en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李天昊,男,1999年出生,硕士研究生。主要研究方向为等离子转移弧丝材喷涂。E-mail:lth990705@stu.xjtu.edu.cn

黄艳斐,女,1986年出生,硕士,助理研究员。主要研究方向为表面工程与再制造工程。E-mail:huangyanfei123@126.com

通讯作者:

黄艳斐,女,1986年出生,硕士,助理研究员。主要研究方向为表面工程与再制造工程。E-mail:huangyanfei123@126.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20230129001

参考文献 1
王海军.热喷涂材料及其应用[M].北京:国防工业出版社,2008.WANG Haijun.Thermal spraying materials and applications[M].Beijing:National Defence Industry Press,2008.(in Chinese)
参考文献 2
徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,2010.XU Binshi,ZHU Shaohua.Theory and technology of surface engineering[M].Beijing:National Defence Industry Press,2010.(in Chinese)
参考文献 3
陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al.Development status and prospect on equipment application of thermal spray technology[J].China Surface Engineering,2021,34(4):12-18.(in Chinese)
参考文献 4
马燕,况志祥,韩学武,等.热喷涂制Ni阻挡层在碲化铋热电器件中的应用[J].中国表面工程,2023,36(3):214-222.MA Yan,KUANG Zhixiang,HAN Xuewu,et al.Application of thermal spray Ni barrier layer in bismuth telluride thermoelectric devices[J] China Surface Engineering,2023,36(3):214-222.(in Chinese)
参考文献 5
李雪伍,高瑞,黄艳斐,等.铌酸钾钠无铅压电陶瓷掺杂及制备技术现状[J].中国表面工程,2023,36(2):1-20.LI Xuewu,GAO Rui,HUANG Yanfei,et al.Research status of lead-free piezoelectric ceramic doping and preparation technology of potassium sodium niobate[J] China Surface Engineering,2023,36(2):1-20.(in Chinese)
参考文献 6
马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)
参考文献 7
GUDURU R K,DIXIT U,KUMAR A.A critical review on thermal spray based manufacturing technologies[J].Materialstoday:Proceedings,2022,62(13):7625-7269.
参考文献 8
HU H,MAO L,YIN S,et al.Wear-resistant ceramic coatings deposited by liquid thermal spraying[J].Ceramics International,2022,48(22):33245-33255.
参考文献 9
刘思思,杨正航,武云文,等.超音速火焰喷涂 Ni-CeO2 复合涂层的数值模拟及耐磨耐腐蚀性能[J].中国表面工程,2023,36(3):180-192.LIU Sisi,YANG Zhenghang,WU Yunwen,et al.Numerical simulation and abrasion and corrosion resistance properties of HVOF Ni-CeO2 composite coatings[J].China Surface Engineering,2023,36(3):180-192.(in Chinese)
参考文献 10
KALTENBACH C,LAURIEN E.CFD simulation of spray cooling in the model containment THAI[J].Nuclear Engineering and Design,2018,38:359-371.
参考文献 11
SOLIGO G,ROSTI M E.Non-Newtonian turbulent jets at low-Reynolds number[J].International Journal of Multiphase Flow,2023,167:104546.
参考文献 12
VARACALLE D J,WILSON G C,LUNBERG L B,et al.An SDE study of twin-wire electric arc sprayed nickel-aluminum coatings[J].Office of Scientific & Technical Information Technical Reports,1995.
参考文献 13
KELKAR M,HEBERLEIN J.Wire-Arc spraymodeling[J].Plasma Chemistry and Plasma Processing,2002,22(1):1-25.
参考文献 14
董瑞涛,索双富.高速电弧喷枪中电弧场的数值模拟[J].中国表面工程,2006,19(4):13-15,20.DONG Ruitao,SUO Shuangfu.Numerical study of the plasma region of high velocity wire-arc spray[J].China Surface Engineering,2006,19(4):13-15,20.(in Chinese)
参考文献 15
朱子新,梁秀兵,徐滨士,等.高速电弧喷涂熔滴速度的数值模拟及试验[J].焊接学报,2002,23(1):5-8.ZHU Zixin,LIANG Xiubing,XU Binshi,et al.Numerical simulation and test of melt drop velocity of high speed arc spraying[J].Transactions of the China Welding Institution,2002,23(1):5-8.(in Chinese)
参考文献 16
项建海,索双富.高速电弧喷枪流场模拟研究[J].中国表面工程,2005,18(1):27-29.XIANG Jianhai,SUO Shuangfu.Studies of computational fluid dynamics in the flow field of a high velocity wire arc spray gun[J].China Surface Engineering,2005,18(1):27-29.(in Chinese)
参考文献 17
BOLOT R,PLANCHE M P,LIAO H L,et al.A three-dimensional model of the wire-arc spray process and its experimental validation[J].Journal of Materials Processing Technology,2008,200(1-3):94-105.
参考文献 18
陈永雄,梁秀兵,刘燕,等.高速电弧喷涂雾化过程的数值模拟[J].中国表面工程,2009,22(6):116-120.CHEN Yongxiong,LIANG Xiubing,LIU Yan,et al.Numerical modeling of the atomization behavior for high velocity arc spraying process[J].China Surface Engineering,2009,22(6):116-120.(in Chinese)
参考文献 19
CHEN Y X,LIANG X B,LIU Y,et al.Numerical analysis of the effect of arc spray gun configuration parameters on the external gas flow[J].Journal of Materials Processing Technology,2009,209(18-19):5924-5931.
参考文献 20
TAMAKI R,YAMAKAWA M.Study on the nozzle jet in arc spraying[J].Applied Mathematics and Mechanics,2016,37(12):1394-1402.
参考文献 21
TAMAKI R,YAMAKAWA M.Effect of plate mounted between two wires in electric arc spraying[J].Journal of Computational Science,2019,32:56-67.
参考文献 22
崔长文.等离子喷涂涂层形成过程数值模拟[D].福州:福州大学,2011.CUI Changwen.Three-dimensional numerical simulation of coating formation in plasma spraying[D].Fuzhou:Fuzhou University,2011.(in Chinese)
参考文献 23
HUANG P C,HEBERLEIN J,PFENDER E.A two-fluid model of turbulence for a thermal plasma jet[J].PlasmaChemistry and Plasma Processing,1995,15(1):25-46.
参考文献 24
LI H P,CHEN X.Three-dimensional modeling of the turbulent plasma jet impinging upon a flat plate and with transverse particle and carrier-gas injection[J].Plasma Chemistry and Plasma Processing,2002,22(1):27-58.
参考文献 25
COLOMBO V,CONCETTI A,GHEDINI E,et al.Three-dimensional time-dependent large eddy simulation of turbulent flows in an inductively coupled thermal plasma torch with a reaction chamber[J].IEEE Transactions on Plasma Science,2011,39(11):2894-2895.
参考文献 26
SHIGETA,MASAYA.Three-dimensional flow dynamics of an argon RF plasma with dc jet assistance:A numerical study[J].Journal of Physics D:Applied Physics,2013,46(1):015401.
参考文献 27
安连彤,高阳.阳极弧根位置对热喷涂等离子喷枪特性的影响[J].焊接学报,2005,26(6):31-34.AN Liantong,GAO Yang.Effect of anode root position on the characteristics of thermal spray guns[J].Transactions of the China Welding Institution,2005,26(6):31-34.(in Chinese)
参考文献 28
WESTHOFF R,SZEKELY J.A model of fluid,heat flow,and electromagnetic phenomena in a non-transferred arc plasma torch[J].Journal of Applied Physics,1991,70:3455-3466.
参考文献 29
LI H P,CHEN X.Three-dimensional modelling of a dc non-transferred arc plasma torch[J].Journal of Physics D:Applied Physics,2001,34(17):L99-L102.
参考文献 30
LI H P,PFENDER E,CHEN X.Application of Steenbeck’s minimum principle for three-dimensional modelling of DC arc plasma torches[J].Journal of Physics D:Applied Physics,2003,36:1804-1096.
参考文献 31
GUO Z,YIN S,LIAO H,et al.Three-dimensional simulation of an argon-hydrogen DC non-transferred arc plasma torch[J].International Journal of Heat and Mass Transfer,2015,80:644-652.
参考文献 32
TRELLES J P,HEBERLEIN J.Simulation results of arc behavior in different plasma spray torches[J].Journal of Thermal Spray Technology,2006,15(4):563-569.
参考文献 33
BAUDRY C,VARADELLE A,MARIAUX G,et al.Numerical modeling of a DC non-transferred plasma torch:movement of the arc anode attachment and resulting anode erosion[J].High Temperature Material Processes,2005,9:1-15.
参考文献 34
WEN K,LIU X,ZHOU K,et al.3D time-dependent numerical simulation for atmospheric plasma spraying[J].Surface and Coatings Technology,2019,371:344-354.
参考文献 35
WEN K,LIU X,LIU M,et al.Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying[J].Surface and Coatings Technology,2019,371:312-321.
参考文献 36
TRELLES J P.Formation of self-organized anode patterns in arc discharge simulations[J].Plasma Sources Science and Technology,2013,22(2):025017.
参考文献 37
HUANG R,FUKANUMA H,UESUGI Y,et al.An improved local thermal equilibrium model of DC arc plasma torch[J].IEEE Transactions on Plasma Science,2011,39(10):1974-1982.
参考文献 38
TRELLES J P.Computational study of flow dynamics from a DC arc plasma jet[J].Journal of Physics D:Applied Physics,2015,46(25):255201.
参考文献 39
胡福胜,魏正英,谭超,等.普通大气等离子喷涂过程的数值分析[J].西安交通大学学报,2013,47(9):92-99.HU Fusheng,WEI Zhengying,TAN Chao,et al.Numerical analysis on atmospheric spray process[J].Journal of Xi’an Jiaotong University,2013,47(9):92-99.(in Chinese)
参考文献 40
张勇,张雄,郑杰,等.超音速等离子喷涂的射流特性[J].粉末冶金材料科学与工程,2017,22(6):713-718.ZHANG Yong,ZHANG Xiong,ZHENG Jie,et al.Jet characteristic of supersonic plasma spraying[J].Materials Science and Engineering of Powder Metallurgy,2017,22(6):713-718.(in Chinese)
参考文献 41
ZHUKOVSKII R.Model of a non-transferred arc cascaded-anode plasma torch:the two-temperature formulation[J].Journal of Physics D:Applied Physics,2021,55(6):065202.
参考文献 42
ZHUKOVSKII R,CHAZELAS C,RAT V,et al.Predicted anode arc attachment by LTE and 2-T arc models in a cascaded-anode DC plasma spray torch[J].Journal of Thermal Spray Technology,2021,31(1-2):28-45.
参考文献 43
CHAZELAS C,TRELLES J P,CHOQUET I,et al.Main issues for a fully predictive plasma spray torch model and numerical considerations[J].Plasma Chemistry and Plasma Processing,2017,37(3):627-651.
参考文献 44
ALAYA M,CHAZELAS C,MARIAUX G,et al.Arc-cathode coupling in the modeling of a conventional DC plasma spray torch[J].Journal of Thermal Spray Technology,2014,24:1-2.
参考文献 45
ALAYA M,CHAZELAS C,VARADELLE A.Parametric study of plasma torch operation using a MHD model coupling the arc and electrodes[J].Journal of Thermal Spray Technology,2016,25(1-2):36-43.
参考文献 46
ALMEIDA N A,CUNHA M D,BENILOV M S.Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes[J].Journal of Physics D:Applied Physics,2017,50(38):385203.
参考文献 47
SEMENOV I L,KRIVTSUN I V,REISGEN U.Numerical study of the anode boundary layer in atmospheric pressure arc discharges[J].Journal of Physics D:Applied Physics,2016,49(10):105204.
参考文献 48
CHAZELAS C,TRELLES J P,VARADELLE A.Modeling time-dependent phenomena in plasma spraying of liquid precursors[J].Journal of Thermal Spray Technology,2017,26(1):3-11.
参考文献 49
TINOCO J,WIDELL B,FREDRIKSSOMN H,et al.Modeling the in-flight events during metal spray forming[J].Materials Science and Engineering:A,2004,365(1-2):302-310.
参考文献 50
GRANT P S,CANTOR B,KATERMAN L.Modelling of droplet dynamic and thermal histories during spray forming—II.Effect of process parameters[J].Acta Metallurgy Et Material 1993,41(11):3109-3118.
参考文献 51
张甲英,朱绍华,徐滨士,等.脉冲激光光屏法观测高速电弧喷涂飞行金属粒子形态[J].中国机械工程,2003,14(9):785-787.ZHANG Jiaying,ZHU Shaohua,XU Binshi,et al.Pulsed laser light screen method to observe the morphology of flying metal particles by high-speed arc spraying[J].China Surface Engineering,2003,14(9):785-787.(in Chinese)
参考文献 52
WATANABE T,WANG X,PFENDER E,et al.Correlations between electrode phenomena and coatings[J].Thin Solid Films,1998,316:169-173.
参考文献 53
KRAUSS M,BERGMANN D,FRITSCHING U,et al.In-situ particle temperature,velocity and size measurements in the spray forming process[J].Materials Science and Engineering A,2002,326:154-164.
参考文献 54
NEWBERY A P,GRANT P S,NEISER R A.Large arc voltage fluctuations and droplet formation in electric arc wire spraying[J].Surface and Coatings Technology,2005,195(1):91-101.
参考文献 55
TILLMANN W,VOGLI E,ABDULGADER M.Asymmetric melting behavior in twin wire arc spraying with cored wires[J].Journal of Thermal Spray Technology,2008,17(5-6):974-982.
参考文献 56
李平,乔生儒,王汉功.钛-铝双丝超音速电弧喷涂过程中熔滴粒子几何特性研究[J].表面技术,2007,36(1):84-86.LI Ping,QIAO Shengru,WANG Hangong,et al.Study on geometry character of molten droplet atomizing during titanium-aluminum twin wires supersonic arc spraying[J].Surface Technology,2007,36(1):84-86.(in Chinese)
参考文献 57
FANG J C,XU W J,ZHAO Z Y,et al.In-flight behaviors of ZrO2 particle in plasma spraying[J].Surface and Coatings Technology,2007,201(9-11):5671-5675.
参考文献 58
SOFIANE G,GHISLAIN M,CHRISTIAN C.Modeling of the APS plasma spray process using artificial neural networks:basis,requirement and an example[J].Surface and Coatings Technology,2005,192(1):70-76.
参考文献 59
李长久,孙波,汪民,等.微束等离子喷涂工艺条件对Cu涂层组织和性能的影响[J].西安交通大学学报,2002,36(11):1182-1186.LI Changjiu,SUN Bo,WANG Min,et al.Effect of spray conditions on the microscope and properties of micro-plasma sprayed Cu coating[J].Journal of Xi’an Jiaotong University,2002,36(11):1182-1186.(in Chinese)
参考文献 60
KANTA A F,PLANCHE M P,MONTAVON G,et al.In-flight and upon impact particle characteristics modelling in plasma spray process[J].Surface and Coatings Technology,2010,204(9-10):1542-1548.
参考文献 61
ZHANG H O,HU S D,WANG G L.Simulation of powder transport in plasma jet via hybrid Lattice Boltzmann method and probabilistic algorithm[J].Surface and Coatings Technology,2006,201(3-4):886-894.
参考文献 62
DATTA S,PRATIHAR D K,BANDYOPADHYAY P.Modeling of plasma spray coating process using statistical regression analysis[J].The International Journal of Advanced Manufacturing Technology,2012,65(5-8):967-980.
参考文献 63
YUSOFF N H N,GHAZALI M J,ISA M C,et al.Optimization of plasma spray parameters on the mechanical properties of agglomerated Al2O3-13%TiO2 coated mild steel[J].Materials & Design,2012,39:504-508.
参考文献 64
张勇,徐建宁,姜海龙,等.超音速等离子喷涂过程颗粒运动特性[J].材料热处理学报,2017,38(10):138-144.ZHANG Yong,XU Jianning,JIANG Hailong,et al.Particle movement characteristics of supersonic plasma spraying process[J].Journal of Materials Heat Treatment,2017,38(10):138-144.(in Chinese)
参考文献 65
朱子新,刘燕,徐滨士,等.高速电弧喷涂雾化熔滴传热过程数值分析 II.工艺参数对熔滴传热过程的影响 [J].焊接学报,2005,26(2):5-8.ZHU Zixin,LIU Yan,XU Binshi,et al.Numerical analysis of heat transfer process of atomized molten droplets by high-speed arc spraying II.Effect of process parameters on heat transfer process of molten droplets[J].Transactions of the China Welding Institution,2005,26(2):5-8.(in Chinese)
参考文献 66
杨庆功,李萌盛.双流体模型模拟喷涂飞行区内的速度分布[J].合肥工业大学学报,2006,29(9):1120-1123,1135.YANG Qinggong,LI Mengsheng.Finite element analysis of droplet velocity distribution in arc spraying[J].Journal of Hefei University of Technology,2006,29(9):1120-1123,1135.(in Chinese)
参考文献 67
王吉孝.双丝电弧喷涂 Ni-Al 过程金属熔滴行为[J].机械制造文摘——焊接分册,2015(5):8-16.WANG Jixiao.The behavior of molten droplet in Ni-Al process of twin wire arc spraying[J].Welding Digest of Machinery Manufacturing,2015(5):8-16.(in Chinese)
参考文献 68
WANG J X,WANG J,JIN G,et al.Atomization characteristics of droplet and morphologies of arc sprayed Ni-Al particles and composition coatings[J].Materials Research,2019,22(4):e20190034.
参考文献 69
BOBZIN K,OTE M,KNOCH M A,et al.Influence of the injector head geometry on the particle injection in plasma spraying[J].Journal of Thermal Spray Technology,2020,29(4):534-545.
参考文献 70
BOBZIN K,OTE M,KNOCH M A,et al.Macroscopic particle modeling in air plasma spraying[J].Surface and Coatings Technology,2019,364:449-456.
参考文献 71
HSU T Y,HUANG T C,CHOU J H,et al.A numerical simulation and experimental comparison of atmospheric thermal plasma spray coatings between internal and external powder injection processes[J].IEEE Transactions on Plasma Science,2020,48(8):2759-2767.
参考文献 72
WEI P,WEI Z,ZHAO G,et al.The analysis of melting and refining process for in-flight particles in supersonic plasma spraying[J].Computational Materials Science,2015,103:8-19.
参考文献 73
WEI P,WEI Z,ZHAO G,et al.Flow characteristic of in-flight particles in supersonic plasma spraying process[J].Heat and Mass Transfer,2015,52(9):1739-1753.
参考文献 74
谭超,魏正英,魏培,等.内送粉超音速等离子喷涂颗粒飞行状态分析[J].西安交通大学学报,2014,48(6):91-97.TAN Chao,WEI Zhengying,WEI Pei,et al.In-flightparticle behavior in internal powder injection[J].Journal of Xi’ an Jiaotong University,2014,48(6):91-97.(in Chinese)
参考文献 75
YUGESWARAN S,KOBAYASHI A,SELVAN B,et al.In-flight behavior of lanthanum zirconate(La2Zr2O7)particles in gas tunnel type plasma jet and its coating properties[J].Vacuum,2013,88:139-143.
参考文献 76
ZHANG N,LIN D,LI Y L,et al.In-flight particle characterization and coating formation under low pressure plasma spray condition[J].Journal of Iron and Steel Research,International,2017,24:306-312.
参考文献 77
SAFAEI A E.Numerical and experimental study of arc fluctuations in a DC plasma torch[D].Toronto:University of Toronto,2016.
参考文献 78
SAITO H,NAKANE Y,FUJINO T,et al.Numerical analysis of in-flight particles in plasma jet with an externally applied magnetic field[J].Journal of Fluid Science and Technology,2016,11(4):1-12.
参考文献 79
冯拉俊,曹凯博,雷阿利.等离子喷涂陶瓷粒子加热加速行为的数值模拟[J].热加工工艺,2006,35(11):46-48,51.FENG Lajun CAO Kaibo,LEI Ali,et al.Numerical simulation on calefaction and acceleration process of ceramic powders in plasma spray[J].Thermal Processing,2006,35(11):46-48,51.(in Chinese)
参考文献 80
AHMED I,BERGMAN T L.Simulation of thermal plasma spraying of partially molten ceramics:effect of carrier gas on particle deposition and phase change phenomena[J].Journal of Heat Transfer,2001,123(1):188-196.
参考文献 81
AISSA A,MOHAMMED E G,MOHAMMED S.Numerical investigation of heat and momentum transfer to particles in high temperature thermal spraying[J].The European Physical Journal Applied Physics,2017,78(3):34815.
参考文献 82
ZHANG W,ZHENG L L,ZHANG H,et al.Study of injection angle and carrier gas flow rate effects on particles in-flight characteristics in plasma spray process:modeling and experiments[J].Plasma Chemistry and Plasma Processing,2007,27(6):701-716.
参考文献 83
SHANG S,GUDURI B,CYBULSKY M,et al.Effect of turbulence modulation on three-dimensional trajectories of powder particles in a plasma spray process[J].Journal of Physics D:Applied Physics,2014,47(40):405206.
参考文献 84
BAI Y,ZHAO L,WANG Y,et al.Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying[J].Journal of Alloys and Compounds,2015,632:794-799.
参考文献 85
BAI Y,ZHAO L,QU Y M,et al.Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings[J].Journal of Alloys and Compounds,2015,644:873-882.
参考文献 86
张勇,徐建宁,郭龙龙,等.颗粒在超音速等离子喷涂中的流动特性及熔化细化历程[J].材料热处理学报,2019,40(4):158-165.ZHANG Yong,XU Jianning,GUO Longlong,et al.Flow characteristics and melt refining process of particles in supersonic plasma spraying[J].Journal of Materials Heat Treatment,2019,40(4):158-165.(in Chinese)
参考文献 87
DALIR E,MOREAU C,DOLATABAD A.Three-dimensional modeling of suspension plasma spraying with arc voltage fluctuations[J].Journal of Thermal Spray Technology,2018,27(8):1465-1490.
参考文献 88
KHARLAMOV M Y,KRIVTSUN I V,KORZHYK V N,et al.Simulation of motion,heating,and breakup of molten metal droplets in the plasma jet at plasma-arc spraying[J].Journal of Thermal Spray Technology,2015,24(4):659-670.
参考文献 89
BOBZIN K,ERNST F,RICHARD K,et al.Thermal spraying of cylinder bores with the plasma transferred wire arc process[J].Surface and Coatings Technology,2008,202(18):4438-4443.
目录contents

