en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

高玉魁,男,1973年出生,教授,博士研究生导师。主要研究方向为表面完整性、结构完整性、残余应力和表层改性等。E-mail:yukuigao@tongji.edu.cn

郑翔元,女,1998年出生,硕士研究生。主要研究方向为高熵合金表面改性。E-mail:z2259718@163.com

龚思婕,女,2001年出生,博士研究生。主要研究方向为残余应力无损表征。E-mail:1335716072@qq.com

中图分类号:TB34

DOI:10.11933/j.issn.1007−9289.20230104001

参考文献 1
TENNANT A,CHAMBERS B.Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface[J].Smart Materials and Structures,2003,13(1):122-125.
参考文献 2
LIU R,JI C,MOCK J J,et al.Broadband ground-plane cloak[J].Science,2009,323(5912):366-369.
参考文献 3
CHIN W S,LEE D G,et al.Development of the composite RAS(radar absorbing structure)for the X-band frequency range[J].Composite Structures,2007,77(4):457-465.
参考文献 4
HERNÁNDEZ-BARRIOS C A,SAAVEDRA J A,HIGUERA S L,et al.Effect of cerium on the physicochemical and anticorrosive features of TEOS-GPTMS sol-gel coatings deposited on the AZ31 magnesium alloy[J].Surfaces and Interfaces,2020,21:100671.
参考文献 5
MOSAYEBI S,REZAEI M,MAHIDASHTI Z.Comparing corrosion behavior of Ni and Ni-Mo electroplated coatings in chloride mediums[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,594:124654.
参考文献 6
GUAN X,XU X,HONG W,et al.Double-layer gradient MoSi2-borosilicate glass coating prepared by in-situ reaction method with high contact damage resistance and interface bonding strength[J].Journal of Alloys and Compounds,2020,822:153720.
参考文献 7
张昊,张晶晶,刘旭,等.等离子喷涂不同比例掺杂 G-Al2O3-13% TiO2 复合涂层的耐腐蚀性能[J].中国表面工程,2020,33(3):95-103.ZHANG Hao,ZHANG Jingjing,LIU Xu,et al.Corrosion resistance of plasma spraying with different proportions doped G-Al2O3-13% TiO2 composite coating[J].China Surface Engineering,2020,33(3):95-103.(in Chinese)
参考文献 8
魏新龙,朱无言,朱德佳,等.热喷涂制备铁基非晶涂层耐腐蚀性能的研究进展[J].南京工业大学学报(自然科学版),2020,42(1):1-8.WEI Xinlong,ZHU Wuyan,ZHU Dejia,et al.Research progress on corrosion resistance of iron-based amorphous coatings prepared by thermal spraying[J].Journal of Nanjing University of Technology(Natural Science Edition),2020,42(1):1-8.(in Chinese)
参考文献 9
袁晓静,查柏林,陈小虎,等.WC-10Co-4Cr 涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J].材料工程,2019,47(5):63-71.YUAN Xiaojing,ZHA Bolin,CHEN Xiaohu,et al.Corrosion resistance of WC-10Co-4Cr coating in acid and NaCl solution at different temperatures[J].Journal of Materials Engineering,2019,47(5):63-71.(in Chinese)
参考文献 10
路广明,刘宏伟,乌日开西·艾依提.等离子喷涂氧化铝复合涂层的研究进展[J].热加工工艺,2018,47(6):5-8,14.LU Guangming,LIU Hongwei,WURIKAISI Ayiti.Research progress of plasma spraying alumina composite coating[J].Hot Working Technology,2018,47(6):5-8,14.(in Chinese)
参考文献 11
刘立营,李太江,李勇,等.低压等离子喷涂MCrAlY涂层的高温耐腐蚀性能[J].金属热处理,2017,42(9):195-201.LIU Liying,LI Taijiang,LI Yong,et al.High temperature corrosion resistance of MCrAlY coating coated with low pressure plasma[J].Metal Heat Treatment,2017,42(9):195-201.(in Chinese)
参考文献 12
HAM G S,KIM K W,CHO G S,et al.Fabrication,microstructure and wear properties of novel Fe-Mo-Cr-C-B metallic glass coating layers manufactured by various thermal spray processes[J].Materials & Design,2020:109043.
