en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

谢启,男,1993年出生,博士研究生。主要研究方向为物理气相沉积。E-mail:xieqi1993@163.com

付志强,男,1970年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学表面工程、功能薄膜。E-mail:fuzq@cugb.edu.cn

通讯作者:

付志强,男,1970年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学表面工程、功能薄膜。E-mail:fuzq@cugb.edu.cn

中图分类号:TG156;TB43

DOI:10.11933/j.issn.1007−9289.20221231001

参考文献 1
ZHAO L L,ZHOU K C,TANG D,et al.Experimental and numerical study on friction and wear performance of hot extrusion die materials[J].Materials,2022,15(5):1798.
参考文献 2
BJORK T,WESTERGARD R,HOGMARK S.Wear of surface treated dies for aluminum extrusion:A case study[J].Wear,2001,249(3):316-323.
参考文献 3
TERCELJ M,SMOLEJ A,VECKO-PIRTOVSEK T.Varieties of gas and ionic nitrided microstructures in narrow gaps of AISI H10 dies for Al hot extrusion and their wear resistance(Ultra-precision machining)[C]//Proceedings of International Conference on Leading Edge Manufacturing in Century,LEM21,October 19-22,2005,Nagoya,Japan:The Japan Society of Mechanical Engineers,2015:138-140.
参考文献 4
BIROL Y.Analysis of wear of a gas nitrided H13 tool steel die in aluminum extrusion[J].Engineering Failure Analysis,2012,26:203-210.
参考文献 5
DUMAN K,KARABEYOGLU S S,YAMAN P,et al.Effect of nitriding conditions and operation temperatures on dry sliding wear properties of the aluminum extrusion die steel in the industry[J].Materials Today Communications,2022,31:103628.
参考文献 6
THEWES A,BROCKER L,GEORGE E T K,et al.Ti-Si-B-C-N plasma enhanced chemical vapor deposition nanocomposite coatings for high temperature applications[J].Thin Solid Films,2022,760:139507.
参考文献 7
FUNAZUKA T,DOHDA K,TAKATSUJI N,et al.Effect of die coating on surface crack depth of hot extruded 7075 aluminum alloy[J].Friction,2023,11(7):1212-1224.
参考文献 8
DAODON W,PREMANOUD V,WONGPISARN W,et al.Vanadium nitride and titanium nitride coatings for anti-galling behavior in ironing of aluminum alloy cups[J].Wear,2015,342-343:279-287.
参考文献 9
BHOWMICK S,BANERJI A,LUKITSCH M J,et al.The high temperature tribological behavior of Si,O containing hydrogenated diamond-like carbon(a-C:H/a-Si:O)coating against an aluminum alloy[J].Wear,2015,330-331:261-271.
参考文献 10
KONCA E,CHENG Y T,WEINER A M,et al.Elevated temperature tribological behavior of non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy[J].Surface & Coatings Technology,2006,200:3996-4005.
参考文献 11
YANG X D,KURODA T,NASHIMASA Y,et al.Preparation of DLC films on micro extrusion dies by pulse plasma-enhanced CVD[J].New Diamond &Frontier Carbon Technology,2002,12(3):145-148.
参考文献 12
BHOWMICK S,BANERJI A,KHAN M Z U,et al.High temperature tribological behavior of tetrahedral amorphous carbon(ta-C)and fluorinated ta-C coatings aluminum alloys[J].Surface & Coatings Technology,2015,284:14-25.
参考文献 13
GHARAM A A,LUKITSCH M J,BALOGH M P,et al.High temperature tribological behavior of carbon based(B4C and DLC)coatings in sliding contact with aluminum[J].Thin Solid Films,2010,519:1611-1617.
参考文献 14
RIAHI A R,ALPAS A T.Adhesion of AA5182 aluminum sheet to DLC and TiN coatings at 25 ℃ and 420 ℃ [J].Surface & Coatings Technology,2007,202:1055-1061.
参考文献 15
PANJAN P,CVAHTE P,CEKADA M,et al.PVD CrN coatings for protection of extrusion dies[J].Vacuum,2001,61:241-244.
参考文献 16
PELLIZZARI M,ZADRA M,MOLINARI A.Tribological properties of surface engineered hot work tool for aluminum extrusion dies[J].Surface Engineering,2007,23(3):165-168.
参考文献 17
PELLIZZARI M.High temperature wear and friction behavior of nitrided,PVD-duplex and CVD coated tool steel against 6082 Al alloy[J].Wear,2011,271:2089-2099.
参考文献 18
ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid films,2010,518:4087-4090.
参考文献 19
JAROS M,MUSIL J,CERSTVY R,et al.Effect of energy on structure,microstructure and mechanical properties of hard Ti(Al,V)Nx films prepared by magnetron sputtering[J].Surface & Coatings Technology,2017,332:190-197.
参考文献 20
MAYRHOFER P H,KUNC F,MUSIL J,et al.A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings[J].Thin Solid Films,2002,415:151-159.
参考文献 21
CHIANG K T K,WEI R H.Growth morphology and corrosion resistance of magnetron sputtered Cr films[J].Surface & Coatings Technology,2011,206(7):1660-1665.
参考文献 22
ABD E A M,WEI R H.A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti-Si-C-N nanocomposite coatings[J].Surface & Coatings Technology,2014,241:74-79.
参考文献 23
ABD E A M,WEI R H.Effect of ion bombardment onstructural,mechanical,erosion and corrosion properties of Ti-Si-C-N nanocomposite coatings[J].Surface & Coatings Technology,2014,258:320-328.
参考文献 24
XIE Q,FU Z Q,LIU Z Y,et al.Improvement of microstructure and tribological properties of titanium nitride films by optimization of substrate bias current[J].Thin Solid Films,2022,749:139181.
参考文献 25
魏娴.PEMS 工艺参数对 CrN/Al 配副摩擦学行为影响的研究[D].北京:中国地质大学(北京),2018.WEI Xian.Study of effect of PEMS process parameters on tribological behavior of CrN/Al friction couples[D].Beijing:China University of Geosciences(Beijing),2018.(in Chinese)
参考文献 26
PONON N K,APPLEBY D J R,KING P J,et al.Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films[J],Thin Solid Films,2015,578:31-37.
参考文献 27
ACHOUR A,DUCROS J B,PORTO R L,et al.Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors[J].Nano Energy,2014,7:104-113.
参考文献 28
JIANG N,ZHANG H J,BAO S N,et al.XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias[J].Physica B:Condensed Matter,2004,352:118-126.
参考文献 29
GAUTIER C,MACHET J.Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation[J].Thin Solid Films,1997,295(1-2):43-52.
参考文献 30
ZHOU T,LIU D W,ZHANG Y,et al.Microstructure and hydrogen impermeability of titanium nitride thin films deposited by direct current reactive magnetron sputtering[J].Journal of Alloys and Compounds,2016,688:44-50.
参考文献 31
KIUCHI M,CHAYAHARA A,HORIONO Y,et al.Control of preferentially oriented crystal growth of titanium nitride-Effects of nitrogen adsorption and ion-beam irradiation in dynamic mixing process[J].Applied Surface Science,1992,60-61:760-764.
参考文献 32
柳子怡.PEMS PEMS-TiN/Al 配副的摩擦学行为研究[D].北京:中国地质大学(北京),2020.LIU Ziyi.Study on the tribological behavior against aluminum of TiN-coated samples deposited by PEMS[D].Beijing:China University of Geosciences(Beijing),2020.(in Chinese)
参考文献 33
APELLEG J,ZEVIN L Z,LUNGO S,et al.Reactive-sputter-deposited TiN films on glass substrates[J].Thin Solid Films,1991,197:117-128.
参考文献 34
SHAH H M,JAYAGANTHAN R,KAUR D.Effect of sputtering pressure and temperature on DC magnetron sputtered CrN films[J].Surface Engineering,2013,26:629-637.
参考文献 35
CHEN X,XI Y T,MENG J,et al.Effects of substrate bias voltage on mechanical properties and tribological behaviors of RF sputtered multilayer TiN/CrAlN films[J].Journal of Alloys Compounds,2016,665:210-217.
参考文献 36
DEVIA D M,RESTREPO-PARRA E,ARANGO P J,et al.TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage[J].Applied Surface Science,2011,257:6181-6185.
参考文献 37
TECRELJ M,PERUS I,KUGLER G.Wear progress of nitrided layer at low,medium and high contact pressures during a laboratory simulation of aluminum hoextrusion[J].Tribology Letters,2014,55(1):69-81.
参考文献 38
BIROL Y.Sliding wear of CrN,AlCrN and AlTiN coated AISI H13 hot work tool steels in aluminum extrusion[J].Tribology International,2013,57:101-106.
参考文献 39
LI X W,CAI Q Z,LI B,et al.Grain refining mechanism in pure aluminum with nanosized TiN/Ti composite refiner addition[J].Journal of Alloys and Compounds,2017,699:283-290.
参考文献 40
YEH T S,WU J M,HU L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J].Thin Solid Films,2008,516:7294-7298.
目录contents