    摘要

    热喷涂技术是表面工程领域中极为重要的一种装备强化修复技术,其中以气体放电形式为热源的喷涂技术包括等离子喷涂和电弧喷涂,两者更是占据热喷涂领域的绝大市场份额,采用数值模拟可以解决一些在试验上较为棘手的重点研究问题,如等离子体流场和熔滴传热传质行为等,以期实现工艺参数的准确调控和优异涂层的制备。研究电弧及等离子喷涂模拟的模型差异化问题及流场速度、温度、电磁性质,归纳相关模拟的发展历程,并调查试验与模拟的吻合程度。结果表明:电弧喷涂中丝材原料会使阴阳极产生温度差,水平速度分布较发散,熔滴模型也多未考虑熔滴群间相互作用;等离子喷涂研究中常用的三维瞬态双温模型已十分贴近实际工况,对熔滴飞行中的加热、加速过程及破碎行为的研究已较为完备,但仍存在湍流模型计算精度不够、对鞘层弧柱区的研究不够深入等问题。后续应重点在电弧喷涂多液滴模型、等离子体电磁作用和等离子丝材喷涂工艺的数值模拟等方面进行深入研究。

    Abstract

    Gas discharge generates the arc or plasma that acts as a heat source. Arc spraying and plasma spraying using the generated energy as a heat source are collectively called gas discharge heat source spraying. When spraying occurs, the arc or plasma discharge combined with the carrier gas excites the jet with high-temperature and high-speed plasma, which melts the powder or wire material; finally, the molten droplet is deposited on a substrate to form a coating. Notably, various interactions occur between the jet and molten droplets during the in-flight process, such as melting and fragmentation of the droplets and the drag effect between the droplet and jet. However, real-time monitoring of the jet and molten droplets is difficult owing to the high temperature and harsh environment during the spraying process. As an emerging computational method, numerical simulation can be used to study the transient the field and the physical behavior of molten droplets during the spraying process; thus, numerical simulation is an important tool and area of focus. In this study, the differences and potential drawbacks of models in the simulation of two spraying processes, arc spraying and plasmaspraying, are studied, and the characteristic distribution of different jets, state of the droplets, and mechanisms of acceleration and heating of in-flight molten droplets are investigated. In the arc spraying process, wire materials with different thermal conductivities cause the static temperature at the cathode to be much higher than that at the anode, and the velocity distribution of the jet flow is more diffused in the wire plane. The use of a massive wire can increase the velocity and temperature of the molten droplets; however, this might exacerbate asymmetric melting of the wire. Therefore, core wires are expected to be more promising for future applications. Most models consider the interaction of the individual droplets and jet flow instead of droplet groups, and the improved two-fluid model does not consider the thermophoretic force; therefore, further adjustments and advanced models are required. Plasma spraying has been more extensively studied than arc spraying. This study focuses on the following key scientific issues in the spraying process before coating deposition: On one hand, the energy source used for plasma spraying, excitation, and plasma flow directly affect the state of the materials. Thus, determining an appropriate turbulence model based on the flow state is the first important issue. The plasma two-temperature model using the non-local thermal equilibrium very closely reflects the actual working conditions and has become the most suitable base model because the electromagnetic processes at the cathode and anode crucially affect plasma formation and the plasma characteristics, thereby affecting the electromagnetic properties of the cathode / anode and sheath regions, such as the arc reattachment behavior and anode wear. The physical parameters of in-flight molten droplets have been evaluated in several studies using theoretical analyses, experimental demonstrations, and numerical simulations. The effects of various process parameters were analyzed, providing an effective guide for achieving the desired experimental results and for determining the optimal parameters. Finally, the mass and heat transfer processes in molten droplets in the jet flow were systematically analyzed. For example, the droplet goes through the following stages: acceleration and heating, constant temperature and velocity, deceleration and cooling in the jet flow, and fragmentation via vibration breaking as the main mechanism. However, numerical simulations still have limitations such as insufficient simulation accuracy and a lack of in-depth research. Future research on multi-droplets modeling of arc spraying, simulation of the turbulence and electromagnetic properties of plasma spraying, and numerical simulation of plasma transfer arc spraying, a new technique that is becoming increasingly mature, can potentially provide directives for advancing the simulation of gas discharge heat source spraying. This study summarizes the evolution of each physical process model in the numerical simulation of gas discharge heat source spraying since the emergence of thermal spraying simulation, and provides theoretical guidance for the experiments by combining the results of each stage of evolution.

    关键词

    放电等离子喷涂数值分析射流

  • 0 前言

  • 热喷涂技术是利用热源将喷涂原料瞬间加热至熔融或半熔融状态,载气对熔滴加速,使之撞击基体,经扁平化,凝固在基体表面铺展形成防护层的一种材料成形方法 [1],是解决装备在极端苛刻工况下摩擦磨损与腐蚀防护问题的重要手段[2],在航空航天、机械装备等领域[3-6] 广泛应用。根据热源不同可将热喷涂分为四大类,如图1 所示。其中,气体放电热源喷涂包括电弧喷涂(Arc spraying,AS)和等离子喷涂 (Plasma spraying,PS),热源为电离的 Ar、H2 和 N2 等气体。

  • 图1 热喷涂技术分类[7]

  • Fig.1 Thermal spraying technologies classification[7]

  • AS 中电极金属丝短路形成电弧,丝材熔滴随载气在基体表面沉积成涂层,原理如图2a 所示。PS 枪内等离子炬具有强烈的机械压缩、热作用与电磁作用。喷涂粉末经高温熔融后,以高速在基体表面沉积,故而形成更致密的涂层。尽管两种工艺所用材料不同,但都利用气体放电放热熔化原料,产生的熔滴经飞行后在基体表面铺展形成涂层,原理如图2b 所示。

  • 图2 气体放电热源喷涂原理图[8]

  • Fig.2 Schematic diagram of spraying with gas discharge[8]

  • 气体放电热源喷涂中的射流研究极为重要,试验多采用焓探针法和光谱测量法测量射流。但焓探针法对等离子流场特性存在干扰,仅限于低速常压的大气等离子喷涂(Atomsphere plasma spraying,APS),而无法用于低压或高速射流的特性测量;光谱法能减少对试验的干扰,但测量成本极高,对环境要求也十分苛刻,特别是非平衡态下的测量结果不能反映射流的真实情况。为解决上述问题,科学家开始采用数值模拟研究射流。

  • 数值模拟在流体、传热、电磁和结构等[9]领域有举足轻重的地位。热喷涂数值模拟的整个过程如图3 所示,主要包括前处理、N-S 方程求解和后处理。

  • 随着喷枪结构愈加复杂,使用数值模拟不仅可以提高模拟精度,还可节约成本,故在热喷涂技术研究体系中显得愈来愈重要。现阶段热喷涂领域中,AS 的成本最低,沉积效率最高;而 PS 涂层的性能最优异。两种喷涂合计占据市场上绝大部分份额,故用数值模拟手段研究气体放电热源喷涂背后的科学问题具有重要价值。

  • 图3 热喷涂数值模拟工作流[10]

  • Fig.3 Numerical simulation workflow in thermal spray[10]