参考文献 13
ZHAO C,HE W,WEI L,et al.Microstructures of La2Ce2O7 coatings produced by plasma spray-physical vapor deposition[J].Journal of the European Ceramic Society,2020,40(4):1462-1470.
参考文献 14
黄华栋,卞达,秦卢梦,等.石墨烯/碳纳米管增强氧化铝陶瓷涂层的耐腐蚀性能研究[J].中国陶瓷,2019,55(5):1-6.HUANG Huadong,BIAN Da,QIN Lumeng,et al.Study on corrosion resistance of graphene/carbon nanotube reinforced alumina ceramic coating[J].China Ceramics,2019,55(5):1-6.(in Chinese)
参考文献 15
CHAKRABORTY A,GOVARDHANA P,MONDAL A,et al.Microstructural development of prior nickel coated hot dipped galvanised coatings[J].Journal of Alloys and Compounds,2017,699:648-656.
参考文献 16
李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Application and research progress and challenges of thermal spraying technology[J].Thermal Spraying Technology,2018,10(4):1-22.(in Chinese)
参考文献 17
邓文兴.热喷涂制备陶瓷基复合涂层及其性能研究[D].上海:上海海洋大学,2022.DENG Wenxing.Preparation of ceramic-based compositecoating by thermal spraying and its properties[D].Shanghai:Shanghai Ocean University,2022.(in Chinese)
参考文献 18
李少伟,李疆,田煜,等.等离子喷涂制备超疏水表面研究进展[J].材料工程,2023,51(2):1-18.LI Shaowei,LI Jiang,TIAN Yu,et al.Research progress on preparation of superhydrophobic surfaces by plasma spraying[J].Materials Engineering,2023,51(2):1-18.(in Chinese)
参考文献 19
唐强,伍建华,颜超,等.大气等离子喷涂工艺参数对 Al2O3 涂层性能的影响[J].材料保护,2019,52(4):106-109,115.TANG Qiang,WU Jianhua,YAN Chao,et al.Effects of atmospheric plasma spraying process parameters on the properties of Al2O3 coatings[J].Materials Protection,2019,52(4):106-109,115.(in Chinese)
参考文献 20
司先锋,马壮,高丽红,等.等离子喷涂沉积 Al2O3-SiO2 涂层的光学性能[J].硅酸盐学报,2019,47(2):236-242.SI Xianfeng,MA Zhuang,GAO Lihong,et al.Optical properties of plasma spray deposition Al2O3-SiO2 coating[J].Journal of the Chinese Ceramic Society,2019,47(2):236-242.(in Chinese)
参考文献 21
赵杰荣,李云,郭纯,等.等离子喷涂 Ni/h-BN 复合涂层的制备及其摩擦学性能[J].热加工工艺,2023,52(6):109-115.ZHAO Jierong,LI Yun,GUO Chun,et al.Preparation and frictional properties of plasma sprayed Ni/h-BN composite coatings[J].Hot Working Technology,2023,52(6):109-115.(in Chinese)
参考文献 22
吴艳鹏,魏剑辉,李文戈,等.铝合金表面等离子喷涂 Al2O3-3% TiO2 复合涂层工艺参数优化的研究[J].表面技术,2019,48(6):322-331.WU Yanpeng,WEI Jianhui,LI Wenge,et al.Study on optimization of process parameters of aluminum alloy surface plasma spraying Al2O3-3% TiO2 composite coating[J].Surface Technology,2019,48(6):322-331.(in Chinese)
参考文献 23
YANG X.Rolling contact fatigue life of supersonic plasma sprayed Ni60A coatings[J].Journal of Mechanical Engineering,2016,52(20):38-43.
参考文献 24
郑广芝,王敏,袁建辉,等.大气等离子喷涂 Al2O3/ZnO/TiO2 涂层微波介电性能的研究[J].功能材料,2022,53(1):1128-1133.ZHENG Guangzhi,WANG Min,YUAN Jianhui,et al.Study on microwave dielectric properties of atmospheric plasma spraying Al2O3/ZnO/TiO2 coating[J].Journal of Functional Materials,2022,53(1):1128-1133.(in Chinese)
参考文献 25
LIU X,LU X,SONG Y,et al.Plasma-sprayed graphene nanosheets/ZnO/Al2O3 coatings with highly efficient microwave absorption properties[J].Thermal Spray Technology,2021,30(6):1524-1534.
参考文献 26