    摘要

    铝挤压模具表面的摩擦磨损行为是影响铝制品质量和模具寿命的重要因素。为了进一步优化铝挤压模具表面耐磨涂层的沉积工艺,以 TiN 涂层为例,采用等离子体增强磁控溅射方法分别在基体偏流为 0.1 A、1.5 A、3.0 A 和 4.5 A 条件下制备 TiN 涂层,利用 XPS、SEM、AFM 和 XRD 分别测量 TiN 涂层的化学成分、表截面微观结构和相组成,利用纳米压痕仪和旋转式球-盘摩擦磨损试验机分别考察 TiN 涂层试样的综合力学性能和与铝对摩时的摩擦磨损行为。结果表明:基体偏流增加对 TiN 涂层的化学组成影响较小。随着基体偏流的增加,TiN 涂层的横截面形貌逐渐细化。涂层表面具有由岛状微凸起组成的微结构,随着基体偏流的增加,微凸起尺寸和数量逐渐减小,表面粗糙度逐渐降低。不同基体偏流条件下制备的涂层均具有明显的 TiN(111)择优生长趋势。当基体偏流从 0.1 A 增加到 1.5 A 时,TiN 涂层的晶粒尺寸明显减小,涂层的综合力学性能得到显著提高。TiN 涂层试样与铝对摩过程中主要发生粘着磨损和磨料磨损,涂层试样对铝的减摩抗磨性能与对摩过程中的铝粘着面积呈负相关。结论:基体偏流对等离子体增强磁控溅射 TiN 涂层的表截面微观结构、力学性能和摩擦磨损行为影响显著,基体偏流为 1.5 A 时制备的 TiN 涂层具有最低的摩擦因数和磨损率,分别为 0.41×10−15 和 3.03×10−15 m3 / (N·m)。研究结果对铝成型模具表面高性能长寿命防护涂层的研究开发具有一定的理论意义和实用价值。

    Abstract

    The friction and wear performances of aluminum extrusion die surfaces are important factors affecting the quality of aluminum or aluminum alloy products and the life of extrusion dies. The deposition of wear-resistant films on the surface of extraction dies is one of the most effective strategies, and the friction and wear performances of different coatings against aluminum have been previously investigated. However, studies regarding the influence of the coating microstructure on the tribological behavior of the same coating material when applied against aluminum remain limited. Plasma-enhanced magnetron sputtering introduces an extra electron-emitting source into conventional magnetron sputtering equipment to obtain a densified and controllable plasma around the substrates, producing wear-resistant coatings with similar compositions but significantly different microstructures. The TiN coating, which is a widely used wear-resistant coating, is selected as an example and deposited by plasma-enhanced magnetron sputtering at various substrate bias currents to obtain coatings with different microstructures. The effect of the substrate bias current on the microstructure, mechanical properties, and tribological behavior of the TiN coatings against aluminum is systematically investigated to further optimize the deposition process of the wear-resistant TiN coating applied on aluminum extrusion dies. The TiN coating is prepared using plasma-enhanced magnetron sputtering under varied substrate bias currents of 0.1 A, 1.5 A, 3.0 A, and 4.5 A. The chemical compositions of the TiN coatings are analyzed using X-ray photoelectron spectroscopy (XPS). The surface and cross-sectional morphologies of the coatings are observed using scanning electron microscopy (SEM). The 3D surface microstructure and surface roughness of the coatings are studied using atomic force microscopy (AFM). The phase structures of the coatings are determined using X-ray diffraction (XRD). The comprehensive mechanical properties and tribological behavior of the TiN-coated samples against aluminum are investigated using a nano-indenter and a rotary ball-on-disk friction and wear tester, respectively. The surface morphologies and chemical compositions of the wear tracks are analyzed using laser confocal microscopy, SEM, and EDS. The results show that the variation in the substrate bias current has little impact on the chemical composition of the TiN coatings deposited by plasma-enhanced magnetron sputtering, and all the coatings have a nearly stoichiometric composition. The cross-sectional microstructure of the TiN coating is gradually refined with an increasing substrate bias current, and the surface microstructure of the coating is consisting of island-like microprojections. When the substrate bias current increases from 0.1 A to 4.5 A, the size and amount of the microprojection are gradually decreased along with the surface roughness (from 77.67 nm to 15.67 nm). The preferred growth along the TiN(111) direction dominates in all the coatings, and it is further enhanced when the substrate bias current reaches 3.0 A. The grain size of the TiN coating is pronounced decreased from 44 nm to 11 nm as the substrate bias current increases from 0.1 A to 1.5 A, and the comprehensive mechanical properties of the TiN coating are significantly improved. When the substrate bias current is further increased, the effect of the substrate bias current on the grain size and the mechanical properties of the coatings becomes unobvious. Adhesive and abrasive wear are dominated in the wear process against aluminum of TiN-coated samples, and the friction-reduction and wear-resistance performance of the TiN-coated samples is negatively correlated with the aluminum adhesion area. In conclusion, the substrate bias current plays an important role in controlling the surface cross-sectional microstructure, grain size, mechanical properties and tribological behavior of the TiN coatings deposited by plasma-enhanced magnetron sputtering. When deposited at a substrate bias current of 1.5 A, the TiN coating with excellent mechanical properties and a rough surface microstructure has the lowest friction factor and wear rate of 0.41×10−15 and 3.03×10−15 m3 / (N·m), respectively. This study is theoretically significant and practically valuable for the research and development of high-performance and long-life protective coatings on the surfaces of aluminum-forming dies.