  • 基于此,本文对国内外在气体放电热源喷涂技术中关于射流特性和熔滴飞行过程与射流交互作用的模拟成果进行了总结,比较了不同模型间的差异,列举了在模拟过程中存在的问题,讨论了通过模拟得到的有价值结果。以期为气体放电热源喷涂的发展提供理论基础和试验依据。

  • 1 喷涂射流特性模拟研究现状

  • 根据流体力学理论,等离子流穿过孔洞时会发生扩散流动。在热喷涂中,枪内压缩气流经喷嘴后扩散并流动形成射流。射流会卷吸空气而由层流向湍流转变,射流各部分如图4 所示。射流特性主要与雷诺数(Re)有关[11]。在实际工程中,Re 大于 10 000 时表现为湍流,调整喷嘴结构是改善射流的最有效方式。AS 射流模拟主要针对其速度和温度分布;而 PS 射流要复杂得多,等离子电磁特性对射流的形成有决定影响,有大量关于此方面的研究工作。

  • 图4 喷涂射流示意图[11]

  • Fig.4 Schematic diagram of spraying jet[11]

  • 1.1 电弧喷涂射流特性研究

  • AS 射流温度在 5 000 K 左右,其模拟最早可追溯到 20 世纪末。VARACALLE 等[12]计算了层流流动下流场和简化熔滴的结果,发现温度平均变化均在 10 K 左右。而实际射流会同大气混合转变为湍流态,不同时刻的温度会不断变化。故 KELKAR 等[13] 使用湍流模型计算了反应瞬时完成的“冻结流”和反应时刻平衡的“平衡流”的结果,发现射流轴向温度衰减更快。实际的射流状态将介于两假设间且更贴近“冻结流”,反应不是时刻平衡的。另外,电弧照片表明,阴极的载流部分温度最高,但模拟未研究流场 3D 特性。

  • 董瑞涛等[14]建立了 3D 喷枪模型,计算了点弧前后射流温度变化。结果表明,产生电弧后,温度在金属丝短路的电弧区内变化极剧烈,而在另外区域中变化不大,仅在轴线附近略有提高;计算电流密度的分布发现,阴极的电流密度、产热量和温度都更高;计算产热量发现,阴极表面的平均温度高出阳极一个数量级,这与之前试验[13]不谋而合,可见 AS 需对阴极进行保护。

  • 为研究 AS 射流速度的影响因素区域分布,朱子新等[15]对使用 Laval 喷嘴的高速电弧喷涂的 2D 速度场进行了计算。压缩气在喷嘴内保持超高音速,在喷嘴出口外射流受到激波影响,且距离越大,激波压缩效应越强,射流轴向速度不断衰减。项建海等[16]用 3D 模型计算射流,由于激波的欠膨胀效应,径向速度发生波动,但不如轴向变化明显。3D 模型速度变化为先增后减,相比 2D 模型更准确。另外,在 3D 流场计算中发现,丝材所在平面的流场速度分布更为发散,但不确定与模型使用简化喷嘴是否有关。BOLOT 等[17]计算了使用 3D 圆形喷枪射流的速度场,射流在垂直和水平方向上同样有不同程度发散,说明项建海等[16]研究中的简化计算是可取的。对于流动不均匀的原因,归功于送丝时金属丝对射流的干扰加强了对空气的卷吸,使水平速度分布更广。

  • 但上述研究都是在无基体下的研究。陈永雄等[18]模拟了受限 AS 射流的流场分布。同自由射流相比,受限射流速度在上游差异不大,但在中下游,特别是下游基体处有较大差异,说明试验调整射流时须考虑基体放置位置。此外,CHEN 等[19]通过模拟研究了AS中利用Laval喷嘴可提高射流速度的原因。如图5 所示,使用普通会聚喷嘴时,会聚区内射流为欠膨胀态,在喷口处速度突变产生强压缩波,损失动能,速度衰减较快;而缩扩型 Laval 喷口的压缩波较弱,速度衰减较小。

  • 图5 流场速度分布[19]

  • Fig.5 Flow velocity distribution[19]

  • 除了喷嘴结构,金属丝也会影响 AS 射流特性,如交叉角度和位置。TAMAKI 等[20-21]研究了双丝电弧喷涂(Twin wire arc spraying,TWAS)射流中压缩波的作用机制,提出了喷嘴出口处气流的膨胀-压缩循环过程,并研究了金属丝交叉角和隔板对于此循环的影响。在隔板安装的一些参数中,其安装位置 Dplate对此循环影响最显著,如图6 所示:隔板离出口距离越近,膨胀波越大,丝材熔化效果越好。这种分流型喷嘴在超音速电弧喷涂(Supersonic arc spraying,SAS)中将得到更多重视。

  • 图6 不同安装位置对应膨胀波[21]

  • Fig.6 Expansion waves of different installation locations[21]

  • 除此之外,其他新兴 AS 工艺的试验取得了较大进展,如脉冲电弧喷涂(Electric-arc spraying,EAS)在低频下的射流压力在喷嘴出口骤降,出现了低氧区,可通过调整喷嘴来调整减压区长度,以最小化金属的氧化程度,但相关模拟不多[22]

  • 综上,AS 射流的研究主要集中在温度、速度分布以及压力变化。AS 点弧前后仅有轴线温度变化,而射流速度保持不变。随距离增大,射流轴向速度和温度均呈现先增加后减小的趋势。喷嘴出口处的膨胀及其压缩效应的强弱对速度有显著影响,采用 Laval 喷嘴或加装隔板可起到集中射流的作用。特别地,AS 中丝材的存在将导致速度场在不同平面上不均匀分布,流场剖面为椭圆形。阴极电子有二次电离周围气体的能力,使阴极尖的温度远高于阳极,故试验进给丝材时,可以提高阴极的送丝速度以平衡两极温度,降低能耗。

  • 1.2 等离子喷涂射流特性研究

  • PS 粉末原料和基体的可选范围广,涂层结构致密且性能优异,故受到更多学者的青睐。PS 数值模拟从最初的一维、稳态、平衡模型发展到如今的三维、瞬态、双温模型(2-T 模型)。但随着进一步研究,现有的试验手段远不够支撑其背后科学问题的论证,未来 PS 数值模拟仍有广阔发展前景。

  • 1.2.1 等离子喷涂湍流特性模拟

  • PS 模拟早期的层流模型计算结果中,高温区很长,但试验时观察到射流温度会急剧衰减。实际上,等离子体与空气的卷吸使射流多表现为湍流,精确针对湍流状态建模可使流场计算结果更准确。当射流以湍流形式流动时,需用瞬态模拟。目前,模型主要为雷诺数均方程模拟( Reynolds average naiver-stokes,RANS)、大涡模拟( Large eddy simulation,LES)两种。

  • RANS 采用多个湍流物理量(强度 k、耗散率 ε、涡黏系数ω等)求解湍流模型,描述射流的时均流动和传热规律。HUANG 等[23]利用 k-ε 模型进行了 2D 射流的 RANS 模拟,得到了湍流对空气冷场的卷吸信息,但结果仅针对水平面。在此基础上,LI 等[24]进行了 3D 等离子射流计算,研究耗散率对熔滴的影响。结果表明,强度和耗散率不同方向的幅值会显著改变熔滴飞行状态和熔化行为,而目前对直流 PS 射流特性的计算大多使用 RANS 模拟。

  • 与 RANS 的时均计算不同,LES 用于 3D 时变情况下的瞬时计算,故在感应等离子体的瞬时流动中更具优势。模拟中主要存在两种涡流状态。其中,大涡尺寸与射流平均特征长度相当,用于反映质量和动量的传递;小涡用于反映湍流动能的耗散。 COLOMBO 等[25]对电感等离子体进行了三维 LES 模拟,计算了喷嘴出口处气体的膨胀效应对湍流特性的影响。SHIGETA 等[26]考虑时间和空间的离散性,计算了射频感应等离子体的流动。结果发现,等离子体在射频线圈区域和射流下游不稳定,在射频区域产生温度不均匀的涡流,小涡与大涡发生相互作用,涡流随计算时间 t 演变,如图7 所示。

  • 图7 大涡模拟中涡流演变[26]

  • Fig.7 Vortex evolution in LES[26]

  • 综上,两种湍流模型相较而言,有各自的适用方向和局限性。目前,RANS 的使用率更高,但对湍流特性的时均化处理使其精度稍显不足,模拟时可用定热源代替等离子辐射以简化计算,利用直流等离子矩出口处的温度、速度作为流场入口二次计算,可以获得流场全部信息,但计算量极大。未来随着计算水平的提高,当计算量不再是限制计算的主要因素时,LES 和基于超算平台的直接数值模拟 (Direct numerical simulation,DNS)会得到更多应用。

  • 1.2.2 等离子喷涂热学特性模拟

  • PS 射流温度最高可达 18 000 K,温度分布易受到喷枪结构的影响[27]。2D 模型[28]主要用于研究传热效应,但等离子体流动极不稳定,并有明显 3D 特征。LI 等[29]较早地提出了 3D 稳态模型,成功解决了 2D 模型中无法确定电弧附着位置的问题。LI 等[30]基于能量最低原理,计算得到 PS 等离子炬中阳极弧根的附着位置,根据弧根附着规律对等离子体炬内的传热情况进行推导。GUO 等[31]利用稳态模型,初步建立了工艺参数和射流温度间的映射关系,并在试验时进行验证,体现在提高电流强度 I 或降低氢气流量 QH2 可有效减少电弧长度,从而使射流温度升高。但上述均是稳态研究结果,能计算等离子流在一段时间内的平均传热,但无法解释瞬态行为。

  • 为解决此问题,学者们开发出瞬态模型以保证温度分布时刻变化。TRELLES 等[32]计算枪内的点弧过程时发现,某一时刻下电弧的附着位置会被气体冲走,从而出现新的附着位置,即电弧再附着。 BAUDRY 等[33]系统研究了电弧的再附着过程,影响附着位置的决定因素是枪内等离子流的电场强度和阳极产热额。WEN 等[34-35]进一步研究了电弧动力学过程和等离子炬内温度关系,如图8 所示,建立不同温度下电弧的运动规律模型,验证了 BAUDRY[33] 的计算结果。

  • 图8 等离子炬内的温度分布[34]

  • Fig.8 Temperature distribution inside the torch[34]

  • 研究 PS 射流温度的模型主要有两种,基于的假设分别为局域热力学平衡( Local thermal equilibrium,LTE)和非局域热力学平衡(Non-local thermal equilibrium,NLTE)。假设的区别体现在射流中的重粒子温度 Th(分子、原子、离子)和电子温度 Te能否通过单一平衡温度 Tb 表示,如果不需单独对重粒子温度进行重新计算,则为 LTE 近似模型,反之为 NLTE 近似模型。LTE 对 PS 核心区轴线上的模拟极为有效。TRELLES[36]计算了 PS 射流域全部温度信息,由图8 可知,阴极尖附近等离子体的温度最高。整体上,温度沿轴线呈对称分布,温度最低点出现在阴极尖以内和轴线远端。HUANG 等[37] 用电场强度校正电子温度后,对 LTE 近似做了改进,如图9 所示。计算得到的电弧温度同样呈轴对称分布,同时在电子富集的阳极表面出现磨损现象,即喷嘴的阳极内壁会在长时间工作后出现烧蚀。

  • 图9 等离子体电压阶跃的修正模型[37]

  • Fig.9 Improved model on voltage drop of plasma[37]

  • 随着技术不断发展,NLTE 近似逐渐走上历史舞台。NLTE 利用能量守恒方程和化学平衡理论来计算电子温度和重粒子温度的差异。TRELLES[38] 建立了化学平衡-热力学非平衡双温模型,重新计算了射流温度的全部信息。结果表明,电子温度分布更分散,如图10 所示,印证了 PS 射流中,特别是边缘处,存在热力学的高度不平衡。

  • 图10 等离子炬内重粒子温度和电子温度分布[38]

  • Fig.10 Th and Te distribution inside the torch[38]

  • 国内也有团队陆续开展 NLTE 的模拟工作。胡福胜等[39]计算了不同气体配比和成分下的 APS 射流温度分布和热力学参数(热焓 H、热导率 к、比热 Cp)。结果表明,H2 的引入会将射流热焓显著提升,从而提高温度和其他热力学参数值,且阴极尖温度始终最高。此外,在改变喷枪尺寸时,发现射流温度和喷枪喉管半径的变化趋势相同。参考这一结果,张勇等[40]利用多物理场耦合场,在 NLTE 近似基础上,考虑气体的电离和化学反应,对超音速等离子喷涂(Supersonic atomsphere plasma spraying,SAPS)的温度进行了参数化计算,确定了最大射流温度下的气体参数。

  • 对于一些复杂的喷枪结构,科学家们也乐于通过模拟代替试验以计算射流特性。ZHUKOVSKII 等[41-42]对双阳极 APS 的射流进行计算,给出了计算双温等离子体温度的模型。通过修正电离焓改变模型中的热焓项,解释了 NLTE 中偶有出现 TeTh反常现象存在的原因,并对比了电弧 LTE 和 NLTE 模型下电子温度的变化趋势,预测 NLTE 中的阳极电弧再附着和该位置下的热流产额,如图11 所示,为解决阳极磨蚀提供了理论依据。

  • 图11 等离子炬内不同位置电流密度[41]

  • Fig.11 Current density of different location inside torch[41]

  • 综上,PS 射流温度分布广,但对于温度在 8 000 K 以下的区域,粒子碰撞频率虽难以补偿电子和重粒子的不平衡性,但通过在 LTE 近似中添加冷边界层也可满足计算需求。此外,NLTE 近似模型必须保证流体是可压缩的,对于不可压缩的枪外空气域的部分,须引入耦合多物理场使电磁和化学非平衡过程被考虑在内,使双温模型满足自洽。在模拟中发现,等离子炬内会出现电弧再附着及阳极磨损现象,并与射流温度相关。通过调整喷枪结构,可尽量避免枪体磨损。单阴极喷枪的磨损位置来自单点电弧附着产生的热柱。改用三阴极喷枪,模拟结果中射流温度分布为三角星形,试验时阳极磨损会大大减轻。考虑到未来喷枪结构定会日趋复杂,相比 LTE 近似,利用 NLTE 近似处理结果会更接近实际工况的结果,分开计算电子和重粒子的双温模型将成为 PS 流动和传热模拟的主流模型。

  • 1.2.3 等离子喷涂电磁特性模拟

  • PS 中,等离子体的物理行为和化学过程极为复杂,并涉及多物理场的相互耦合,特别是电磁问题。等离子体放电时,放电区分为主等离子区、电极区 (阳极、阴极)和二者间的鞘层区(阴极鞘层、阳极鞘层),如图12 所示。阴极电势 φc 和阳极电势 φa 的变化规律不一致,阴极电荷密度 ρe先增加后下降,阳极电子数密度 ne不断升高。在喷涂试验中,阴极位置是固定的,当阳极弧根位置向喷嘴下游移动时,电弧被拉长,自磁压缩作用减弱;电子在鞘层区内密度低于离子,此部分电势压降梯度较大;主等离子区内存在一个电中性的弧柱区,此区域内具有最强的电磁作用。关于 PS 电磁特性模拟分别围绕以上区域展开。

