Influence of dispersant and ZDDP on soot wear[J].Tribology Letters,2018,66(4):1-15.
参考文献 25
RUEDA M M,FULCHIRON R,MARTIN G,et al.Linear and non-linear nature of the flow of polypropylene filled with ferrite particles:from low to concentrated composites[J].Rheologica Acta,2017,56(7-8):635-48.
目录contents

    摘要

    固-液复合润滑系统是获得高燃油经济性和高耐用性发动机系统的关键技术。极压抗磨剂二烷基二硫代磷酸锌(Zinc dialkyldithiophosphate, ZDDP)、清净剂高碱基磺酸钙(Over-base calcium sulfonate, OBCaSu)与分散剂聚异丁烯丁二酰亚胺 (Polyisobutylene succinimide, PIBSI)作为配方润滑油中使用最广泛的三种润滑油添加剂,与常用发动机表面强化薄膜类金刚石(Diamond-like carbon, DLC)薄膜复配下摩擦学性能的相关研究仍较少。利用非平衡磁控溅射方法制备 a-C 薄膜,通过 CSM 摩擦磨损试验机评价 ZDDP 与 OBCaSu(ZDDP+OBCaSu)、ZDDP 与 PIBSI(ZDDP+PIBSI)复配条件下 a-C 薄膜的摩擦学性能,并利用拉曼光谱、SEM 和 EDS 能谱等手段分析摩擦化学反应,探究摩擦机理。结果表明,ZDDP、ZDDP+OBCaSu 和 ZDDP+PIBSI 润滑三种润滑条件下,GCr15 钢和 a-C 薄膜磨损表面形成含磷酸盐的摩擦反应膜,两者摩擦学性能随润滑剂的变化规律相似。ZDDP+OBCaSu 复配润滑下,磨损表面形成的 Ca3(PO4)2 和 Zn3(PO4)2 复合摩擦反应膜可以提高 GCr15 钢和 a-C 薄膜的抗磨损性能。ZDDP+PIBSI 复配润滑下,GCr15 钢和 a-C 薄膜摩擦学性能下降。通过对比研究传统润滑油添加剂在 GCr15 钢和 a-C 薄膜表面的摩擦学行为和摩擦化学反应机理,为 a-C 薄膜在发动机系统中应用以及研发适配 a-C 薄膜的润滑油配方提供数据支持和理论指导。

    Abstract

    The solid-liquid composite lubrication system is a key technology for achieving high-fuel-economy and high-durability engine systems. Diamond-like carbon (DLC) films have high hardness, a low friction coefficient, and good biocompatibility, thereby being widely applied in engine system, involving valve lifters, piston rings, etc. It is well known that the performance of oil lubricants is highly correlated with the chemical composition of the grinding surface materials. Previous studies have shown that Fe2+ from ferrous materials directly takes part in the tribochemical reactions of oil lubricants. DLC films exhibit chemical inertness, in contrast to traditional ferrous materials. However, the current formulas for engine oil lubricants are universally developed for ferrous materials,and a special lubricant formula for DLC films needs urgent improvement. The extreme-pressure antiwear agent zinc dialkyldithiophosphate (ZDDP), the detergent calcium persulfonate (OBCaSu), and the dispersant polyisobutylene succinimide (PIBSI) are the most widely used additives in formulated lubricants. However, there is still limited research on the tribological properties of DLC films lubricated with the above additives. In this work, amorphous carbon (a-C) films were prepared via nonequilibrium magnetron sputtering, and the tribological properties of the a-C films under boundary lubrication conditions between ZDDP and OBCaSu (ZDDP+OBCaSu) and between ZDDP and PIBSI (ZDDP+PIBSI) were evaluated using a CSM tribometer. The tribochemical reactions were analyzed using Raman spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy (EDS), combined with the full formula (FF) oil and GCr15 steel, to explore the tribological mechanism of a-C films. The morphologies of worn surfaces were determined with a three-dimensional surface profilometer, and it can be seen that the main wear mechanism of a-C films against steel balls is abrasive wear. Under various lubrication conditions, the results indicate that the worn surfaces of the a-C films undergo graphitization compared to the unworn surfaces, which is beneficial for achieving a low friction coefficient. Phosphate tribofilms are formed on the worn surfaces of GCr15 steel and a-C films under ZDDP, ZDDP+OBCaSu, and ZDDP+PIBSI lubrication conditions. Under a ZDDP+OBCaSu lubrication condition, the composite tribofilms of Ca3(PO4)2 and Zn3(PO4)2 on the worn surfaces of GCr15 steel and a-C films can improve their wear resistance and lubrication performance, which was confirmed by the low friction coefficients and wear rates. Moreover, similar friction coefficients and wear rates on the surfaces of GCr15 steel and a-C films are obtained. Therefore, the tribochemical reaction of the ZDDP+OBCaSu lubrication has less dependence on the surface materials. Under ZDDP+PIBSI lubrication, the tribological properties of GCr15 steel and a-C films decrease, resulting in high friction coefficients and high wear rates. According to the EDS energy spectrum, it can be derived that the strong dispersion of PIBSI is not conducive to the formation of phosphate tribofilms. Under FF lubrication conditions, the tribological properties of GCr15 steel and a-C films decreased compared to those under ZDDP, ZDDP+OBCaSu, and ZDDP+PIBSI lubrication conditions, which may be influenced by the lubricant concentrations and other lubricants. In this work, the tribological behavior and tribochemical reaction mechanism of traditional oil lubricants on the surfaces of GCr15 steel and a-C films are studied. Overall, the results show that the changes in the friction coefficients and wear rates of GCr15 steel and a-C films with various lubricants are similar. However, the a-C films are not sensitive to the lubricants. That is, compared to GCr15 steel, the tribological performance of the a-C films under different lubricants fluctuates by only a minor degree. Therefore, there is a need to develop more suitable oil lubricant formulas for a-C films. This work serves as a guidance for future design and development of lubricants and a-C films for energy savings and fuel efficiency