    关键词

    磁控溅射涂层微观组织摩擦学挤压

  • 0 前言

  • 随着铝和铝合金型材在轻量化工业产品中的广泛应用,铝挤压成型技术的研究和发展引起了人们的广泛关注[1]。在挤压成型过程中,铝挤压模具表面常常要承受 500℃以上的高温、高应力、高粘着力和热铝的化学侵蚀作用[2],随之而来的严重滑动磨损是制约铝挤压模具使用寿命和产品质量的关键因素之一[3-4]。因此,如何降低铝挤压模具表面的铝粘着趋势,提高其减摩耐磨性能,是行业内急需解决的热点问题。目前,改善铝挤压模具表面减摩耐磨性能的主要方法包括润滑剂的使用和针对铝挤压模具的表面改性技术。相比于大量使用容易引起环境污染的润滑剂,通过等离子体表面改性如渗氮[5]、化学气相沉积(Chemical vapor deposition,CVD)[6]和物理气相沉积(Physical vapor deposition,PVD)[7-8],在铝挤压模具表面形成化合物层是一种更加绿色环保的理想策略。TERCELJ 等[3]研究发现渗氮形成的化合物层在与铝对摩过程中可以表现出更好的化学稳定性,进而降低模具表面的铝粘着趋势和化学侵蚀。BHOWMICK 等[9]、 KONCA 等[10]和 YANG 等[11]报道了模具表面镀覆的类金刚石(Diamond-like carbon,DLC)涂层可以在与铝对摩过程中形成一层易于剪切的碳层,从而提高模具在 400℃以下的减摩耐磨性能;但 BHOWMICK 等[12]、GHARAM 等 [13]和 RIAHI 等[14] 的研究也表明 DLC 涂层在 400℃以上容易发生石墨化,会使得涂层的减摩耐磨性能迅速恶化。相比于 DLC 涂层,氮化物硬质涂层具有更高的热稳定性、力学性能和摩擦磨损性能。PANJAN 等[15]和 PELLIZZARI 等[16]发现铝挤压模具表面沉积 CrN 涂层可以大幅提升模具的使用效率和使用寿命。 PELLIZZARI 等[17]进一步对比研究了渗氮层、Cr 基涂层和 Ti 基涂层与铝对摩时的摩擦磨损行为,发现 TiN 基涂层具有更为优越的抗铝粘着和耐磨损性能。DAODON 等[8]对比了 TiN 和 VN 涂层分别对磨纯铝时的摩擦学行为, TiN 涂层也呈现出更佳的抗铝粘着指数。

  • 目前,TiN 涂层的绿色制备技术主要包括电弧离子镀法和磁控溅射法,涂层的摩擦磨损性能与其制备技术息息相关。相比于电弧离子镀制备的 TiN 涂层,磁控溅射制备的 TiN 涂层表现出更优的抗铝粘着性能,这可能归因于磁控溅射制备的涂层具有更少的“大液滴”等缺陷和更平滑均匀的表面结构[8]。但是,常规磁控溅射涂层沉积过程中也存在基体附近等离子体密度低等问题,使得制备的 TiN 涂层多呈现出疏松的锥状晶或柱状晶结构,造成涂层具有较大的拉应力和较多的针孔等缺陷,容易引起涂层在摩擦磨损过程中的早期失效[18]。通过非平衡磁场设计和基体偏压的施加可以一定程度上提升基体表面的束流密度和成膜粒子平均粒子能量,改善涂层致密性、力学性能和摩擦磨损性能[19-20]。等离子体增强磁控溅射技术是在非平衡磁控溅射设备基础上,增设了一组独立的热丝阴极作为电子发射源来进一步提高基体附近等离子体密度[21]。得益于热丝阴极产生的高密度等离子体,ABD 等[22]利用等离子体增强磁控溅射技术制备了 TiSiCN 涂层,其致密性和表面质量比常规磁控溅射制备的涂层得到显著改善,并且力学性能和耐磨耐蚀性得到大幅度提高。ABD 等[23]进一步研究了基体能量密度对等离子体增强磁控溅射制备 TiSiCN 涂层结构和性能的影响,发现基体能量密度的增大会导致 TiSiCN 涂层沉积速率、表面粗糙度和晶粒尺寸降低,而涂层致密度、硬度和耐蚀性能逐渐增强。等离体增强磁控溅射技术具有可以在低基体偏压下获得较大基体偏流的优势,能够更加灵活、准确地调控到达基体表面粒子的束流密度、平均粒子能量和薄膜沉积过程的离子轰击强度,为针对不同服役工况制备出特定化学组成、微观结构与性能耐磨涂层提供了基础[23-24]。魏娴[25]利用等离子体增强磁控溅射在不同基体偏流条件下获得了一系列相结构和微观组织结构各异的 CrNx 涂层,并在干摩擦条件下与纯铝对摩,发现具有一定微结构粗糙表面的 CrNx 涂层表现出了优良的抗铝粘着性能和摩擦磨损能。

  • 综上,目前人们考察了多种涂层材料对铝挤压模具摩擦磨损性能的影响,但关于涂层微观结构对相同涂层材料与铝对摩时的摩擦学行为的影响还鲜见报道。基于等离子体增强磁控溅射能够制备出成分相近但微观结构存在明显差异的耐磨涂层,本文以常用的 TiN 涂层为例,利用等离子体增强磁控溅射技术在不同基体偏流下制备了不同微观结构的 TiN 涂层,系统考察了基体偏流对 TiN 涂层的微观结构、力学性能以及与铝对摩时摩擦学行为的影响规律,并探讨了其微观机理。

  • 1 材料与方法

  • 1.1 样品制备

  • 试验中,TiN 涂层的沉积使用沈阳科友真空技术有限公司生产的等离子体增强非平衡磁控溅射镀膜机;基体材料使用尺寸为φ 50 mm×8 mm 的单面抛光 H13 模具钢(硬度约为 50 HRC)和 20 mm× 20 mm×0.5 mm 的单面抛光硅片(N 型 Si(100),电阻率<0.01 Ω·cm);溅射靶材使用尺寸为 549 mm× 170 mm×12.5 mm 的 Ti 靶(纯度为 99.7%);溅射气体使用纯度为 99.999%的氩气,反应气体使用纯度为 99.999%的氮气。

  • TiN 涂层的沉积过程为:将基体先后在丙酮和酒精中经过严格的超声清洗,烘干后安装在镀膜室内的工件架上,并调节基体与 Ti 靶之间的距离,约为 290 mm。抽真空并缓慢加热至本底真空度优于 2 mPa 且镀膜室加热温度达到 300℃。利用等离子体增强磁控溅射中热丝产生的等离子体刻蚀清洗基体 30 min,以进一步去除基体表面污染物并活化基体表面。在沉积 TiN 涂层之前,预先在基体表面沉积一层 Ti 金属过渡层以提高膜-基结合强度,过渡层沉积时间为 10 min。TiN 涂层的主要制备参数包括:Ti 靶溅射功率密度为 4 W / cm2,镀膜室加热温度为 300℃,工件架转速为 10 r / min,氩气流量为 60 mL / min,氮气流量为 14 mL / min,基体偏压为 100 V,热丝偏压为 80 V。通过调节热丝加热电流控制热丝阴极的热电子发射数量,热电子在热丝偏压的作用下向真空室壁运动,与气相粒子发生碰撞并使之离化,离子受到基体负偏压的吸引轰击基体表面,从而实现固定基体偏压下,分别在基体偏流为 0.1 A、1.5 A、3.0 A 和 4.5 A 条件下制备 TiN 涂层,涂层沉积时间为 120 min。