  • 图12 等离子体放电示意图[43]

  • Fig.12 Schematic diagram of plasma discharge[43]

  • CHAZELAS 等[43]对放电区内的电学特性进行了计算,如图10 所示,并建立多物理耦合计算发现,电子温度和重粒子温度在鞘层区位置显著偏离平衡温度,需要特别关注。同时,阴极和阳极区内的电势变化显著不同,故须要分开研究阴极和阳极区的电磁特性。ALAYA 等[44-45]计算了 3D 瞬态下阴极电弧特性。通过耦合阴极区和电弧,避免引入电流,从而更精确地描述了电弧过程,如图13 所示。通过计算电流密度 j、磁感应强度 B 和温度的分布,阐释了阳极磨损机理:当电弧电流增加时,弧柱区的扩展会提高施加于阳极表面的电磁力,导致电弧尖端更靠近阴极,自磁压缩作用增强,从而使得阳极附着位置的产热额增多,阳极壁面出现烧蚀点。

  • 不同于 ALAYA 的电弧-阴极耦合模型, ALMEIDA 等[46]使用两种放电模型分别描述阴阳极的电弧行为。选用非线性加热模型计算阴极和阳极电弧行为,等效电压加热模型结果表明:阳极形状电压和电弧温度无影响,但对能量传输效率影响较大。据此,可设计不同形状的喷枪以提高等离子体传热效率,实现高效喷涂。

  • 图13 阴极尖附近的磁场强度[45]

  • Fig.13 Magentic field close to the cathode tip[45]

  • 除了针对电极区域的模拟,针对鞘层区和主等离子体弧柱区的研究也有大量报道。SEMENOV 等[47]基于阳极-鞘层模型计算了压降、厚度和射流温度的变化,比较了不同 APS 参数下阳极电磁作用对热流的贡献。CHAZELAS 等[48]使用电极-鞘层模型,利用双温模型精确描述了电弧边缘的动力学行为并计算了不同时刻对应阳极电势,如图14 所示,并基于研究结果提出了多阳极的新型结构喷枪,旨在通过将等离子体形成的可压缩气体与声波耦合,从而稳定电弧行为,减少阳极磨损。

  • 有关 PS 射流电磁特性的模拟工作集中在电极区和鞘层区。学者们建立了大量不同的耦合模型以研究电磁特性。目前,比较先进的耦合模型是通过阴极和鞘层耦合以保证电流连续性的非线性加热模型,能够通过解释阴极的非平衡效应,求解阴极的电磁参数。美中不足的是,该模型未考虑阴极鞘层自身能量传递的影响。若想进一步研究不同阴极材料的电弧行为,一方面须用试验获取阴极鞘层的电磁值作为初始边界条件,另一方面可借助除试验和模拟外更有效的手段,如第一性原理分析。

  • 图14 双温模型电弧再附着行为[48]

  • Fig.14 Arc reattachment in 2-T model[48]

  • 相对阴极而言,计算阳极-鞘层耦合模型时,还必须考虑鞘层对电极的耦合效应。由于电子数密度较低,不能简单利用电流的非线性放热模型,故根据其表面电压计算,使用等效电压加热模型。在处理时,阳极的形状不影响电压,利用同参数下阴极非线性加热模型的数据,修正后作为该模型的初始值。除此之外,一些研究发现,外加旋转磁场有助于减轻阳极壁的热负荷,并能提高阳极弧根运动的可控性,试验时发现喷嘴的烧蚀有所减弱。

  • 综上,通对等 PS 射流的速度场、温度场和多物理场耦合可使模拟更贴近实际工况。在模拟结果的基础上优化喷枪结构,能够提升电弧的稳定性并改善射流特性,减小阳极磨损。未来的主要目光将集中在鞘层区和主等离子弧柱区。

  • 2 喷涂熔滴特性的研究现状

  • 喷涂过程中,高压气体会使喷涂原料雾化成粒度更小的熔滴,熔滴飞行状态通过影响沉积行为,从而影响涂层的微观形貌,并对最终性能产生重大影响[49]。对于 AS 熔滴,学者主要利用直接物理观测法采集熔滴的速度、温度及飞行轨迹。后逐渐有学者开始采用数值模拟方法计算熔滴,但由于 AS 使用丝材作为原料,熔滴的二次雾化相比丝材一次熔化的重要性显得不足,故这方面的工作及成果相对较少。但 PS 熔滴飞行状态作为涂层成形前的重要环节,获得了大量学者的关注,研究手段更是囊括了数学分析、试验研究和数值模拟三种方法,三者相互独立但也互为补充。

  • 2.1 电弧喷涂熔滴特性

  • GRANT 等[50]基于热统理论建立了一个数学模型以描述熔滴飞行行为和热历史,计算得到影响熔滴雾化的因素,包括熔滴的粒径 Dp、速度、质量流量、温度以及组分。其中,粒径对雾化的影响最为显著,为后人的理论研究提供了指导。张甲英等[51] 用激光光屏法观察熔滴飞行状态。随喷涂距离增加,小粒径熔滴变多,印证了熔滴的雾化。这种方法相对淬冷收集粒子更可靠,能监测熔滴的实时温度、速度,但结果仅限竖直面,无法测量熔滴 3D 特性。 WATANABE 等[52]研究TWAS中Al 熔滴的氧化状态发现,电压波动会使熔滴雾化变差,同时,加入 N2 可促进 Al 的氮化反应,减少氧化物出现。通过图像传感(Charge coupled device,CCD)系统观察 AS 阴阳极金属丝的非对称熔化:阴极丝变为熔滴后立即被气流吹走,熔化呈局部特性,而阳极丝熔化速度慢且不均匀,熔滴流被拉长。究其原因,与前文提到的阳极表面温度低和阴极尖端的电弧连接更紧密均有关。

  • 对于射流的试验测量仅能用焓探针法实现,但分析飞行熔滴的特性时,则不须考虑侵入式测量的影响。KRAUSS 等[53]在 DPV-2000 的基础上开发了新系统,在不影响环境和气流的情况下监测飞行颗粒的温度、速度和粒度,并模拟验证不同测量结果。但对于不同的 AS 设备,探测器的灵敏度要根据需要范围进行调整。NEWBERY 等[54]利用 CCD 拍摄熔滴的飞行状态,如图15 所示。通过测量不同条件下熔滴的速度和温度发现,N2 的引入使熔滴群的发散程度减小,且熔滴温度高于其液相线温度,这说明熔滴已完全熔化。将气参数与熔滴的速度和温度通过电参数(电流强度 I,电压 U 和功率 P)的值用多项式进行拟合,为 AS 参数的设定提供了理论指导。

  • 图15 Fe-C 熔滴飞行状态[54]

  • Fig.15 Fe-C molten droplet inflight[54]

  • 为研究不同类型AS丝材产生熔滴的特性差异, TILLMANN等[55]采用Ni基实心丝材和Fe基粉芯丝材,利用 Accura-Spray 测量熔滴飞行时的速度和温度。多数情况下,实心丝材熔滴的速度和温度高于粉芯丝材,并给出了一些参数下的参考值。这一测量结果可为 AS 数值模拟的颗粒初始条件设置提供支持。此外,电极处的结果证实,就阴阳极出现熔滴的速度而言,TWAS 喷涂是一种不均匀的喷涂,如图16 所示,但粉芯丝材可降低不均匀性。关于不均匀性出现的具体原因及粉芯丝材和实心丝材各自熔化机理的差异还须进一步研究。

  • 图16 阴阳极的不对称熔化[55]

  • Fig.16 Asymmetric melt at cathode and anode[55]

  • 除了使用仪器设备进行试验测量外,李平等[56] 用 Matlab 建立数学模型研究 Al2O3-TiO2 熔滴,建立熔滴平均粒径 Dm和工艺参数(UI)之间的关系。模型结果表明,调整电压和电流强度可控制平均粒径,粒径计算结果服从正态分布,但在试验的测量结果中,粒径接近 Rosin-Rammler 分布。这主要是由于模型假设颗粒均为球形,与实际情况略有偏差。此外,模型忽略了黏度和表面张力的温变特性,导致计算结果与测量结果间存在误差。

  • 目前阶段,对 AS 熔滴温度和速度的试验测量精度往往受到设备灵敏度的制约。部分摄像系统的双色测温法无法覆盖熔滴的整个温度分布域,特别是在较小温度下数据的可靠性存疑,这主要是由于大部分设备都是基于 LTE 近似而设计的,在测量非平衡位置下的温度会出现偏差,故还须借助数值模拟手段对设备测量的底层逻辑进行修正或进一步改进。

  • 2.2 等离子喷涂熔滴特性

  • AS 熔滴的测量设备同样可用于 PS 熔滴的研究,只需提升量程即可,熔滴运动规律也存在大量共同点。FANG 等[57]使用 CCD 拍摄飞行 ZrO2 熔滴。经灰度处理后,发现氩气流量 QAr 增加时,熔滴速度显著提高,而温度降低不明显;而氢气流量增加时,射流热焓提高,熔滴温度提升极为明显。另外,提高功率可影响热焓,从而间接提升熔滴温度。 SOFIANE 等[58]测量了 Al2O3 熔滴的速度和温度,并利用简化高斯型热源模型计算了电流强度、氢气流量、氩气流量对熔滴影响程度的显著性。结果表明,氢气流量对熔滴的影响最显著,而对电流强度的影响最不明显。李长久等[59]研究了气体流量 Q、功率和喷涂距离 D 中 Cu 熔滴的飞行速度,同样发现氩气流量增加时,有效加热时间缩短,熔滴速度增大,而其他条件对熔滴速度几乎无显著影响。

  • PS 熔滴物性参数的理论分析也较为成熟,主要围绕最佳工艺参数的预测以对试验进行指导。 KANTA 等[60]利用人工神经网络(Artifical neural network,ANN)对 Al2O3-TiO2 熔滴的物性参数和喷涂工艺参数间的映射关系进行求解。结果表明,粉末原料的初始粒度是熔滴熔化的决定性因素,并对雾化程度的影响极大。

  • 当熔滴在射流中飞行一段距离后,其速度、温度适宜,此时在基体铺展的效果最好,该距离则为最佳喷涂距离 Do。ZHANG 等[61]用六角晶格玻尔兹曼算法(Lattice boltzmann method,LBM)和概率算法进行建模,确定了APS的最佳喷涂距离为90 mm,计算得到两种送粉方式下熔滴的飞行轨迹,如图17 所示,熔滴的分布呈锥形,且中心位于喷嘴处,粒度较大的熔滴容易飞出外边界。

  • 图17 熔滴的飞行轨迹[61]

  • Fig.17 Inflight trajectory of molten droplets[61]

  • DATTA 等[62]使用非线性回归分析研究了氩气流量、功率、电流强度和喷涂距离对于涂层参数(厚度 d、孔隙率 p 和显微硬度 HV)的影响,用转换矩阵法计算三水平四因素的响应方程。结果表明,涂层参数显著依赖于氩气流量。试验时,氩气流量的值将直接关系到涂层最终质量的优劣,必须进行严格优化。YUSOFF 等[63]研究 Al2O3-TiO2 熔滴和涂层成形机理,发现送粉流量 q 对涂层表面粗糙度 Ra、厚度和孔隙率有显著影响,但对显微硬度和摩擦性能的影响较小,可根据涂层实际需求对送粉流量进行调整。张勇等[64]利用耦合多物理场计算了 SAPS 熔滴飞行状态和温度情况,如图18 所示,熔滴群的分散程度相比 APS 熔滴更宽,细化程度也更强。监测熔滴的速度和温度与模拟计算值进行对比,误差为 9.7%。出现误差的主要原因是没有考虑熔滴的蒸发效应,对模拟结果修正后确定了 SAPS 的最佳喷涂距离为 100 mm,与 APS 的最佳喷涂距离较为接近。究其原因,可能由于熔滴在某一范围的距离下沉积状态相似,其中每个值都可视作最佳喷涂距离。

  • 图18 APS 熔滴飞行轨迹[64]

  • Fig.18 Inflight trajectory of APS molten droplet[64]

  • 进行 PS 熔滴数值模拟时,由于熔滴时刻处于射流中并会受到传热、传质作用,故须先计算流场信息,再以流场结果为初值计算熔滴。直接计算熔滴的研究少,多是聚焦于射流及熔滴的交互作用模拟,故本章不再过多介绍对熔滴温度、速度和飞行状态的模拟工作,将在下章射流与熔滴交互作用里展开讨论。

  • 综上,对 AS 熔滴的研究,多用单因素或多因素法研究各参数对熔滴状态的影响,结合理论分析后发现,可通过使用小粒度粉末、改进喷嘴结构、加入 N2、提高气体流量和增大功率等多种方式有效提高熔滴的温度和速度。大多研究进行的主要是定性和半定量分析,给出了一定经验公式,但受限于环境因素和仪器测量误差,学者更多的关注点也主要集中在熔滴的凝固铺展及建设行为,故目前关于熔滴飞行状态的研究仍停留在半定量分析阶段,对飞行机理的深层研究还不够。

  • 3 射流 / 熔滴交互作用模拟现状

  • 熔滴进入射流后,经过细化、加热和加速过程,会发生受热、受力、熔化和破碎等一系列复杂的物理化学变化,这其间涉及了射流对熔滴的传热、传质过程。射流 / 熔滴交互作用的数值模拟包括熔滴加热、加速问题及熔滴破碎研究。

  • 3.1 电弧喷涂射流 / 熔滴交互作用模拟

  • KELKAR 等[13]较早研究了 AS 熔滴的破碎机理,通过半经验模型模拟了熔滴与金属丝尖端分离时的过程,利用Lagrange离散相模型计算整个过程,如下:金属丝短路后发生一次破碎,变为大熔滴,进入气流后二次破碎为小熔滴。虽然未考虑熔滴运动的 3D 特性,但模拟结果仍十分有价值,揭示了 AS 中电极的一次熔化和二次破碎机制,并为后人的研究提供了参考和提供思路。

  • 朱子新等[65]建立 Al-Cr 熔滴的数学模型,并与试验测定结果中的平均速度较为吻合。但在速度较大的位置,偏离较大,这是由于熔滴在飞行中会经历先加速再减速的过程,但小熔滴的减速效果更明显。修正模型后研究了 Fe-Cr 熔滴传热,小尺寸熔滴的温度更高,沉积时的冷却速率更大。但模拟时研究对象均为单个熔滴,未考虑多熔滴间的碰撞及共熔情况,但平均趋势与测量结果一致,可用于指导试验。杨庆功等[66]将 Al-Zn 熔滴进行拟流体化处理,使用 Lagrange 模型研究射流和熔滴拟流体间的交互作用。计算发现,小质量熔滴会急剧加速至射流速度,然后再逐渐降低。相比单熔滴的研究,熔滴速度变化趋势相似,但各阶段略有出入,故进一步对 AS 进行多熔滴或熔滴群的模拟工作十分必要。

