en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

沙小花,女,1990年出生,博士,副教授。主要研究方向为超硬材料与表面工程。E-mail:sha201466@126.com

岳文,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为机械摩擦学与表面技术、勘探技术与地质钻探学、金刚石及其他超硬材料。E-mail:cugbyw@163.com

通讯作者:

岳文,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为机械摩擦学与表面技术、勘探技术与地质钻探学、金刚石及其他超硬材料。E-mail:cugbyw@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221216001

参考文献 1
HUANG Quan,YU Dongli,XU Bo,et al.Nanotwinned diamond with unprecedented hardness and stability[J].Nature,2014,510(12):250-253.
参考文献 2
KUDRYASHOV S I,VINS V G,DANILOV P A,et al.Permanent optical bleaching in HPHT-diamond via aggregation of C-and NV-centers excited by visible-range femtosecond laser pulses[J].Carbon,2023,201(5):399-407.
参考文献 3
赵香港,郝秀清,岳彩旭,等.黑色金属的金刚石刀具加工技术研究进展[J].中国表面工程,2022,35(1):34-52.ZHAO Xianggang,HAO Xiuqing,YUE Caixu,et al.Research progress of diamond tool machining technology for ferrous metals[J].China Surface Engineering,2022,35(1):34-52.(in Chinese)
参考文献 4
WANG Xu,WANG Zhenquan,WANG Deguo,et al.A novel method for measuring and analyzing the interaction between drill bit and rock[J].Measurement,2018,121(1):344-354.
参考文献 5
YU Siyu,LIU Shetian,JIANG Xin,et al.Recent advances on electrochemistry of diamond related materials[J].Carbon,2022,200(5):517-542.
参考文献 6
ISABEL D B B M,MARTIN J M,AVILA J,et al.Diamond-like carbon coating under oleic acid lubrication:Evidence for graphene oxide formation in superlow friction[J].Scientific Report,2017,7(1):1-13.
参考文献 7
ZILIBOTTI G,RIGHI M C,FERRARIO M.Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces[J].Physical Review B.2009,79(7):1-10.
参考文献 8
KONICEK A R,GRIERSON D S,SUMANT A V,et al.Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films[J].Physical Review B,2012,85(15):1-15.
参考文献 9
代晓南,白玲,栗正新,等.聚晶金刚石高温高压合成工艺研究进展[J].超硬材料工程,2021,33(5):41-45.DAI Xiaonan,BAI Ling,LI Zhengxin,et al.Research progress in high temperature and high pressure synthesis of polycrystalline diamond[J].Superhard Material Engineering,2021,33(5):41-45.(in Chinese)
参考文献 10
LEDGERWOOD III L W,JAIN J R,HOFFMANN O J,et al.Downhole measurement and monitoring lead to an enhanced understanding of drilling vibrations and polycrystalline diamond compact bit damage[J].SPE Drilling & Completion,2013,28(3):254-262.
参考文献 11
CHEN Zhaoran,MA Dejiang,WANG Shanmin,et al.Wear resistance and thermal stability enhancement ofPDC sintered with Ti-coated diamond and cBN[J].International Journal of Refractory Metals and Hard Materials,2020,92(1):1-9.
参考文献 12
MENG Dezhong,YAN Gang,YUE Wen.Thermal damage mechanisms of Si-coated diamond powder based polycrystalline diamond[J].Journal of the European Ceramic Society,2018,38(13):4338-4345.
参考文献 13
BEN-NERIA O.Diamonds,compactness,and measure sequences[J].Journal of Mathematical Logic,2019,19(1):1-24.
参考文献 14
WOLFRUM A K,ANNE-KATHRIN,QUITZKE C,et al.Wear behavior of diamond-silicon nitride composites sintered with FAST/SPS[J].Wear,2017,396(1):172-181.
参考文献 15
QIN Wenbo,YUE Wen,WANG Chengbiao.Understanding integrated effects of humidity and interfacial transfer film formation on tribological behaviors of sintered polycrystalline diamond[J].RSC Advances,2015,5(66):53484-53496.
参考文献 16
MEDEIROS R B D,BARRETO L P P,GURGEL D P,et al.Study of tantalum as an alternative binder of polycrystalline diamond[J].International Journal of Refractory Metals and Hard Materials,2021,99(1):1-9.
参考文献 17
EZATPOUR H R,TORABI PARIZI M,EBRAHIMI G R,et al.Effect of hybrid carbonaceous reinforcement on structure,mechanical and wear properties of spark plasma sintered CrCoFeMnNi HEA/GNP+CNT composite[J].Journal of Alloys and Compounds,2022,922(1):1-25.
参考文献 18
DEVI G,PRIYA R,TAPAS BAPU B R,et al.Role of carbonaceous fillers in electromagnetic interference shielding behavior of polymeric composites:a review[J].Polymer Composites,2022,43(11):7701-7723.
参考文献 19
RAHMAN M M,ISLAM M,ROY R,et al.Carbon nanomaterial-based lubricants:review of recent developments[J].Lubricants,2022,10(11):281-309.
参考文献 20
BHOWMICK S,BANERJI A,ALPAS A T.Friction reduction mechanisms in multilayer graphene sliding against hydrogenated diamond-like carbon[J].Carbon,2016,109(1):795-804.
参考文献 21
SHA Xiaohua,FENG Bo,YUE Wen,et al.Comparison of tribological behaviors of polycrystalline diamonds synthesized by titanium-and boron-coated diamond particles[J].Diamond & Related Materials,2022,128(1):1-7.
参考文献 22
王彩利,刘慧苹,方海江.聚晶金刚石复合片的室温去钴工艺及耐磨性研究[J].超硬材料工程,2019,31(2):30-34.WANG Caili,LIU Huiping,FANG Haijiang.A study on Cobalt removal technique and wear resistance of polycrystalline diamond compact at indoor temperature[J].Superhard Material Engineering,2019,31(2):30-34.(in Chinese)
参考文献 23
SHA Xiaohua,YUE Wen,ZHANG Haichao,et al.Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders[J].Journal of Materials Science & Technology,2020,43(1):64-73.
参考文献 24
LOWE D,MACHIN G.Evaluation of methods for characterizing the melting curves of a high temperature cobalt-carbon fixed point to define and determine its melting temperature[J].Metrologia,2012,49(3):189-199.
参考文献 25
沈剑云,尹刚刚,姜波,等.微粉金刚石表面镀钛对钎焊磨具性能的影响[J].中国表面工程,2017,30(4):127-133.SHEN Jianyun,YIN Ganggang,JIANG Bo,et al.Effects of titanium coating of micro-powder diamond on properties of brazed abrasive grit tools[J].China Surface Engineering,2017,30(4):127-133.(in Chinese)
目录contents