ZHOU L,SU G X,WANG H B,et al.Influence of NiCrAlY content on dielectric and microwave absorption properties of NiCrAlY/Al2O3 composite coatings[J].Journal of Alloys and Compounds,2019,777:478-484.
参考文献 27
GAO C,JIANG Y,CAI D,et al.High-temperature dielectric and microwave absorption property of atmospheric plasma sprayed Al2O3-MoSi2-Cu composite coating[J].Coatings,2021,11(9):1029.
参考文献 28
SHAO T,MA H,WANG J,et al.High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material[J].Journal of the European Ceramic Society,2020,40(5):2013-2019.
参考文献 29
LISJAK D,BÉGARD M,BRUEHL M,et al.Hexaferrite/polyester composite coatings for electromagnetic-wave absorbers[J].Journal of Thermal Spray Technology,2011,20:638-644.
参考文献 30
BU A,ZHANG Y,XIANG Y,et al.Enhanced antioxidation and microwave absorbing properties of SiC/SiO2 coating on carbon fiber[J].Materials Science and Electronics:Materials Science and Electronic Technology,2020,31:17067-17074.
参考文献 31
YANG Z N,REN W,ZHU L,et al.Electromagnetic-wave absorption property of Cr2O3-TiO2 coating with frequency selective surface[J].Journal of Alloys and Compounds,2019,803:111-117.
参考文献 32
LI R,QING Y.Effects of Multi-components on the microwave absorption and dielectric properties of plasma-sprayed carbon nanotube/Y2O3/ZrB2 ceramics[J].Nanomaterials,2021,11(10):2640.
参考文献 33
潘邻.现代表面热处理技术[M].北京:机械工业出版社,2017.PAN Lin.Modern surface heat treatment technology[M].Beijing:China Machine Press,2017.
参考文献 34
唐光昕,朱张校.离子轰击渗扩技术的特点及应用[J].表面技术,2002,31(3):52-53,57.TANG Guangxin,ZHU Zhangxiao.Characteristics and application of ion bombardment permeation technology[J].Surface Technology,2002,31(3):52-53,57.(in Chinese)
参考文献 35
山中久彦.离子渗氮[D].李贻锦,朱雅年,译.北京:机械工业出版社.1985.HISAHIKO YAMANAKA.Ion nitriding[D].LI Yijin,ZHU Yanian,translated.Beijing:China Machine Press.1985.(in Chinese)
参考文献 36
郭德胜.基于AVR的碳势控制系统的研究与开发[D].西安:西安科技大学,2010.GUO Desheng.Research and development of AVR-based carbon potential control system[D].Xi’ an:Xi’ an University of Science and Technology,2010.(in Chinese)
参考文献 37
无锡微型轴承厂.采用多因素优选正交试验设计改进热处理淬火工艺[J].江苏机械,1976(2):200-208.Wuxi Micro Bearing Factory.Improved heat treatment quenching process by multi-factor preferred orthogonal experimental design[J].Jiangsu Machinery,1976(2):200-208.(in Chinese)
参考文献 38
张树理.20Cr1Mo1VNbTiB高温螺栓钢热处理工艺的优化设计[J].华北电力技术,1992(5):31-36.ZHANG Shuli.Optimization design of heat treatment process of 20Cr1Mo1VNbTiB high temperature bolted steel[J].North China Electric Power Technology,1992(5):31-36.(in Chinese)
参考文献 39
黄春峰.钢的热处理工艺设计[J].铸锻热,1994(3):18-23.HUANG Chunfeng.Design of heat treatment process of steel[J].Casting and Forging Heat,1994(3):18-23.(in Chinese)
参考文献 40
赵振东.新钢种热处理工艺设计[J].新技术新工艺,1993(2):6,8,10.ZHAO Zhendong.Heat treatment process design for new steel types[J].New Technology and New Processes,1993(2):6,8,10.(in Chinese)
参考文献 41
丁盛,顾伟伟,杨威.某行星齿轮的渗碳淬火工艺优化 [J].热加工工艺,2020,49(4):151-153.DING Sheng,GU Weiwei,YANG Wei.Optimization of carburizing and quenching process of a planetary gear[J].Hot Working Technology,2020,49(4):151-153.(in Chinese)
