en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

魏永强,男,1980年出生,博士,教授,硕士研究生导师。主要研究方向为表面技术与硬质薄膜。E-mail:yqwei2008@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221230001

参考文献 1
LONG Weimin,LIU Dashuang,DONG Xian,et al.Laster power effects on properties of laster brazing diamond coating[J].Surface Engineering,2020,36(12):1315-1326.
参考文献 2
MATO S,SÁNCHEZ-LÓPEZ J C,BARRIGA J,et al.Insights into the role of the layer architecture of Cr-Ti-N based coatings in long-term high temperature oxidation experiments in steam atmosphere[J].Ceramics International,2021,47(3):4257-4266.
参考文献 3
KEHAL A,SAOULA N,ABAIDIA S E H,et al.Effect of Ar/N2 flow ratio on the microstructure and mechanical properties of Ti-Cr-N coatings deposited by DC magnetron sputtering on AISI D2 tool steels[J].Surface and Coatings Technology,2021,421:127444.
参考文献 4
BOBZIN K,KALSCHEUER C,CARLET M,et al.3D deformation modeling of CrAlN coated tool steel compound during nanoindentation[J].Surface and Coatings Technology,2023,453:129148.
参考文献 5
蔡志海,底月兰,张平.活塞环表面CrAlN涂层的微观组织与抗高温氧化性能[J].中国表面工程,2010,23(6):15-19.CAI Zhihai,DI Yuelan,ZHANG Ping.Microstructure and oxidation resistance of CrAlN composite coatings on piston rings[J].China Surface Egineering,2010,23(6):15-19.(in Chinese)
参考文献 6
付小静,李瑞川,高建国,等.在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205.FU Xiaojing,LI Ruichuan,GAO Jianguo,et al.Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J].China Surface Egineering,2021,34(5):198-205.(in Chinese)
参考文献 7
LIEW W Y H,LIM H P,MELVIN G J H,et al.Thermal stability,mechanical properties,and tribological performance of TiAlXN coatings:understanding the effects of alloying additions[J].Journal of Materials Research and Technology,2022,17:961-1012.
参考文献 8
林静,张硕,马德政,等.沉积温度对AlCrTiN涂层组织结构与性能的影响[J].中国表面工程,2021,34(6):114-123.LIN Jing,ZHANG Shuo,MA Dezheng,et al.Effects of deposition temperature on the structure and property of AlCrTiN coatings[J].China Surface Egineering,2021,34(6):114-123.(in Chinese)
参考文献 9
HUANG M,CHEN Z,WANG M,et al.Microstructureand properties of TiCrN coatings by arc ion plating[J].Surface Engineering,2016,32(4):284-288.
参考文献 10
VALLETI K,PUNEET C,KRISHNA L R,et al.Studies on cathodic arc PVD grown TiCrN based erosion resistant thin films[J].Journal of Vacuum Science and Technology A,2016,34(4):041512.
参考文献 11
WANG Qianzhi,ZHOU Fei,YAN Jiwang.Evaluating mechanical properties and crack resistance of CrN,CrTiN,CrAlN and CrTiAlN coatings by nanoindentation and scratch tests[J].Surface and Coatings Technology,2016,285:203-213.
参考文献 12
DO A,KIM D,CHOI H J,et al.Improvement in the hydrothermal corrosion resistance of Ti-based nitride coatings by adding Cr for accident tolerant fuel cladding applications[J].Journal of Nuclear Materials,2021,549:152903.
参考文献 13
赖振国,贾倩,唐诗琪,等.金属氮化物涂层的高温摩擦学研究进展[J].中国表面工程,2022,35(3):48-63.LAI Zhenguo,JIA Qian,TANG Shiqi,et al.Progress in high temperature tribology of metal nitride coatings[J].China Surface Egineering,2022,35(3):48-63.(in Chinese)
参考文献 14
THAMPI V V A,BENDAVID A,SUBRAMANIAN B.Nanostructured TiCrN thin films by pulsed magnetron sputtering for cutting tool applications[J].Ceramics International,2016,42(8):9940-9948.
参考文献 15
党文伟,赵金龙,李晓升.多弧离子镀沉积TiCrN薄膜在中性盐雾环境下的腐蚀行为[J].电镀与精饰,2022,44(11):64-68.DANG Wenwei,ZHAO Jinlong,LI Xiaosheng.Corrosion behavior of TiCrN film deposited by multi-arc ion plating in neutral salt spray environment[J].Plating and Finishing,2022,44(11):64-68.(in Chinese)
参考文献 16
钟利,沈丽如,陈美艳,等.关于(Ti,Cr)N 膜摩擦学性能的研究[J].真空,2020,57(2):27-32.ZHONG Li,SHEN Liru,CHEN Meiyan,et al.Study on tribological properties of(Ti,Cr)N films[J].Vacuum,2020,57(2):27-32.(in Chinese)
参考文献 17
LI T,YAN Z,LIU Z Z,et al.High corrosion resistance and surface conductivity of(Ti1-xCrx)N coating for titanium bipolar plate[J].Corrosion Science,2022,200:110256.
参考文献 18
NI J J,LIU F,YANG G L,et al.3D-printed Ti6Al4V femoral component of knee:improvements in wear and biological properties by AIP TiN and TiCrN coating[J].Journal of Materials Research and Technology,2021,14:2322-2332.
参考文献 19
HSU C H,LIN C K,HUANG K H,et al.Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti,Cr)N coatings[J].Surface and Coatings Technology,2013,231:380-384.
参考文献 20
XU Jie,WANG Jiyun,LU Linlin,et al.Study on the infrared emissivity of nonstoichiometric titanium chromium nitride films[J].Thin Solid Films,2022,754:139303.
参考文献 21
LI Runhao,Lü Yilin,XUE Mingming,et al.Microstructure and properties of reactive plasma sprayed nano-TixCr1-xN ceramic coating[J].Surface and Coatings Technology,2020,391:125658.
参考文献 22
BASERI N A,MOHAMMADI M,GHATEE M,et al.The effect of duty cycle on the mechanical and electrochemical corrosion properties of multilayer CrN/CrAlN coatings produced by cathodic arc evaporation[J].Surface Engineering,2021,37(2):253-262.
参考文献 23
GILEWICZ A,JEDRZEJEWSKI R,MYSLINSKI P,et al.Influence of substrate bias voltage on structure,morphology and mechanical properties of AlCrN coatings synthesized using cathodic arc evaporation[J].Tribology in Industry,2019,41(4):484-497.
参考文献 24
BROWN I G.Cathodic arc deposition of films[J].Annual Review of Materials Science,1998,28(1):243-269.
参考文献 25
王福贞.阴极电弧离子镀膜技术的进步[J].真空与低温,2020,26(2):87-95.WANG Fuzhen.Advances in cathode arc ion plating technology[J].Vacuum & Cryogenics,2020,26(2):87-95.(in Chinese)
参考文献 26
程芳,黄美东,王萌萌,等.脉冲偏压占空比对复合离子镀TiCN涂层结构和性能的影响[J].中国表面工程,2014,27(4):100-106.CHENG Fang,HUANG Meidong,WANG Mengmeng,et al.Effects of duty-ratio of pulsed bias on the stucture and properties of TiCN coatings by hybrid ion plating[J].China Surface Egineering,2014,27(4):100-106.(in Chinese)
参考文献 27
HUANG Meidong,LIN Guoqiang,ZHAO Yanhui,et al.Macro-particle reduction mechanism in biased arc ion plating of TiN[J].Surface & Coatings Technology,2003,176(1):109-114.
参考文献 28
付志强,苗志玲,岳文,等.脉冲偏压占空比对电弧离子镀TiAlN涂层的影响[J].稀有金属材料与工程,2018,47(11):3482-3486.FU Zhiqiang,MIAO Zhiling,YUE Wen,et al.Influenceof duty ratio of pulsed bias on TiAlN coatings deposited by arc ion plating[J].Rare Metal Materials and Engineering,2018,47(11):3482-3486.(in Chinese)
参考文献 29
耿东森,吴正涛,聂志伟,等.基体偏压对电弧离子镀AlCrSiON涂层结构和热稳定性的影响[J].中国表面工程,2016,29(6):60-66.GENG Dongsen,WU Zhengtao,NIE Zhiwei,et al.Influence of substrate bias on microstructure and thermal stability of AlCrSiON coatings deposited by arc ion plating[J].China Surface Egineering,2016,29(6):60-66.(in Chinese)
参考文献 30
KIMBLIN C W.Erosion and ionization in the cathode spot regions of vacuum arcs[J].Journal of Applied Physics,1973,44(7):3074-3081.
参考文献 31
ZHAO Shengsheng,ZHAO Yanhui,CHENG Lvsha,et al.Effects of substrate pulse bias duty cycle on the microstructure and mechanical properties of Ti-Cu-N films deposited by magnetic field-enhanced arc ion plating[J].Acta Metallurgica Sinica(English Letters),2017,30(2):176-184.
参考文献 32
LIU Hui,YANG Fuchi C,TSAI Y J,et al.Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,358:577-585.
参考文献 33
CHEN Shengyi,LUO Defu,ZHAO Guangbin.Investigation of the properties of TixCr1-xN coatings prepared by cathodic arc deposition[J].Physics Procedia,2013,50:163-168.
参考文献 34
ALI K M,MEYMIAN M R Z,MEHR A K.Nanoindentation and nanoscratch studies of submicron nanostructured Ti/TiCrN bilayer films deposited by RF-DC co-sputtering method[J].Ceramics International,2018,44(17):21825-21834.
参考文献 35
ZHANG Min,HU Xiaogang,YANG Xiaoxu,et al.Influence of substrate bias on microstructure and morphology of ZrN thin films deposited by arc ion plating[J].Transactions of Nonferrous Metals Society of China,2012,22,(Suppl.)1:s115-s119.
参考文献 36
TJONG S C,CHEN H.Nanocrystalline materials and coatings[J].Materials Science and Engineering R,2004,45(1-2):1-88.
参考文献 37
胡方勤,曹振亚,张青科,等.负偏压和本底真空度对Al膜表面形貌和耐蚀性能的影响[J].中国表面工程,2020,33(4):128-135.HU Fangqin,CAO Zhenya,ZHANG Qingke,et al.Effects of negative bias voltage and base vacuum degree on surface morphology and corrosion resistance of Al coatings[J].China Surface Egineering,2020,33(4):128-135.(in Chinese)
参考文献 38
WANG Lijun,WANG Mengchao,CHEN Hui.Corrosion mechanism investigation of TiAlN/CrN superlattice coating by multi-arc ion plating in 3.5 wt% NaCl solution[J].Surface and Coatings Technology,2020,391:125660
目录contents