  • 除了对 AS 熔滴加速、加热过程的模拟外,王吉孝[67]和 WANG 等[68]模拟了熔滴破碎过程,研究粒径、雾化压力 Pa和表面张力 σ 对熔滴破碎的影响,使用两种 Euler 多液滴模型,如图19 所示。比较计算结果发现,熔滴的破碎机制分别为爆炸破碎(双液滴模型)和两步破碎(三液滴模型)过程。在三液滴模型中,出现了二次破碎的情况,相比双液滴模型而言,与实际情况较为贴合。每一次破碎后,粒径减小程度不同,速度经历三阶段,分别为:从丝材尖端脱落,速度增加至与射流速度相当;稳定飞行速度不变;射流速度急剧下降,熔滴速度也下降。此结果相对之前模型有了更进一步的提高。

  • 图19 熔滴破碎变形过程[68]

  • Fig.19 Break-up and deformation of molten droplets[68]

  • 综上,AS 熔滴和射流交互作用的数值模拟有一定成果,对熔滴飞行行为进行了初步描述,丝材会发生二次破碎,射流对小熔滴的影响更显著。模拟结果对试验可进行初步指导,但研究多基于单个熔滴,而 AS 每个熔滴不仅与射流存在交互作用,还与其他熔滴有相互作用,连续的双流体模型可以提高模拟精度。但这种处理未考虑熔滴间的交互作用,须进一步采用更精确的离散多液滴模型,多液滴模型结果中出现了Lagrange模型中常见的二次破碎及 Euler 模型特有的高速爆炸破碎。

  • 上述模拟多是关注于飞行区的熔滴研究,而一次破碎前丝材-熔滴的熔化过程,仅通过 CCD 拍摄和理论分析有过研究。为进一步系统阐述熔滴的不同初始状态对喷涂中可能存在的其他影响,须要参考焊接糊状区中的焊丝熔化模型,建立热喷涂丝材熔化模型,系统分析电参数 / 气参数 / 丝参数对丝材熔化的影响机制,并可应用于包括 AS 在内的其他丝材喷涂技术,如丝材火焰喷涂(Wire flame spraying,WFS)、等离子丝材喷涂(Plasma wire spraying,PWS)中。

  • 3.2 等离子喷涂射流 / 熔滴交互作用模拟

  • 3.2.1 熔滴加速过程模拟

  • 射流中,熔滴在热泳力、拖曳力、重力和升力等作用下,速度在短时间内大幅提高,动量传递的实质是气体分子和离子与熔滴的对撞产生能量。在 APS 和 SAPS 中,熔滴速度变化趋势相近,但射流速度不同,导致熔滴速度相差甚远,最终涂层质量也不尽相同。

  • BOBZIN 等[69-70]计算 Al2O3 熔滴时发现其穿透能力主要由喷枪出口位置的速度决定,这意味着利用孔道直径更大的喷嘴,如 M 系列,熔滴渗透到射流中的能力会更强,熔滴速度和熔化程度也会提高。基于这一模拟结果,测定不同喷嘴处熔滴速度,验证了模拟的正确性,这说明对喷嘴进行改进,不但可以提高射流速度,还可提高熔滴速度。HSU 等[71] 计算了不同送粉位置下熔滴的速度和温度,如图20 所示。用 Lagrange 模型得到的结果中,采用内送粉式喷枪会使熔滴具有更高的速度和温度,原因是粉末在内部高能等离子束作用下有能量传递,过程中整体获得的动量和能量比外送粉式更多。

  • 图20 熔滴飞行速度[71]

  • Fig.20 Velocity of molten droplets[71]

  • 对于 SAPS 模拟,WEI 等[72-73]计算了单个 YSZ 熔滴从注入到飞行的过程。计算后发现,熔滴的整个飞行过程包括加速、恒速及减速三个阶段,与 AS 熔滴的速度变化趋势一致,确定了 YSZ 熔滴的最佳喷涂距离为 90 mm,但模拟中同样未考虑熔滴间的相互作用。谭超等[74]研究了粒径不同的 YSZ 熔滴在空间内分布状态。熔滴的迹线均沿轴线呈 3D 对称分布,粒径越大,熔滴加速越弱。YUGESWARAN等[75]研究 La2Zr2O7 熔滴时发现,射流和熔滴的速度和温度都随着功率增加而升高。但相比熔滴,电流强度、电压和功率对射流的影响更显著。

  • 除了常见的 APS 和 SAPS 模拟外,ZHANG 等[76] 研究了低压等离子喷涂( Low-pressure plasma spraying,LPPS)中,熔滴对 ZrO2 涂层成形的影响。适当增大工作压力 pw可提高熔滴速度,并有效降低孔隙率,提高结合强度。另外,还有学者研究了电磁条件对熔滴的影响。SAFAEI[77]对 Ni 熔滴的飞行进行计算,发现电弧波动时,湍流动能突变会引起熔滴的高速度梯度。SAITO 等[78]对 ZrO2 熔滴使用磁流体动力学(Magnetohydrodynamics,MHD)模拟,计算飞行轨迹发现,磁场引起射流旋转,从而影响飞行熔滴的运动轨迹,使之不再沿轴线 3D 对称分布,如图21 所示。

  • 图21 熔滴三维飞行轨迹[78]

  • Fig.21 3D flight trajectory of molten droplets[78]

  • PS 射流通过同粒子碰撞向熔滴进行动量传递, Ar 和 N 原子质量较大,提高氩气流量和氮气流量可以显著提高熔滴粒子飞行速度。影响速度的其他因素还包括粒径、送粉流量、雾化压力、功率和磁学参数等。除了参数改变外,注入方式也会影响熔滴的熔化程度。目前主要采用径向注入,包括内送粉和外送粉。相比外送粉,内送粉熔滴速度更高,射流中熔滴堆叠程度更低,单个熔滴与射流的动量交换相对充分。但熔滴速度的模拟同试验结果相比还存在误差,可能是由于环境对射流的影响,不能简单采用 RANS 模拟,故未来在研究中还须根据设备环境修正 RANS 或选用 LES 模拟计算。

  • 3.2.2 熔滴加热过程模拟

  • 熔滴与射流间除了动量交换外,还存在热传导、辐射和对流等热交换作用。熔滴在射流中的状态包括微熔、半熔、熔融等熔化程度,除了与射流温度有关,也极依赖于自身的热学性质。

  • 冯拉俊等[79]采用龙格-库塔法(Runge-Kutta method,RKM)计算射流对 Al2O3 熔滴的传热过程,发现相比气体流量和熔滴自身,气体成分对加热的影响更显著。但 2D 模型说服力较差。AHMED 等[80]在 3D 条件下计算熔滴温度,发现 N2 会显著改变等离子体射流的温度,但未说明温度改变的机理。AISSA 等[81]研究了热交换过程中重要参数努塞尔数 Nu,提出了高温热等离子流中的 H2 电离机制。射流和熔滴的热传导会随着温度增加而变强,但当温度达到 H2 电离温度后,热传导变化较小,印证了氢气流量对射流和熔滴温度影响的显著性。

  • 除了气体影响外,学者们还研究了其他因素对熔滴温度的影响。ZHANG 等[82]计算 YSZ 熔滴的结果表明,小角度进入或提高送粉流量可使射流中熔滴的熔化效果更好,但送粉流量存在一阈值,粉末过量难以全部熔化。SHANG 等[83]用集电容法模拟熔滴群的加热湍流调制后发现,射流和熔滴的平均温度和速度无显著变化,但熔滴会根据粒径不同被分开。SAITO 等[78]研究磁场中的熔滴时发现,提高初始磁感应强度 B0 后,射流加热功率提高,传热效应增强,熔滴的熔融状态得到提升,如图22 所示。

  • 图22 熔滴内部温度[78]

  • Fig.22 Internal temperature of molten droplets[78]

  • 为描述射流中熔滴的热历史过程,WEI 等[72-73] 计算了单个 YSZ 熔滴的表面和内部温度。结果表明,熔滴内部温度在中心低四周高,表面温度不断升高至约 2 950 K(ZrO2熔点)。引入熔化模型后计算发现,熔滴在射流中经历了升温、恒温和降温三个阶段。熔滴和射流间的热交换使其进入射流快速熔化,温度稳定在略低于射流温度,最终随射流温度下降而下降。过程中,熔滴和射流的速度和温度变化趋势如图23 所示。

  • 撞击基体的瞬间,熔滴熔化程度会直接影响涂层的沉积行为。利用试验设备监测熔滴时,测量结果对应熔滴的表面温度,熔滴内部的温度分布无法获得。因此,数值模拟是研究熔滴加热过程的重要手段。学界现多用 Lagrange 法进行熔滴的离散相模型研究,但无法考虑其内部热传导作用,须修正熔化控制方程或改用 Euler 法研究熔滴连续相。另外,喷涂粒子进入射流后,其熔化程度在很大程度上依赖于自身的导热系数及热容。计算高熔点、低导热系数的陶瓷颗粒时,如 YSZ、Al2O3 等,必须考虑热传导效应。

  • 图23 射流及熔滴变化趋势[72]

  • Fig.23 Evoluion of jet and molten droplets[72]

  • 整体而言,熔滴的加热和加速规律十分相似,均须经历三个阶段。气体成分对射流和熔滴温度具有重要影响,随着工作气体中 H2和 N2 含量提高,提高氢电离极限或促进氮化反应会使射流对熔滴的加热能力得到显著提升。另外,还可通过增加电流强度及外加磁场来提升射流热焓。对于粒径不同的熔滴,粒径减小,熔滴的熔化更为理想,但过小会使涂层孔隙增多。因此,确定合适的粒径对获得高质量涂层具有建设性意义。

  • 3.2.3 熔滴破碎过程模拟

  • 根据前文的总结,确定了喷枪结构和工艺参数会改变 PS 射流特性,熔滴的行为自然不同。另外,由于熔滴自身性质不同,不同工艺条件下不同熔滴的破碎过程存在差异。

  • BAI 等[84-85]计算了 YSZ 熔滴在 APS 与 SAPS 射流中的破碎过程,发现射流在 SAPS 中能量和动能的传递都更强,而且熔滴尺寸也明显更小,更多的熔滴发生破碎,最终在基体上铺展后呈碎片盘状。张勇等[86]计算了 SAPS 熔滴的细化过程,熔滴刚进入射流时细化明显,粒径迅速减小,在射流的剪切力作用下破碎成为小熔滴。熔滴在整个过程中的破碎机制是振动破碎。但原料若为金属粉而非陶瓷粉,除了简单振动破碎外,或还存在瓣状破碎或者袋状破碎机制。DALIR 等[87]在悬浮液等离子喷涂(Suspension plasma spraying,SPS)中,使用 KH-RT 破碎模型进行计算。熔滴飞行破碎情况如下,射流中不同位置的熔滴理化变化也不同,如图24 所示。通过增加进料速度可使熔滴渗透更深,在远端熔滴剧烈破碎为小尺寸熔滴。但在研究中采取的是单相模型,未考虑溶剂及熔滴的两相差异。

  • 图24 不同时刻熔滴破碎情况[87]

  • Fig.24 Break-up of molten droplets at different time[87]

  • 不同于上述粉末喂料,乌 / 俄等国自 2008 年开始研发将丝材作为原料的等离子电弧丝材喷涂工艺 (Plasma-arc wire spraying,PAWS)。

  • KHARLAMOV 等[88]等建立了 PAWS 的 3D 数学模型,计算了丝材熔滴在加速和升温过程的破碎情况,如图25 所示。

  • 整个破碎过程主要受到韦伯数(We)的控制。熔滴从金属丝尖端分离后,向射流下游飞行,过程存在多次破碎,最终演变为小尺寸的不规则碎片。第一次破碎发生在喷嘴出口附近,当熔滴 We 达临界值 We*时,熔滴快速开始破碎成大小形状各异的碎片,且细小碎片成形更快。随后,由于碎片气动阻力不同,当碎片相对速度减小时,会发生二次破碎。该模拟工作对等离子丝材喷涂试验具有极大的指导意义,尽管利用金属丝作为原料使得碎片的形状各异,但和粉末原料熔化历程相同,熔滴均经历了二次破碎,可见射流对各种熔滴均有强烈作用。

  • 图25 破碎时熔滴物性变化[89]

  • Fig.25 Properties variation of break-up molten droplets[89]

  • 综上,熔滴在射流中运动时,伴随着动量和能量交换以及固液相变过程。整个过程,熔滴迎流侧相比背流侧温度更高,各个方向熔化程度不同。粉末熔滴的初始尺寸和 We 决定其细化程度。大尺寸熔滴刚进入射流时就立刻发生破碎,此时破碎机制为振动破碎,是射流与熔滴交互作用引起的。射流能量和熔滴破碎程度正相关,SAPS 中熔滴破碎比 APS 更充分。对于小尺寸熔滴,如 SPS 中亚微米、纳米级的喂料,熔滴的破碎机制与进料速率直接相关。速率提高,熔滴破碎更充分,但熔滴总数变少。这和传统粉末喷涂相似,通过调整送粉流量可以使尽量多的熔滴充分破碎,提高沉积速率并形成高质量涂层。

  • 同时,近年来的原料为熔融金属丝的等离子转移弧丝材喷涂[89](Plasma transfer-arc wire spraying,PTWS)技术和 PAWS 工艺类似,相当于 PS 和 AS 的复合工艺。PTWS 目前仍处于探索阶段,但相关工艺参数均已确定,制备涂层孔隙率较低,并且涂层沉积效率极高。但喷涂过程中的深层次问题,如等离子体拉弧行为、实心和粉芯丝材的熔化差异、不同状态熔滴的飞行和涂层堆垛成形的机理都尚不明确,其相关数值模拟须尽早提上日程。

  • 对于本文中总结的国内外在气体放电热源喷涂数值模拟的模型发展历程及重要研究结论,如表1 所示。

  • 表1 气体放电热源喷涂中工艺的对比

  • Table1 Comparison on technologies of spraying with gas discharge heat source

  • 4 结论

  • 文中综述了气体放电热源喷涂技术的射流自身特性及其与熔滴间的交互作用,总结了两种喷涂数值模拟的异同点、模型存在的问题和对实际工况的指导意义,现得出主要结论如下:

  • (1)学界重点研究 PS,相关数值模拟远多于 AS。两种工艺射流的速度和温度分布情况相似,但 AS 原料为丝材,会加强对大气的卷吸而引起流场分布不均匀。可以通过控制送丝速度对 AS 射流进行改善;PS 中耦合了热场和电磁作用,使用双温模型分别考虑电子温度和重粒子温度,使模拟结果贴近实际工况。