  • 1.2 结构表征及性能测试

  • 利用日本 ULVAC-PHI 公司生产的 PHI Quantera SXM 型 X 射线光电子能谱仪(X-ray photoelectron spectrometer,XPS)分析涂层的化学组成,分析深度约为 100 nm,以避免涂层表面吸附杂质的影响;采用半球型能量分析器,单色化 Al 靶, X 射线束斑 200 μm,入射角 45°,分析时真空度优于 13.3 μPa。使用日本 Rigaku 公司生产的 Smartlab 型 X 射线衍射仪(X-ray diffractometer,XRD)在 θ / 2θ 模式下以 4( °)/ min 的扫描速度扫描 10°~90° 来表征涂层的相结构。采用日本 JEOL 公司生产的 JSM-7610F Plus 型扫描电子显微镜( Scanning electronic microscope,SEM)观察 TiN 涂层表截面微观组织形貌,测量电压为 15 kV。利用美国 Asylum Research 公司生产的 MFP-3D 原子力显微镜 (Atomic force microscope,AFM)分析涂层的表面形貌特征和表面粗糙度。利用美国 MTS 公司生产的 Nano Indenter II 型纳米压痕仪在连续刚度测量模式下测试涂层的纳米硬度和弹性模量,压入深度为 100 nm。利用兰州华汇仪器技术有限公司生产的 MST-3001 旋转式球-盘摩擦磨损试验机在室温干摩擦条件下考察 TiN 涂层与铝对摩时的摩擦磨损行为,选用尺寸为φ 4 mm 的纯铝球作为对摩材料,摩擦半径为 4 mm,对摩时间为 30 min。摩擦磨损试验后,将涂层样品置于 1% NaOH 水溶液中浸泡 24 h 以去除磨痕中粘着的铝及含铝化合物,并使用日本 Olympus 公司生产的 LEXT OLS5000 型 3D 共聚焦显微镜测量涂层磨痕截面积,以计算涂层试样的磨损率。使用日本 JEOL 公司生产的 JSM-6510 型 SEM 观察 TiN 涂层试样在 1% NaOH 水溶液中浸泡前后的磨痕形貌,并使用美国 EDAX 公司生产的 Genesis XM2 型能量散射仪(Energy dispersive spectrometer,EDS)分析磨痕表面的化学组成。

  • 2 结果与讨论

  • 2.1 化学组成

  • 图1 为利用等离子体增强磁控溅射在不同基体偏流条件下制备的 TiN 涂层的 XPS 全谱图。

  • 图1 不同基体偏流条件下 TiN 涂层的 XPS 全谱图

  • Fig.1 XPS full spectra of TiN coatings deposited under varied substrate bias current

  • 在不同基体偏流条件下制备的 TiN 涂层主要由 Ti、N 和少量 O 元素组成。TiN 涂层中的 N / Ti 如表1 所示。随着基体偏流的增加,TiN 涂层的化学组成变化不大,涂层中的 N / Ti 在 1.04~1.13 波动。涂层中的少量 O 元素主要来源于真空室内壁表面残留的吸附气体和工作气体中的杂质[26]

  • 表1 不同基体偏流条件下 TiN 涂层的 N / Ti、厚度、晶粒尺寸和综合力学性能

  • Table1 N / Ti, Thickness, grain size and mechanical properties of TiN coatings deposited under varied substrate bias current

  • 2.2 微观形貌

  • 图2 为不同基体偏流条件下等离子体增强磁控溅射TiN涂层的表截面SEM照片。基体偏流为0.1 A 条件下沉积的 TiN 涂层呈现出疏松的锥状晶结构,涂层表面可以观察到多个小锥面和孔隙。根据等离子体沉积涂层结构区域相图[18],涂层属于典型的 I 区结构,涂层中可能存在较大的拉应力。ACHOUR 等[27]研究指出,涂层表面疏松的小锥面形貌与涂层较低的面密度有关。当基体偏流增加到 1.5 A 时, TiN 涂层表面的孔隙显著减少,涂层表面由小锥面形貌转变为边缘圆润的花椰菜形貌,表明此时沉积的涂层具有较低的表面能和较高的面密度。随着基体偏流进一步增加至不小于 3.0 A 时,制备的 TiN 涂层表面光滑致密,截面形貌呈现出符合 T 区结构特征的致密纤维晶,表明涂层可能由定向择优生长的纳米晶组成[18]

  • 图2 不同基体偏流条件下 TiN 涂层的表截面 SEM 照片

  • Fig.2 SEM morphologies of TiN films deposited under varied substrate bias current

  • 通过 SEM 测量的不同基体偏流条件下 TiN 涂层的厚度如表1 所示。当基体偏流从 0.1 A 增加到 3.0 A 时,TiN 涂层的厚度逐渐从 968 nm 减小到 737 nm,基体偏流的进一步增加对涂层厚度影响不大。这与涂层表截面微观结构的变化相一致,说明涂层厚度的变化主要受到涂层致密化的影响。根据 JAROS 等[19]的研究,到达基体表面离子的平均粒子能量可通过式(1)进行计算:

  • Ebi=UsIs/aD
    (1)
  • 式中,Ebi 为到达基体表面离子的平均粒子能量 (J/cm3),Us为基体偏压(V),Is为基体偏流(A / cm2), aD为涂层沉积速率(cm / s)。

  • 由于 TiN 涂层试样的沉积时间均是 120 min,随着基体偏流增加,TiN 涂层厚度的降低意味着沉积速率逐渐减小。因此,等离子体增强磁控溅射在不同基体偏流条件下制备的 TiN 涂层之所以具有差异明显的表截面微观形貌,主要可归因于不同基体偏流条件下基体附近的等离子体密度的变化。当基体偏流为 0.1 A 时,基体附近的等离子体密度低,到达基体表面的粒子平均粒子能量小,成膜粒子在基体表面的扩散迁移能力较弱,形核率低,使得涂层的结构疏松,面密度低。到达基体表面离子的平均粒子能量随着基体偏流从 0.1 A 增加到 1.5 A 而陡然提升,由于粒子在基体表面的碰撞,使得到达基体表面成膜粒子的平均粒子能量和扩散迁移能力大幅度增强,形核率大幅提高,有利于降低涂层内部的晶粒尺寸和拉应力,提高涂层的致密性[20]。当基体偏流进一步增加时,基体表面的离子轰击强度与成膜粒子的平均粒子能量得到进一步提高,有助于打断晶粒沿粒子到达方向的连续形核和生长,引起晶粒碎化,形成纳米纤维晶,涂层的致密性得到进一步改善[18]。图3 展示了不同基体偏流条件下等离子体增强磁控溅射制备的 TiN 涂层表面 3D 形貌照片。当基体偏流为 0.1 A 时,TiN 涂层表面具有由尺寸较大且密集的岛状凸起组成的微结构。随着基体偏流的增加,微结构的直径、高度和密度均逐渐减小,TiN 涂层的表面粗糙度,即 AFM 测得的表面算术平均高度 Sa 随着基体偏流的增加而逐渐从 77.67 nm 减小到 15.67 nm。一方面,因基体偏流增加而显著提高的涂层致密性和晶粒细化促进了涂层表面的平滑过程;另一方面,显著增强的成膜粒子平均粒子能量和扩散迁移能力也减弱了涂层形核生长过程中的阴影效应,改善涂层表面的均匀性,降低表面粗糙度,形成平滑的表面[28]

  • 图3 不同基体偏流条件下 TiN 涂层的 3D 表面形貌照片

  • Fig.3 3D topography photos of TiN coatings deposited under varied substrate bias current

  • 2.3 相结构

  • 图4a 为不同基体偏流下等离子体增强磁控溅射 TiN 涂层的 XRD 图谱。在整个基体偏流变化范围内,图谱中除了 Si(100)基体的衍射峰之外,主要以 B1-NaCl 型 TiN(111)、TiN(200)和 TiN(220)衍射峰为主,还有微弱的 TiN(311)和 TiN(222)峰,但观察不到金属 Ti 相有关的衍射峰。结合涂层的 N / Ti,这表明在不同基体偏流条件下制备的 TiN 涂层主要由接近化学计量比的 TiN 相组成。根据式(2)计算 TiN 涂层 XRD 图谱中各晶面的织构系数[29]