    摘要

    聚晶金刚石(Polycrystalline diamond, PCD)机具在钻探破岩与切削过程中服役于边界润滑环境,湿度条件是影响其摩擦磨损性能及切削钻进效率的重要因素。采用磁控溅射技术在金刚石微粉表面沉积厚度为~500 nm 的钛薄膜,并选用镀钛金刚石微粉为原料烧结聚晶金刚石(Ti-polycrystalline diamond, Ti-PCD)。研究了 Ti-PCD 在 5%~50%相对湿度(Relative humidity, RH)条件下对磨氮化硅的摩擦磨损性能,利用 SEM、XRD、AES 等表征镀钛金刚石微粉和 Ti-PCD 的微观组织、表面形貌及相结构。采用光学显微镜、白光三维形貌仪、拉曼光谱仪分析 Ti-PCD 和氮化硅球的磨损形貌。结果表明,Ti-PCD 中金刚石晶粒与粘结剂钴界面处形成碳化钛过渡层。在相对湿度为 5%~50% RH 条件下,氮化硅磨斑处的碳质转移膜是影响 Ti-PCD 稳态摩擦因数的主要原因。5% RH 干燥环境下,摩擦滑移过程中碳原子重杂化过程形成连续均匀的碳质转移膜,获得超低的稳态摩擦因数 0.034。Ti-PCD 表面相对较疏水,水分子钝化作用减弱,有助于形成具有减摩作用的碳质转移膜,致使湿度环境下的稳态摩擦因数比传统 PCD 降低~30%。Ti-PCD 磨损在 5%~50% RH 湿度范围内逐渐减轻。Ti-PCD 中的碳化钛相发挥结合桥作用,利用界面效应强化粘结剂钴和金刚石的界面结合,抑制摩擦滑移过程中的金刚石颗粒剥落,提高 Ti-PCD 的耐磨性。应用金刚石微粉表面涂层技术制备减摩 Ti-PCD,从界面结合和补强增韧方面强化金刚石与粘结剂钴的界面状态,对设计制造高效长寿钻探机具有重要的研究意义。

    Abstract

    The polycrystalline diamond (PCD), sintered at a high temperature (1460-1500 ℃) and pressure (5-5.5 GPa), consists diamond particles and a cobalt binder. PCDs are widely used in geological and petroleum drilling systems, such as thrust bearings and drill bits, owing to their high hardness, toughness, thermal conductivity, and wear resistance. In geological drilling, PCD tools areused in a complex boundary lubrication environment in which the relative humidity (RH) significantly affects the tribological behavior and drilling efficiency. Coating diamond particles with strong carbide-forming elements has been proposed to strengthen the interfacial bonding between the diamond and cobalt binder in PCDs, which influences the tribological behavior. However, the tribological behavior of a PCD sintered by coated diamond particles at different RH levels, and the corresponding mechanisms, have yet to be studied in detail. A titanium (Ti) coating with a thickness of ~500 nm was deposited onto diamond particles via magnetron sputtering. The Ti-coated diamond particles were then sintered at high temperature and pressure to synthesize the Ti-PCD. The tribological properties of the Ti-PCD were studied at 5%-50% RH. The Ti-coated diamond particles and Ti-PCD were analyzed by scanning electron microscopy, X-ray diffraction, Auger electron spectroscopy, impact tests, and tribological tests. The wear morphology of the samples was analyzed by an optical microscope, a Nano Map-D three-dimensional white-light interferometer, and Raman spectroscopy. The results showed the formation of a titanium carbide transition layer between the diamond grain and cobalt binder in the Ti-PCD. The as-obtained titanium carbide phase promoted the tribological behavior of the Ti-PCD under humid conditions, including the reduction of the friction factor and enhancement of the wear resistance. The friction factor of the Ti-PCD tested at different RH levels had a run-in period and steady state. The friction factor significantly fluctuated during the run-in period and stabilized after ~8 min. The steady friction factor exhibited a rising trend with the RH level, increasing from 0.034 at 5% RH to 0.073 at 50% RH. The steady friction factor of the Ti-PCD at 5%-50% RH was affected by the carbonaceous transfer film on the worn silicon nitride surface. A low steady friction factor was generally accompanied by a high transfer film-covering fraction. A continuous transfer film induced by carbon hybridization was formed at 5% RH, leading to the lowest steady friction factor. A carbonaceous transfer film was formed by the layer-shearing action of massive tiny diamond grains exfoliated from the Ti-PCD surface, which significantly reduced the friction factor. The Ti-PCD surface was lyophobic, and the H2O dissociative passivation was weak. This facilitated the formation of the carbonaceous transfer film, which reduced the friction factor by 30% compared with that of pristine PCD (P-PCD) in humid environments. The wear rate of the Ti-PCD decreased from 2.4 × 10−11 mm3 /(N·mm) at 5% RH to 4 × 10−12 mm3 /(N·mm) at 50% RH. Diamond exfoliation during the sliding operation dominated the wear loss of the PCD, leading to massive spalling pits on the wear track. The Ti-PCD wear was much milder than that of the P-PCD, exhibiting the same turning trend as the RH level. The wear rate of the Ti-PCD at 5% RH was significantly lower than that of P-PCD (9.1 × 10−11 mm3 / (N·mm)). The high-temperature and high-pressure sintering of Ti-coated diamond particles significantly enhanced the wear resistance of the Ti-PCD. The titanium carbide phase inhibited diamond exfoliation by strengthening the interface bonding, which involved transforming the mechanical interaction between the diamond grains and cobalt binder into chemical bonding, thereby enhancing the wear resistance of the Ti-PCD. These results indicate that the tribological behavior of the Ti-PCD in humid environments can be significantly improved by introducing Ti-coated diamond particles, which mainly transfer the interfacial state of diamond particles and Ti-PCD. The Ti-coated diamond particles were used to synthesize the anti-friction Ti-PCD. The results showed that the interface state between the diamond grains and cobalt binder was strengthened by interfacial bonding, strength, and toughness reinforcement. This will be significant in the fabrication and application of efficient and durable drilling equipment.