    Keywords

    DLC filmoil lubricationZDDPfrictionwear

  • 0 前言

  • 极压抗磨剂、清净剂和分散剂作为配方润滑油中含量占比最高的三种添加剂,三者单独或者复配作用对润滑油摩擦学性能至关重要[1-2]。二烷基二硫代磷酸锌(Zinc dialkyldithiophosphate,ZDDP)作为应用最广泛的极压抗磨剂,在摩擦表面形成的含磷酸盐的摩擦反应膜,消化磨粒,隔绝微凸体直接接触,从而提供优异的抗磨、抗氧化的效果[3-5]

  • 摩擦过程产生的磨粒、酸性物质等杂质影响润滑油的性能,缩短使用寿命。清净剂与分散剂可以提升润滑油的清净性和分散性,延长油品的使用寿命,因此分散剂和清净剂已成为润滑油的必要组分。高碱基磺酸钙(Oover base calcium sulfonate, OBCaSu)作为广泛应用的清净剂,可以有效中和润滑油的酸性物质,阻止油泥的沉积和漆膜的形成,减少卡咬和烧瓦等事故的发生。先前研究表明高碱性磺酸钙可以提升抗磨损性能,磺酸钙在摩擦表面形成的无机钙盐(CaCO3 或 CaO)摩擦反应膜起到抗磨作用[6-7]。部分研究结果指出 ZDDP 与 OBCaSu 复配作用下铁基材料的磨损率较单纯 ZDDP 降低[8-9]。以聚异丁烯丁二酰亚胺(Plyisobutylene succinimide,PIBSI)为代表的无灰分分散剂具有长碳链结构,可以有效分散磨粒、积碳和胶质。但以往的研究普遍认为分散剂与 ZDDP 存在拮抗作用,从而降低 ZDDP 的抗磨性能[10-11]。ZHANG 等[10]研究表明,PIBSI 会降低钢表面 ZDDP 摩擦反应膜厚度,导致磨损量增加。

  • 高耐用性和良好稳定性对发动机润滑系统至关重要。高应力、乏油等苛刻工况下,采用硬质润滑薄膜和添加剂复配的固-液复合润滑系统是提升边界润滑下发动机系统摩擦学性能的关键技术之一。类金刚石(Diamond-like carbon,DLC)薄膜由 sp 2和 sp 3 杂化碳原子结构组成,具有优异的力学性能和摩擦学性能,成为发动机气门挺杆和活塞环等关键机构零件表面的强化涂层[12-14]。近年 ZDDP 与 DLC 薄膜复配的摩擦学性能被广泛研究[15-17]。 VENGUDUSAMY 等[16]探究了 ZDDP 润滑下不同类型 DLC 薄膜的摩擦学性能,结果表明,a-C 薄膜与 ZDDP 复配作用下摩擦因数和磨损率均较低。但关于 ZDDP 与清净剂、分散剂复配对 a-C 薄膜摩擦学性能的影响研究较少。本研究利用非平衡磁控溅射系统制备 a-C 薄膜,通过 CSM 球-盘摩擦磨损试验机对比研究高应力下,ZDDP 与 OBCaSu、PIBSI 复配条件下 a-C 薄膜 / GCr15 钢的摩擦学性能,并利用扫描电子显微镜(Scanning electron microscope, SEM)和拉曼光谱等手段观察 a-C 薄膜 / GCr15 钢磨损表面摩擦反应膜。该研究结果将为 a-C 薄膜在发动机润滑系统中的广泛应用,以及优化适用于a-C 薄膜的润滑油配方提供数据和理论。

  • 1 试验准备

  • 1.1 样品制备

  • 本研究中检测的 a-C 薄膜由中国科学院兰州化学物理研究所制备。使用非平衡磁控溅射方法以 GCr15 钢为基体制备 a-C 薄膜。沉积薄膜前,已抛光GCr15钢盘(直径35 mm,高6 mm)先后在丙酮、酒精中超声清洗 10 min,随后利用 Ar 气体干燥。沉积过程第一步,利用 Ar离子轰击 20 min 以去除基底表面氧化物层。第二步,大气压力低于 1 mPa 后,以 16 L / min 的速率通入 Ar 气体作为前驱体,同时,Cr 靶电流设置为 1 A 持续 10 min 在基底上制备 Cr 过渡层。第三步,石墨靶电流设置为 3.6 A,基底偏压−70 V 在 Cr 过渡层基础上沉积 a-C 薄膜,持续 6 h。