参考文献 42
周洪刚,朱旭,刘克,等.17Cr2Ni2MoVNb 钢的渗碳淬火工艺[J].金属热处理,2019,44(10):117-121.ZHOU Honggang,ZHU Xu,LIU Ke,et al.Carburizing and quenching process of 17Cr2Ni2MoVNb steel[J].Heat Treatment of Metals,2019,44(10):117-121.(in Chinese)
参考文献 43
EDWARD J,KUBCL J R,宣天鹏,等.发展中的渗碳技术[J].国外金属热处理,1991(1):13-18.EDWARD J,KUBCL J R,XUAN Tianpeng,et al.Carburizing technology under development[J].Foreign Metal Heat Treatment,1991(1):13-18.(in Chinese)
参考文献 44
STRATTON P F,BRUCE S,CHEETHAM VLow-pressure carburizing systems:A review of current technology[J].China Surface Engineering,2006,151(11):451-456.
参考文献 45
WANG H,WANG B,WANG Z,et al.Optimizing the low-pressure carburizing process of 16Cr3NiWMoVNbE gear steel[J].Journal of Materials Science & Technology,2019,35(7):1218-1227.
参考文献 46
李倩,丛培武,王赫,等.18CrNiMo7-6 钢齿轮真空渗碳[J].金属热处理,2017,42(3):69-71.LI Qian,CONG Peiwu,WANG He,et al.18CrNiMo7-6 steel gear vacuum carburizing[J].Heat Treatment of Metals,2017,42(3):69-71.(in Chinese)
参考文献 47
王志新,施建军,梅俊歌,等.20CrNi2Mo 钢真空渗碳工艺及数值模拟[J].金属热处理,2017,42(11):117-122.WANG Zhixin,SHI Jianjun,MEI Junge,et al.Vacuum carburizing process and numerical simulation of 20CrNi2Mo steel[J].Heat Treatment of Metals,2017,42(11):117-122.(in Chinese)
参考文献 48
杨延辉,王毛球,陈敬超,等.高温渗碳齿轮钢的研究进展[J].特殊钢,2013,34(1):22-24.YANG Yanhui,WANG Maoqiu,CHEN Jingchao,et al.Research progress of high temperature carburized gear steel[J].Special Steel,2013,34(1):22-24.(in Chinese)
参考文献 49
张国强,何肖飞,尉文超,等.高温渗碳齿轮钢的晶粒粗化行为[J].钢铁,2019,54(5):68-72.ZHANG Guoqiang,HE Xiaofei,WEI Wenchao,et al.Grain coarsening behavior of high-temperature carburized gear steel[J].Iron and Steel,2019,54(5):68-72.(in Chinese)
参考文献 50
GRUBE W L,GAY J G.High-rate carburizing in a glow-discharge methane plasma[J].Metallurgical Transactions A,1978,9(10):1421-1429.
参考文献 51
王金双,赵步青,陆臻.等离子体表面改性技术及其应用[J].机械工人,2001(5):56-57.WANG Jinshuang,ZHAO Buqing,LU Zhen.Plasma surface modification technology and its application[J].Mechanical Worker,2001(5):56-57.(in Chinese)
参考文献 52
BALANOVSKII A E,VAN H V.Estimation of wear resistance of plasma-carburized steel surface in conditions of abrasive wear[J].Journal of Friction and Wear,2018,39(4):311-318.
参考文献 53
DONG Z H,ZHANG W,KANG H W,et al.Surface hardening of laser melting deposited 12CrNi2 alloy steel by enhanced plasma carburizing via hollow cathode discharge[J].Surface and Coatings Technology,2020,397:125976.
参考文献 54
SPROGE L,AGREN J.Experimental and theoreticalstudies of gas consumption in the gas carburizing process[J].Journal of Heat Treating,1988,6(1):9-19.
参考文献 55
LANGMUIR I.Oscillations in ionized gases[J].Proceedings of the National Academy of Sciences,1928,14(8):627-637.
参考文献 56
朱元右.低温等离子体在金属材料表面改性中的应用[J].江苏冶金,2004(2):12-15.ZHU Yuanyou.Application of low-temperature plasma in surface modification of metal materials[J].Jiangsu Metallurgy,2004(2):12-15.(in Chinese)
参考文献 57
王健,马驰,陈尔凡,等.离子体表面改性技术[J].辽宁化工,2012,41(5):486-487,525.WANG Jian,MA Chi,CHEN Erfan.Plasma surface modification technology[J].Liaoning Chemical Industry,2012,41(5):486-487,525.(in Chinese)