    摘要

    随着先进制造领域对高速钢材料切削性能和加工性能的要求越来越高,迫切需要利用氮化物薄膜来提高基体材料的硬度和耐磨性等综合性能,延长高速钢材料的使用寿命。通过 TiCrN 薄膜提升高速钢材料的使役性能,研究脉冲偏压占空比对 TiCrN 薄膜微观结构和性能的影响规律,实现薄膜沉积工艺的优化。采用电弧离子镀方法,通过改变脉冲偏压占空比在 M2 高速钢基体和单晶硅片上沉积 TiCrN 薄膜。研究发现,脉冲偏压占空比的增大有助于减少膜层表面大颗粒数量,改善膜层表面质量;占空比从 10%增加到 60%,TiCrN 薄膜厚度先增大后减小,30%占空比时,TiCrN 薄膜的厚度达到最大值 623.8 nm, 60%占空比时,TiCrN 薄膜的厚度达到最小值 517.4 nm。当脉冲偏压占空比为 10%时,Cr 元素含量为 33.9 at.%,晶粒尺寸达到最小值 12.692 nm,纳米硬度和弹性模量分别为 29.22 GPa 和 407.42 GPa。当脉冲偏压占空比为 30%时,Cr 元素含量达到最小值 33.07 at.%,此时 TiCrN 薄膜晶粒尺寸达到最大值 15.484 nm,纳米硬度达到最小值 25.38 GPa,稳定摩擦因数达到最大值 0.9。所制备的 TiCrN 薄膜均以(220)晶面为择优取向,晶粒尺寸在 12.692~15.484 nm,纳米硬度都在 25 GPa 以上,是 M2 高速钢的 2.8 倍以上。在脉冲偏压占空比为 20%时,TiCrN 薄膜摩擦因数最小为 0.68,磨痕宽度为 0.63 mm,自腐蚀电位达到最大值-0.330 V(vs SCE),自腐蚀电流密度达到最小值 0.255 μA / cm2 ,腐蚀速率最低,耐腐蚀性能最强。与 M2 高速钢基体相比,TiCrN 薄膜的硬度、耐腐蚀和摩擦磨损性能都显著提升,Cr 元素和离子轰击作用是影响 TiCrN 薄膜性能的主要因素。研究结果为硬质薄膜工艺优化提供了一定的试验依据,TiCrN 薄膜在刀具材料性能提升方面有较好的应用前景。

    Abstract

    With the requirements of high-speed steel material cutting and machining are increasingly in high advanced manufacturing fields, there is an urgent need using nitride films to improve the hardness of the substrate materials and wear resistance and other comprehensive properties. Meanwhile the service life of high-speed steel materials is extended. The effects of the pulsed bias duty cycle on the microstructure and properties of TiCrN films were investigated to optimize the deposition process parameters and improve the properties of TiCrN films. TiCrN films subjected to different pulsed bias duty cycles were deposited onto M2 high-speed steel (HSS) substrates and Si wafers using the arc ion-plating method. The surface morphology, elemental composition, phase structure, and nanohardness of the TiCrN films were examined using scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, and nanohardness indentation. The corrosion behaviors and tribological properties of the coated and uncoated M2 HSS samples were examined using an electrochemical workstation and a pin-on-disk tribometer at room temperature. Potentiodynamic polarization curves were used to calculate the self-corrosion potential and self-corrosion current density of the tested samples in a 3.5 wt.% NaCl solution. With an increase in the pulsed bias duty cycle from 10% to 60%, the amount of macroparticles on the TiCrN film surfaces decreased, and the surface quality improved. At pulsed bias duty cycle of 10%, the maximum amount of macroparticles was 175, whereas at pulsed bias duty cycle of 60%, the minimum amount of macroparticles was 85. The thicknesses of the TiCrN films ranged from 517.4 to 623.8 nm. The TiCrN film thickness showed a trend of increasing at pulsed bias duty cycles of 10%-30% and decreasing at pulsed bias duty cycles of 30%-60%. At pulsed bias duty cycle of 30%, the thickness of the TiCrN film reached the maximum value of 623.8 nm. At pulsed bias duty cycle of 60%, the minimum thickness was 517.4 nm. At pulsed bias duty cycle of 10%, the Cr content reached 33.9 at.%, the grain size of the TiCrN film reached the minimum of 12.692 nm, and the nanohardness and elastic modulus reached maximum values of 29.22 and 407.42 GPa, respectively. At pulsed bias duty cycle of 30%, the Cr content reached the minimum of 33.07 at.%, the grain size of the TiCrN film reached the maximum of 15.484 nm, the stable friction factor was 0.9, and the nanohardness reached the minimum of 25.83 GPa. All TiCrN films deposited under different pulsed bias duty cycles showed preferred orientations in the (220) crystal plane, and the diffraction peak intensity gradually increased as the pulsed bias duty cycle increased from 10% to 40%. However, the intensity of the (220) crystal orientation diffraction peak decreased when the pulsed bias duty cycle exceeded 40%. The nanohardness of the TiCrN films under different pulsed bias duty cycles exceeded 25 GPa, which is more than 2.8 times of that of M2 HSS. Potentiodynamic polarization curves showed that TiCrN films subjected to different pulsed bias duty cycles exhibited improved corrosion resistance. Compared with the M2 HSS substrate, the corrosion resistance of the TiCrN films showed that the corrosion potential increased by approximately 0.556-0.642 V, and the corrosion current density decreased by more than one order of magnitude. Friction factor curves plotted using the pin-on-disk wear test results, as well as optical microscopy observations of wear trace width and morphologies, indicated that the TiCrN films exhibited significant wear resistance compared to the uncoated M2 HSS substrate. The wear scars on the TiCrN films were more uniform, and the number of furrows decreased significantly. At pulsed bias duty cycle of 20%, the factor of friction and the abrasion width of the TiCrN films reached minimum values of 0.68 and 0.63 mm, respectively. The potentiodynamic polarization curve for the 20% cycle showed that the self-corrosion potential (Ecorr) of the TiCrN film reached the maximum of 0.330 V (vs. SCE), and the self-corrosion current density (icorr) reached the minimum value of 0.255 μA / cm2 . At pulsed bias duty cycle of 20%, the corrosion resistance was the highest, and the corrosion rate was the lowest. Compared with the M2 HSS substrate properties, the hardness, corrosion resistance, friction, and wear properties of the TiCrN films with different pulse bias duty cycles improved significantly. The Cr content and ion bombardment were the main factors that influenced the microstructure and properties of the TiCrN films. These results provide experimental basis for optimizing the hard films deposition process. TiCrN films have a better application future for the properties improvement of cutting tool materials.