  • 1.2 润滑剂

  • 选用粘度等级 SAE 0W-20 的全配方(Full formula,FF)油作为对照组。选用 API Ⅲ类矿物油 Yubase4 plus 为基础油(Base oil,BO),配以 ZDDP (主要元素含量:Zn 为 7.0 wt.%、P 为 6.3 wt.%,S 为 14.0 wt.%),OBCaSu(总碱基值 TBN≥350)和 PIBSI(TBN= 15-25)混合成润滑油,三种添加剂的化学分子式如图1 所示。每种润滑剂混合物加热至 70℃后持续搅拌 10 min,随后在超声波中振荡混合 20 min。润滑剂简称和添加剂具体含量展示在表1 中。

  • 图1 添加剂化学分子式(R 为烷基)

  • Fig.1 Chemical formula of additive (R is alkyl)

  • 表1 润滑剂简称和添加剂含量(wt.%)

  • Table1 Lubricant abbreviation and additive content (wt.%)

  • 1.3 摩擦试验

  • 使用 Anton Paar 公司生产的 CSM-TRN 型球盘式摩擦磨损试验机往复模式评估 a-C 薄膜油润滑下的摩擦学性能,CSM 摩擦磨损试验示意图如图2 所示。所有摩擦试验对磨球均选用直径 6 mm 的 GCr15 钢球。测试温度为 100℃,最大滑动速度为 0.04 m / s,划痕长度为 2 mm,每组测试时间为 60 min,总滑动距离为 100 m,测试载荷为 10 N,最大接触应力约为 1.28 GPa。选用 GCr15 钢 / GCr15 钢配副作为对照组(最大接触应力约为 1.40 GPa)。所有摩擦试验均在边界润滑条件下进行,每组试验参数重复三次。每组摩擦试验后,在超声清洗机中用丙酮清洗试样 10 min 以去除残油。

  • 图2 CSM 摩擦磨损试验机示意图

  • Fig.2 Schematic diagram of CSM tribometer

  • 1.4 分析表征

  • 本研究采用场发射扫描电子显微镜 SEM (S4800,Hitach)观察样品表面及截面形貌,配有 EDS 能谱仪检测磨痕表面元素分布。选用三维白光干涉形貌仪(NeXView,Zygo) 观察样品磨痕截面形貌并测量表面粗糙度和磨损体积,磨损率 (m 3 / (N·m))定义为单位载荷单位滑动距离下的磨损体积。纳米压痕仪 (CSM-UNHT,Anton Paar) 测量样品的纳米硬度和弹性模量。利用激光共聚焦拉曼光谱仪(R Evolution,Horiba) 检测 a-C 薄膜磨损前后的碳键结构,激光波长为 532 nm,扫描范围为 200~2 000 cm−1,扫描时间为 60 s,并使用 origin 软件分析相关数据。

  • 2 结果与讨论

  • 2.1 薄膜形貌、化学结构及力学性能

  • a-C 薄膜表面和截面 SEM 形貌如图3 所示。从图3b 可知 a-C 薄膜厚度约 1.8 μm,且与钢基体之间存在厚度约 0.2 μm 的 Cr 过渡层。a-C 薄膜呈现典型的 DLC 薄膜的非晶态形貌[18],整体致密、光滑,没有结构缺陷。

  • 图4 为 a-C 薄膜在约 1 500 cm−1 处的典型非晶碳拉曼光谱,经高斯拟合去卷积可分为 D 峰 (位于约 1 380.8 cm−1 处)和 G 峰(位于约 1 580.7 cm−1 处),分别代表 sp 2 C=C 原子仅存在于芳香环中的呼吸模式和 sp 2 C=C 原子在芳香环和链中的键拉伸[19-20]ID / IG值为 D 峰与 G 峰强度的比值,该值反馈了 a-C 薄膜中 sp 2 C=C 键与 sp 3 C-C 键含量的占比,即 ID / IG数值越大,sp 2 C=C 键含量相对越高,薄膜发生石墨化转变。经拉曼光谱检测 a-C 薄膜的 ID / IG值约为 1.49。GCr15 钢盘和 a-C 薄膜的主要物理性能如表2 所示。H 与 E 分别代表样品的硬度和弹性模量,而 H / EH3 / E2 数值越高分别代表样品的抗塑性变形性能和抗磨损性能越好[21-22]。表2 结果显示,a-C 薄膜的抗塑性变形性能和抗磨损性能均优于 GCr15 钢。