  • 0 前言

  • 聚晶金刚石(Polycrystalline diamond,PCD)是由预合成金刚石微粉与粘结剂钴在高温高压 (1 450℃,5.5 GPa)环境下烧结的复合材料,硬度、耐磨性和冲击韧性优异,被广泛应用于地质钻探、机械切削、宝石加工和航空航天等领域[1-3]。在钻进破岩和切削过程中,钻头切削齿、推力轴承、导向机构等零部件服役于钻井液、泥浆润滑及水基润滑环境,高速、高载、强冲击等复杂工况下易出现润滑不良或干钻的边界润滑环境,湿度条件严重影响摩擦磨损性能及钻进效率[4-5]

  • 在湿度环境下,悬键钝化效应是影响 PCD 摩擦磨损性能的主要因素。ISABEL 等[6]指出水分子吸附的悬键钝化可使自配副细晶金刚石获得超低摩擦因数。ZILIBOTTI 等[7]利用分子动力学模拟解离形成 −H 和−OH,钝化金刚石表面未饱和键,弱化摩擦滑移界面间的粘合作用,有效改善材料的摩擦学性能,阐述了分子界面吸附作用对金刚石材料摩擦磨损行为的作用机理。KONICEK 等[8]研究了自配副超纳米晶金刚石在湿度条件下的摩擦磨损行为,指出其摩擦因数和磨损率随相对湿度水平的提高呈现下降趋势,湿度条件影响界面间的碳原子重杂化、氧化作用及悬键钝化效应。界面间吸附的水分子通过钝化界面未饱和碳原子,抑制界面间共价相互作用,进而影响界面摩擦化学反应。

  • 磨损是 PCD 材料在极端工况应用中的主要失效形式,通常表现为金刚石颗粒剥落。而金刚石微粉一般是机械嵌合于粘结剂钴,界面结合强度不足,且烧结气孔、杂质、不连续边界、位移等缺陷致使金刚石晶粒与粘结剂钴间的界面处成为 PCD 的薄弱区域[9-10]。研究表明,金刚石微粉表面镀膜技术可利用界面效应有效改善以上缺陷。涂层材料可选择镍、铜、钛、钨、钼、非金属陶瓷和树脂等,且可制备复合镀层;涂层沉积量有镀镍量 30%~55% 及镀铜量 50%等几种;涂层技术有电镀、化学镀、真空沉积、辉光放电气相沉积、真空微蒸发镀和磁控溅射等多种,可应用到金刚石聚晶与大颗粒优质单晶的制造领域[11-12]。对金刚石微粉表面沉积强碳相元素(如钛、钒、钼、钨、铬、锰等过渡族金属),可在高温环境与金刚石表层碳原子相互作用,产生金属碳化物[13]。WOLFRUM 等[14]采用放电等离子体烧结技术在金刚石颗粒表面沉积碳化硅薄膜,极大强化金刚石和基体材料的界面结合,减轻金刚石颗粒剥落,材料的磨损率值降低至 8 × 10−11 mm 3 /(N·mm)。在金刚石粉体表面沉积薄膜,可发挥结合桥作用,强化 PCD 材料中粘结剂和金刚石界面结合状态[13-14]。然而,镀膜金刚石粉体制备 PCD 在湿度环境下的摩擦磨损性能尚未见报道。

  • 本文采用磁控溅射技术在金刚石微粉表面沉积钛薄膜,并选用镀钛金刚石微粉为原料烧结制备聚晶金刚石(Ti-polycrystalline diamond,Ti-PCD),系统研究 Ti-PCD 在 5%~50%相对湿度(Relative humidity,RH)条件下的摩擦磨损性能,探究金刚石微粉表面镀钛对湿度环境下 Ti-PCD 摩擦磨损行为的作用机制,对设计制造高效长寿钻探机具有重要的研究意义。

  • 1 材料及方法

  • 1.1 试验材料

  • 1.1.1 金刚石微粉及钛薄膜制备

  • 对金刚石微粉表面沉积强碳化相钛元素,在高温烧结过程中可与金刚石表层碳原子相互作用,产生稳定的强碳化物,通过化学键合强化钴粘结剂和金刚石界面结合状态[13-14]。选用中南钻石公司生产的 GB / T6405-94 标准 ZNDRM 型 600 目(20~30 μm)人造金刚石微粉为原料,应用磁控溅射技术在金刚石微粉表面沉积钛薄膜,并选用镀钛金刚石微粉为主粉烧结制备 Ti-PCD 样品。试验前对金刚石微粉进行表面净化处理,依次使用 NaOH(10 wt.%)和 HNO3(30 wt.%)溶液粉体煮沸 30 min,并用蒸馏水清洗 2 或 3 次。将金刚石微粉置于磁控溅射镀膜设备中沉积钛薄膜,腔室真空度为 5 mPa,钛靶纯度高于 99.99%,溅射功率为 150 W、靶电流为 0.5 A、工作气压为 0.4 Pa,溅射时间为 30 min,腔室温度为室温。镀膜过程中,对金刚石料盘进行超声振动,保证金刚石微粉均匀镀覆和无漏镀。

  • 1.1.2 聚晶金刚石复合片

  • 选用 6×8 MN 型铰链式六面顶液压设备制备聚晶金刚石复合片。将镀钛金刚石微粉和硬质合金粉体装填于不锈钢模具中,利用液压机在 30 MPa 压力下压制成坯,把毛坯放入石墨模具中,在真空环境下还原处理 24 h 后将石墨组装块放入叶腊石块中组装并置于六面顶压机内,待合成中心压力升至 5.5 GPa 后开始加热,在 680℃时保持 2 min 后升温至 1 450℃维持 15 min 烧结制备聚晶金刚石复合片。将经过高温高压制备的聚晶金刚石复合片混合硬质合金颗粒进行球磨处理,酸洗并对出现棱角处进行抛光处理。聚晶金刚石复合片直径为 45 mm,厚度为 2.9 mm,包括上层 Ti-PCD 与下层硬质合金基底,其中,Ti-PCD 厚度约为 0.54 mm,基底厚度约为 2.37 mm。作为对照组,选用未镀膜金刚石微粉烧结制备传统聚晶金刚石(Pristine-polycrystalline diamond,P-PCD)。