  • 0 前言

  • 随着现代加工业和金属切削工艺的快速发展,尤其是在高切削速度、高进给速度、高可靠性、长寿命等方面的迫切需求,对金属切削工具的性能要求越来越高[1-2],在关键零部件上制备单一的二元氮化物薄膜越来越不能满足高速切削和精密加工的需要。在 TiN 或 CrN 中加入 Cr、Al 等金属元素,形TiCrN[2-3]、CrAlN[4-5]、TiAlN[6]、TiAlCrN[7-8]等三元或四元金属氮化物薄膜。特别是通过在 TiN 中添加 Cr 元素形成 TiCrN 薄膜,薄膜中的 TiN 相和 CrN 相属于面心立方晶体结构,Cr 原子和 Ti 原子相互掺杂或替换,产生固溶强化和晶格畸变,可以提高硬度[9]、抗腐蚀性能[10]、膜基结合力[11]、抗氧化[12] 及耐摩擦磨损[13-14]等综合使役性能。

  • LI 等[1]在 Ti 双极板上制备 TiCr / TiCrN 复合薄膜,发现经过 100 h 的腐蚀后,其腐蚀电流密度和界面接触电阻比单层 TiCrN 薄膜经过 70 h 腐蚀的数值要低很多,说明通过双层结构提升了基体的抗腐蚀性能。MATO 等[2]通过调整 TiCrN 薄膜的层结构,来改善薄膜在高温水蒸气情况下的抗腐蚀性能,薄膜外层的 Cr2O3 和 TiO2 混合相阻止氧元素向薄膜内部扩散,在 650℃、100%水蒸气环境下,对基体的保护时间长达 2 000 h。HUANG 等[9]通过改变偏压和氮气流量发现偏压的增加减少了薄膜表面大颗粒缺陷的数量,提高了 TiCrN 薄膜的硬度。DO 等[12] 在 Zr 合金管表面沉积 TiCrN 薄膜,并对其进行水热腐蚀试验,发现添加 Cr 元素后 TiCrN 薄膜表面的氧化层厚度只有 30~40 nm,TiCrN 薄膜表面的腐蚀产物 FeCr2O4 可以有效抑制进一步腐蚀,提高薄膜的耐腐蚀性能。党文伟等[15]发现 TiCrN 薄膜中 Ti、 Cr 元素的添加能够抑制 TiN 柱状晶的长大,使薄膜的整体结构致密,表面缺陷数量减少,基体耐腐蚀性能得到大幅提升;同时经过温湿度环境试验后, TiCrN 膜层的表面平整光滑,无裂纹、孔洞、凸起等缺陷。钟利等[16]通过调节靶材元素比例,发现随着 Cr 含量增加,TiCrN 薄膜的表面粗糙度降低,其硬度和耐磨性明显优于 TiN 和 CrN 单元氮化物薄膜,在靶材中 Ti∶Cr 比例为 4∶1 时,薄膜硬度最高(HV0.05 3 274.9)。

  • 目前制备 TiCrN 薄膜的技术主要有电弧离子镀[17-19]、磁控溅射[320]、等离子体喷涂[21]等,其中电弧离子镀由于其金属离化率高、绕射性能好、成膜速度快和膜基结合力高等优点被广泛应用。通过与脉冲偏压相结合,可调节电弧等离子体中沉积离子的能量、减少大颗粒缺陷[22]、优化薄膜内应力,实现薄膜晶粒细化和致密度的提升[23],因此研究脉冲偏压占空比对电弧离子镀制备 TiCrN 薄膜微观结构和性能的影响具有重要意义。本文采用电弧离子镀方法制备 TiCrN 薄膜,通过改变脉冲偏压占空比,研究 TiCrN 薄膜微观结构、元素含量、力学性能、摩擦磨损性能和耐蚀性的变化规律,为进一步制备性能优良的多元薄膜提供试验依据和技术支撑。

  • 1 试验准备

  • 1.1 样品制备

  • 采用北京泰科诺科技有限公司生产的 TS U-650 型多功能离子镀膜机,真空室规格为 φ 650 mm×H 700 mm,极限真空为 0.2 mPa,样品平放到样品台上,Cr 靶和 Ti 靶对向放置,与基体之间的最近距离为 200 mm,多功能离子镀膜设备的沉积系统如图1 所示。

  • 图1 电弧离子镀真空镀膜系统

  • Fig.1 Schematic diagram of arc ion plating system

  • 试验中使用 Cr 靶(纯度 99.95 at.%)和 Ti 靶(纯度 99.995 at.%),靶材尺寸均为φ100 mm×40 mm; 反应气体为高纯 Ar(99.999%)和 N2(99.999%)。基体材料分别为单晶硅片(400)10 mm×10 mm× 0.5 mm 和 M2 高速钢,M2 高速钢样品规格尺寸为 φ30 mm×3 mm,化学成分(质量分数)如表1 所示。对 M2 高速钢基体进行前期热预处理流程为:利用电火花线切割 M2 高速钢(φ30 mm×4 mm),先 1 240℃高温淬火,然后 560℃回火热处理 3 次,再通过磨床双面打磨(φ30 mm×3.5 mm),依次使用 400#砂纸、600#砂纸、800#砂纸,0.1 μm 金刚石抛光剂抛光至镜面状态,在丙酮中超声清洗 10 min,最后在无水乙醇中超声清洗 10 min。

  • 表1 M2 高速钢的元素化学成分(wt.%)

  • Table1 Elemental composition of M2 high speed steel (wt.%)

  • 干燥后将基体平放在样品台上,镀膜过程中基体的公转速度 5 r / min,自转速度 13 r / min。当真空腔室内温度达到 230℃以上,真空度为 9.9 mPa 时,通入高纯氩气,流量为 50 mL / min,并开启 Ti 靶,弧电流为 70 A,对试样进行离子轰击清洗,脉冲偏压幅值依次为−300 V(2 min)、−500 V(2 min)、 −800 V(6 min),脉冲偏压频率为 60 kHz,占空比为 40%。之后关闭氩气,通入高纯氮气,流量为 60 mL / min,脉冲偏压幅值为−400 V,频率 60 kHz,占空比 40%,进行 TiN 过渡层沉积(10 min)。随后开启 Cr 靶,保持 Ti 靶和 Cr 靶的弧电流为 70 A,氮气流量为 100 mL / min,脉冲偏压幅值为−200 V,频率 60 kHz,脉冲偏压占空比分别为 10%、20%、 30%、40%、50%和 60%,沉积 TiCrN 薄膜(60 min)。