  • (2)高温射流将喷涂原料熔化后,飞行时熔滴的物性参数通过 CCD 等进行监测。但试验能做定性或半定量分析,难以阐明背后变化机理。以数值模拟手段可确定最优工艺参数,提高功率或氢气流量可以提高熔滴温度,提高氩气流量可以提高速度。但模拟聚焦于射流与熔滴交互作用而非熔滴自身。

  • (3)射流对熔滴的作用体现在动量和能量的传递,并伴随理化过程。AS 射流中熔滴的模拟须针对多熔滴;PS 射流中的熔滴破碎机制极为复杂,经历破碎后才能变为适宜形成涂层的小尺寸熔滴。飞行过程中,熔滴的加热和加速过程同时发生,须经历加速升温、恒速恒温、减速降温阶段。控制熔滴的速度和温度对高性能涂层的构筑有重要意义。

  • 参考文献

    • [1] 王海军.热喷涂材料及其应用[M].北京:国防工业出版社,2008.WANG Haijun.Thermal spraying materials and applications[M].Beijing:National Defence Industry Press,2008.(in Chinese)

    • [2] 徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,2010.XU Binshi,ZHU Shaohua.Theory and technology of surface engineering[M].Beijing:National Defence Industry Press,2010.(in Chinese)

    • [3] 陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al.Development status and prospect on equipment application of thermal spray technology[J].China Surface Engineering,2021,34(4):12-18.(in Chinese)

    • [4] 马燕,况志祥,韩学武,等.热喷涂制Ni阻挡层在碲化铋热电器件中的应用[J].中国表面工程,2023,36(3):214-222.MA Yan,KUANG Zhixiang,HAN Xuewu,et al.Application of thermal spray Ni barrier layer in bismuth telluride thermoelectric devices[J] China Surface Engineering,2023,36(3):214-222.(in Chinese)

    • [5] 李雪伍,高瑞,黄艳斐,等.铌酸钾钠无铅压电陶瓷掺杂及制备技术现状[J].中国表面工程,2023,36(2):1-20.LI Xuewu,GAO Rui,HUANG Yanfei,et al.Research status of lead-free piezoelectric ceramic doping and preparation technology of potassium sodium niobate[J] China Surface Engineering,2023,36(2):1-20.(in Chinese)

    • [6] 马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)

    • [7] GUDURU R K,DIXIT U,KUMAR A.A critical review on thermal spray based manufacturing technologies[J].Materialstoday:Proceedings,2022,62(13):7625-7269.

    • [8] HU H,MAO L,YIN S,et al.Wear-resistant ceramic coatings deposited by liquid thermal spraying[J].Ceramics International,2022,48(22):33245-33255.

    • [9] 刘思思,杨正航,武云文,等.超音速火焰喷涂 Ni-CeO2 复合涂层的数值模拟及耐磨耐腐蚀性能[J].中国表面工程,2023,36(3):180-192.LIU Sisi,YANG Zhenghang,WU Yunwen,et al.Numerical simulation and abrasion and corrosion resistance properties of HVOF Ni-CeO2 composite coatings[J].China Surface Engineering,2023,36(3):180-192.(in Chinese)

    • [10] KALTENBACH C,LAURIEN E.CFD simulation of spray cooling in the model containment THAI[J].Nuclear Engineering and Design,2018,38:359-371.

    • [11] SOLIGO G,ROSTI M E.Non-Newtonian turbulent jets at low-Reynolds number[J].International Journal of Multiphase Flow,2023,167:104546.

    • [12] VARACALLE D J,WILSON G C,LUNBERG L B,et al.An SDE study of twin-wire electric arc sprayed nickel-aluminum coatings[J].Office of Scientific & Technical Information Technical Reports,1995.

    • [13] KELKAR M,HEBERLEIN J.Wire-Arc spraymodeling[J].Plasma Chemistry and Plasma Processing,2002,22(1):1-25.

    • [14] 董瑞涛,索双富.高速电弧喷枪中电弧场的数值模拟[J].中国表面工程,2006,19(4):13-15,20.DONG Ruitao,SUO Shuangfu.Numerical study of the plasma region of high velocity wire-arc spray[J].China Surface Engineering,2006,19(4):13-15,20.(in Chinese)

    • [15] 朱子新,梁秀兵,徐滨士,等.高速电弧喷涂熔滴速度的数值模拟及试验[J].焊接学报,2002,23(1):5-8.ZHU Zixin,LIANG Xiubing,XU Binshi,et al.Numerical simulation and test of melt drop velocity of high speed arc spraying[J].Transactions of the China Welding Institution,2002,23(1):5-8.(in Chinese)

    • [16] 项建海,索双富.高速电弧喷枪流场模拟研究[J].中国表面工程,2005,18(1):27-29.XIANG Jianhai,SUO Shuangfu.Studies of computational fluid dynamics in the flow field of a high velocity wire arc spray gun[J].China Surface Engineering,2005,18(1):27-29.(in Chinese)

    • [17] BOLOT R,PLANCHE M P,LIAO H L,et al.A three-dimensional model of the wire-arc spray process and its experimental validation[J].Journal of Materials Processing Technology,2008,200(1-3):94-105.

    • [18] 陈永雄,梁秀兵,刘燕,等.高速电弧喷涂雾化过程的数值模拟[J].中国表面工程,2009,22(6):116-120.CHEN Yongxiong,LIANG Xiubing,LIU Yan,et al.Numerical modeling of the atomization behavior for high velocity arc spraying process[J].China Surface Engineering,2009,22(6):116-120.(in Chinese)

    • [19] CHEN Y X,LIANG X B,LIU Y,et al.Numerical analysis of the effect of arc spray gun configuration parameters on the external gas flow[J].Journal of Materials Processing Technology,2009,209(18-19):5924-5931.

    • [20] TAMAKI R,YAMAKAWA M.Study on the nozzle jet in arc spraying[J].Applied Mathematics and Mechanics,2016,37(12):1394-1402.

    • [21] TAMAKI R,YAMAKAWA M.Effect of plate mounted between two wires in electric arc spraying[J].Journal of Computational Science,2019,32:56-67.

    • [22] 崔长文.等离子喷涂涂层形成过程数值模拟[D].福州:福州大学,2011.CUI Changwen.Three-dimensional numerical simulation of coating formation in plasma spraying[D].Fuzhou:Fuzhou University,2011.(in Chinese)

    • [23] HUANG P C,HEBERLEIN J,PFENDER E.A two-fluid model of turbulence for a thermal plasma jet[J].PlasmaChemistry and Plasma Processing,1995,15(1):25-46.

    • [24] LI H P,CHEN X.Three-dimensional modeling of the turbulent plasma jet impinging upon a flat plate and with transverse particle and carrier-gas injection[J].Plasma Chemistry and Plasma Processing,2002,22(1):27-58.

    • [25] COLOMBO V,CONCETTI A,GHEDINI E,et al.Three-dimensional time-dependent large eddy simulation of turbulent flows in an inductively coupled thermal plasma torch with a reaction chamber[J].IEEE Transactions on Plasma Science,2011,39(11):2894-2895.

    • [26] SHIGETA,MASAYA.Three-dimensional flow dynamics of an argon RF plasma with dc jet assistance:A numerical study[J].Journal of Physics D:Applied Physics,2013,46(1):015401.

    • [27] 安连彤,高阳.阳极弧根位置对热喷涂等离子喷枪特性的影响[J].焊接学报,2005,26(6):31-34.AN Liantong,GAO Yang.Effect of anode root position on the characteristics of thermal spray guns[J].Transactions of the China Welding Institution,2005,26(6):31-34.(in Chinese)

    • [28] WESTHOFF R,SZEKELY J.A model of fluid,heat flow,and electromagnetic phenomena in a non-transferred arc plasma torch[J].Journal of Applied Physics,1991,70:3455-3466.

    • [29] LI H P,CHEN X.Three-dimensional modelling of a dc non-transferred arc plasma torch[J].Journal of Physics D:Applied Physics,2001,34(17):L99-L102.

    • [30] LI H P,PFENDER E,CHEN X.Application of Steenbeck’s minimum principle for three-dimensional modelling of DC arc plasma torches[J].Journal of Physics D:Applied Physics,2003,36:1804-1096.

    • [31] GUO Z,YIN S,LIAO H,et al.Three-dimensional simulation of an argon-hydrogen DC non-transferred arc plasma torch[J].International Journal of Heat and Mass Transfer,2015,80:644-652.

    • [32] TRELLES J P,HEBERLEIN J.Simulation results of arc behavior in different plasma spray torches[J].Journal of Thermal Spray Technology,2006,15(4):563-569.

    • [33] BAUDRY C,VARADELLE A,MARIAUX G,et al.Numerical modeling of a DC non-transferred plasma torch:movement of the arc anode attachment and resulting anode erosion[J].High Temperature Material Processes,2005,9:1-15.

    • [34] WEN K,LIU X,ZHOU K,et al.3D time-dependent numerical simulation for atmospheric plasma spraying[J].Surface and Coatings Technology,2019,371:344-354.

    • [35] WEN K,LIU X,LIU M,et al.Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying[J].Surface and Coatings Technology,2019,371:312-321.

    • [36] TRELLES J P.Formation of self-organized anode patterns in arc discharge simulations[J].Plasma Sources Science and Technology,2013,22(2):025017.

    • [37] HUANG R,FUKANUMA H,UESUGI Y,et al.An improved local thermal equilibrium model of DC arc plasma torch[J].IEEE Transactions on Plasma Science,2011,39(10):1974-1982.

    • [38] TRELLES J P.Computational study of flow dynamics from a DC arc plasma jet[J].Journal of Physics D:Applied Physics,2015,46(25):255201.

    • [39] 胡福胜,魏正英,谭超,等.普通大气等离子喷涂过程的数值分析[J].西安交通大学学报,2013,47(9):92-99.HU Fusheng,WEI Zhengying,TAN Chao,et al.Numerical analysis on atmospheric spray process[J].Journal of Xi’an Jiaotong University,2013,47(9):92-99.(in Chinese)

    • [40] 张勇,张雄,郑杰,等.超音速等离子喷涂的射流特性[J].粉末冶金材料科学与工程,2017,22(6):713-718.ZHANG Yong,ZHANG Xiong,ZHENG Jie,et al.Jet characteristic of supersonic plasma spraying[J].Materials Science and Engineering of Powder Metallurgy,2017,22(6):713-718.(in Chinese)

    • [41] ZHUKOVSKII R.Model of a non-transferred arc cascaded-anode plasma torch:the two-temperature formulation[J].Journal of Physics D:Applied Physics,2021,55(6):065202.

    • [42] ZHUKOVSKII R,CHAZELAS C,RAT V,et al.Predicted anode arc attachment by LTE and 2-T arc models in a cascaded-anode DC plasma spray torch[J].Journal of Thermal Spray Technology,2021,31(1-2):28-45.

    • [43] CHAZELAS C,TRELLES J P,CHOQUET I,et al.Main issues for a fully predictive plasma spray torch model and numerical considerations[J].Plasma Chemistry and Plasma Processing,2017,37(3):627-651.

    • [44] ALAYA M,CHAZELAS C,MARIAUX G,et al.Arc-cathode coupling in the modeling of a conventional DC plasma spray torch[J].Journal of Thermal Spray Technology,2014,24:1-2.

    • [45] ALAYA M,CHAZELAS C,VARADELLE A.Parametric study of plasma torch operation using a MHD model coupling the arc and electrodes[J].Journal of Thermal Spray Technology,2016,25(1-2):36-43.

    • [46] ALMEIDA N A,CUNHA M D,BENILOV M S.Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes[J].Journal of Physics D:Applied Physics,2017,50(38):385203.

    • [47] SEMENOV I L,KRIVTSUN I V,REISGEN U.Numerical study of the anode boundary layer in atmospheric pressure arc discharges[J].Journal of Physics D:Applied Physics,2016,49(10):105204.

    • [48] CHAZELAS C,TRELLES J P,VARADELLE A.Modeling time-dependent phenomena in plasma spraying of liquid precursors[J].Journal of Thermal Spray Technology,2017,26(1):3-11.

    • [49] TINOCO J,WIDELL B,FREDRIKSSOMN H,et al.Modeling the in-flight events during metal spray forming[J].Materials Science and Engineering:A,2004,365(1-2):302-310.

    • [50] GRANT P S,CANTOR B,KATERMAN L.Modelling of droplet dynamic and thermal histories during spray forming—II.Effect of process parameters[J].Acta Metallurgy Et Material 1993,41(11):3109-3118.

    • [51] 张甲英,朱绍华,徐滨士,等.脉冲激光光屏法观测高速电弧喷涂飞行金属粒子形态[J].中国机械工程,2003,14(9):785-787.ZHANG Jiaying,ZHU Shaohua,XU Binshi,et al.Pulsed laser light screen method to observe the morphology of flying metal particles by high-speed arc spraying[J].China Surface Engineering,2003,14(9):785-787.(in Chinese)

    • [52] WATANABE T,WANG X,PFENDER E,et al.Correlations between electrode phenomena and coatings[J].Thin Solid Films,1998,316:169-173.

    • [53] KRAUSS M,BERGMANN D,FRITSCHING U,et al.In-situ particle temperature,velocity and size measurements in the spray forming process[J].Materials Science and Engineering A,2002,326:154-164.

    • [54] NEWBERY A P,GRANT P S,NEISER R A.Large arc voltage fluctuations and droplet formation in electric arc wire spraying[J].Surface and Coatings Technology,2005,195(1):91-101.

    • [55] TILLMANN W,VOGLI E,ABDULGADER M.Asymmetric melting behavior in twin wire arc spraying with cored wires[J].Journal of Thermal Spray Technology,2008,17(5-6):974-982.

    • [56] 李平,乔生儒,王汉功.钛-铝双丝超音速电弧喷涂过程中熔滴粒子几何特性研究[J].表面技术,2007,36(1):84-86.LI Ping,QIAO Shengru,WANG Hangong,et al.Study on geometry character of molten droplet atomizing during titanium-aluminum twin wires supersonic arc spraying[J].Surface Technology,2007,36(1):84-86.(in Chinese)

    • [57] FANG J C,XU W J,ZHAO Z Y,et al.In-flight behaviors of ZrO2 particle in plasma spraying[J].Surface and Coatings Technology,2007,201(9-11):5671-5675.

    • [58] SOFIANE G,GHISLAIN M,CHRISTIAN C.Modeling of the APS plasma spray process using artificial neural networks:basis,requirement and an example[J].Surface and Coatings Technology,2005,192(1):70-76.

    • [59] 李长久,孙波,汪民,等.微束等离子喷涂工艺条件对Cu涂层组织和性能的影响[J].西安交通大学学报,2002,36(11):1182-1186.LI Changjiu,SUN Bo,WANG Min,et al.Effect of spray conditions on the microscope and properties of micro-plasma sprayed Cu coating[J].Journal of Xi’an Jiaotong University,2002,36(11):1182-1186.(in Chinese)

    • [60] KANTA A F,PLANCHE M P,MONTAVON G,et al.In-flight and upon impact particle characteristics modelling in plasma spray process[J].Surface and Coatings Technology,2010,204(9-10):1542-1548.