参考文献 58
庄唯,王耀勉,杨换平,等.钛合金渗碳处理研究进展 [J].材料导报,2020,34(S2):1344-1347,1355.ZHUANG Wei,WANG Yaomian,YANG Huanping,et al.Research progress of carburizing treatment of titanium alloy[J].Materials Reports,2020,34(S2):1344-1347,1355.(in Chinese)
参考文献 59
EDENHOFER B,GRÄFEN W,MÜLLER-ZILLER.Plasma-carburising a surface heat treatment process for the new century[J].Surface & Coatings Technology,2001,142:225-234.
参考文献 60
李炳华.快速渗碳技术-等离子渗碳[J].金属加工(热加工),1997(3):2-5.LI Binghua.Rapid carburizing technology-plasma carburizing[J].Metal Processing(Hot Working),1997(3):2-5.(in Chinese)
参考文献 61
THOMAS B,CHEN X L.不锈钢低温渗氮和渗碳(续)[J].热处理,2003,18(2):59-60.THOMAS B,CHEN X L.Low temperature nitriding and carburizing processes for stainless steel(continuance)[J].Heat Treatment,2003,18(2):59-60.(in Chinese)
参考文献 62
SUN Y,BELL T.Dry sliding wear resistance of low temperature plasma carburized austenitic stainless steel[J].Wear,2002,253(5-6):689-693.
参考文献 63
徐滨士,刘世参.中国材料工程大典第16卷材料表面工程(上册)[M].北京:化学工业出版社,2006.XU Binshi,LIU Shican.Chinese materials engineering dictionary,Volume 16,Material Surface Engineering(Volume I)[M].Beijing:Chemical Industry Press,2006.(in Chinese)
参考文献 64
KIM T S,PARK Y G,WEY M Y.Characterization ofTi-6Al-4V alloy modified by plasma carburizing process[J].Materials Science and Engineering A,2003,361(1-2):275-280.
参考文献 65
LI Z,ZHOU H,DU J,et al.Double-glow discharged plasma non-hydrogen carburizing on titanium alloy surface[J].Rare Metal Materials and Engineering,2004,33(12):1355-1357.
参考文献 66
ZHANG G H,PAN J D,ZHANG P Z,et al.Friction and wear behavior of double glow plasma no-hydrogen carburized layer on titanium alloy[J].Tribology,2004,24(2):111-114.
参考文献 67
ZHANG G H,ZHANG P Z,GE H L,et al.The preparation processing parameter study of the double glow discharge plasma hydrogen-free carburizing on titanium alloy surface[J].Transactions of Materials and Heat Treatment,2001,28:110-114.
参考文献 68
JI S,LI Z,DU J,et al.Analysis of hydrogen-free carburized coating on Ti6Al4V substrate[J].Rare Metal Materials and Engineering,2010,39(12):2152-2156.
参考文献 69
XING Y Z,JIANG C P,HAO J M.Surface strengthen of Ti-6Al-4V alloy by glow plasma carbonization process[J].Rare Metal Materials and Engineering,2013,42(6):1101-1104.
参考文献 70
XING Y Z,JIANG C P,HAO J M.Time dependence of microstructure and hardness in plasma carbonized Ti-6Al-4V alloys[J].Vacuum,2013,95:12-17.
参考文献 71
ZHANG Y,WEI Q L,XING Y Z,et al.Evaluation of microstructure and wear properties of Ti-6Al-4V alloy plasma carbonized at different temperatures[J].Wuhan University of Technology-Materials Science Education,2015,30(3):631-638.
参考文献 72
TANG R,TIAN R.Binary alloy phase diagrams and crystal structure of intermediate phase[M].Changsha:Central South University Press,2009.
参考文献 73
VEIGA C,DAVIM J P,LOUREIRO A J R.Properties and applications of titanium alloys:A brief review[J].Reviews on Advanced Materials Science,2012,32(2):133-148.
目录contents