  • 图3 a-C 薄膜的 SEM 形貌

  • Fig.3 SEM morphologies of a-C film

  • 图4 a-C 薄膜的拉曼光谱

  • Fig.4 Raman spectrum of a-C films

  • 表2 GCr15 钢与 a-C 薄膜主要物理性能

  • Table2 Physical properties of GCr15 steel and a-C films

  • 2.2 摩擦学性能

  • GCr15 钢和 a-C 薄膜摩擦曲线及稳定期(摩擦行程后 15 min)平均摩擦因数展示在图5 中。GCr15 钢和 a-C 薄膜在所有润滑条件下的摩擦曲线均平稳,且跑合期较短。值注意的是,GCr15 钢和 a-C 薄膜稳定期平均摩擦因数随添加剂的变化呈现规律基本一致,BO+Z+DIS,FF,BO+Z, BO+Z+DET 依次逐步降低。a-C 薄膜摩擦因数明显低于同条件下的 GCr15 钢,而在 BO+Z+DET 润滑摩擦条件下,两者的稳定期摩擦因数均最低且数值相近,约为 0.10。GCr15 钢和 a-C 薄膜均在 FF 润滑条件下出现最高摩擦因数,分别约为 0.117 和 0.135。

  • 图5 GCr15 钢和 a-C 薄膜的摩擦曲线和稳定期平均摩擦因数

  • Fig.5 Friction curve and average friction factor in stable period of GCr15 steels and a-C films

  • 不同润滑条件下,GCr15 钢盘与 a-C 薄膜磨损率如图6 所示。结果表明,GCr15 钢盘和 a-C 薄膜在 BO+Z+DET 润滑条件下磨损率均最低且数值相近,约为 1.65×10−17 m 3 /(N·m)。除 BO+Z+ DET 润滑条件,a-C 薄膜磨损率均低于同条件下的 GCr15 钢盘,既 FF、BO+Z 和 BO+Z+DIS 三种润滑条件的抗磨损性能与摩擦表面性能有关。a-C 薄膜和 GCr15 钢盘在 FF 配方油润滑条件下出现最高磨损率,分别约为 6.99×10−17 m 3 /(N·m)和 2.50×10−17 m 3 /(N·m)。

  • 图6 GCr15 钢盘和 a-C 薄膜的磨损率

  • Fig.6 Wear rates of the GCr15 steel and a-C film

  • 图7 和图8 展示了不同润滑条件下 GCr15 钢盘与 a-C 薄膜磨痕的三维形貌和对应的对磨钢球磨斑的光镜形貌。结合磨痕与磨斑形貌,可判定 a-C 薄膜在不同润滑条件下均呈现出典型的磨粒磨损形貌。FF 与 BO+Z 润滑条件下,GCr15 钢的磨痕边缘出现明显的塑性形变,已在图7 中标出,且磨痕宽度高于其余润滑条件。BO+Z+DET润滑条件下, GCr15 钢盘和 a-C 薄膜磨痕宽度和对磨球磨斑直径均低于其余润滑条件。

  • 图7 GCr15 钢盘和 a-C 薄膜磨痕三维形貌

  • Fig.7 3D morphology of wear tracks on GCr15 steel discs and a-C films

  • 图8 GCr15 钢盘和 a-C 薄膜磨痕三维形貌

  • Fig.8 3D morphology of wear tracks on GCr15 steel discs and a-C films

  • 2.3 摩擦反应

  • 经不同条件润滑后 a-C 薄膜磨痕表面的拉曼光谱如图9 所示。FF,BO+Z,BO+Z+DET 和 BO+ Z+DIS 润滑条件下,a-C 薄膜经拉曼光谱检测,高斯拟合去卷积后,ID / IG值分别约为 1.56、1.53、1.60 和 1.65,已标注在图中。由此可知,四种润滑条件下,ID / IG值较未磨损表面均上升,a-C 薄膜磨痕表面均发生了石墨化转变,既 sp 2 C=C 键含量增加。图10 和图11 显示了不同润滑条件下 GCr15 钢盘和 a-C 薄膜磨痕 SEM 形貌和磨损表面特征元素分布,其中每个分图的右图为左图方框区域的放大图。与图7 结果一致,图10a 中 GCr15 钢磨痕边缘处出现了明显塑性形变,已在图中标出。通过 EDS 面谱分析,BO+Z,BO+Z+DET 和 BO+Z+DIS 润滑条件,GCr15 钢盘和 a-C 薄膜磨痕表面均覆盖由 ZDDP 分解产生的含磷酸盐的摩擦反应膜,主要元素由 Zn、S、P 组成[3]。BO+Z+DET 润滑条件下,GCr15 钢和 a-C 薄膜磨痕表面除磷元素外可以观察到来自与清净剂分解产生的 Ca 元素,GCr15 钢盘磨损表面中央区域(已标出)存在 Zn、S 富集区域(可能是来自 ZnS),其余区域 Ca、Zn、P 和 S 四种元素高度对应,即在 GCr15 钢和 a-C 薄膜磨痕内生成 Ca3(PO42 和 Zn3(PO42复合摩擦反应膜。但 EDS 能谱反馈,a-C 薄膜磨痕内部 Ca 含量微少。通过 EDS 能谱对比分析未磨损表面与磨痕内部元素分布, GCr15 钢和 a-C 薄膜磨痕表面 BO+Z 润滑条件生成磷酸盐相对含量相较 BO+Z+DIS 润滑条件更高,与先前研究结果相符[23-24]