  • δ(hkl)=I(hkl)exp/I(hkl) th (hkl)n I(hkl)exp/I(hkl) th ×100%
    (2)
  • 式中,δhkl 为(hkl)晶面的织构系数,Ihkl)exp 为试验测得的(hkl)晶面衍射峰相对强度, Ihklth 为 PDF 标准卡片中(hkl)晶面衍射峰相对强度。

  • 不同基体偏流条件下制备的 TiN 涂层中各晶面的织构系数如图4b 所示。等离子体增强磁控溅射 TiN 涂层在整个基体偏流变化范围内均表现出较为明显的沿 TiN(111)面择优生长趋势;当基体偏流大于等于 3.0 A 时,这种择优生长趋势被进一步加强。对于磁控溅射获得的涂层,一般认为其择优生长趋势遵循能量最低原理,即涂层更容易沿着界面能、应变能和表面能之和最低的晶面择优生长[30]。关于界面能,由于涂层内部以 TiN 单一相为主,因此在整个基体偏流范围内,TiN(111)较为明显的择优生长趋势可能与预沉积的 Ti 金属连接层有关。从图4a 中可以看出,基体偏流为 3.0 A 时,Si(100)基体上沉积的 Ti 金属涂层具有较强的 α-Ti(002)织构,这与 KIUCHI 等[31]利用离子束辅助沉积制备的 Ti 金属涂层结果相一致。由于 B1-NaCl 型 TiN(111)面和 α-Ti(002)面之间原子堆垛方式的相似性, TiN(111)与 Ti(002)晶面间的能量势垒比 TiN(200)面更小,更容易在 α-Ti(002)晶面上形核生长[32]。根据等离子体低温沉积涂层的区域结构相图,随着基体附近等离子体轰击强度的逐渐增强,涂层中的内应力会逐渐从较大的拉应力向较大的压应力转变,显著增强的离子轰击强度会促进涂层中的纳米晶呈现出鲜明的择优生长趋势[18]。对于 TiN 而言,TiN(111)面具有最低的应变能,而 TiN(200)面具有最低的表面能[33]。当基体偏流为 0.1 A 或大于等于 3.0 A 时,涂层中较大的拉应力或压应力均会促进晶粒沿应变能最低面生长的趋势。当基体偏流为 1.5 A 时,此时涂层较低的内应力减弱了应变能对生长机制的主导作用,有利于 TiN 晶粒沿 TiN(200)晶面和 TiN(220)晶面生长。此外,从图4a 中还可以看到 Si(100)基体的衍射峰峰强随基体偏流的增加而波动变化,这可能与 TiN 涂层的厚度、结晶性和致密性变化有关。X 射线的穿透能力是有限的,当 X 射线穿过时,一方面,较大的涂层厚度会消耗更多的能量,如 0.1 A 条件下获得 TiN 涂层,因而获得较弱的基体峰;另一方面,相近涂层厚度条件下,更佳的结晶性、致密性和更少的内部缺陷会在X射线穿过时吸收更多的能量, Si 基体吸收到的能量减少,从而衍射峰强度下降,如 3.0 A 条件下获得的 TiN 涂层。

  • 图4 不同基体偏流条件下 TiN 涂层的 XRD 图谱和织构系数

  • Fig.4 XRD patterns and texture factor of TiN coatings deposited under varied substrate bias current

  • 表1 列出了通过 Scherrer 关系[34]计算的等离子体增强磁控溅射 TiN 涂层中具有 TiN(111)面择优取向晶粒的晶粒尺寸。TiN 涂层的晶粒尺寸先随着基体偏流从 0.1 A 增加到 1.5 A 而从 44.4 nm 减小到 10.8 nm,然后随着基体偏流增加至 3.0 A 而略有增加至 12.9 nm,进一步增加基体偏流,涂层的晶粒尺寸基本保持不变。基体偏流为 1.5 A 条件下,涂层显著减小的晶粒尺寸主要是由大幅提升的形核率所引起的[27]。此外,根据 CHEN 等[35]的研究,显著增强的离子轰击强度能够在涂层中引起高密度的位错,这会阻碍晶界迁移,抑制晶粒长大。而晶粒尺寸在基体偏流大于等于 3.0 A 时略有增长,可能与其进一步增强的沿 TiN(111)晶面择优生长趋势以及高密度等离子体轰击引起的基体表面热效应有关。

  • 2.4 力学性能

  • 表1 还给出了不同基体偏流条件下等离子体增强磁控溅射制备 TiN 涂层的综合力学性能,包括涂层的硬度(H)、有效弹性模量(E*)、H / E*和 H3 / E*2,其中,H / E*和 H3 / E*2 一般分别被用于评价涂层的抗裂纹扩展能力和抗塑性变形能力[29]。当基体偏流从 0.1 A 增加 1.5 A 时,TiN 涂层的硬度、抗裂纹扩展能力和抗塑性变形能力均得到显著提高,分别达到 34.47 GPa、0.08 和 0.24 GPa;但进一步增加基体偏流对 TiN 涂层的综合力学性能影响不大。 TiN 涂层综合力学性能的变化与涂层内部晶粒尺寸的变化基本呈负相关。根据 Hall-Petch 关系,晶粒细化会引起位错塞积,抑制位错和裂纹沿晶界的运动和扩展,综合提升材料的硬度和强韧性[36]

  • 2.5 摩擦磨损性能

  • 图5 展示了等离子体增强磁控溅射 TiN 涂层试样与纯铝对摩时的稳态摩擦因数和磨损率随基体偏流的变化。随着基体偏流增加,TiN 涂层试样的摩擦因数和磨损率均先降低后逐渐增加,在 1.5 A 时取得最小值,分别为 0.41 和 3.03×1015 m3 /(N·m)。而 H13 模具钢基体试样在相同试验参数下与铝对摩时的摩擦因数和磨损率分别为 0.72 和 2.41× 1014 m3 /(N·m),显著高于 TiN 涂层试样。根据 TECRELJ 等[37]的报道,与铝对摩时出现 0.7 左右的高摩擦因数往往指示了试样在与铝对摩过程中不仅发生了剧烈的粘着磨损,还伴随着严重的磨料磨损。此外,BIROL[38]也报道了在摩擦磨损过程中形成的脆性铁铝中间相化合物也会导致较高的摩擦因数和磨损率。相比之下,TiN 涂层试样明显降低的摩擦因数和磨损率主要归因于两个方面:①TiN 涂层具有相比于 H13 模具钢更为优良的化学稳定性和较差的对铝润湿性,可以有效提高试样表面的疏铝性能,从而改善粘着磨损,降低摩擦因数和磨损率[39];②TiN 涂层相比 H13 模具钢显著提高的综合力学性能也有助于大幅度增强涂层试样抗磨料磨损性能。

  • 图5 不同基体偏流条件下 TiN 涂层试样与铝对摩时的稳态摩擦因数和磨损率

  • Fig.5 Stable friction factor and wear rate against Al of TiN-coated samples deposited under varied substrate bias current

  • 相比于 0.1 A 条件下获得的涂层,在 1.5 A 条件下 TiN 涂层具有显著增强的致密性和力学性能,因而具有更优的减摩耐磨性能[40]。而当基体偏流不小于 1.5 A 时,虽然各涂层的化学组成和力学性能相似,但摩擦因数和磨损率却随着基体偏流增加而逐渐增加,这可能与涂层试样的表面形貌变化有关。由于 TiN 对铝具有较差的润湿性,表面粗糙的微结构将进一步降低润湿性,提高涂层的疏铝性能[32]。因此,基体偏流为 1.5 A 时,TiN 涂层更为粗糙的表面有助于减少磨痕表面的铝粘着。此外,粗糙表面的微结构可降低对摩球与试样表面的真实接触面积,从而改善摩擦磨损性能。