  • 1.2 薄膜结构表征及力学性能测试

  • 采用德国蔡司公司的 SIGMAHV-01-043 型场发射扫描电子显微镜观察 TiCrN 膜层表面和截面形貌,扫描电压 15 kV,并采用 ImageJ 图像处理软件对 TiCrN 表面形貌进行分析,统计大颗粒数量和粒径。采用 Nano Xflash Detector 5010 型能谱仪(德国布鲁克)对 TiCrN 薄膜中元素含量进行测定。采用德国布鲁克公司 D8 型 X 射线衍射仪进行相结构分析,X 射线源为 Cu-Kα,管电压 40 kV,管电流 40 mA,扫描范围 20°~80°,扫描速度 2(°)/ min;在室温条件下采用 UTM-2 摩擦磨损试验机对 TiCrN 薄膜进行球-盘式摩擦磨损测试,摩擦副采用 Si3N4球,直径为 9.55 mm,摩擦载荷为 5 N,往复频率为 2 Hz,单次行程为 5 mm,往复摩擦时间为 60 min;采用瑞士安东帕公司的超纳米压痕仪UNHT对M2高速钢基体表面 TiCrN 薄膜进行纳米硬度和弹性模量测试,压头类型为 Berkovich,压入深度 50 nm,施加最大载荷2.5 mN,加载速度和卸载速度 5 mN / min,保持时间 2 s,选取 5 个点进行检测,取平均值;采用上海辰华仪器有限公司 CHI660E 电化学工作站进行耐腐蚀性能测试,工作电极为沉积TiCrN 薄膜后的M2 高速钢,参比电极为饱和甘汞电极,辅助电极为铂电极,扫描电压−2~+2 V,扫描速度 2 mV / s,腐蚀面积 1 cm2,腐蚀溶液为 3.5 wt.% NaCl 溶液。

  • 2 结果与讨论

  • 2.1 表面形貌

  • 图2所示为不同偏压占空比下TiCrN薄膜的表面形貌,在不同脉冲偏压占空比下制备的 TiCrN 薄膜表面均存在形状、大小不同的大颗粒或凹坑缺陷,原因在于电弧离子镀沉积薄膜过程中,弧斑位置电流密度高达 106~108 A / cm2[24],金属靶材由固态转变为等离子体的过程中,在等离子体压力的作用下,弧斑位置处会喷射出液态熔滴,直接沉积在薄膜表面上或镶嵌在膜层中形成大颗粒缺陷;在离子轰击的作用下,部分结合不好的大颗粒脱落,在薄膜表面形成凹坑缺陷[25]。从图中可见,随着脉冲偏压占空比逐渐增大, TiCrN 薄膜表面的大颗粒数目逐渐减少,薄膜表面逐渐光滑致密。同时电弧等离子体中高能离子的密度增加,对 TiCrN 薄膜表面大颗粒的轰击作用更为显著,从而使更多结合力较差的大颗粒从薄膜上脱落,在 TiCrN 薄膜表面形成凹坑或微坑缺陷。

  • 图2 不同脉冲偏压占空比下 TiCrN 薄膜的表面形貌

  • Fig.2 Surface morphologies of TiCrN films with different pulsed bias duty cycles

  • 通过 ImageJ 软件对 TiCrN 薄膜表面形貌 (112.71 μm×84.75 μm)进行处理分析,不同脉冲偏压占空比下 TiCrN 薄膜表面的大颗粒直径和对应数目的统计结果如图3 所示。随着脉冲偏压占空比的增加,各个尺寸的大颗粒数目迅速减少,直径 3 μm 以下的大颗粒数目变化最为显著。在不同脉冲偏压占空比下,大颗粒的尺寸主要分布在 0.7~2.5 μm 范围内。当脉冲偏压占空比从 10%增加到 60%时,大颗粒数目分别为 175 个、96 个、88 个、132 个、117 个和 85 个。

  • 图3 不同脉冲偏压占空比下 TiCrN 薄膜表面的大颗粒直径及数量分布

  • Fig.3 Macroparticles diameter and amounts distributions of TiCrN films with different pulsed bias duty cycles

  • 随着脉冲偏压占空比从 10%增加到 30%,大颗粒数目从 175 个减少到 88 个,当占空比为 40%时,大颗粒数目增加到 132 个,继续增加占空比,大颗粒数目减少为 60%占空比时的 85 个,大颗粒数目总体呈现减少趋势。由于电子质量小于离子,速度也快于离子,更易与大颗粒碰撞并被吸附,使大颗粒带负电。脉冲偏压的电场振荡作用对电子运动产生影响,随着脉冲偏压占空比的增加,对大颗粒的充电能力增强,大颗粒在等离子体鞘层内受到电子充电而带有更多负电荷,引起基体对大颗粒的排斥力增大,从而减少薄膜表面的大颗粒数目[26-27]

  • 2.2 截面形貌

  • 图4 所示为不同脉冲偏压占空比下 TiCrN 薄膜的截面形貌,发现脉冲偏压占空比为 10%、20%、 30%、40%、50%和 60%时,TiCrN 薄膜厚度分别为 601.4 nm、555.9 nm、623.8 nm、551.1 nm、579.4 nm 和 517.4 nm。随着脉冲偏压占空比从 10%增加到 30%,膜层厚度略有增大,在 30%占空比时,TiCrN 薄膜的厚度达到最大值 623.8 nm。随着脉冲偏压占空比的增加,一个周期内基体对离子的吸引时间增加,到达基体表面的离子数量增加,进而增大薄膜的沉积速率;当占空比进一步增加,离子到达基体表面的平均能量增大,基体对金属离子的吸引效应与沉积离子轰击作用相互抵消[28];占空比继续增加时,离子轰击对薄膜产生溅射作用,引起膜层厚度下降。当占空比为 60%时,TiCrN 薄膜的厚度最小,只有 517.4 nm。通过观察截面形貌还发现,偏压占空比升高,离子轰击作用逐渐增强,薄膜表面所吸附的离子扩散能力增强,使 TiCrN 薄膜内部孔洞等缺陷减少、结构更加致密[29]

  • 图4 不同脉冲偏压占空比下 TiCrN 薄膜的截面形貌

  • Fig.4 Cross-section morphologies of TiCrN films with different pulsed bias duty cycles

  • 2.3 薄膜成分

  • 采用能谱仪对 TiCrN 薄膜表面进行面扫描分析,不同脉冲偏压占空比下 TiCrN 薄膜中的各种元素成分含量如图5 所示。在所有脉冲偏压占空比下,Cr 元素含量始终大于 Ti 元素含量,原因在于 Cr 离化率(100%)要高于 Ti 离化率(80%)[30]。随着脉冲偏压占空比由 10%增加到 30%,Cr 元素含量呈下降趋势,由 33.9 at.%下降至 33.07 at.%,Ti 元素含量呈增加趋势,由 21.25 at.%上升至 21.85 at.%左右,TiCrN 薄膜柱状晶结构逐渐显著(如图4 所示)。

  • 图5 不同脉冲偏压占空比下 TiCrN 薄膜的元素含量

  • Fig.5 Elements content of TiCrN films with different pulsed bias duty cycles

  • 当脉冲偏压占空比为 30%时,Cr 元素含量最少,晶粒细化的作用减弱,柱状晶特征也较为显著。而随着脉冲偏压占空比进一步增加,Cr 元素含量先上升后下降,在脉冲偏压占空比为 50%时,Cr 元素含量达到最大值 35.44 at.%;而 Ti 元素含量则呈现先下降后上升的趋势,在脉冲偏压占空比为 50%时,含量最低为 19.91 at.%,此时 TiCrN 薄膜柱状晶结构特征逐渐减弱。随着脉冲偏压占空比的增加,氮元素含量在 43.98 at.%~45.44 at.%变化,脉冲偏压占空比对 TiCrN 薄膜中氮元素的含量影响不大。

  • 2.4 相结构

  • 图6 所示为不同脉冲偏压占空比下 TiCrN 薄膜的 XRD 图谱,除基体峰之外,主要为(220)晶面的衍射峰。由于 TiN 晶格常数为 0.424 nm,CrN 晶格常数为 0.414 nm,且两者具有相同的面心立方结构,两相间的金属原子可以相互代替,形成 TiCrN 固溶体[21]。同时 Cr 原子半径小于 Ti 原子半径,当 Cr 原子置换 TiN 中的 Ti 原子时,引起 TiCrN 固溶体的晶格常数介于 CrN 相和 TiN 相之间,衍射峰相较于 CrN-PDF#77-0047 标准卡片向小角度偏移,相较于 TiN-PDF#74-1214 标准卡片向大角度偏移。 TiCrN 薄膜择优取向晶面为(220),且随着脉冲偏压占空比从 10%增加到 40%,择优取向逐渐显著, TiCrN 薄膜在(220)晶面结晶度较好;但是当占空比超过 40%时,(220)晶面的衍射峰降低。在薄膜的生长过程中,表面能和应变能的竞争会引起相结构的变化[31],随着脉冲偏压占空比的增加,等离子体密度和离子轰击强度增加,沉积温度升高,吸附原子迁移率增大,有利于降低薄膜内的内应力和弹性应变,获得低表面能的(220)择优取向。但脉冲偏压占空比超过 50%后继续增加占空比,高能粒子对生长的薄膜轰击作用继续增强,使 TiCrN 薄膜中产生大量晶体缺陷,降低 TiCrN 薄膜的结构完整性,引起(220)晶面衍射峰强度降低[28]