  • 1.2 摩擦磨损试验

  • 选用 CSM-TRN 型多功能摩擦磨损试验机,在自制相对湿度可控腔室内完成摩擦磨损试验。试验过程中,向装有去离子水的玻璃瓶中通入干燥氮气获得潮湿氮气,并与干燥氮气混合,通过流量计调整潮湿氮气与干燥氮气比例,进而控制混合空气的相对湿度,待相对湿度稳定 15 min 后开始进行摩擦磨损试验。相对湿度条件选择 5%、10%、20%、30%、 40%和 50% RH,温度为室温,载荷为 20 N(对应的平均接触应力为 1.89 GPa),转速为 400 r/ min,旋转半径为 4 mm。对磨球选用直径为 6 mm 的氮化硅(Silicon nitride,Si3N4)陶瓷球(硬度为 14 GPa),持续时间为 30 min。利用 Archard 公式 V = k·F·s 计算 Ti-PCD 和 Si3N4对磨球在相对湿度环境下的磨损率,其中 V 为磨损体积(m 3),k 为磨损率 (mm 3 /(N·mm)),F 为法向载荷(N),s 为总滑动距离(m)。

  • 1.3 分析测试方法

  • 应用 JSM-7001F 型场发射扫描电子显微镜 (Scanning electron microscope,SEM)观测镀钛金刚石微粉和 Ti-PCD 样品的表面形貌。应用 Inca Oxford 型能谱仪(Energy dispersive spectroscopy,EDS)分析镀钛金刚石微粉表面的元素分布。采用 D / max-2000 型 X 射线衍射仪(X-ray diffraction,XRD)分析样品的物相组成,Cu-Kа 光源,连续扫描模式,掠射角 2°,扫描范围 20°~90°,扫描速率 4(°)/ min。应用 Lab RAM HR Evolution 型拉曼光谱仪测试 Si3N4 球磨斑表面转移膜的碳结构, Ar+ 光源(波长 514.5 nm),激光功率 50 mW,光斑直径 2 μm,扫描时间 30 s,位移范围 500~3 000 cm−1。选用 PHI-710 型纳米扫描俄歇系统 (Auger electron spectroscopy,AES)分析镀钛金刚石微粉表层的碳、氧、钛元素随深度的分布,并通过溅射速率计算钛薄膜厚度,Ar+ 离子刻蚀样品表面,溅射速率 15 nm / min,入射角 30°,热氧化 SiO2 标样,分析室真空度高于 0.52 μPa。选用 S3500SI 型激光粒度粒形分析仪对金刚石微粉进行粒度分析,颗粒折射率 2.42,水折射率 1.33。检测前将适量金刚石微粉置于去离子水中,放入 2~5 g / L 六偏磷酸钠溶液,并超声分散处理 5~20 min。采用 DataphysicsOCA25 型视频光学接触角测量仪,利用座滴法测试 Ti-PCD 样品的表面静接触角。应用 PTM1200-A1 型冲击试验机进行摆锤式冲击试验,将样品切割成 42 mm×3 mm×3 mm 小条,跨距 40 mm,每组试验重复 5 次。采用 BX-51M 型金相显微镜和 NanoMap-D 型三维白光形貌仪观察 Ti-PCD 样品及 Si3N4 球的磨损形貌。

  • 2 结果与讨论

  • 2.1 镀钛金刚石微粉的组织结构

  • 图1a~1c 镀钛金刚石微粉的 SEM 形貌及 EDS 元素分布面谱。如图所示,镀钛金刚石微粉呈现不规则形状,且表面可见明显的机械球磨工艺形成的沟痕。碳元素和钛元素的分布轮廓相同,说明沉积的钛层均匀地分布于金刚石颗粒表面,无杂质掺杂,镀覆效果良好。采用 XRD 分析镀钛金刚石微粉的相结构,结果显示(图1d),位于 35.1°、38.1°与 40.0°处的衍射峰对应钛相(100)、(002)与(101) 晶面,验证钛薄膜的存在,表明沉积处理过程中未发生明显的氧化反应。应用 AES 分析镀钛金刚石微粉表层碳、氧和钛元素随深度的分布规律,通过溅射速率计算金刚石微粉表面钛薄膜的厚度。如图1e 所示,碳元素和钛元素的分布可分为三个区间,其中,从镀钛金刚石颗粒表面到 500 nm 深度为第一区间,钛元素维持~80%的高占比;第二区间为过渡层,区间深度范围为 500~950 nm,钛元素含量随着溅射深度连续递减,碳元素含量则呈现相反趋势,说明金刚石颗粒中的碳在沉积过程中不断向钛层扩散,进而形成过渡层,碳元素向钛层的扩散过程可能归因于金刚石颗粒表层碳与残余环境氧的氧化作用;第三区间为超过 950 nm 深度的部分,该区间的碳元素含量接近 100%,几乎无法检测到钛元素,对应金刚石颗粒的特征。上述试验结果表明,金刚石颗粒表面均匀镀覆钛薄膜,厚度约为 500 nm。镀钛金刚石微粉的粒径分布(图1f)基本符合正态分布,其平均粒径约为 25 μm。

  • 图1 镀钛金刚石微粉表征

  • Fig.1 Typical characteristics of Ti-coated diamond particles

  • 2.2 Ti-PCD 样品的组织结构

  • 选用镀钛金刚石微粉在高温高压环境下烧结 Ti-PCD,对测试样品进行形貌与相结构的表征。如图2a 所示,Ti-PCD 表面可以观察到明显的金刚石轮廓,且边缘分布有大量气孔和粘结剂钴,样品表面粗糙度为 3~4 nm。此外,样品表面可观察到大量金刚石-金刚石键,说明烧结 Ti-PCD 实现了良好金刚石-金刚石结合。Ti-PCD 的 XRD 能谱(图2b)未检测到钛峰,而是衍射角为 35.9°、41.8°和 60.7°的碳化钛的(111)、 (200)和(220)晶面,说明金刚石微粉表面钛层在复合材料烧结过程中参与反应,产生碳化钛硬质相。

  • 图2 Ti-PCD 样品的 SEM 形貌和 XRD 能谱

  • Fig.2 SEM image and XRD pattern of the Ti-PCD specimen

  • 2.3 摩擦磨损行为

  • 图3a 为相对湿度环境下 Ti-PCD 对磨 Si3N4的摩擦因数曲线。如图所示,Ti-PCD / Si3N4在不同相对湿度条件下的摩擦因数均存在~5 min 的跑合期,随后趋于波动较小的稳态值。由图3b 可以看出,随着相对湿度水平提高,稳态摩擦因数呈现递增趋势,在相对湿度为 5% RH 条件下,摩擦因数出现最小值0.03 4,在相对湿度为 50% RH 条件下,摩擦因数达到最大值 0.073。此外,对比 P-PCD 的摩擦因数[15],可以发现,样品的稳态摩擦因数在相对湿度水平为 5%~50% RH 范围内均呈现上升趋势,其中,Ti-PCD 的稳态摩擦因数相对 P-PCD 整体降低~30%,可能归因于样品烧结过程中镀钛金刚石微粉的引入。