  • 2.6 摩擦磨损机理

  • 图6 展示了不同基体偏流条件下 TiN 涂层试样与铝对摩后表面磨痕的背散射 SEM 照片,表2 为图6 中相应位置的 EDS 分析结果。TiN 涂层试样表面磨痕的背散射 SEM 照片中主要包括以下三种特征: ①黑色区域 A,EDS 分析表明其中含有高组分的 Al 元素,应为转移至试样表面的铝粘着;②亮白色区域 B,EDS 分析结果呈现出占比很高的 Fe 含量和较少的 Ti 含量,在这些区域可能发生了涂层的撕裂和剥落;③浅灰色区域 C,其化学成分中含有较多的 Ti 和较少的 Fe 和 Al,为未剥落的 TiN 涂层。大量铝粘着物和涂层撕裂的情况表明,TiN 涂层试样在与铝对摩过程中发生了严重的粘着磨损。当基体偏流不小于 1.5 A 时,试样表面 TiN 涂层剥落的增多会形成较多的硬质三体磨料,进而导致摩擦因数和磨损率的增高。

  • 图6 不同基体偏流条件下 TiN 涂层试样表面磨痕的背散射 SEM 照片(标记位置的能谱分析结果见表2)

  • Fig.6 BSE SEM images of worn surface on TiN-coated samples prepared under varied substrate bias current (detailed EDS analysis results of positions marked are presented in Table2)

  • 根据图6 计算的磨痕表面铝粘着面积(SAl adhesion) 与磨痕总面积(SWhole scar)之比如图7 所示。随着基体偏流的增加,磨痕中的铝粘着面积比先降低后逐渐增加,这与 TiN 涂层试样摩擦因数和磨损率的变化基本一致。当基体偏流为 1.5 A 时,铝粘着面积比最小,为 19.1%。这表明,铝粘着是影响 TiN 涂层试样与铝对摩时摩擦磨损行为的关键因素,涂层试样表面的粗糙微结构有利于降低磨痕表面的铝粘着趋势。虽然基体偏流为 0.1 A 时制备的 TiN 涂层试样表面相比 1.5 A 条件下制备的试样更加粗糙,但其较差的力学性能使得涂层表面的微结构易于在载荷的作用下发生塑性变形,形成机械咬合,反而容易引起铝粘着增加,加剧粘着磨损。

  • 图7 不同基体偏流条件下 TiN 涂层试样表面磨痕中铝粘着面积与磨痕总面积之比

  • Fig.7 Ratio of Al adhesion area to whole wear scar aera of TiN-coated samples deposited under varied substrate bias current

  • 图8 展示了不同基体偏流条件下制备的TiN涂层试样在浸泡 1% NaOH 水溶液后的表面磨痕 SEM 照片。在磨痕中可以清晰地观察到涂层剥落的痕迹和明显的犁沟,表明 TiN 涂层试样在与铝对摩时不仅发生了剧烈的粘着磨损,还发生了磨料磨损。从表2 可以看出,由于摩擦磨损过程中产生的摩擦热和循环机械应力的作用,磨痕表面的铝粘着会发生氧化和加工硬化,进而形成硬质的 Ti、Al 氧化物或氮化物。这些硬化的铝粘着在摩擦磨损过程中容易因受到较大的切向力而被剪切,一方面会引起涂层的撕裂和剥落,另一方面,会形成硬质磨屑,充当三体磨料,在排出过程中对磨痕表面进行犁削。对比 0.1 A 和 1.5 A 条件下获得的 TiN 涂层试样,0.1 A 条件下制备的涂层试样由于表面力学性能较差,犁沟的分布和深度明显大于 1.5 A 条件下获得的涂层试样,试样表面的磨料磨损更为严重。当基体偏流达到 3.0 A 时,还可以在磨痕中观察到大量微裂纹,这是在基体偏流不大于 1.5 A 时制备的涂层试样表面未观察到的。结合涂层试样浸泡前的 SEM 照片分析,这些微裂纹主要处于涂层剥落位置附近或铝粘着位置下方,表明承受较大的机械应力的硬质铝粘着物是造成涂层开裂和剥落的主要原因。相对于 1.5 A 条件下制备的 TiN 涂层试样,高偏流条件下获得涂层试样平滑表面上附着的铝粘着可能会受到更大的正应力,导致 TiN 涂层压裂和破碎的加剧。

  • 图8 1% NaOH 水溶液浸泡后不同基体偏流条件下 TiN 涂层试样表面磨痕 SEM 照片

  • Fig.8 SEM images of wear scar on TiN-coated samples deposited under varied substrate bias current after steeping in 1% NaOH aqueous solution

  • 表2 图6 中不同基体偏流条件下 TiN 涂层试样磨痕中标记位置的能谱分析结果(at. %)

  • Table2 EDS analysis results of selected positions marked in Fig.6 on wear tracks of TiN-coated samples prepared under varied substrate bias current (at. %)

  • 3 结论

  • 采用等离子体增强磁控溅射技术在不同基体偏流条件下制备了四种 TiN 涂层,研究了基体偏流对 TiN 涂层化学组成、表截面微观结构、相组成、力学性能和摩擦学行为的影响,并探讨了增强机理,获得的主要结论如下:

  • (1)随着基体偏流的增加,等离子体增强磁控溅射 TiN 涂层的微观结构由疏松的柱状晶逐渐转变为致密的纤维晶,表面粗糙度逐渐降低。当基体偏流不小于 1.5 A 时,涂层的晶粒尺寸显著减小。

  • (2)与铝对摩过程中,TiN 涂层试样主要发生粘着磨损,并伴随着一定的磨料磨损。随着基体偏流的增加,TiN 涂层的综合力学性能显著增强,涂层试样的摩擦因数和磨损率均先减小后增加,这主要归因于涂层试样表面力学性能和试样表面粗糙微结构的变化。

  • (3)丰富了关于铝成型模具表面防护涂层增效延寿问题的理论研究,并且对高性能 TiN 涂层的制备技术开发具有一定指导意义,有利于提高铝成型模具的使用性能和寿命。

  • 参考文献

    • [1] ZHAO L L,ZHOU K C,TANG D,et al.Experimental and numerical study on friction and wear performance of hot extrusion die materials[J].Materials,2022,15(5):1798.

    • [2] BJORK T,WESTERGARD R,HOGMARK S.Wear of surface treated dies for aluminum extrusion:A case study[J].Wear,2001,249(3):316-323.

    • [3] TERCELJ M,SMOLEJ A,VECKO-PIRTOVSEK T.Varieties of gas and ionic nitrided microstructures in narrow gaps of AISI H10 dies for Al hot extrusion and their wear resistance(Ultra-precision machining)[C]//Proceedings of International Conference on Leading Edge Manufacturing in Century,LEM21,October 19-22,2005,Nagoya,Japan:The Japan Society of Mechanical Engineers,2015:138-140.

    • [4] BIROL Y.Analysis of wear of a gas nitrided H13 tool steel die in aluminum extrusion[J].Engineering Failure Analysis,2012,26:203-210.

    • [5] DUMAN K,KARABEYOGLU S S,YAMAN P,et al.Effect of nitriding conditions and operation temperatures on dry sliding wear properties of the aluminum extrusion die steel in the industry[J].Materials Today Communications,2022,31:103628.

    • [6] THEWES A,BROCKER L,GEORGE E T K,et al.Ti-Si-B-C-N plasma enhanced chemical vapor deposition nanocomposite coatings for high temperature applications[J].Thin Solid Films,2022,760:139507.

    • [7] FUNAZUKA T,DOHDA K,TAKATSUJI N,et al.Effect of die coating on surface crack depth of hot extruded 7075 aluminum alloy[J].Friction,2023,11(7):1212-1224.