    • [61] ZHANG H O,HU S D,WANG G L.Simulation of powder transport in plasma jet via hybrid Lattice Boltzmann method and probabilistic algorithm[J].Surface and Coatings Technology,2006,201(3-4):886-894.

    • [62] DATTA S,PRATIHAR D K,BANDYOPADHYAY P.Modeling of plasma spray coating process using statistical regression analysis[J].The International Journal of Advanced Manufacturing Technology,2012,65(5-8):967-980.

    • [63] YUSOFF N H N,GHAZALI M J,ISA M C,et al.Optimization of plasma spray parameters on the mechanical properties of agglomerated Al2O3-13%TiO2 coated mild steel[J].Materials & Design,2012,39:504-508.

    • [64] 张勇,徐建宁,姜海龙,等.超音速等离子喷涂过程颗粒运动特性[J].材料热处理学报,2017,38(10):138-144.ZHANG Yong,XU Jianning,JIANG Hailong,et al.Particle movement characteristics of supersonic plasma spraying process[J].Journal of Materials Heat Treatment,2017,38(10):138-144.(in Chinese)

    • [65] 朱子新,刘燕,徐滨士,等.高速电弧喷涂雾化熔滴传热过程数值分析 II.工艺参数对熔滴传热过程的影响 [J].焊接学报,2005,26(2):5-8.ZHU Zixin,LIU Yan,XU Binshi,et al.Numerical analysis of heat transfer process of atomized molten droplets by high-speed arc spraying II.Effect of process parameters on heat transfer process of molten droplets[J].Transactions of the China Welding Institution,2005,26(2):5-8.(in Chinese)

    • [66] 杨庆功,李萌盛.双流体模型模拟喷涂飞行区内的速度分布[J].合肥工业大学学报,2006,29(9):1120-1123,1135.YANG Qinggong,LI Mengsheng.Finite element analysis of droplet velocity distribution in arc spraying[J].Journal of Hefei University of Technology,2006,29(9):1120-1123,1135.(in Chinese)

    • [67] 王吉孝.双丝电弧喷涂 Ni-Al 过程金属熔滴行为[J].机械制造文摘——焊接分册,2015(5):8-16.WANG Jixiao.The behavior of molten droplet in Ni-Al process of twin wire arc spraying[J].Welding Digest of Machinery Manufacturing,2015(5):8-16.(in Chinese)

    • [68] WANG J X,WANG J,JIN G,et al.Atomization characteristics of droplet and morphologies of arc sprayed Ni-Al particles and composition coatings[J].Materials Research,2019,22(4):e20190034.

    • [69] BOBZIN K,OTE M,KNOCH M A,et al.Influence of the injector head geometry on the particle injection in plasma spraying[J].Journal of Thermal Spray Technology,2020,29(4):534-545.

    • [70] BOBZIN K,OTE M,KNOCH M A,et al.Macroscopic particle modeling in air plasma spraying[J].Surface and Coatings Technology,2019,364:449-456.

    • [71] HSU T Y,HUANG T C,CHOU J H,et al.A numerical simulation and experimental comparison of atmospheric thermal plasma spray coatings between internal and external powder injection processes[J].IEEE Transactions on Plasma Science,2020,48(8):2759-2767.

    • [72] WEI P,WEI Z,ZHAO G,et al.The analysis of melting and refining process for in-flight particles in supersonic plasma spraying[J].Computational Materials Science,2015,103:8-19.

    • [73] WEI P,WEI Z,ZHAO G,et al.Flow characteristic of in-flight particles in supersonic plasma spraying process[J].Heat and Mass Transfer,2015,52(9):1739-1753.

    • [74] 谭超,魏正英,魏培,等.内送粉超音速等离子喷涂颗粒飞行状态分析[J].西安交通大学学报,2014,48(6):91-97.TAN Chao,WEI Zhengying,WEI Pei,et al.In-flightparticle behavior in internal powder injection[J].Journal of Xi’ an Jiaotong University,2014,48(6):91-97.(in Chinese)

    • [75] YUGESWARAN S,KOBAYASHI A,SELVAN B,et al.In-flight behavior of lanthanum zirconate(La2Zr2O7)particles in gas tunnel type plasma jet and its coating properties[J].Vacuum,2013,88:139-143.

    • [76] ZHANG N,LIN D,LI Y L,et al.In-flight particle characterization and coating formation under low pressure plasma spray condition[J].Journal of Iron and Steel Research,International,2017,24:306-312.

    • [77] SAFAEI A E.Numerical and experimental study of arc fluctuations in a DC plasma torch[D].Toronto:University of Toronto,2016.

    • [78] SAITO H,NAKANE Y,FUJINO T,et al.Numerical analysis of in-flight particles in plasma jet with an externally applied magnetic field[J].Journal of Fluid Science and Technology,2016,11(4):1-12.

    • [79] 冯拉俊,曹凯博,雷阿利.等离子喷涂陶瓷粒子加热加速行为的数值模拟[J].热加工工艺,2006,35(11):46-48,51.FENG Lajun CAO Kaibo,LEI Ali,et al.Numerical simulation on calefaction and acceleration process of ceramic powders in plasma spray[J].Thermal Processing,2006,35(11):46-48,51.(in Chinese)

    • [80] AHMED I,BERGMAN T L.Simulation of thermal plasma spraying of partially molten ceramics:effect of carrier gas on particle deposition and phase change phenomena[J].Journal of Heat Transfer,2001,123(1):188-196.

    • [81] AISSA A,MOHAMMED E G,MOHAMMED S.Numerical investigation of heat and momentum transfer to particles in high temperature thermal spraying[J].The European Physical Journal Applied Physics,2017,78(3):34815.

    • [82] ZHANG W,ZHENG L L,ZHANG H,et al.Study of injection angle and carrier gas flow rate effects on particles in-flight characteristics in plasma spray process:modeling and experiments[J].Plasma Chemistry and Plasma Processing,2007,27(6):701-716.

    • [83] SHANG S,GUDURI B,CYBULSKY M,et al.Effect of turbulence modulation on three-dimensional trajectories of powder particles in a plasma spray process[J].Journal of Physics D:Applied Physics,2014,47(40):405206.

    • [84] BAI Y,ZHAO L,WANG Y,et al.Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying[J].Journal of Alloys and Compounds,2015,632:794-799.

    • [85] BAI Y,ZHAO L,QU Y M,et al.Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings[J].Journal of Alloys and Compounds,2015,644:873-882.

    • [86] 张勇,徐建宁,郭龙龙,等.颗粒在超音速等离子喷涂中的流动特性及熔化细化历程[J].材料热处理学报,2019,40(4):158-165.ZHANG Yong,XU Jianning,GUO Longlong,et al.Flow characteristics and melt refining process of particles in supersonic plasma spraying[J].Journal of Materials Heat Treatment,2019,40(4):158-165.(in Chinese)

    • [87] DALIR E,MOREAU C,DOLATABAD A.Three-dimensional modeling of suspension plasma spraying with arc voltage fluctuations[J].Journal of Thermal Spray Technology,2018,27(8):1465-1490.

    • [88] KHARLAMOV M Y,KRIVTSUN I V,KORZHYK V N,et al.Simulation of motion,heating,and breakup of molten metal droplets in the plasma jet at plasma-arc spraying[J].Journal of Thermal Spray Technology,2015,24(4):659-670.

    • [89] BOBZIN K,ERNST F,RICHARD K,et al.Thermal spraying of cylinder bores with the plasma transferred wire arc process[J].Surface and Coatings Technology,2008,202(18):4438-4443.

  • 参考文献

    • [1] 王海军.热喷涂材料及其应用[M].北京:国防工业出版社,2008.WANG Haijun.Thermal spraying materials and applications[M].Beijing:National Defence Industry Press,2008.(in Chinese)

    • [2] 徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,2010.XU Binshi,ZHU Shaohua.Theory and technology of surface engineering[M].Beijing:National Defence Industry Press,2010.(in Chinese)

    • [3] 陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al.Development status and prospect on equipment application of thermal spray technology[J].China Surface Engineering,2021,34(4):12-18.(in Chinese)

    • [4] 马燕,况志祥,韩学武,等.热喷涂制Ni阻挡层在碲化铋热电器件中的应用[J].中国表面工程,2023,36(3):214-222.MA Yan,KUANG Zhixiang,HAN Xuewu,et al.Application of thermal spray Ni barrier layer in bismuth telluride thermoelectric devices[J] China Surface Engineering,2023,36(3):214-222.(in Chinese)

    • [5] 李雪伍,高瑞,黄艳斐,等.铌酸钾钠无铅压电陶瓷掺杂及制备技术现状[J].中国表面工程,2023,36(2):1-20.LI Xuewu,GAO Rui,HUANG Yanfei,et al.Research status of lead-free piezoelectric ceramic doping and preparation technology of potassium sodium niobate[J] China Surface Engineering,2023,36(2):1-20.(in Chinese)

    • [6] 马俊凯,侯国梁,安宇龙,等.热喷涂抗空蚀涂层及改性技术研究进展[J].中国表面工程,2022,35(4):113-127.MA Junkai,HOU Guoliang,AN Yulong,et al.Research progress of thermal spraying anti-cavitation erosion coatings and modification technologies[J].China Surface Engineering,2022,35(4):113-127.(in Chinese)

    • [7] GUDURU R K,DIXIT U,KUMAR A.A critical review on thermal spray based manufacturing technologies[J].Materialstoday:Proceedings,2022,62(13):7625-7269.

    • [8] HU H,MAO L,YIN S,et al.Wear-resistant ceramic coatings deposited by liquid thermal spraying[J].Ceramics International,2022,48(22):33245-33255.

    • [9] 刘思思,杨正航,武云文,等.超音速火焰喷涂 Ni-CeO2 复合涂层的数值模拟及耐磨耐腐蚀性能[J].中国表面工程,2023,36(3):180-192.LIU Sisi,YANG Zhenghang,WU Yunwen,et al.Numerical simulation and abrasion and corrosion resistance properties of HVOF Ni-CeO2 composite coatings[J].China Surface Engineering,2023,36(3):180-192.(in Chinese)

    • [10] KALTENBACH C,LAURIEN E.CFD simulation of spray cooling in the model containment THAI[J].Nuclear Engineering and Design,2018,38:359-371.

    • [11] SOLIGO G,ROSTI M E.Non-Newtonian turbulent jets at low-Reynolds number[J].International Journal of Multiphase Flow,2023,167:104546.

    • [12] VARACALLE D J,WILSON G C,LUNBERG L B,et al.An SDE study of twin-wire electric arc sprayed nickel-aluminum coatings[J].Office of Scientific & Technical Information Technical Reports,1995.

    • [13] KELKAR M,HEBERLEIN J.Wire-Arc spraymodeling[J].Plasma Chemistry and Plasma Processing,2002,22(1):1-25.

    • [14] 董瑞涛,索双富.高速电弧喷枪中电弧场的数值模拟[J].中国表面工程,2006,19(4):13-15,20.DONG Ruitao,SUO Shuangfu.Numerical study of the plasma region of high velocity wire-arc spray[J].China Surface Engineering,2006,19(4):13-15,20.(in Chinese)

    • [15] 朱子新,梁秀兵,徐滨士,等.高速电弧喷涂熔滴速度的数值模拟及试验[J].焊接学报,2002,23(1):5-8.ZHU Zixin,LIANG Xiubing,XU Binshi,et al.Numerical simulation and test of melt drop velocity of high speed arc spraying[J].Transactions of the China Welding Institution,2002,23(1):5-8.(in Chinese)

    • [16] 项建海,索双富.高速电弧喷枪流场模拟研究[J].中国表面工程,2005,18(1):27-29.XIANG Jianhai,SUO Shuangfu.Studies of computational fluid dynamics in the flow field of a high velocity wire arc spray gun[J].China Surface Engineering,2005,18(1):27-29.(in Chinese)

    • [17] BOLOT R,PLANCHE M P,LIAO H L,et al.A three-dimensional model of the wire-arc spray process and its experimental validation[J].Journal of Materials Processing Technology,2008,200(1-3):94-105.

    • [18] 陈永雄,梁秀兵,刘燕,等.高速电弧喷涂雾化过程的数值模拟[J].中国表面工程,2009,22(6):116-120.CHEN Yongxiong,LIANG Xiubing,LIU Yan,et al.Numerical modeling of the atomization behavior for high velocity arc spraying process[J].China Surface Engineering,2009,22(6):116-120.(in Chinese)

    • [19] CHEN Y X,LIANG X B,LIU Y,et al.Numerical analysis of the effect of arc spray gun configuration parameters on the external gas flow[J].Journal of Materials Processing Technology,2009,209(18-19):5924-5931.

    • [20] TAMAKI R,YAMAKAWA M.Study on the nozzle jet in arc spraying[J].Applied Mathematics and Mechanics,2016,37(12):1394-1402.

    • [21] TAMAKI R,YAMAKAWA M.Effect of plate mounted between two wires in electric arc spraying[J].Journal of Computational Science,2019,32:56-67.

    • [22] 崔长文.等离子喷涂涂层形成过程数值模拟[D].福州:福州大学,2011.CUI Changwen.Three-dimensional numerical simulation of coating formation in plasma spraying[D].Fuzhou:Fuzhou University,2011.(in Chinese)

    • [23] HUANG P C,HEBERLEIN J,PFENDER E.A two-fluid model of turbulence for a thermal plasma jet[J].PlasmaChemistry and Plasma Processing,1995,15(1):25-46.

    • [24] LI H P,CHEN X.Three-dimensional modeling of the turbulent plasma jet impinging upon a flat plate and with transverse particle and carrier-gas injection[J].Plasma Chemistry and Plasma Processing,2002,22(1):27-58.

    • [25] COLOMBO V,CONCETTI A,GHEDINI E,et al.Three-dimensional time-dependent large eddy simulation of turbulent flows in an inductively coupled thermal plasma torch with a reaction chamber[J].IEEE Transactions on Plasma Science,2011,39(11):2894-2895.

    • [26] SHIGETA,MASAYA.Three-dimensional flow dynamics of an argon RF plasma with dc jet assistance:A numerical study[J].Journal of Physics D:Applied Physics,2013,46(1):015401.

    • [27] 安连彤,高阳.阳极弧根位置对热喷涂等离子喷枪特性的影响[J].焊接学报,2005,26(6):31-34.AN Liantong,GAO Yang.Effect of anode root position on the characteristics of thermal spray guns[J].Transactions of the China Welding Institution,2005,26(6):31-34.(in Chinese)

    • [28] WESTHOFF R,SZEKELY J.A model of fluid,heat flow,and electromagnetic phenomena in a non-transferred arc plasma torch[J].Journal of Applied Physics,1991,70:3455-3466.