  • 图3 不同相对湿度条件下 Ti-PCD / Si3N4的摩擦因数曲线及稳态摩擦因数

  • Fig.3 Friction factor curves and mean steady-stage friction factors of Ti-PCD / Si3N4 obtained at various RH levels

  • 相对湿度环境下 Ti-PCD 磨痕的三维白光形貌和二维轮廓曲线分别如图4 和图5a 所示。在相对湿度为 5% RH 条件下,磨痕的宽度与深度最大,随着相对湿度水平的增加,磨痕的宽度与深度逐渐减小。此外,在相对湿度为 5% RH 和 10% RH 条件下,磨痕表面可以观察到犁沟及剥落坑,可能是摩擦滑移过程中发生的磨粒磨损所致。在摩擦跑和阶段, Ti-PCD 表面的微金刚石颗粒容易剥落,硬质金刚石颗粒不断刮擦、犁削接触面,致使磨痕表面出现明显的犁沟。

  • 图4 不同相对湿度条件下 Ti-PCD 磨痕的三维形貌

  • Fig.4 Three-dimensional surface topographies of the worn Ti-PCD operated at various RH levels

  • 图5 不同相对湿度条件下 Ti-PCD 磨痕横截面变化曲线和 PCD 样品的磨损率

  • Fig.5 Typical surface profiles across the wear tracks of Ti-PCD and wear rates of the worn PCD discs tested at different RH levels

  • 如图5 所示,Ti-PCD 的磨损率在相对湿度条件下呈现递减趋势,在相对湿度为 5% RH 条件下出现最大磨损率~2.4×10−11 mm 3 /(N·mm)。相比 P-PCD 而言,样品磨损率相对于湿度条件的变化趋势不变,但 Ti-PCD 磨损整体减轻,尤其是在相对湿度为 5% RH 条件下,Ti-PCD 的磨损率远低于 P-PCD (~9.1×10−11 mm 3 /(N·mm))。

  • 图6 为相对湿度环境下 Si3N4 磨斑的光学形貌,在对磨球上可以看到致密的、连续覆盖的彩色物质,且覆盖程度与均匀性随着相对湿度水平的提高显著降低。在相对湿度为 5% RH 条件下,磨斑表面基本完全被彩色物质覆盖,这有可能与该湿度条件下的低摩擦因数有关。在相对湿度为 50% RH 条件下,磨斑表面仅能看到较浅的彩色物质。Si3N4磨斑表面彩色物质的形成可能是由于配副对磨过程中发生了材料的转移,在摩擦滑移界面间形成了转移膜,不同相对湿度条件下形成的转移膜的量与连续性也存在较大差异。

  • 图6 不同相对湿度条件下 Si3N4 对磨球磨斑光学形貌(×20)

  • Fig.6 Optical images of the worn Si3N4 mating balls operated at various RH levels (×20)

  • 图7 为不同相对湿度条件下 Si3N4 对磨球磨损率。结果表明,在相对湿度为 5% RH 条件下,Si3N4 对磨球磨损严重,磨损率出现最大值~4.67× 10−10 mm 3 /(N·mm)。随着相对湿度水平增加,磨斑直径逐渐较小,磨损率逐渐降低,与 Ti-PCD 磨痕的变化规律相对应。对比与 P-PCD 对磨后的磨损率,Si3N4 与 Ti-PCD 对磨时磨损较为严重。

  • 图7 不同相对湿度条件下 Si3N4对磨球磨损率

  • Fig.7 Wear rates of the worn Si3N4 mating ball tested at different RH levels

  • 为了进一步探究彩色转移膜的成分,对相对湿度环境下形成 Si3N4 磨斑表面的彩色区域进行拉曼光谱分析。从图8 可以看出,不同相对湿度条件下的谱图均出现了位于 400~1 200 cm−1 范围的 Si3N4 特征峰,对应未磨损的对磨球成分。此外,谱图亦显示了~1 350 cm−1、~1 580 cm−1 和~2 700 cm−1 处的特征峰,其中,位于~1 350 cm−1 处的 sp 3 杂化金刚石峰位,称为 D 峰,位于~1 580 cm−1 处的 sp 2杂化晶体石墨峰位,称为 G 峰,出现在~2 700 cm−1 处对石墨层数较敏感的峰位,称为 2D 峰[16]。D 峰、 G 峰和 2D 峰的出现,表明 Si3N4 磨斑表面的彩色物质为石墨化的碳质转移膜。在干燥环境下,D 峰、 G 峰和 2D 峰演变成尖锐的高强度峰,表明碳原子团簇状的增加,磨斑表面形成的石墨有序性加强。证明转移膜形成的过程中有碳原子重杂化过程,sp 3 杂化的碳原子通过重杂化过程形成 sp 2 杂化的石墨结构,微晶石墨以及无序碳在摩擦滑移界面间形成,有序稳定的石墨结构是碳质转移膜降低界面间摩擦力的主要原因[17-18]

  • 图8 不同相对湿度条件下 Si3N4磨斑表面的拉曼图谱

  • Fig.8 Raman spectra of the worn Si3N4 mating balls operated at different RH levels

  • 不同相对湿度条件下 Si3N4 磨斑表面碳质转移膜的量与连续性存在较大差异。图9 为不同相对湿度条件下 Si3N4 磨斑表面转移膜覆盖率与稳态摩擦因数对比图,如图所示,在相对湿度为 5% RH 条件下,碳质转移膜覆盖率高达 87.5%,对应的稳态摩擦因数值为 0.034。随着相对湿度水平提高,转移膜覆盖率逐渐减小,对应的稳态摩擦因数则出现增加趋势,也就是说,Ti-PCD / Si3N4 的低稳态摩擦因数伴随着高覆盖率的碳质转移膜,表明磨斑表面的碳质转移膜具有减摩作用。在干燥环境下,配副摩擦滑移过程中碳原子重杂化过程在摩擦界面间形成有序稳定的石墨结构,是很好的固体润滑材料,剪切阻力低,可显著降低摩擦力。研究表明,摩擦界面形成的具有减摩作用的转移膜主导类金刚石膜的摩擦调控机制[19]。BHOWMICK 等[20]指出摩擦界面形成石墨转移膜是类金刚石对磨 52100 钢出现低摩擦的必要条件。