  • 图6 不同脉冲偏压占空比下 TiCrN 薄膜的 XRD 图谱

  • Fig.6 XRD patterns of the TiCrN films with different pulsed bias duty cycles

  • 根据谢乐公式计算 TiCrN 薄膜在择优取向 (220)晶面处的晶粒尺寸[32],如式(1)所示

  • D=Kλβcosθ
    (1)
  • 式中,D 为晶粒尺寸;K 为 Scherrer 常数,取 0.89; 铜 X 射线波长 λ 为 0.154 056 nm;β 为衍射峰的半高宽(Full width at half maxima,FWHM)(弧度); θ 为衍射角(°);(220)晶面的半高宽和晶粒尺寸如表2 所示。

  • 表2 择优取向晶面的峰值位置(2θ)、半高宽和晶粒尺寸(220)

  • Table2 Peak position (2θ) , FWHM and Grain size of preferred orientation crystal plane (220)

  • 由于 Cr 离化产额高于 Ti 离化产额,Cr 原子置换 TiN 晶格点阵中的 Ti 原子,以 Cr 原子作为晶体结构的核心,促进晶体的形核,使 TiCrN 薄膜晶粒细化[33-34]。当脉冲偏压占空比从 10%增加到 30%时, Cr 元素含量逐渐减小(如图5 所示),晶粒尺寸由 12.692 nm 增大到 15.484 nm;进一步增加脉冲偏压占空比,Cr 含量增加,晶粒尺寸逐渐减小,脉冲偏压占空比为 60%时,TiCrN 薄膜 Cr 含量(34.29 at.%) 虽然小于 50%时的 Cr 含量(35.44 at.%),但是晶粒尺寸却比 50%占空比时要小,原因在于高占空比下,离子轰击更强,有利于促进形核和细化晶粒[35]

  • 2.5 纳米硬度及强化机理

  • 图7 所示为不同脉冲偏压占空比下 TiCrN 薄膜的纳米硬度和弹性模量。随着脉冲偏压占空比的增加,TiCrN 薄膜的纳米硬度总体上呈现先减小后增加的趋势,所制备 TiCrN 薄膜的纳米硬度在 25 GPa 以上,是 M2 高速钢基体硬度(~9 GPa)的 2.8 倍以上。

  • 图7 不同脉冲偏压占空比下 TiCrN 薄膜的纳米硬度和弹性模量

  • Fig.7 Hardness and elastic modulus of the TiCrN films with different pulsed bias duty cycles

  • 在脉冲偏压占空比为 10%时,晶粒尺寸最小, TiCrN 薄膜纳米硬度达到最大值 29.22 GPa,弹性模量为 407.42 GPa。在占空比为 30%时,Cr 元素最少,对晶粒细化作用最弱,因此晶粒尺寸最大,纳米硬度最小。脉冲偏压占空比大于 30%时,晶粒尺寸开始逐渐减小,薄膜硬度逐渐提升,原因是 Cr 原子含量增加,对晶粒的细化作用增强,根据 Hall-Petch 强化效应,晶粒细化作用引起 TiCrN 薄膜的纳米硬度增大[36]。而当脉冲偏压占空比为 50%和 60%时, TiCrN 薄膜硬度略小于脉冲偏压占空比 10%时的硬度,原因在于高脉冲偏压占空比时,基体对离子的吸引时间延长,更多沉积离子的能量增加,与高离子轰击强度和 Cr 元素细化晶粒三者相互竞争作用,促进 TiCrN 薄膜晶粒的生长,导致硬度下降。

  • 2.6 薄膜摩擦学性能

  • 图8 所示为抛光后 M2 高速钢基体(M2 high speed steel,HSS)和不同脉冲偏压占空比下 TiCrN 薄膜的摩擦因数曲线和稳定摩擦因数。在摩擦过程中的前 500 s,为 TiCrN 薄膜的跑合(磨合)阶段,该阶段中薄膜的摩擦因数剧烈上升,随后摩擦过程进入稳定摩擦阶段,摩擦因数趋于平稳。而高速钢基体经过抛光后,表面粗糙度小,摩擦过程比较稳定,在 200 s 以后进入稳定摩擦阶段,稳定摩擦因数为 0.76。当脉冲偏压占空比为 20%时,TiCrN 薄膜摩擦因数最小,在摩擦试验开始 1 000 s 后逐渐趋于平稳,稳定摩擦因数在 0.68 左右。而脉冲偏压占空比为 30%和 50%时,TiCrN 薄膜的摩擦因数较大,在进入稳定摩擦阶段(经过 3 500 s 摩擦后),摩擦因数仍有增长趋势,其稳定摩擦因数分别达到 0.90 和 0.83。

  • 图8 M2 高速钢基体和不同脉冲偏压占空比下 TiCrN 薄膜的摩擦测试结果

  • Fig.8 Tribological results of M2 HSS and TiCrN films with different pulsed bias duty cycles

  • 图9 所示为 M2 高速钢基体和不同脉冲偏压占空比下 TiCrN 薄膜的磨痕形貌,往复磨痕的长度均为 5 mm。发现未镀膜的 M2 高速钢基体磨痕宽度最小,原因是抛光后,M2 高速钢基体表面光滑,摩擦过程中产生的部分磨屑能够及时脱落,很少附着在磨痕位置处,但是磨痕表面存在大量犁沟。与未镀膜的 M2 高速钢基体相比,TiCrN 薄膜对磨位置的磨损比较均匀,同时磨痕中犁沟的数量明显减少。特别是脉冲偏压占空比为 20%和 40%时,TiCrN 薄膜的磨痕宽度较窄,磨痕两端位置产生的磨屑堆积较少,膜层无脱落现象。

  • 图9 不同脉冲偏压占空比下 M2 高速钢基体和 TiCrN 薄膜的磨痕形貌

  • Fig.9 Abrasion morphology of M2 HSS 和 TiCrN films with different pulsed bias duty cycles

  • 2.7 薄膜耐蚀性能

  • 图10 所示为M2 高速钢基体及不同脉冲偏压占空比下 TiCrN 薄膜的极化曲线和自腐蚀电位-自腐蚀电流密度。随着脉冲偏压占空比从 10%增加到 60%,TiCrN 薄膜的自腐蚀电位分别为−0.348 V(vs SCE)、−0.330 V(vs SCE)、−0.375 V(vs SCE)、 −0.404 V(vs SCE)、−0.416 V(vs SCE)和−0.409 V (vs SCE),呈现出先增加后减小的趋势,但是比M2 高速钢基体的自腐蚀电位−0.972 V(vs SCE)提高了 0.556~0.642 V;TiCrN 薄膜的自腐蚀电流密度分别为 1.216 μA / cm2、0.255 μA / cm2、 0.648 μA / cm2、1.260 μA / cm2 、0.555 μA / cm2 和 0.515 μA / cm2,比 M2 高速钢基体的自腐蚀电流密度 12.21 μA / cm2 小一个量级以上,可见 TiCrN 薄膜可以有效保护 M2 高速钢基体。自腐蚀电位越高,材料越耐腐蚀,自腐蚀电流密度越小,材料腐蚀速率越慢[37]。当脉冲偏压占空比为 20%时,自腐蚀电位为−0.330 V(vs SCE),自腐蚀电流密度为 0.255 μA / cm2,此时 TiCrN 薄膜的自腐蚀电位最高,自腐蚀电流密度最小,抗腐蚀能力最佳。同时薄膜的耐蚀性能还与薄膜截面结构、表面缺陷和膜层厚度有关[38],如图2 和图3 所示,当脉冲偏压占空比为 20%时,薄膜的晶粒尺寸较小,膜层致密度良好,可以有效阻止腐蚀介质进入薄膜,使薄膜内部产生腐蚀的几率减小;当脉冲偏压占空比为 10%时,虽然薄膜的晶粒尺寸较小,但薄膜表面大颗粒数量最多,且离子对膜层的轰击较弱,导致膜层致密度欠佳,因此自腐蚀电流密度高达 1.216 μA / cm2;在脉冲偏压占空比为 40%时,TiCrN 薄膜表面的大颗粒数量和凹坑缺陷较多,为腐蚀介质提供了腐蚀通道,因此对应 TiCrN 薄膜的自腐蚀电流密度增加到 1.260 μA / cm2,此时 TiCrN 薄膜的腐蚀速率最快。