    摘要

    随着雷达探测技术的发展,对装备的隐身性能也提出越来越严苛的要求,隐身技术可显著提高军事装备及军人的生存能力,提升战斗效率,取得更大的战场控制权。传统吸波涂层的制备方法工艺复杂且效率低下,作为一种热喷涂技术,由于等离子喷涂具有工艺简单、适用范围广、可操控性和可调控性高等优点,在制备吸波涂层中得到广泛应用。材料表面状态对其性能有着重要的影响,等离子渗碳同样作为一种表面处理工艺,对提高材料表面强度、耐磨性等具有重要作用。介绍了等离子喷涂的基本原理以及送粉速率、输出功率、喷涂距离、喷涂速度等涂层制备基本工艺参数对涂层的影响。研究表明,送粉速率相同时,喷涂功率过大或过小均会导致涂层质量下降;喷涂距离过小会导致涂层与基体的结合力降低,而距离过大又会降低喷涂效率和涂层密度,合理调控等离子喷涂的工艺参数对涂层质量的好坏有着直接且重要的影响。总结了近年来等离子喷涂制备吸波涂层方面的研究成果,介绍了传统渗碳热处理技术与新型渗碳热处理技术的发展,概述了等离子渗碳的发展和现状,可知加工时间及加热温度对渗碳层的性能产生了较大影响。对以上两种表面改性技术未来的研究发展进行了展望,为航空航天、军事装备等涉及关键零部件表面改性方面提供一定的参考价值。