    • [8] DAODON W,PREMANOUD V,WONGPISARN W,et al.Vanadium nitride and titanium nitride coatings for anti-galling behavior in ironing of aluminum alloy cups[J].Wear,2015,342-343:279-287.

    • [9] BHOWMICK S,BANERJI A,LUKITSCH M J,et al.The high temperature tribological behavior of Si,O containing hydrogenated diamond-like carbon(a-C:H/a-Si:O)coating against an aluminum alloy[J].Wear,2015,330-331:261-271.

    • [10] KONCA E,CHENG Y T,WEINER A M,et al.Elevated temperature tribological behavior of non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy[J].Surface & Coatings Technology,2006,200:3996-4005.

    • [11] YANG X D,KURODA T,NASHIMASA Y,et al.Preparation of DLC films on micro extrusion dies by pulse plasma-enhanced CVD[J].New Diamond &Frontier Carbon Technology,2002,12(3):145-148.

    • [12] BHOWMICK S,BANERJI A,KHAN M Z U,et al.High temperature tribological behavior of tetrahedral amorphous carbon(ta-C)and fluorinated ta-C coatings aluminum alloys[J].Surface & Coatings Technology,2015,284:14-25.

    • [13] GHARAM A A,LUKITSCH M J,BALOGH M P,et al.High temperature tribological behavior of carbon based(B4C and DLC)coatings in sliding contact with aluminum[J].Thin Solid Films,2010,519:1611-1617.

    • [14] RIAHI A R,ALPAS A T.Adhesion of AA5182 aluminum sheet to DLC and TiN coatings at 25 ℃ and 420 ℃ [J].Surface & Coatings Technology,2007,202:1055-1061.

    • [15] PANJAN P,CVAHTE P,CEKADA M,et al.PVD CrN coatings for protection of extrusion dies[J].Vacuum,2001,61:241-244.

    • [16] PELLIZZARI M,ZADRA M,MOLINARI A.Tribological properties of surface engineered hot work tool for aluminum extrusion dies[J].Surface Engineering,2007,23(3):165-168.

    • [17] PELLIZZARI M.High temperature wear and friction behavior of nitrided,PVD-duplex and CVD coated tool steel against 6082 Al alloy[J].Wear,2011,271:2089-2099.

    • [18] ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid films,2010,518:4087-4090.

    • [19] JAROS M,MUSIL J,CERSTVY R,et al.Effect of energy on structure,microstructure and mechanical properties of hard Ti(Al,V)Nx films prepared by magnetron sputtering[J].Surface & Coatings Technology,2017,332:190-197.

    • [20] MAYRHOFER P H,KUNC F,MUSIL J,et al.A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings[J].Thin Solid Films,2002,415:151-159.

    • [21] CHIANG K T K,WEI R H.Growth morphology and corrosion resistance of magnetron sputtered Cr films[J].Surface & Coatings Technology,2011,206(7):1660-1665.

    • [22] ABD E A M,WEI R H.A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti-Si-C-N nanocomposite coatings[J].Surface & Coatings Technology,2014,241:74-79.

    • [23] ABD E A M,WEI R H.Effect of ion bombardment onstructural,mechanical,erosion and corrosion properties of Ti-Si-C-N nanocomposite coatings[J].Surface & Coatings Technology,2014,258:320-328.

    • [24] XIE Q,FU Z Q,LIU Z Y,et al.Improvement of microstructure and tribological properties of titanium nitride films by optimization of substrate bias current[J].Thin Solid Films,2022,749:139181.

    • [25] 魏娴.PEMS 工艺参数对 CrN/Al 配副摩擦学行为影响的研究[D].北京:中国地质大学(北京),2018.WEI Xian.Study of effect of PEMS process parameters on tribological behavior of CrN/Al friction couples[D].Beijing:China University of Geosciences(Beijing),2018.(in Chinese)

    • [26] PONON N K,APPLEBY D J R,KING P J,et al.Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films[J],Thin Solid Films,2015,578:31-37.

    • [27] ACHOUR A,DUCROS J B,PORTO R L,et al.Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors[J].Nano Energy,2014,7:104-113.

    • [28] JIANG N,ZHANG H J,BAO S N,et al.XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias[J].Physica B:Condensed Matter,2004,352:118-126.

    • [29] GAUTIER C,MACHET J.Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation[J].Thin Solid Films,1997,295(1-2):43-52.

    • [30] ZHOU T,LIU D W,ZHANG Y,et al.Microstructure and hydrogen impermeability of titanium nitride thin films deposited by direct current reactive magnetron sputtering[J].Journal of Alloys and Compounds,2016,688:44-50.

    • [31] KIUCHI M,CHAYAHARA A,HORIONO Y,et al.Control of preferentially oriented crystal growth of titanium nitride-Effects of nitrogen adsorption and ion-beam irradiation in dynamic mixing process[J].Applied Surface Science,1992,60-61:760-764.

    • [32] 柳子怡.PEMS PEMS-TiN/Al 配副的摩擦学行为研究[D].北京:中国地质大学(北京),2020.LIU Ziyi.Study on the tribological behavior against aluminum of TiN-coated samples deposited by PEMS[D].Beijing:China University of Geosciences(Beijing),2020.(in Chinese)

    • [33] APELLEG J,ZEVIN L Z,LUNGO S,et al.Reactive-sputter-deposited TiN films on glass substrates[J].Thin Solid Films,1991,197:117-128.

    • [34] SHAH H M,JAYAGANTHAN R,KAUR D.Effect of sputtering pressure and temperature on DC magnetron sputtered CrN films[J].Surface Engineering,2013,26:629-637.

    • [35] CHEN X,XI Y T,MENG J,et al.Effects of substrate bias voltage on mechanical properties and tribological behaviors of RF sputtered multilayer TiN/CrAlN films[J].Journal of Alloys Compounds,2016,665:210-217.

    • [36] DEVIA D M,RESTREPO-PARRA E,ARANGO P J,et al.TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage[J].Applied Surface Science,2011,257:6181-6185.

    • [37] TECRELJ M,PERUS I,KUGLER G.Wear progress of nitrided layer at low,medium and high contact pressures during a laboratory simulation of aluminum hoextrusion[J].Tribology Letters,2014,55(1):69-81.

    • [38] BIROL Y.Sliding wear of CrN,AlCrN and AlTiN coated AISI H13 hot work tool steels in aluminum extrusion[J].Tribology International,2013,57:101-106.

    • [39] LI X W,CAI Q Z,LI B,et al.Grain refining mechanism in pure aluminum with nanosized TiN/Ti composite refiner addition[J].Journal of Alloys and Compounds,2017,699:283-290.

    • [40] YEH T S,WU J M,HU L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J].Thin Solid Films,2008,516:7294-7298.

  • 参考文献

    • [1] ZHAO L L,ZHOU K C,TANG D,et al.Experimental and numerical study on friction and wear performance of hot extrusion die materials[J].Materials,2022,15(5):1798.

    • [2] BJORK T,WESTERGARD R,HOGMARK S.Wear of surface treated dies for aluminum extrusion:A case study[J].Wear,2001,249(3):316-323.

    • [3] TERCELJ M,SMOLEJ A,VECKO-PIRTOVSEK T.Varieties of gas and ionic nitrided microstructures in narrow gaps of AISI H10 dies for Al hot extrusion and their wear resistance(Ultra-precision machining)[C]//Proceedings of International Conference on Leading Edge Manufacturing in Century,LEM21,October 19-22,2005,Nagoya,Japan:The Japan Society of Mechanical Engineers,2015:138-140.