  • 图10 M2 高速钢基体和不同脉冲偏压占空比下 TiCrN 薄膜的电化学腐蚀结果

  • Fig.10 Electrochemical corrosion results of M2 HSS and TiCrN films with different pulsed bias duty cycles

  • 3 结论

  • (1)随着脉冲偏压占空比的增加,TiCrN 薄膜表面大颗粒数量总体呈减少趋势,10%占空比时大颗粒数量最多为 175 个,60%占空比时最少为 85 个,脉冲偏压占空比可以很好地抑制薄膜表面大颗粒的数量,改善 TiCrN 薄膜的表面质量。当脉冲偏压占空比从 10%增加到 60%,薄膜厚度呈现先增加后减小的趋势,在占空比为 30%时,TiCrN 薄膜厚度达到最大值 623.8 nm,占空比为 60%时,薄膜厚度最低为 517.4 nm。适当的脉冲偏压占空比可以有效吸引沉积离子,提高薄膜的沉积速率,而高脉冲偏压占空比时,离子的轰击作用与基体偏压对离子的吸引效应相互抵消,沉积速率也随之下降,薄膜厚度减小,但薄膜的致密度提高。

  • (2)脉冲偏压占空比对 N 含量影响不大,由于 Cr 元素离化率高于 Ti 元素,TiCrN 薄膜中 Cr 元素含量都高于 Ti 元素含量,当脉冲偏压占空比为 50% 时,Cr 元素含量增加至最大值 35.44 at.%。所制备的 TiCrN 薄膜均以(220)晶面为择优取向,随着脉冲偏压占空比的增加,衍射峰强度逐渐增加,晶粒尺寸呈现先增大后减小;在占空比为 30%时,晶粒尺寸达到最大值 15.484 nm。Cr 元素含量和离子轰击强度是影响 TiCrN 薄膜晶粒尺寸的重要因素,其中 Cr 元素对晶粒细化的作用显著。

  • (3) 所制备 TiCrN 薄膜的纳米硬度在 25 GPa 以上,是 M2 高速钢的 2.8 倍以上;随着脉冲偏压占空比的增加,纳米硬度呈现先减小后增加的趋势, 10% 时纳米硬度和弹性模量分别达到最大值 29.22 GPa 和 407.42 GPa。当脉冲偏压占空比为 20% 时,稳定摩擦因数达到最小值 0.68;而脉冲偏压占空比为 30%时,由于晶粒尺寸最大,稳定摩擦因数增加到最大值 0.9。当脉冲偏压占空比为 20%时, TiCrN 薄膜自腐蚀电位达到最大值−0.330 V(vs SCE),比 M2 高速钢基体的自腐蚀电位−0.972 V(vs SCE)提高了 0.642 V;而自腐蚀电流密度达到最小值 0.255 μA / cm2,比 M2 高速钢基体的自腐蚀电流密度 12.21 μA / cm2 小一个量级以上,耐腐蚀性能最佳。

  • 参考文献

    • [1] LONG Weimin,LIU Dashuang,DONG Xian,et al.Laster power effects on properties of laster brazing diamond coating[J].Surface Engineering,2020,36(12):1315-1326.

    • [2] MATO S,SÁNCHEZ-LÓPEZ J C,BARRIGA J,et al.Insights into the role of the layer architecture of Cr-Ti-N based coatings in long-term high temperature oxidation experiments in steam atmosphere[J].Ceramics International,2021,47(3):4257-4266.

    • [3] KEHAL A,SAOULA N,ABAIDIA S E H,et al.Effect of Ar/N2 flow ratio on the microstructure and mechanical properties of Ti-Cr-N coatings deposited by DC magnetron sputtering on AISI D2 tool steels[J].Surface and Coatings Technology,2021,421:127444.

    • [4] BOBZIN K,KALSCHEUER C,CARLET M,et al.3D deformation modeling of CrAlN coated tool steel compound during nanoindentation[J].Surface and Coatings Technology,2023,453:129148.

    • [5] 蔡志海,底月兰,张平.活塞环表面CrAlN涂层的微观组织与抗高温氧化性能[J].中国表面工程,2010,23(6):15-19.CAI Zhihai,DI Yuelan,ZHANG Ping.Microstructure and oxidation resistance of CrAlN composite coatings on piston rings[J].China Surface Egineering,2010,23(6):15-19.(in Chinese)

    • [6] 付小静,李瑞川,高建国,等.在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205.FU Xiaojing,LI Ruichuan,GAO Jianguo,et al.Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J].China Surface Egineering,2021,34(5):198-205.(in Chinese)

    • [7] LIEW W Y H,LIM H P,MELVIN G J H,et al.Thermal stability,mechanical properties,and tribological performance of TiAlXN coatings:understanding the effects of alloying additions[J].Journal of Materials Research and Technology,2022,17:961-1012.

    • [8] 林静,张硕,马德政,等.沉积温度对AlCrTiN涂层组织结构与性能的影响[J].中国表面工程,2021,34(6):114-123.LIN Jing,ZHANG Shuo,MA Dezheng,et al.Effects of deposition temperature on the structure and property of AlCrTiN coatings[J].China Surface Egineering,2021,34(6):114-123.(in Chinese)

    • [9] HUANG M,CHEN Z,WANG M,et al.Microstructureand properties of TiCrN coatings by arc ion plating[J].Surface Engineering,2016,32(4):284-288.

    • [10] VALLETI K,PUNEET C,KRISHNA L R,et al.Studies on cathodic arc PVD grown TiCrN based erosion resistant thin films[J].Journal of Vacuum Science and Technology A,2016,34(4):041512.

    • [11] WANG Qianzhi,ZHOU Fei,YAN Jiwang.Evaluating mechanical properties and crack resistance of CrN,CrTiN,CrAlN and CrTiAlN coatings by nanoindentation and scratch tests[J].Surface and Coatings Technology,2016,285:203-213.

    • [12] DO A,KIM D,CHOI H J,et al.Improvement in the hydrothermal corrosion resistance of Ti-based nitride coatings by adding Cr for accident tolerant fuel cladding applications[J].Journal of Nuclear Materials,2021,549:152903.

    • [13] 赖振国,贾倩,唐诗琪,等.金属氮化物涂层的高温摩擦学研究进展[J].中国表面工程,2022,35(3):48-63.LAI Zhenguo,JIA Qian,TANG Shiqi,et al.Progress in high temperature tribology of metal nitride coatings[J].China Surface Egineering,2022,35(3):48-63.(in Chinese)

    • [14] THAMPI V V A,BENDAVID A,SUBRAMANIAN B.Nanostructured TiCrN thin films by pulsed magnetron sputtering for cutting tool applications[J].Ceramics International,2016,42(8):9940-9948.

    • [15] 党文伟,赵金龙,李晓升.多弧离子镀沉积TiCrN薄膜在中性盐雾环境下的腐蚀行为[J].电镀与精饰,2022,44(11):64-68.DANG Wenwei,ZHAO Jinlong,LI Xiaosheng.Corrosion behavior of TiCrN film deposited by multi-arc ion plating in neutral salt spray environment[J].Plating and Finishing,2022,44(11):64-68.(in Chinese)

    • [16] 钟利,沈丽如,陈美艳,等.关于(Ti,Cr)N 膜摩擦学性能的研究[J].真空,2020,57(2):27-32.ZHONG Li,SHEN Liru,CHEN Meiyan,et al.Study on tribological properties of(Ti,Cr)N films[J].Vacuum,2020,57(2):27-32.(in Chinese)

    • [17] LI T,YAN Z,LIU Z Z,et al.High corrosion resistance and surface conductivity of(Ti1-xCrx)N coating for titanium bipolar plate[J].Corrosion Science,2022,200:110256.