    Abstract

    With the development of radar detection technology, the demand for the stealth performance of equipment has increased. The stealth technology can significantly enhance the survivability of military equipment and personnel, improve combat efficiency, and establish greater control on the battlefield. The traditional methods for preparing radar-absorbing coatings are complex and inefficient. Plasma spraying has gained widespread application as a thermal spraying technique in the preparation of absorbing coatings owing to its simple process, broad applicability, and high controllability. The surface condition of the materials significantly impacts their performance. Plasma carburizing, as a surface treatment process, plays a vital role in improving the surface strength and wear resistance of materials. This study introduces the basic principles of plasma spraying as well as the influence of basic coating process parameters such as powder feed rate, output power, spraying distance, and spraying speed on the quality of the coatings. Research has shown that when the powder feed rate remains constant, excessively high or low spraying power can lead to a decrease in the coating quality. An excessively short spraying distance can result in poor adhesion between the coating and the substrate, whereas an excessively long distance can reduce the spraying efficiency and coating density. Therefore, the proper control of process parameters in plasma spraying directly and significantly impacts the coating quality. Subsequently, recent research results in the preparation of radar-absorbing coatings using plasma spraying are summarized. Adjusting the plasma spraying process parameters significantly affects the absorption performance. For instance, a higher spraying power can hinder the melting and deposition of the powder, leading to increased porosity and reduced dielectric constants, that in turn affect the absorption performance. In the case of composite coatings, the content of the constituent materials can be adjusted to improve the microwave absorption performance and enhance the conductivity and impedance matching, resulting in excellent absorption and mechanical properties. Additionally, temperature plays a substantial role in microwave absorption, with certain coatings demonstrating outstanding absorption performance at elevated temperatures, presenting promising prospects for high-temperature microwave absorption applications. Furthermore, this study provides an introduction to the development of traditional carburizing heat treatment methods and new carburizing heat treatment technologies. Traditional carburizing methods involve the treatment of materials followed by quenching that creates a surface with higher hardness while maintaining a softer core, thereby enhancing the surface hardness and wear resistance. The new vacuum carburizing technology uses hydrocarbons as a carbon source to treat material surfaces at pressures below atmospheric levels, minimizing deformation and avoiding issues such as surface oxidation and decarburization. However, it still faces challenges such as long processing times and high treatment temperatures. Although high-temperature carburizing improves production efficiency, it can lead to significant grain coarsening during the carburization process, affecting the fatigue performance of the material. Plasma carburizing technology uses the principle of gas discharge to cause carbon ions to collide with the surface of the material, forming a high-quality carburized layer. During ion carburizing, neutral molecules and charged particles move directionally on the surface of the material under an electric field, resulting in a higher concentration of active carbon atoms on the surface of the material than during vacuum carburizing. This substantially enhances the carburization efficiency. As surface modification technologies continue to evolve, low-temperature plasma carburizing techniques have also achieved certain research progress. The study provides an overview of the development and current status of plasma carburizing, highlighting the substantial influence of processing time and heating temperature on the performance of the carburized layer. Plasma spraying and carburizing technologies have matured over time. However, in the future, apart from adjusting the basic spraying process parameters, exploring new control methods for the electromagnetic properties, mechanical performance, and microstructure of materials regarding plasma spraying and carburizing will better meet the increasingly stringent requirements of radar-absorbing coatings. Further understanding of the mechanisms of residual stress, grain boundaries, and dislocations in materials through plasma carburizing processes is also necessary. This study also provides prospects for the future research and development of these two surface modification technologies, offering valuable insights for industries involving critical component surface modifications, such as aerospace and military equipment.

  • 0 前言

  • 随着雷达探测系统和无线电技术的快速发展,武器生存和防御能力提升的同时,战场生存也受到越来越严重的威胁。为了降低目标的可探测性,隐身技术作为最有效的突防战术手段,受到世界各国的广泛重视[1-2]。雷达探测仍然是现代战争中电磁探测的重点。目前,隐身的手段主要有两种:一是通过吸波材料实现隐身,另外一种则是借助材料表面吸波涂层来实现[3]。由于吸波涂层的制备过程简便,不受服役工件或装备复杂结构的影响,是提升装备隐身性能的理想措施。现有的吸波涂层的制备方法主要有热喷涂、浸渍法、物理气相沉积等。等离子喷涂技术作为重要的材料表面改性手段,是应用十分广泛的热喷涂技术之一,能快捷简单地得到所需涂层的性能,且所得涂层致密度高、孔隙率低。同时等离子喷涂技术由于工作效率高、生产成本低等优势,近年来成为制备吸波涂层的研究重点。除了装备的隐身,对装备材料本身的性能要求也越来越高。航空常用合金,如钛合金等,硬度较低、耐磨性能较差,等离子渗碳处理工艺在合金表面渗碳形成硬化层是提升材料的硬度和耐磨性的有效途径。与传统的渗碳方法相比,等离子体渗碳可以实现较浅的渗碳深度,并避免改变材料的核心性能。且等离子体渗碳过程快速而均匀,通过调整渗碳过程的参数,可以精确控制渗碳层的厚度和组成。根据各类材料的性质,设计、制备出力学性能优异、吸波效果优良的材料,对我国民用和军用领域均有着极为深远的意义。