  • 图9 不同相对湿度条件下 Si3N4磨斑表面转移膜覆盖率与稳态摩擦因数对比图

  • Fig.9 Comparison between transfer films covering fraction and mean friction factor in steady-state as a function of RH levels

  • 在干燥条件下,环境中的水分子浓度超低,在摩擦表界面存在大量的未饱和碳原子,其表面能较高,滑移过程中极易在界面处形成强共价相互作用,导致化学键断裂,新的未饱和原子来不及被钝化而形成新的共价相互作用。共价键的断裂与形成强化界面剪切作用,致使 Si3N4 滑移界面形成碳质转移膜,同时加重配副材料磨损,Ti-PCD 磨痕处甚至出现了金刚石颗粒的剥落。当相对湿度水平增加时,测试环境中的水分子浓度足够起到悬键钝化效果,能及时饱和悬空键,抑制界面间转移膜的形成,材料磨损也相对减弱,摩擦因数呈现增加趋势。

  • Si3N4对磨 Ti-PCD 后形成磨斑表面的碳质转移膜覆盖率整体偏高,对应的稳态摩擦因数值较 P-PCD 降低约 30%,表明镀钛金刚石微粉的引入有助于在材料摩擦滑移界面形成连续、均匀的碳质转移膜,进而起到减摩作用。碳质转移膜的形成与配副材料的表面能密切相关,镀钛金刚石微粉可调控 Ti-PCD 的表界面状态,进而影响其摩擦性能。图10 为 P-PCD 与 Ti-PCD 样品的润湿角测试结果,如图所示,P-PCD 的润湿角为 65.7±2.9°,亲水性良好,其表面可以通过物理或化学作用吸附水分子,产生悬键钝化效果,降低界面的表面能,饱和的碳原子一定程度上阻止了界面间的共价相互作用,抑制摩擦滑移过程中碳质转移膜的形成。此外, Ti-PCD 的润湿角为 76.5±3.2°,样品表面相对较疏水,水分子钝化作用减弱,有助于形成具有减摩作用的碳质转移膜,这是 Ti-PCD 在湿度环境下获得较低稳态摩擦因数的重要原因。此外,摩擦滑移界面间的共价相互作用同时主导 Si3N4 对磨球的磨损。在湿度条件为 5% RH 的干燥条件下,环境水分子的悬键钝化效果差,摩擦滑移界面间的共价相互作用强,Si3N4 对磨球磨损严重。随着相对湿度增大,大量的环境水分子钝化摩擦滑移界面,抑制配副间的共价相互作用,Si3N4 对磨球磨损逐渐减轻。与 P-PCD 相比,Ti-PCD 相对疏水的表面一定程度上抑制环境水分子的悬键钝化作用,摩擦滑移界面间强的共价相互作用致使 Si3N4 对磨球磨损严重。

  • 图10 PCD 样品表面的润湿角测试结果

  • Fig.10 Typical water contact angle measuring images of the PCD surface

  • PCD 材料主要的磨损失效形式为金刚石颗粒剥落,与金刚石晶粒和粘结剂钴的界面结合状态密切相关[21]。Ti-PCD 摩擦过程中金刚石颗粒剥落减轻,耐磨性较 P-PCD 优异。样品的冲击试验结果显示,P-PCD 和 Ti-PCD 样品的平均冲击韧性分别为 3.4±0.3 J/ cm2 和 4.6±0.6 J/ cm2,表明对金刚石微粉进行镀钛处理,并以其作为原料烧结制备 Ti-PCD 可有效强化材料的界面结合,一定程度上抑制强冲击下的金刚石颗粒剥落,进而增强材料的耐磨性。

  • TiPCD 样品的 XRD 分析能谱中出现碳化钛峰,而非镀钛金刚石微粉的钛峰,表明样品烧结制备过程中生成了碳化钛硬质相。图11 为 Ti-PCD 样品冲击断面的 SEM 形貌和 EDS 线扫描能谱,冲击断面处可以看到金刚石颗粒和剥落坑,可能是冲击处理过程中的沿晶断裂所导致。EDS 线扫描路径依次穿越金刚石颗粒、过渡界面和剥落坑,其中,碳元素在金刚石颗粒区域保持较高强度,经过界面处骤减后迅速回升至稳定阶段;钛元素强度始终较低,在过渡界面处骤增后迅速回落,说明 Ti-PCD 中的碳化钛硬质相存在于金刚石颗粒边缘处。

  • 图11 Ti-PCD 样品冲击断面 SEM 形貌及 EDS 线扫描能谱(图 a 中箭头指示线扫描区域)

  • Fig.11 SEM image and EDS line scans of the cross-sectional surface of Ti-PCD (the scanning area is revealed by the arrow in Fig.11a)

  • 钛原子与碳原子的反应温度约为 400℃,远低于粘结剂钴的熔点(~1 490℃),Ti-PCD 烧结过程中,金刚石颗粒与钛薄膜反应生成碳化钛硬质相,随着后续温度逐渐升高,粘结剂钴熔融[22]。相对于粘结剂钴,金刚石和碳化钛间的界面能较低, Ti-PCD 中的碳化钛临近金刚石填充于颗粒间隙[23-24]。P-PCD 中的金刚石微粉通常是机械嵌合于粘结剂钴中,界面结合强度差[25]。而 Ti-PCD 中稳定的碳化钛相可发挥结合桥作用,利用界面效应强化粘结剂钴和金刚石界面的结合状态,实现机械结合向化学结合的转变。同时,大量 D-D 键的存在可有效保证金刚石颗粒间的结合,故而,Ti-PCD 在摩擦滑移过程中的金刚石颗粒剥落显著减轻,样品在湿度环境下呈现表现出优异的耐磨性。

  • 3 结论

  • (1)采用磁控溅射技术在金刚石微粉表面沉积钛薄膜,并选用镀钛金刚石微粉为原料烧结制备 Ti-PCD,金刚石颗粒和粘结剂钴界面间形成了碳化钛过渡层。

  • (2)在 5%~50% RH 湿度环境下,Si3N4 磨斑表面的碳质转移膜是影响 Ti-PCD 稳态摩擦因数的主要原因。5% RH 干燥环境下,摩擦滑移过程中碳原子重杂化过程形成连续、均匀的碳质转移膜,获得超低的稳态摩擦因数 0.034。Ti-PCD 表面相对疏水,水分子钝化作用减弱,有助于形成具有减摩作用的碳质转移膜,致使 Ti-PCD 湿度环境下的稳态摩擦因数较 P-PCD 降低约 30%。镀钛金刚石微粉烧结 Ti-PCD 可强化材料在湿度环境下的摩擦性能。

  • (3)金刚石颗粒剥落是主要的磨损失效形式, Ti-PCD 磨损在 5%~50% RH 湿度范围内逐渐减轻。 Ti-PCD 中稳定的碳化钛相发挥结合桥作用,利用界面效应强化粘结剂钴和金刚石界面的结合状态,实现机械结合向化学结合的转变,抑制摩擦滑移过程中的金刚石颗粒剥落,显著强化材料耐磨性。镀钛金刚石微粉烧结 Ti-PCD 可强化材料在湿度环境下的耐磨性。

  • 参考文献

    • [1] HUANG Quan,YU Dongli,XU Bo,et al.Nanotwinned diamond with unprecedented hardness and stability[J].Nature,2014,510(12):250-253.