    • [18] NI J J,LIU F,YANG G L,et al.3D-printed Ti6Al4V femoral component of knee:improvements in wear and biological properties by AIP TiN and TiCrN coating[J].Journal of Materials Research and Technology,2021,14:2322-2332.

    • [19] HSU C H,LIN C K,HUANG K H,et al.Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti,Cr)N coatings[J].Surface and Coatings Technology,2013,231:380-384.

    • [20] XU Jie,WANG Jiyun,LU Linlin,et al.Study on the infrared emissivity of nonstoichiometric titanium chromium nitride films[J].Thin Solid Films,2022,754:139303.

    • [21] LI Runhao,Lü Yilin,XUE Mingming,et al.Microstructure and properties of reactive plasma sprayed nano-TixCr1-xN ceramic coating[J].Surface and Coatings Technology,2020,391:125658.

    • [22] BASERI N A,MOHAMMADI M,GHATEE M,et al.The effect of duty cycle on the mechanical and electrochemical corrosion properties of multilayer CrN/CrAlN coatings produced by cathodic arc evaporation[J].Surface Engineering,2021,37(2):253-262.

    • [23] GILEWICZ A,JEDRZEJEWSKI R,MYSLINSKI P,et al.Influence of substrate bias voltage on structure,morphology and mechanical properties of AlCrN coatings synthesized using cathodic arc evaporation[J].Tribology in Industry,2019,41(4):484-497.

    • [24] BROWN I G.Cathodic arc deposition of films[J].Annual Review of Materials Science,1998,28(1):243-269.

    • [25] 王福贞.阴极电弧离子镀膜技术的进步[J].真空与低温,2020,26(2):87-95.WANG Fuzhen.Advances in cathode arc ion plating technology[J].Vacuum & Cryogenics,2020,26(2):87-95.(in Chinese)

    • [26] 程芳,黄美东,王萌萌,等.脉冲偏压占空比对复合离子镀TiCN涂层结构和性能的影响[J].中国表面工程,2014,27(4):100-106.CHENG Fang,HUANG Meidong,WANG Mengmeng,et al.Effects of duty-ratio of pulsed bias on the stucture and properties of TiCN coatings by hybrid ion plating[J].China Surface Egineering,2014,27(4):100-106.(in Chinese)

    • [27] HUANG Meidong,LIN Guoqiang,ZHAO Yanhui,et al.Macro-particle reduction mechanism in biased arc ion plating of TiN[J].Surface & Coatings Technology,2003,176(1):109-114.

    • [28] 付志强,苗志玲,岳文,等.脉冲偏压占空比对电弧离子镀TiAlN涂层的影响[J].稀有金属材料与工程,2018,47(11):3482-3486.FU Zhiqiang,MIAO Zhiling,YUE Wen,et al.Influenceof duty ratio of pulsed bias on TiAlN coatings deposited by arc ion plating[J].Rare Metal Materials and Engineering,2018,47(11):3482-3486.(in Chinese)

    • [29] 耿东森,吴正涛,聂志伟,等.基体偏压对电弧离子镀AlCrSiON涂层结构和热稳定性的影响[J].中国表面工程,2016,29(6):60-66.GENG Dongsen,WU Zhengtao,NIE Zhiwei,et al.Influence of substrate bias on microstructure and thermal stability of AlCrSiON coatings deposited by arc ion plating[J].China Surface Egineering,2016,29(6):60-66.(in Chinese)

    • [30] KIMBLIN C W.Erosion and ionization in the cathode spot regions of vacuum arcs[J].Journal of Applied Physics,1973,44(7):3074-3081.

    • [31] ZHAO Shengsheng,ZHAO Yanhui,CHENG Lvsha,et al.Effects of substrate pulse bias duty cycle on the microstructure and mechanical properties of Ti-Cu-N films deposited by magnetic field-enhanced arc ion plating[J].Acta Metallurgica Sinica(English Letters),2017,30(2):176-184.

    • [32] LIU Hui,YANG Fuchi C,TSAI Y J,et al.Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,358:577-585.

    • [33] CHEN Shengyi,LUO Defu,ZHAO Guangbin.Investigation of the properties of TixCr1-xN coatings prepared by cathodic arc deposition[J].Physics Procedia,2013,50:163-168.

    • [34] ALI K M,MEYMIAN M R Z,MEHR A K.Nanoindentation and nanoscratch studies of submicron nanostructured Ti/TiCrN bilayer films deposited by RF-DC co-sputtering method[J].Ceramics International,2018,44(17):21825-21834.

    • [35] ZHANG Min,HU Xiaogang,YANG Xiaoxu,et al.Influence of substrate bias on microstructure and morphology of ZrN thin films deposited by arc ion plating[J].Transactions of Nonferrous Metals Society of China,2012,22,(Suppl.)1:s115-s119.

    • [36] TJONG S C,CHEN H.Nanocrystalline materials and coatings[J].Materials Science and Engineering R,2004,45(1-2):1-88.

    • [37] 胡方勤,曹振亚,张青科,等.负偏压和本底真空度对Al膜表面形貌和耐蚀性能的影响[J].中国表面工程,2020,33(4):128-135.HU Fangqin,CAO Zhenya,ZHANG Qingke,et al.Effects of negative bias voltage and base vacuum degree on surface morphology and corrosion resistance of Al coatings[J].China Surface Egineering,2020,33(4):128-135.(in Chinese)

    • [38] WANG Lijun,WANG Mengchao,CHEN Hui.Corrosion mechanism investigation of TiAlN/CrN superlattice coating by multi-arc ion plating in 3.5 wt% NaCl solution[J].Surface and Coatings Technology,2020,391:125660

  • 参考文献

    • [1] LONG Weimin,LIU Dashuang,DONG Xian,et al.Laster power effects on properties of laster brazing diamond coating[J].Surface Engineering,2020,36(12):1315-1326.

    • [2] MATO S,SÁNCHEZ-LÓPEZ J C,BARRIGA J,et al.Insights into the role of the layer architecture of Cr-Ti-N based coatings in long-term high temperature oxidation experiments in steam atmosphere[J].Ceramics International,2021,47(3):4257-4266.

    • [3] KEHAL A,SAOULA N,ABAIDIA S E H,et al.Effect of Ar/N2 flow ratio on the microstructure and mechanical properties of Ti-Cr-N coatings deposited by DC magnetron sputtering on AISI D2 tool steels[J].Surface and Coatings Technology,2021,421:127444.

    • [4] BOBZIN K,KALSCHEUER C,CARLET M,et al.3D deformation modeling of CrAlN coated tool steel compound during nanoindentation[J].Surface and Coatings Technology,2023,453:129148.

    • [5] 蔡志海,底月兰,张平.活塞环表面CrAlN涂层的微观组织与抗高温氧化性能[J].中国表面工程,2010,23(6):15-19.CAI Zhihai,DI Yuelan,ZHANG Ping.Microstructure and oxidation resistance of CrAlN composite coatings on piston rings[J].China Surface Egineering,2010,23(6):15-19.(in Chinese)

    • [6] 付小静,李瑞川,高建国,等.在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205.FU Xiaojing,LI Ruichuan,GAO Jianguo,et al.Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J].China Surface Egineering,2021,34(5):198-205.(in Chinese)

    • [7] LIEW W Y H,LIM H P,MELVIN G J H,et al.Thermal stability,mechanical properties,and tribological performance of TiAlXN coatings:understanding the effects of alloying additions[J].Journal of Materials Research and Technology,2022,17:961-1012.

    • [8] 林静,张硕,马德政,等.沉积温度对AlCrTiN涂层组织结构与性能的影响[J].中国表面工程,2021,34(6):114-123.LIN Jing,ZHANG Shuo,MA Dezheng,et al.Effects of deposition temperature on the structure and property of AlCrTiN coatings[J].China Surface Egineering,2021,34(6):114-123.(in Chinese)

    • [9] HUANG M,CHEN Z,WANG M,et al.Microstructureand properties of TiCrN coatings by arc ion plating[J].Surface Engineering,2016,32(4):284-288.