    • [29] LI H P,CHEN X.Three-dimensional modelling of a dc non-transferred arc plasma torch[J].Journal of Physics D:Applied Physics,2001,34(17):L99-L102.

    • [30] LI H P,PFENDER E,CHEN X.Application of Steenbeck’s minimum principle for three-dimensional modelling of DC arc plasma torches[J].Journal of Physics D:Applied Physics,2003,36:1804-1096.

    • [31] GUO Z,YIN S,LIAO H,et al.Three-dimensional simulation of an argon-hydrogen DC non-transferred arc plasma torch[J].International Journal of Heat and Mass Transfer,2015,80:644-652.

    • [32] TRELLES J P,HEBERLEIN J.Simulation results of arc behavior in different plasma spray torches[J].Journal of Thermal Spray Technology,2006,15(4):563-569.

    • [33] BAUDRY C,VARADELLE A,MARIAUX G,et al.Numerical modeling of a DC non-transferred plasma torch:movement of the arc anode attachment and resulting anode erosion[J].High Temperature Material Processes,2005,9:1-15.

    • [34] WEN K,LIU X,ZHOU K,et al.3D time-dependent numerical simulation for atmospheric plasma spraying[J].Surface and Coatings Technology,2019,371:344-354.

    • [35] WEN K,LIU X,LIU M,et al.Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying[J].Surface and Coatings Technology,2019,371:312-321.

    • [36] TRELLES J P.Formation of self-organized anode patterns in arc discharge simulations[J].Plasma Sources Science and Technology,2013,22(2):025017.

    • [37] HUANG R,FUKANUMA H,UESUGI Y,et al.An improved local thermal equilibrium model of DC arc plasma torch[J].IEEE Transactions on Plasma Science,2011,39(10):1974-1982.

    • [38] TRELLES J P.Computational study of flow dynamics from a DC arc plasma jet[J].Journal of Physics D:Applied Physics,2015,46(25):255201.

    • [39] 胡福胜,魏正英,谭超,等.普通大气等离子喷涂过程的数值分析[J].西安交通大学学报,2013,47(9):92-99.HU Fusheng,WEI Zhengying,TAN Chao,et al.Numerical analysis on atmospheric spray process[J].Journal of Xi’an Jiaotong University,2013,47(9):92-99.(in Chinese)

    • [40] 张勇,张雄,郑杰,等.超音速等离子喷涂的射流特性[J].粉末冶金材料科学与工程,2017,22(6):713-718.ZHANG Yong,ZHANG Xiong,ZHENG Jie,et al.Jet characteristic of supersonic plasma spraying[J].Materials Science and Engineering of Powder Metallurgy,2017,22(6):713-718.(in Chinese)

    • [41] ZHUKOVSKII R.Model of a non-transferred arc cascaded-anode plasma torch:the two-temperature formulation[J].Journal of Physics D:Applied Physics,2021,55(6):065202.

    • [42] ZHUKOVSKII R,CHAZELAS C,RAT V,et al.Predicted anode arc attachment by LTE and 2-T arc models in a cascaded-anode DC plasma spray torch[J].Journal of Thermal Spray Technology,2021,31(1-2):28-45.

    • [43] CHAZELAS C,TRELLES J P,CHOQUET I,et al.Main issues for a fully predictive plasma spray torch model and numerical considerations[J].Plasma Chemistry and Plasma Processing,2017,37(3):627-651.

    • [44] ALAYA M,CHAZELAS C,MARIAUX G,et al.Arc-cathode coupling in the modeling of a conventional DC plasma spray torch[J].Journal of Thermal Spray Technology,2014,24:1-2.

    • [45] ALAYA M,CHAZELAS C,VARADELLE A.Parametric study of plasma torch operation using a MHD model coupling the arc and electrodes[J].Journal of Thermal Spray Technology,2016,25(1-2):36-43.

    • [46] ALMEIDA N A,CUNHA M D,BENILOV M S.Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes[J].Journal of Physics D:Applied Physics,2017,50(38):385203.

    • [47] SEMENOV I L,KRIVTSUN I V,REISGEN U.Numerical study of the anode boundary layer in atmospheric pressure arc discharges[J].Journal of Physics D:Applied Physics,2016,49(10):105204.

    • [48] CHAZELAS C,TRELLES J P,VARADELLE A.Modeling time-dependent phenomena in plasma spraying of liquid precursors[J].Journal of Thermal Spray Technology,2017,26(1):3-11.

    • [49] TINOCO J,WIDELL B,FREDRIKSSOMN H,et al.Modeling the in-flight events during metal spray forming[J].Materials Science and Engineering:A,2004,365(1-2):302-310.

    • [50] GRANT P S,CANTOR B,KATERMAN L.Modelling of droplet dynamic and thermal histories during spray forming—II.Effect of process parameters[J].Acta Metallurgy Et Material 1993,41(11):3109-3118.

    • [51] 张甲英,朱绍华,徐滨士,等.脉冲激光光屏法观测高速电弧喷涂飞行金属粒子形态[J].中国机械工程,2003,14(9):785-787.ZHANG Jiaying,ZHU Shaohua,XU Binshi,et al.Pulsed laser light screen method to observe the morphology of flying metal particles by high-speed arc spraying[J].China Surface Engineering,2003,14(9):785-787.(in Chinese)

    • [52] WATANABE T,WANG X,PFENDER E,et al.Correlations between electrode phenomena and coatings[J].Thin Solid Films,1998,316:169-173.

    • [53] KRAUSS M,BERGMANN D,FRITSCHING U,et al.In-situ particle temperature,velocity and size measurements in the spray forming process[J].Materials Science and Engineering A,2002,326:154-164.

    • [54] NEWBERY A P,GRANT P S,NEISER R A.Large arc voltage fluctuations and droplet formation in electric arc wire spraying[J].Surface and Coatings Technology,2005,195(1):91-101.

    • [55] TILLMANN W,VOGLI E,ABDULGADER M.Asymmetric melting behavior in twin wire arc spraying with cored wires[J].Journal of Thermal Spray Technology,2008,17(5-6):974-982.

    • [56] 李平,乔生儒,王汉功.钛-铝双丝超音速电弧喷涂过程中熔滴粒子几何特性研究[J].表面技术,2007,36(1):84-86.LI Ping,QIAO Shengru,WANG Hangong,et al.Study on geometry character of molten droplet atomizing during titanium-aluminum twin wires supersonic arc spraying[J].Surface Technology,2007,36(1):84-86.(in Chinese)

    • [57] FANG J C,XU W J,ZHAO Z Y,et al.In-flight behaviors of ZrO2 particle in plasma spraying[J].Surface and Coatings Technology,2007,201(9-11):5671-5675.

    • [58] SOFIANE G,GHISLAIN M,CHRISTIAN C.Modeling of the APS plasma spray process using artificial neural networks:basis,requirement and an example[J].Surface and Coatings Technology,2005,192(1):70-76.

    • [59] 李长久,孙波,汪民,等.微束等离子喷涂工艺条件对Cu涂层组织和性能的影响[J].西安交通大学学报,2002,36(11):1182-1186.LI Changjiu,SUN Bo,WANG Min,et al.Effect of spray conditions on the microscope and properties of micro-plasma sprayed Cu coating[J].Journal of Xi’an Jiaotong University,2002,36(11):1182-1186.(in Chinese)

    • [60] KANTA A F,PLANCHE M P,MONTAVON G,et al.In-flight and upon impact particle characteristics modelling in plasma spray process[J].Surface and Coatings Technology,2010,204(9-10):1542-1548.

    • [61] ZHANG H O,HU S D,WANG G L.Simulation of powder transport in plasma jet via hybrid Lattice Boltzmann method and probabilistic algorithm[J].Surface and Coatings Technology,2006,201(3-4):886-894.

    • [62] DATTA S,PRATIHAR D K,BANDYOPADHYAY P.Modeling of plasma spray coating process using statistical regression analysis[J].The International Journal of Advanced Manufacturing Technology,2012,65(5-8):967-980.

    • [63] YUSOFF N H N,GHAZALI M J,ISA M C,et al.Optimization of plasma spray parameters on the mechanical properties of agglomerated Al2O3-13%TiO2 coated mild steel[J].Materials & Design,2012,39:504-508.

    • [64] 张勇,徐建宁,姜海龙,等.超音速等离子喷涂过程颗粒运动特性[J].材料热处理学报,2017,38(10):138-144.ZHANG Yong,XU Jianning,JIANG Hailong,et al.Particle movement characteristics of supersonic plasma spraying process[J].Journal of Materials Heat Treatment,2017,38(10):138-144.(in Chinese)

    • [65] 朱子新,刘燕,徐滨士,等.高速电弧喷涂雾化熔滴传热过程数值分析 II.工艺参数对熔滴传热过程的影响 [J].焊接学报,2005,26(2):5-8.ZHU Zixin,LIU Yan,XU Binshi,et al.Numerical analysis of heat transfer process of atomized molten droplets by high-speed arc spraying II.Effect of process parameters on heat transfer process of molten droplets[J].Transactions of the China Welding Institution,2005,26(2):5-8.(in Chinese)

    • [66] 杨庆功,李萌盛.双流体模型模拟喷涂飞行区内的速度分布[J].合肥工业大学学报,2006,29(9):1120-1123,1135.YANG Qinggong,LI Mengsheng.Finite element analysis of droplet velocity distribution in arc spraying[J].Journal of Hefei University of Technology,2006,29(9):1120-1123,1135.(in Chinese)

    • [67] 王吉孝.双丝电弧喷涂 Ni-Al 过程金属熔滴行为[J].机械制造文摘——焊接分册,2015(5):8-16.WANG Jixiao.The behavior of molten droplet in Ni-Al process of twin wire arc spraying[J].Welding Digest of Machinery Manufacturing,2015(5):8-16.(in Chinese)

    • [68] WANG J X,WANG J,JIN G,et al.Atomization characteristics of droplet and morphologies of arc sprayed Ni-Al particles and composition coatings[J].Materials Research,2019,22(4):e20190034.

    • [69] BOBZIN K,OTE M,KNOCH M A,et al.Influence of the injector head geometry on the particle injection in plasma spraying[J].Journal of Thermal Spray Technology,2020,29(4):534-545.

    • [70] BOBZIN K,OTE M,KNOCH M A,et al.Macroscopic particle modeling in air plasma spraying[J].Surface and Coatings Technology,2019,364:449-456.

    • [71] HSU T Y,HUANG T C,CHOU J H,et al.A numerical simulation and experimental comparison of atmospheric thermal plasma spray coatings between internal and external powder injection processes[J].IEEE Transactions on Plasma Science,2020,48(8):2759-2767.

    • [72] WEI P,WEI Z,ZHAO G,et al.The analysis of melting and refining process for in-flight particles in supersonic plasma spraying[J].Computational Materials Science,2015,103:8-19.

    • [73] WEI P,WEI Z,ZHAO G,et al.Flow characteristic of in-flight particles in supersonic plasma spraying process[J].Heat and Mass Transfer,2015,52(9):1739-1753.

    • [74] 谭超,魏正英,魏培,等.内送粉超音速等离子喷涂颗粒飞行状态分析[J].西安交通大学学报,2014,48(6):91-97.TAN Chao,WEI Zhengying,WEI Pei,et al.In-flightparticle behavior in internal powder injection[J].Journal of Xi’ an Jiaotong University,2014,48(6):91-97.(in Chinese)

    • [75] YUGESWARAN S,KOBAYASHI A,SELVAN B,et al.In-flight behavior of lanthanum zirconate(La2Zr2O7)particles in gas tunnel type plasma jet and its coating properties[J].Vacuum,2013,88:139-143.

    • [76] ZHANG N,LIN D,LI Y L,et al.In-flight particle characterization and coating formation under low pressure plasma spray condition[J].Journal of Iron and Steel Research,International,2017,24:306-312.

    • [77] SAFAEI A E.Numerical and experimental study of arc fluctuations in a DC plasma torch[D].Toronto:University of Toronto,2016.

    • [78] SAITO H,NAKANE Y,FUJINO T,et al.Numerical analysis of in-flight particles in plasma jet with an externally applied magnetic field[J].Journal of Fluid Science and Technology,2016,11(4):1-12.

    • [79] 冯拉俊,曹凯博,雷阿利.等离子喷涂陶瓷粒子加热加速行为的数值模拟[J].热加工工艺,2006,35(11):46-48,51.FENG Lajun CAO Kaibo,LEI Ali,et al.Numerical simulation on calefaction and acceleration process of ceramic powders in plasma spray[J].Thermal Processing,2006,35(11):46-48,51.(in Chinese)

    • [80] AHMED I,BERGMAN T L.Simulation of thermal plasma spraying of partially molten ceramics:effect of carrier gas on particle deposition and phase change phenomena[J].Journal of Heat Transfer,2001,123(1):188-196.

    • [81] AISSA A,MOHAMMED E G,MOHAMMED S.Numerical investigation of heat and momentum transfer to particles in high temperature thermal spraying[J].The European Physical Journal Applied Physics,2017,78(3):34815.

    • [82] ZHANG W,ZHENG L L,ZHANG H,et al.Study of injection angle and carrier gas flow rate effects on particles in-flight characteristics in plasma spray process:modeling and experiments[J].Plasma Chemistry and Plasma Processing,2007,27(6):701-716.

    • [83] SHANG S,GUDURI B,CYBULSKY M,et al.Effect of turbulence modulation on three-dimensional trajectories of powder particles in a plasma spray process[J].Journal of Physics D:Applied Physics,2014,47(40):405206.

    • [84] BAI Y,ZHAO L,WANG Y,et al.Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying[J].Journal of Alloys and Compounds,2015,632:794-799.

    • [85] BAI Y,ZHAO L,QU Y M,et al.Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings[J].Journal of Alloys and Compounds,2015,644:873-882.

    • [86] 张勇,徐建宁,郭龙龙,等.颗粒在超音速等离子喷涂中的流动特性及熔化细化历程[J].材料热处理学报,2019,40(4):158-165.ZHANG Yong,XU Jianning,GUO Longlong,et al.Flow characteristics and melt refining process of particles in supersonic plasma spraying[J].Journal of Materials Heat Treatment,2019,40(4):158-165.(in Chinese)

    • [87] DALIR E,MOREAU C,DOLATABAD A.Three-dimensional modeling of suspension plasma spraying with arc voltage fluctuations[J].Journal of Thermal Spray Technology,2018,27(8):1465-1490.

    • [88] KHARLAMOV M Y,KRIVTSUN I V,KORZHYK V N,et al.Simulation of motion,heating,and breakup of molten metal droplets in the plasma jet at plasma-arc spraying[J].Journal of Thermal Spray Technology,2015,24(4):659-670.

    • [89] BOBZIN K,ERNST F,RICHARD K,et al.Thermal spraying of cylinder bores with the plasma transferred wire arc process[J].Surface and Coatings Technology,2008,202(18):4438-4443.

  • 手机扫一扫看