  • 图9 a-C 薄膜磨痕表面的拉曼光谱

  • Fig.9 Raman spectra of a-C film wear scar surfaces

  • 图10 GCr15 钢磨痕表面的 SEM 形貌及表面元素分布

  • Fig.10 SEM morphology and surface element distribution of GCr15 steel wear scar surface

  • 图11 a-C 薄膜磨痕表面的 SEM 形貌及表面元素分布

  • Fig.11 SEM morphology and surface element distribution of a-C films wear scar surface

  • 2.4 摩擦化学反应机理

  • 试验结果表明,GCr15 钢与 a-C 薄膜摩擦因数和磨损率随润滑剂的变化呈现相似规律,但 a-C 薄膜具有高硬度和高弹性模量令其摩擦因数和磨损率均低于同润滑条件下 GCr15 钢。FF 和 BO+Z 润滑条件下,GCr15 钢盘磨痕边缘处均发生塑性形变,这是由于在高载荷作用下实际接触应力超过 GCr15 钢的屈服极限。但加入清净剂和分散剂后磨痕边缘塑性形变减少,可能与两种添加剂的较长的有机碳链结构有关。

  • 但从图7 和图8 结果可知,BO+Z、BO+Z+ DET 和 BO+Z+DIS 三种润滑剂作用下,GCr15 钢盘和 a-C 薄膜磨痕宽度变化规律相近:BO+Z>BO+ Z+DIS>BO+Z+DET。对比拉曼光谱在摩擦前后的 ID / IG值的变化可知,FF、BO+Z、BO+Z+DET 和 BO+Z+DIS 润滑条件下,a-C 薄膜磨痕处均发生石墨化,从初始 1.49 最高增加至 1.65,但增长幅度较小。图3 指出 GCr15 钢盘和 a-C 薄膜与钢球配副摩擦条件下,两者摩擦因数随润滑条件变化规律相近:BO+Z+DIS>FF>BO+Z>BO+Z。结合分析摩擦因数和磨痕宽度数据,在 GCr15 钢和 a-C 薄膜磨痕表面摩擦化学反应相近。因此,本研究表明 a-C 薄膜磨损表面石墨化对薄膜摩擦学性能的影响远小于添加剂间的摩擦化学反应。图10 和图11 所示的 EDS 能谱面扫结果显示,BO+Z,BO+Z+ DET,BO+Z+DIS 三种润滑条件下,GCr15 钢盘表面和 a-C 薄膜磨损表面均生成岛状磷酸盐摩擦反应膜。而不同的是,BO+Z+DET 润滑条件下摩擦表面生成 Ca3(PO42 和 Zn3(PO42 复合摩擦反应膜,基于硬软酸碱(HSAB)理论,摩擦过程中部分 ZDDP 中Zn2+与OBCaSu中Ca2+发生置换,生成链长更短、耐磨性更佳的 Ca3(PO42摩擦反应膜。因此,GCr15 钢和 a-C 薄膜在 BO+Z+DET 条件下的磨损率明显低于其余润滑条件。但 a-C 薄膜磨痕内 Ca 元素含量较少,这可能是因为 a-C 薄膜形成的磨屑不利于无机 Ca 盐的附着[7]。图7 和图8 表明经摩擦过程后, GCr15 钢和 a-C 薄膜对磨的钢球光镜形貌相近,推测在与 a-C 薄膜对磨的钢球磨斑上形成了与 GCr15 钢盘磨痕表面相似的复合摩擦反应膜。因此,基于复合摩擦反应膜优异的抗磨损性能,BO+Z+DET 润滑条件下,GCr15 钢和 a-C 薄膜钢盘磨损率相近。

  • 对比 BO+Z 与 BO+Z+DIS 润滑条件,虽然表面摩擦反应膜主体均为磷酸盐。由于每组样品在 EDS 能谱检测种检测条件均相同,对比分析 GCr15 钢表面未磨损表面和磨痕内 Fe 元素分布,及 a-C 薄膜表面未磨损表面和磨痕内 C 元素分布情况可知, BO+Z+DIS 润滑条件下,GCr15 钢与 a-C 薄膜磨损表面生成的磷酸盐摩擦反应膜相对含量均低于 BO+Z 润滑条件,先前研究普遍认为分散剂的加入不利于 ZDDP 在摩擦表面吸附,而 ZDDP 与分散剂复配条件下的磨损率(或磨痕宽度)与分散剂的含量[10]和分散剂中氮元素含量有关[24]。而 a-C 薄膜是表面活性低于 GCr15 钢,导致 BO+Z+DET 条件下 a-C 薄膜磨损率高于 BO+Z 条件。

  • 不同润滑条件,对比分析 GCr15 钢和 a-C 薄膜摩擦因数和磨损率变化规律可以得出,除 BO+Z+ DIS 润滑条件,其余润滑条件下摩擦因数和磨损率变化规律相似,即较高摩擦因数对应较高的磨损率。这是由于不同润滑条件,不同摩擦表面摩擦反应膜主体均为磷酸盐,摩擦反应膜的组成对摩擦因数的影响微小,但磨痕宽度的增加使两摩擦表面接触面积增大,从而使摩擦因数上升。因此,两种表面摩擦因数和磨损变化规律均相近。而 BO+Z+DIS 润滑条件下,GCr15 钢与 a-C 薄膜摩擦因数均大幅度上升,可能与其有机长链所导致润滑剂粘度增加有关[25]