    • [4] BIROL Y.Analysis of wear of a gas nitrided H13 tool steel die in aluminum extrusion[J].Engineering Failure Analysis,2012,26:203-210.

    • [5] DUMAN K,KARABEYOGLU S S,YAMAN P,et al.Effect of nitriding conditions and operation temperatures on dry sliding wear properties of the aluminum extrusion die steel in the industry[J].Materials Today Communications,2022,31:103628.

    • [6] THEWES A,BROCKER L,GEORGE E T K,et al.Ti-Si-B-C-N plasma enhanced chemical vapor deposition nanocomposite coatings for high temperature applications[J].Thin Solid Films,2022,760:139507.

    • [7] FUNAZUKA T,DOHDA K,TAKATSUJI N,et al.Effect of die coating on surface crack depth of hot extruded 7075 aluminum alloy[J].Friction,2023,11(7):1212-1224.

    • [8] DAODON W,PREMANOUD V,WONGPISARN W,et al.Vanadium nitride and titanium nitride coatings for anti-galling behavior in ironing of aluminum alloy cups[J].Wear,2015,342-343:279-287.

    • [9] BHOWMICK S,BANERJI A,LUKITSCH M J,et al.The high temperature tribological behavior of Si,O containing hydrogenated diamond-like carbon(a-C:H/a-Si:O)coating against an aluminum alloy[J].Wear,2015,330-331:261-271.

    • [10] KONCA E,CHENG Y T,WEINER A M,et al.Elevated temperature tribological behavior of non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy[J].Surface & Coatings Technology,2006,200:3996-4005.

    • [11] YANG X D,KURODA T,NASHIMASA Y,et al.Preparation of DLC films on micro extrusion dies by pulse plasma-enhanced CVD[J].New Diamond &Frontier Carbon Technology,2002,12(3):145-148.

    • [12] BHOWMICK S,BANERJI A,KHAN M Z U,et al.High temperature tribological behavior of tetrahedral amorphous carbon(ta-C)and fluorinated ta-C coatings aluminum alloys[J].Surface & Coatings Technology,2015,284:14-25.

    • [13] GHARAM A A,LUKITSCH M J,BALOGH M P,et al.High temperature tribological behavior of carbon based(B4C and DLC)coatings in sliding contact with aluminum[J].Thin Solid Films,2010,519:1611-1617.

    • [14] RIAHI A R,ALPAS A T.Adhesion of AA5182 aluminum sheet to DLC and TiN coatings at 25 ℃ and 420 ℃ [J].Surface & Coatings Technology,2007,202:1055-1061.

    • [15] PANJAN P,CVAHTE P,CEKADA M,et al.PVD CrN coatings for protection of extrusion dies[J].Vacuum,2001,61:241-244.

    • [16] PELLIZZARI M,ZADRA M,MOLINARI A.Tribological properties of surface engineered hot work tool for aluminum extrusion dies[J].Surface Engineering,2007,23(3):165-168.

    • [17] PELLIZZARI M.High temperature wear and friction behavior of nitrided,PVD-duplex and CVD coated tool steel against 6082 Al alloy[J].Wear,2011,271:2089-2099.

    • [18] ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid films,2010,518:4087-4090.

    • [19] JAROS M,MUSIL J,CERSTVY R,et al.Effect of energy on structure,microstructure and mechanical properties of hard Ti(Al,V)Nx films prepared by magnetron sputtering[J].Surface & Coatings Technology,2017,332:190-197.

    • [20] MAYRHOFER P H,KUNC F,MUSIL J,et al.A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings[J].Thin Solid Films,2002,415:151-159.

    • [21] CHIANG K T K,WEI R H.Growth morphology and corrosion resistance of magnetron sputtered Cr films[J].Surface & Coatings Technology,2011,206(7):1660-1665.

    • [22] ABD E A M,WEI R H.A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti-Si-C-N nanocomposite coatings[J].Surface & Coatings Technology,2014,241:74-79.

    • [23] ABD E A M,WEI R H.Effect of ion bombardment onstructural,mechanical,erosion and corrosion properties of Ti-Si-C-N nanocomposite coatings[J].Surface & Coatings Technology,2014,258:320-328.

    • [24] XIE Q,FU Z Q,LIU Z Y,et al.Improvement of microstructure and tribological properties of titanium nitride films by optimization of substrate bias current[J].Thin Solid Films,2022,749:139181.

    • [25] 魏娴.PEMS 工艺参数对 CrN/Al 配副摩擦学行为影响的研究[D].北京:中国地质大学(北京),2018.WEI Xian.Study of effect of PEMS process parameters on tribological behavior of CrN/Al friction couples[D].Beijing:China University of Geosciences(Beijing),2018.(in Chinese)

    • [26] PONON N K,APPLEBY D J R,KING P J,et al.Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films[J],Thin Solid Films,2015,578:31-37.

    • [27] ACHOUR A,DUCROS J B,PORTO R L,et al.Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors[J].Nano Energy,2014,7:104-113.

    • [28] JIANG N,ZHANG H J,BAO S N,et al.XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias[J].Physica B:Condensed Matter,2004,352:118-126.

    • [29] GAUTIER C,MACHET J.Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation[J].Thin Solid Films,1997,295(1-2):43-52.

    • [30] ZHOU T,LIU D W,ZHANG Y,et al.Microstructure and hydrogen impermeability of titanium nitride thin films deposited by direct current reactive magnetron sputtering[J].Journal of Alloys and Compounds,2016,688:44-50.

    • [31] KIUCHI M,CHAYAHARA A,HORIONO Y,et al.Control of preferentially oriented crystal growth of titanium nitride-Effects of nitrogen adsorption and ion-beam irradiation in dynamic mixing process[J].Applied Surface Science,1992,60-61:760-764.

    • [32] 柳子怡.PEMS PEMS-TiN/Al 配副的摩擦学行为研究[D].北京:中国地质大学(北京),2020.LIU Ziyi.Study on the tribological behavior against aluminum of TiN-coated samples deposited by PEMS[D].Beijing:China University of Geosciences(Beijing),2020.(in Chinese)

    • [33] APELLEG J,ZEVIN L Z,LUNGO S,et al.Reactive-sputter-deposited TiN films on glass substrates[J].Thin Solid Films,1991,197:117-128.

    • [34] SHAH H M,JAYAGANTHAN R,KAUR D.Effect of sputtering pressure and temperature on DC magnetron sputtered CrN films[J].Surface Engineering,2013,26:629-637.

    • [35] CHEN X,XI Y T,MENG J,et al.Effects of substrate bias voltage on mechanical properties and tribological behaviors of RF sputtered multilayer TiN/CrAlN films[J].Journal of Alloys Compounds,2016,665:210-217.

    • [36] DEVIA D M,RESTREPO-PARRA E,ARANGO P J,et al.TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage[J].Applied Surface Science,2011,257:6181-6185.

    • [37] TECRELJ M,PERUS I,KUGLER G.Wear progress of nitrided layer at low,medium and high contact pressures during a laboratory simulation of aluminum hoextrusion[J].Tribology Letters,2014,55(1):69-81.

    • [38] BIROL Y.Sliding wear of CrN,AlCrN and AlTiN coated AISI H13 hot work tool steels in aluminum extrusion[J].Tribology International,2013,57:101-106.

    • [39] LI X W,CAI Q Z,LI B,et al.Grain refining mechanism in pure aluminum with nanosized TiN/Ti composite refiner addition[J].Journal of Alloys and Compounds,2017,699:283-290.

    • [40] YEH T S,WU J M,HU L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J].Thin Solid Films,2008,516:7294-7298.

  • 手机扫一扫看