    • [10] VALLETI K,PUNEET C,KRISHNA L R,et al.Studies on cathodic arc PVD grown TiCrN based erosion resistant thin films[J].Journal of Vacuum Science and Technology A,2016,34(4):041512.

    • [11] WANG Qianzhi,ZHOU Fei,YAN Jiwang.Evaluating mechanical properties and crack resistance of CrN,CrTiN,CrAlN and CrTiAlN coatings by nanoindentation and scratch tests[J].Surface and Coatings Technology,2016,285:203-213.

    • [12] DO A,KIM D,CHOI H J,et al.Improvement in the hydrothermal corrosion resistance of Ti-based nitride coatings by adding Cr for accident tolerant fuel cladding applications[J].Journal of Nuclear Materials,2021,549:152903.

    • [13] 赖振国,贾倩,唐诗琪,等.金属氮化物涂层的高温摩擦学研究进展[J].中国表面工程,2022,35(3):48-63.LAI Zhenguo,JIA Qian,TANG Shiqi,et al.Progress in high temperature tribology of metal nitride coatings[J].China Surface Egineering,2022,35(3):48-63.(in Chinese)

    • [14] THAMPI V V A,BENDAVID A,SUBRAMANIAN B.Nanostructured TiCrN thin films by pulsed magnetron sputtering for cutting tool applications[J].Ceramics International,2016,42(8):9940-9948.

    • [15] 党文伟,赵金龙,李晓升.多弧离子镀沉积TiCrN薄膜在中性盐雾环境下的腐蚀行为[J].电镀与精饰,2022,44(11):64-68.DANG Wenwei,ZHAO Jinlong,LI Xiaosheng.Corrosion behavior of TiCrN film deposited by multi-arc ion plating in neutral salt spray environment[J].Plating and Finishing,2022,44(11):64-68.(in Chinese)

    • [16] 钟利,沈丽如,陈美艳,等.关于(Ti,Cr)N 膜摩擦学性能的研究[J].真空,2020,57(2):27-32.ZHONG Li,SHEN Liru,CHEN Meiyan,et al.Study on tribological properties of(Ti,Cr)N films[J].Vacuum,2020,57(2):27-32.(in Chinese)

    • [17] LI T,YAN Z,LIU Z Z,et al.High corrosion resistance and surface conductivity of(Ti1-xCrx)N coating for titanium bipolar plate[J].Corrosion Science,2022,200:110256.

    • [18] NI J J,LIU F,YANG G L,et al.3D-printed Ti6Al4V femoral component of knee:improvements in wear and biological properties by AIP TiN and TiCrN coating[J].Journal of Materials Research and Technology,2021,14:2322-2332.

    • [19] HSU C H,LIN C K,HUANG K H,et al.Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti,Cr)N coatings[J].Surface and Coatings Technology,2013,231:380-384.

    • [20] XU Jie,WANG Jiyun,LU Linlin,et al.Study on the infrared emissivity of nonstoichiometric titanium chromium nitride films[J].Thin Solid Films,2022,754:139303.

    • [21] LI Runhao,Lü Yilin,XUE Mingming,et al.Microstructure and properties of reactive plasma sprayed nano-TixCr1-xN ceramic coating[J].Surface and Coatings Technology,2020,391:125658.

    • [22] BASERI N A,MOHAMMADI M,GHATEE M,et al.The effect of duty cycle on the mechanical and electrochemical corrosion properties of multilayer CrN/CrAlN coatings produced by cathodic arc evaporation[J].Surface Engineering,2021,37(2):253-262.

    • [23] GILEWICZ A,JEDRZEJEWSKI R,MYSLINSKI P,et al.Influence of substrate bias voltage on structure,morphology and mechanical properties of AlCrN coatings synthesized using cathodic arc evaporation[J].Tribology in Industry,2019,41(4):484-497.

    • [24] BROWN I G.Cathodic arc deposition of films[J].Annual Review of Materials Science,1998,28(1):243-269.

    • [25] 王福贞.阴极电弧离子镀膜技术的进步[J].真空与低温,2020,26(2):87-95.WANG Fuzhen.Advances in cathode arc ion plating technology[J].Vacuum & Cryogenics,2020,26(2):87-95.(in Chinese)

    • [26] 程芳,黄美东,王萌萌,等.脉冲偏压占空比对复合离子镀TiCN涂层结构和性能的影响[J].中国表面工程,2014,27(4):100-106.CHENG Fang,HUANG Meidong,WANG Mengmeng,et al.Effects of duty-ratio of pulsed bias on the stucture and properties of TiCN coatings by hybrid ion plating[J].China Surface Egineering,2014,27(4):100-106.(in Chinese)

    • [27] HUANG Meidong,LIN Guoqiang,ZHAO Yanhui,et al.Macro-particle reduction mechanism in biased arc ion plating of TiN[J].Surface & Coatings Technology,2003,176(1):109-114.

    • [28] 付志强,苗志玲,岳文,等.脉冲偏压占空比对电弧离子镀TiAlN涂层的影响[J].稀有金属材料与工程,2018,47(11):3482-3486.FU Zhiqiang,MIAO Zhiling,YUE Wen,et al.Influenceof duty ratio of pulsed bias on TiAlN coatings deposited by arc ion plating[J].Rare Metal Materials and Engineering,2018,47(11):3482-3486.(in Chinese)

    • [29] 耿东森,吴正涛,聂志伟,等.基体偏压对电弧离子镀AlCrSiON涂层结构和热稳定性的影响[J].中国表面工程,2016,29(6):60-66.GENG Dongsen,WU Zhengtao,NIE Zhiwei,et al.Influence of substrate bias on microstructure and thermal stability of AlCrSiON coatings deposited by arc ion plating[J].China Surface Egineering,2016,29(6):60-66.(in Chinese)

    • [30] KIMBLIN C W.Erosion and ionization in the cathode spot regions of vacuum arcs[J].Journal of Applied Physics,1973,44(7):3074-3081.

    • [31] ZHAO Shengsheng,ZHAO Yanhui,CHENG Lvsha,et al.Effects of substrate pulse bias duty cycle on the microstructure and mechanical properties of Ti-Cu-N films deposited by magnetic field-enhanced arc ion plating[J].Acta Metallurgica Sinica(English Letters),2017,30(2):176-184.

    • [32] LIU Hui,YANG Fuchi C,TSAI Y J,et al.Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,358:577-585.

    • [33] CHEN Shengyi,LUO Defu,ZHAO Guangbin.Investigation of the properties of TixCr1-xN coatings prepared by cathodic arc deposition[J].Physics Procedia,2013,50:163-168.

    • [34] ALI K M,MEYMIAN M R Z,MEHR A K.Nanoindentation and nanoscratch studies of submicron nanostructured Ti/TiCrN bilayer films deposited by RF-DC co-sputtering method[J].Ceramics International,2018,44(17):21825-21834.

    • [35] ZHANG Min,HU Xiaogang,YANG Xiaoxu,et al.Influence of substrate bias on microstructure and morphology of ZrN thin films deposited by arc ion plating[J].Transactions of Nonferrous Metals Society of China,2012,22,(Suppl.)1:s115-s119.

    • [36] TJONG S C,CHEN H.Nanocrystalline materials and coatings[J].Materials Science and Engineering R,2004,45(1-2):1-88.

    • [37] 胡方勤,曹振亚,张青科,等.负偏压和本底真空度对Al膜表面形貌和耐蚀性能的影响[J].中国表面工程,2020,33(4):128-135.HU Fangqin,CAO Zhenya,ZHANG Qingke,et al.Effects of negative bias voltage and base vacuum degree on surface morphology and corrosion resistance of Al coatings[J].China Surface Egineering,2020,33(4):128-135.(in Chinese)

    • [38] WANG Lijun,WANG Mengchao,CHEN Hui.Corrosion mechanism investigation of TiAlN/CrN superlattice coating by multi-arc ion plating in 3.5 wt% NaCl solution[J].Surface and Coatings Technology,2020,391:125660

  • 手机扫一扫看