  • FF 润滑条件,GCr15 钢和 a-C 薄膜摩擦学性能较 BO+Z,BO+Z+DET 和 BO+Z+DIS 润滑条件下的摩擦学性能有所下降,这可能是受其他添加剂和浓度的影响。本研究结果表明,虽然三种润滑条件下,GCr15 钢和 a-C 薄膜摩擦反应膜均为磷酸盐。相对 GCr15 钢而言,a-C 薄膜会降低不同添加剂之间摩擦因数和磨损率之间的差距,对添加剂配方的依赖降低。ZDDP 与清净剂 OBCaSu 复配条件下, GCr15 钢与 a-C 薄膜摩擦学性能基本一致且优于 ZDDP,而 ZDDP 与分散剂 PIBSI 下,GCr15 钢与 a-C 薄膜摩擦学性能较 ZDDP 单独作用均下降。

  • 3 结论

  • 利用非平衡磁控溅射制备了 a-C 薄膜,探究 ZDDP 与清净剂、分散剂复配对 a-C 薄膜摩擦学性能的影响,并与 GCr15 钢和 FF 润滑摩擦磨损行为对比。结果可知,FF、BO+Z、BO+Z+DET 和 BO+Z+DIS 润滑条件,GCr15 和 a-C 薄膜钢摩擦和磨损行为规律相近,但从摩擦因数和磨损率数值来看,a-C 薄膜较 GCr15 钢表现出更加优异、稳定的摩擦学性能。该研究结果将为 a-C 薄膜在发动机润滑系统中的推广,以及设计适用于 a-C 薄膜的配方润滑油提供试验数据和理论支撑。具体结论如下:

  • (1)FF、BO+Z、BO+Z+DET 和 BO+Z+ DIS 润滑条件,GCr15 钢与 a-C 摩擦学性能变化规律相近,摩擦因数 BO+Z+DIS>FF>BO+Z>BO+ Z+DET,而磨痕宽度 BO+Z>BO+Z+DIS>BO+ Z+DET。

  • (2)BO+Z+DET 润滑条件下,OBCaSu 摩擦分解产生的钙盐与 ZDDP 分解磷酸盐二者复合作用下,在 GCr15 钢和 a-C 薄膜表面生成 Ca3(PO42 和 Zn3(PO42 复合摩擦反应膜,其耐磨性能优于 Zn3(PO42。因此,两种表面均呈现出低摩擦因数和低磨损率,且数值相近分别为 0.10×10−17 m 3 /(N·m)和 1.65×10−17 m 3 /(N·m)。ZDDP 与 OBCaSu 复配作用下,摩擦学性能受表面材料影响小。

  • (3)BO+Z+DIS 润滑条件下,PIBSI 的加入导致 GCr15 钢和 a-C 薄膜磨痕表面磷酸盐相对含量降低,摩擦因数上升。

  • (4)相对 GCr15 钢而言,a-C 薄膜会降低不同添加剂之间摩擦学性能的差距,对添加剂配方的依赖降低。

  • 参考文献

    • [1] 阿合波塔·巴合提,杜雪岭,鄂红军等.润滑油添加剂对活塞环-缸套摩擦副摩擦学性能的影响[J].材料保护,2023,56(1):191-5.AHEBOTA Baheti,DU Xueling,E Hongjun,et al.Effects of lubricant additives on tribological properties of pistion ring-cylinder liner friciton pair[J].Material Protection,2023,56(1):191-5.(in Chinese)

    • [2] 王艳艳.发动机用类金刚石涂层与润滑油添加剂的摩擦适配性能研究[D].北京:中国地质大学(北京),2021.WANG Yanyan.Study of tribological compatibility between diamond-like carbon coatings for engine application and lubricant additives[D].Beijing:China University of Geosciences(Beijing),2021.(in Chinese)

    • [3] SPIKES H.The history and mechanisms of ZDDP[J].Tribology Letters,2004,17(3):469-89.

    • [4] CHEN Y,RENNER P,LIANG H.A review of current understanding in tribochemical reactions involving lubricant additives[J].Friction,2023,11(4):489-512.

    • [5] ZHANG Weiran,JIANG Haiyun,CHANG Zigong,et al.Recent achievements in self-healing materials based on ionic liquids:a review[J].Journal of Materials Science,2020,55(28):13543-58.

    • [6] TOPOLOVEC M K,FORBUS T R,SPIKES H.Film forming and friction properties of overbased calciumsulphonate detergents[J].Tribology Letters,2008,29(1):33-44.

    • [7] CHINAS C F,SPIKES H A.Film formation by colloidal overbased detergents in lubricated contacts[J].Tribology Transactions,2000,43(3):357-66.