    • [2] KUDRYASHOV S I,VINS V G,DANILOV P A,et al.Permanent optical bleaching in HPHT-diamond via aggregation of C-and NV-centers excited by visible-range femtosecond laser pulses[J].Carbon,2023,201(5):399-407.

    • [3] 赵香港,郝秀清,岳彩旭,等.黑色金属的金刚石刀具加工技术研究进展[J].中国表面工程,2022,35(1):34-52.ZHAO Xianggang,HAO Xiuqing,YUE Caixu,et al.Research progress of diamond tool machining technology for ferrous metals[J].China Surface Engineering,2022,35(1):34-52.(in Chinese)

    • [4] WANG Xu,WANG Zhenquan,WANG Deguo,et al.A novel method for measuring and analyzing the interaction between drill bit and rock[J].Measurement,2018,121(1):344-354.

    • [5] YU Siyu,LIU Shetian,JIANG Xin,et al.Recent advances on electrochemistry of diamond related materials[J].Carbon,2022,200(5):517-542.

    • [6] ISABEL D B B M,MARTIN J M,AVILA J,et al.Diamond-like carbon coating under oleic acid lubrication:Evidence for graphene oxide formation in superlow friction[J].Scientific Report,2017,7(1):1-13.

    • [7] ZILIBOTTI G,RIGHI M C,FERRARIO M.Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces[J].Physical Review B.2009,79(7):1-10.

    • [8] KONICEK A R,GRIERSON D S,SUMANT A V,et al.Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films[J].Physical Review B,2012,85(15):1-15.

    • [9] 代晓南,白玲,栗正新,等.聚晶金刚石高温高压合成工艺研究进展[J].超硬材料工程,2021,33(5):41-45.DAI Xiaonan,BAI Ling,LI Zhengxin,et al.Research progress in high temperature and high pressure synthesis of polycrystalline diamond[J].Superhard Material Engineering,2021,33(5):41-45.(in Chinese)

    • [10] LEDGERWOOD III L W,JAIN J R,HOFFMANN O J,et al.Downhole measurement and monitoring lead to an enhanced understanding of drilling vibrations and polycrystalline diamond compact bit damage[J].SPE Drilling & Completion,2013,28(3):254-262.

    • [11] CHEN Zhaoran,MA Dejiang,WANG Shanmin,et al.Wear resistance and thermal stability enhancement ofPDC sintered with Ti-coated diamond and cBN[J].International Journal of Refractory Metals and Hard Materials,2020,92(1):1-9.

    • [12] MENG Dezhong,YAN Gang,YUE Wen.Thermal damage mechanisms of Si-coated diamond powder based polycrystalline diamond[J].Journal of the European Ceramic Society,2018,38(13):4338-4345.

    • [13] BEN-NERIA O.Diamonds,compactness,and measure sequences[J].Journal of Mathematical Logic,2019,19(1):1-24.

    • [14] WOLFRUM A K,ANNE-KATHRIN,QUITZKE C,et al.Wear behavior of diamond-silicon nitride composites sintered with FAST/SPS[J].Wear,2017,396(1):172-181.

    • [15] QIN Wenbo,YUE Wen,WANG Chengbiao.Understanding integrated effects of humidity and interfacial transfer film formation on tribological behaviors of sintered polycrystalline diamond[J].RSC Advances,2015,5(66):53484-53496.

    • [16] MEDEIROS R B D,BARRETO L P P,GURGEL D P,et al.Study of tantalum as an alternative binder of polycrystalline diamond[J].International Journal of Refractory Metals and Hard Materials,2021,99(1):1-9.

    • [17] EZATPOUR H R,TORABI PARIZI M,EBRAHIMI G R,et al.Effect of hybrid carbonaceous reinforcement on structure,mechanical and wear properties of spark plasma sintered CrCoFeMnNi HEA/GNP+CNT composite[J].Journal of Alloys and Compounds,2022,922(1):1-25.

    • [18] DEVI G,PRIYA R,TAPAS BAPU B R,et al.Role of carbonaceous fillers in electromagnetic interference shielding behavior of polymeric composites:a review[J].Polymer Composites,2022,43(11):7701-7723.

    • [19] RAHMAN M M,ISLAM M,ROY R,et al.Carbon nanomaterial-based lubricants:review of recent developments[J].Lubricants,2022,10(11):281-309.

    • [20] BHOWMICK S,BANERJI A,ALPAS A T.Friction reduction mechanisms in multilayer graphene sliding against hydrogenated diamond-like carbon[J].Carbon,2016,109(1):795-804.

    • [21] SHA Xiaohua,FENG Bo,YUE Wen,et al.Comparison of tribological behaviors of polycrystalline diamonds synthesized by titanium-and boron-coated diamond particles[J].Diamond & Related Materials,2022,128(1):1-7.

    • [22] 王彩利,刘慧苹,方海江.聚晶金刚石复合片的室温去钴工艺及耐磨性研究[J].超硬材料工程,2019,31(2):30-34.WANG Caili,LIU Huiping,FANG Haijiang.A study on Cobalt removal technique and wear resistance of polycrystalline diamond compact at indoor temperature[J].Superhard Material Engineering,2019,31(2):30-34.(in Chinese)

    • [23] SHA Xiaohua,YUE Wen,ZHANG Haichao,et al.Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders[J].Journal of Materials Science & Technology,2020,43(1):64-73.

    • [24] LOWE D,MACHIN G.Evaluation of methods for characterizing the melting curves of a high temperature cobalt-carbon fixed point to define and determine its melting temperature[J].Metrologia,2012,49(3):189-199.