    • [8] YU L G,YAMAGUCHI E S,KASRAI M,et al.The chemical characterization of tribofilms using XANES-Interaction of nanosize calcium-containing detergents with zinc dialkyldithiophosphate[J].Canadian Journal of Chemistry,2007,85(10):675-84.

    • [9] COSTELLO M T,URREGO R A.Study of surface films of the ZDDP and the MoDTC with crystalline and amorphous overbased calcium sulfonates by XPS[J].Tribology Transactions,2007,50(2):217-26.

    • [10] ZHANG J,YAMAGUCHI E,SPIKES H.The antagonism between succinimide dispersants and a secondary zinc dialkyl dithiophosphate[J].Tribology & Lubrication Technology,2014,57(1):57-65.

    • [11] MARTIN J M,GROSSIORD C,LE MOGNE T,et al.Role of nitrogen in tribochemical interaction between zndtp and succinimide in boundary lubrication[J].Tribology International,2000,33(7):453-9.

    • [12] 蒲吉斌,王立平,薛群基.多尺度强韧化碳基润滑薄膜的研究进展[J].中国表面工程,2014,27(6):4-27.PU Jibin,WANG Liping,XUE Qunji.Progress in strengthening and toughening carbon-base films[J].China Surface Engineering,2014,27(6):4-27.(in Chinese)

    • [13] WANG L P,CUI L C,LU Z B,et al.Understanding the unusual friction behavior of hydrogen-free diamond-like carbon films in oxygen atmosphere by first-principles calculations[J].Carbon,2016,100:556-63.

    • [14] HOLMBERG K,ANDERSSON P,ERDEMIR A.Global energy consumption due to friction in passenger cars[J].Tribology International,2012,47:221-34.

    • [15] 刘康,康嘉杰,岳文,等.金属掺杂DLC薄膜与润滑油添加剂协同作用的研究现状[J].材料导报,2019,33(19):3251-6.lIU Kang,KANG Jiajie,YUE Wen,et al.Research status of synergistic effect of metal-doped DLC film and lubricating oil additives[J].Material Reports,2019,33(19):3251-6.(in Chinese)

    • [16] VENGUDUSAMY B,GREEN J H,LAMB G D,et al.Tribological properties of tribofilms formed from ZDDP in DLC/DLC and DLC/steel contacts[J].Tribology International,2011,44(2):165-74.

    • [17] EQUEY S,ROOS S,MUELLER U,et al.Tribofilmformation from ZnDTP on diamond-like carbon[J].Wear,2008,264(3-4):316-21.

    • [18] DOBRENIZKI L,TREMMEL S,WARTZACK S,et al.Efficiency improvement in automobile bucket tappet/camshaft contacts by DLC coatings-influence of engine oil,temperature and camshaft speed[J].Surface & Coatings Technology,2016,308:360-73.

    • [19] GAO Kaixiong,ZHANG Lifang,WANG Jian,et al.Further improving the mechanical and tribological properties of low content Ti-doped DLC film by W incorporating[J].Applied Surface Science,2015,353:522-9.

    • [20] TUCUREANU V,MATEI A,AVRAM A M.FTIR spectroscopy for carbon family study[J].Critical Reviews in Analytical Chemistry,2016,46(6):502-20.

    • [21] GUO Jun,WANG Huaiyong,MENG Fanping,et al.Tuning the H/E ratio and E of AlN coatings by copper addition[J].Surface & Coatings Technology,2013,228:68-75.

    • [22] GALVAN D,PEI Y T,DE HOSSON J T M.Deformationand failure mechanism of nano-composite coatings under nano-indentation[J].Surface & Coatings Technology,2006,200(24):6718-26.

    • [23] ZHANG Z,YAMAGUCHI E S,KASRAI M,et al.Interaction of ZDDP with borated dispersant using XANES and XPS[J].Tribology Transactions,2004,47(4):527-36.

    • [24] KONTOU A,SOUTHBY M,MORGAN N,et al.Influence of dispersant and ZDDP on soot wear[J].Tribology Letters,2018,66(4):1-15.

    • [25] RUEDA M M,FULCHIRON R,MARTIN G,et al.Linear and non-linear nature of the flow of polypropylene filled with ferrite particles:from low to concentrated composites[J].Rheologica Acta,2017,56(7-8):635-48.

  • 参考文献

    • [1] 阿合波塔·巴合提,杜雪岭,鄂红军等.润滑油添加剂对活塞环-缸套摩擦副摩擦学性能的影响[J].材料保护,2023,56(1):191-5.AHEBOTA Baheti,DU Xueling,E Hongjun,et al.Effects of lubricant additives on tribological properties of pistion ring-cylinder liner friciton pair[J].Material Protection,2023,56(1):191-5.(in Chinese)

    • [2] 王艳艳.发动机用类金刚石涂层与润滑油添加剂的摩擦适配性能研究[D].北京:中国地质大学(北京),2021.WANG Yanyan.Study of tribological compatibility between diamond-like carbon coatings for engine application and lubricant additives[D].Beijing:China University of Geosciences(Beijing),2021.(in Chinese)

    • [3] SPIKES H.The history and mechanisms of ZDDP[J].Tribology Letters,2004,17(3):469-89.

    • [4] CHEN Y,RENNER P,LIANG H.A review of current understanding in tribochemical reactions involving lubricant additives[J].Friction,2023,11(4):489-512.

    • [5] ZHANG Weiran,JIANG Haiyun,CHANG Zigong,et al.Recent achievements in self-healing materials based on ionic liquids:a review[J].Journal of Materials Science,2020,55(28):13543-58.

    • [6] TOPOLOVEC M K,FORBUS T R,SPIKES H.Film forming and friction properties of overbased calciumsulphonate detergents[J].Tribology Letters,2008,29(1):33-44.

    • [7] CHINAS C F,SPIKES H A.Film formation by colloidal overbased detergents in lubricated contacts[J].Tribology Transactions,2000,43(3):357-66.

    • [8] YU L G,YAMAGUCHI E S,KASRAI M,et al.The chemical characterization of tribofilms using XANES-Interaction of nanosize calcium-containing detergents with zinc dialkyldithiophosphate[J].Canadian Journal of Chemistry,2007,85(10):675-84.

    • [9] COSTELLO M T,URREGO R A.Study of surface films of the ZDDP and the MoDTC with crystalline and amorphous overbased calcium sulfonates by XPS[J].Tribology Transactions,2007,50(2):217-26.

    • [10] ZHANG J,YAMAGUCHI E,SPIKES H.The antagonism between succinimide dispersants and a secondary zinc dialkyl dithiophosphate[J].Tribology & Lubrication Technology,2014,57(1):57-65.

    • [11] MARTIN J M,GROSSIORD C,LE MOGNE T,et al.Role of nitrogen in tribochemical interaction between zndtp and succinimide in boundary lubrication[J].Tribology International,2000,33(7):453-9.

    • [12] 蒲吉斌,王立平,薛群基.多尺度强韧化碳基润滑薄膜的研究进展[J].中国表面工程,2014,27(6):4-27.PU Jibin,WANG Liping,XUE Qunji.Progress in strengthening and toughening carbon-base films[J].China Surface Engineering,2014,27(6):4-27.(in Chinese)

    • [13] WANG L P,CUI L C,LU Z B,et al.Understanding the unusual friction behavior of hydrogen-free diamond-like carbon films in oxygen atmosphere by first-principles calculations[J].Carbon,2016,100:556-63.

    • [14] HOLMBERG K,ANDERSSON P,ERDEMIR A.Global energy consumption due to friction in passenger cars[J].Tribology International,2012,47:221-34.

    • [15] 刘康,康嘉杰,岳文,等.金属掺杂DLC薄膜与润滑油添加剂协同作用的研究现状[J].材料导报,2019,33(19):3251-6.lIU Kang,KANG Jiajie,YUE Wen,et al.Research status of synergistic effect of metal-doped DLC film and lubricating oil additives[J].Material Reports,2019,33(19):3251-6.(in Chinese)

    • [16] VENGUDUSAMY B,GREEN J H,LAMB G D,et al.Tribological properties of tribofilms formed from ZDDP in DLC/DLC and DLC/steel contacts[J].Tribology International,2011,44(2):165-74.

    • [17] EQUEY S,ROOS S,MUELLER U,et al.Tribofilmformation from ZnDTP on diamond-like carbon[J].Wear,2008,264(3-4):316-21.

    • [18] DOBRENIZKI L,TREMMEL S,WARTZACK S,et al.Efficiency improvement in automobile bucket tappet/camshaft contacts by DLC coatings-influence of engine oil,temperature and camshaft speed[J].Surface & Coatings Technology,2016,308:360-73.

    • [19] GAO Kaixiong,ZHANG Lifang,WANG Jian,et al.Further improving the mechanical and tribological properties of low content Ti-doped DLC film by W incorporating[J].Applied Surface Science,2015,353:522-9.

    • [20] TUCUREANU V,MATEI A,AVRAM A M.FTIR spectroscopy for carbon family study[J].Critical Reviews in Analytical Chemistry,2016,46(6):502-20.

    • [21] GUO Jun,WANG Huaiyong,MENG Fanping,et al.Tuning the H/E ratio and E of AlN coatings by copper addition[J].Surface & Coatings Technology,2013,228:68-75.

    • [22] GALVAN D,PEI Y T,DE HOSSON J T M.Deformationand failure mechanism of nano-composite coatings under nano-indentation[J].Surface & Coatings Technology,2006,200(24):6718-26.

    • [23] ZHANG Z,YAMAGUCHI E S,KASRAI M,et al.Interaction of ZDDP with borated dispersant using XANES and XPS[J].Tribology Transactions,2004,47(4):527-36.

    • [24] KONTOU A,SOUTHBY M,MORGAN N,et al.Influence of dispersant and ZDDP on soot wear[J].Tribology Letters,2018,66(4):1-15.

    • [25] RUEDA M M,FULCHIRON R,MARTIN G,et al.Linear and non-linear nature of the flow of polypropylene filled with ferrite particles:from low to concentrated composites[J].Rheologica Acta,2017,56(7-8):635-48.

  • 手机扫一扫看