    • [25] 沈剑云,尹刚刚,姜波,等.微粉金刚石表面镀钛对钎焊磨具性能的影响[J].中国表面工程,2017,30(4):127-133.SHEN Jianyun,YIN Ganggang,JIANG Bo,et al.Effects of titanium coating of micro-powder diamond on properties of brazed abrasive grit tools[J].China Surface Engineering,2017,30(4):127-133.(in Chinese)

  • 参考文献

    • [1] HUANG Quan,YU Dongli,XU Bo,et al.Nanotwinned diamond with unprecedented hardness and stability[J].Nature,2014,510(12):250-253.

    • [2] KUDRYASHOV S I,VINS V G,DANILOV P A,et al.Permanent optical bleaching in HPHT-diamond via aggregation of C-and NV-centers excited by visible-range femtosecond laser pulses[J].Carbon,2023,201(5):399-407.

    • [3] 赵香港,郝秀清,岳彩旭,等.黑色金属的金刚石刀具加工技术研究进展[J].中国表面工程,2022,35(1):34-52.ZHAO Xianggang,HAO Xiuqing,YUE Caixu,et al.Research progress of diamond tool machining technology for ferrous metals[J].China Surface Engineering,2022,35(1):34-52.(in Chinese)

    • [4] WANG Xu,WANG Zhenquan,WANG Deguo,et al.A novel method for measuring and analyzing the interaction between drill bit and rock[J].Measurement,2018,121(1):344-354.

    • [5] YU Siyu,LIU Shetian,JIANG Xin,et al.Recent advances on electrochemistry of diamond related materials[J].Carbon,2022,200(5):517-542.

    • [6] ISABEL D B B M,MARTIN J M,AVILA J,et al.Diamond-like carbon coating under oleic acid lubrication:Evidence for graphene oxide formation in superlow friction[J].Scientific Report,2017,7(1):1-13.

    • [7] ZILIBOTTI G,RIGHI M C,FERRARIO M.Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces[J].Physical Review B.2009,79(7):1-10.

    • [8] KONICEK A R,GRIERSON D S,SUMANT A V,et al.Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films[J].Physical Review B,2012,85(15):1-15.

    • [9] 代晓南,白玲,栗正新,等.聚晶金刚石高温高压合成工艺研究进展[J].超硬材料工程,2021,33(5):41-45.DAI Xiaonan,BAI Ling,LI Zhengxin,et al.Research progress in high temperature and high pressure synthesis of polycrystalline diamond[J].Superhard Material Engineering,2021,33(5):41-45.(in Chinese)

    • [10] LEDGERWOOD III L W,JAIN J R,HOFFMANN O J,et al.Downhole measurement and monitoring lead to an enhanced understanding of drilling vibrations and polycrystalline diamond compact bit damage[J].SPE Drilling & Completion,2013,28(3):254-262.

    • [11] CHEN Zhaoran,MA Dejiang,WANG Shanmin,et al.Wear resistance and thermal stability enhancement ofPDC sintered with Ti-coated diamond and cBN[J].International Journal of Refractory Metals and Hard Materials,2020,92(1):1-9.

    • [12] MENG Dezhong,YAN Gang,YUE Wen.Thermal damage mechanisms of Si-coated diamond powder based polycrystalline diamond[J].Journal of the European Ceramic Society,2018,38(13):4338-4345.

    • [13] BEN-NERIA O.Diamonds,compactness,and measure sequences[J].Journal of Mathematical Logic,2019,19(1):1-24.

    • [14] WOLFRUM A K,ANNE-KATHRIN,QUITZKE C,et al.Wear behavior of diamond-silicon nitride composites sintered with FAST/SPS[J].Wear,2017,396(1):172-181.

    • [15] QIN Wenbo,YUE Wen,WANG Chengbiao.Understanding integrated effects of humidity and interfacial transfer film formation on tribological behaviors of sintered polycrystalline diamond[J].RSC Advances,2015,5(66):53484-53496.

    • [16] MEDEIROS R B D,BARRETO L P P,GURGEL D P,et al.Study of tantalum as an alternative binder of polycrystalline diamond[J].International Journal of Refractory Metals and Hard Materials,2021,99(1):1-9.

    • [17] EZATPOUR H R,TORABI PARIZI M,EBRAHIMI G R,et al.Effect of hybrid carbonaceous reinforcement on structure,mechanical and wear properties of spark plasma sintered CrCoFeMnNi HEA/GNP+CNT composite[J].Journal of Alloys and Compounds,2022,922(1):1-25.

    • [18] DEVI G,PRIYA R,TAPAS BAPU B R,et al.Role of carbonaceous fillers in electromagnetic interference shielding behavior of polymeric composites:a review[J].Polymer Composites,2022,43(11):7701-7723.

    • [19] RAHMAN M M,ISLAM M,ROY R,et al.Carbon nanomaterial-based lubricants:review of recent developments[J].Lubricants,2022,10(11):281-309.

    • [20] BHOWMICK S,BANERJI A,ALPAS A T.Friction reduction mechanisms in multilayer graphene sliding against hydrogenated diamond-like carbon[J].Carbon,2016,109(1):795-804.

    • [21] SHA Xiaohua,FENG Bo,YUE Wen,et al.Comparison of tribological behaviors of polycrystalline diamonds synthesized by titanium-and boron-coated diamond particles[J].Diamond & Related Materials,2022,128(1):1-7.

    • [22] 王彩利,刘慧苹,方海江.聚晶金刚石复合片的室温去钴工艺及耐磨性研究[J].超硬材料工程,2019,31(2):30-34.WANG Caili,LIU Huiping,FANG Haijiang.A study on Cobalt removal technique and wear resistance of polycrystalline diamond compact at indoor temperature[J].Superhard Material Engineering,2019,31(2):30-34.(in Chinese)

    • [23] SHA Xiaohua,YUE Wen,ZHANG Haichao,et al.Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders[J].Journal of Materials Science & Technology,2020,43(1):64-73.

    • [24] LOWE D,MACHIN G.Evaluation of methods for characterizing the melting curves of a high temperature cobalt-carbon fixed point to define and determine its melting temperature[J].Metrologia,2012,49(3):189-199.

    • [25] 沈剑云,尹刚刚,姜波,等.微粉金刚石表面镀钛对钎焊磨具性能的影响[J].中国表面工程,2017,30(4):127-133.SHEN Jianyun,YIN Ganggang,JIANG Bo,et al.Effects of titanium coating of micro-powder diamond on properties of brazed abrasive grit tools[J].China Surface Engineering,2017,30(4):127-133.(in Chinese)

  • 手机扫一扫看