  • 本文首先对热喷涂和等离子喷涂的基本原理进行概述,然后介绍等离子喷涂的送粉速率、输出功率、喷涂距离等多个重要工艺参数对涂层质量的影响,总结了从传统渗碳处理到新型渗碳处理的发展历程和现状。在此基础上,对等离子表面处理技术的研究进展进行总结,提供了未来等离子喷涂和等离子渗碳技术的研究方向。

  • 1 等离子喷涂概述

  • 1.1 热喷涂基本原理

  • 涂层技术通过在基体表面涂覆一定厚度的涂层来达到耐腐蚀[4-6]、耐高温[7-11]等性能要求。随着技术的发展,防护涂层的制备方法增多。热喷涂相较于其他技术具有可自动化生产、不受限制于基体材料、喂料粉末选择制备范围广、可大面积制备、涂层厚度可控、工艺成本低等优点[12-16]。热喷涂工艺主要由热源系统、送料系统、喷涂系统构成。涂层原料经过热源熔化和高速气流雾化加速之后,在基体表面变形、冷却沉积形成层层叠加的涂层。其基本原理均为通过一定热源将喷涂原料进行熔化,在高速气流的作用下雾化成液滴,同时具备一定的动能,从而在基体表面层层堆积形成涂层[17],如图1 所示。

  • 图1 热喷涂基本原理[17]

  • Fig.1 Basic principles of thermal spraying[17]

  • 1.2 等离子喷涂基本原理

  • 等离子喷涂技术发展从 20 世纪 50 年代末开始,相较于之前的火焰喷涂,等离子喷涂采用等离子体(Plasma)作为热源,高温高速的优点使其在陶瓷涂层制备中有着很大优势,因而得到国内外许多学者的广泛研究和应用。等离子喷涂技术能有效改善材料表面耐磨性能,延长零件使用寿命。

  • 等离子喷涂的基本原理是一种将等离子电弧作为热源,用产生的高温、高速等离子射流将合金或金属等材料加热至熔融或半熔融状态,再高速喷向基体表面形成涂层的热喷涂技术,其原理示意图如图2 所示。作为一种常见的表面工程技术,等离子喷涂技术具有工艺简单快捷、能提升材料表面耐磨损、耐腐蚀及耐高温性能等特点。零件由于服役过程十分复杂,其表面会形成不同程度、形式的损伤,从而导致零件失效,因此可以采用喷涂技术在其表面喷涂涂层来进行强化处理。

  • 图2 等离子喷涂基本原理[18]

  • Fig.2 Basic principles of plasma spraying[18]

  • 1.3 等离子喷涂的重要工艺参数

  • 工艺参数的选择决定了涂层质量的好坏。其中,重要的工艺参数主要包括送粉速率、输出功率、喷涂距离、喷涂速率以及使用的等离子气体等。

  • 1.3.1 送粉速率

  • 送粉速率指单位时间的送粉量,直接影响喷涂的效率和质量。在不同送粉量下,喷涂时施加的输入功率也应进行相应调整。当送粉量不变时,如果热源功率参数太小,则粉末熔化不完全,涂层中会夹杂一定的生粉,导致沉积效率降低,涂层质量下降;反之,若功率太大,粉末虽然熔化情况良好,但容易引起粉末受热氧化,烧蚀严重,造成飞溅,同样会降低沉积效率,无法得到优质涂层。

  • 唐强等[19]采用如表1 所示的正交试验,对大气等离子喷涂工艺参数进行了优化,研究了喷涂主气流量、功率和送粉量对 Al2O3 涂层综合性能的影响。不同喷涂工艺参数下涂层孔隙率η如表2 所示。研究发现,送粉速率为 30 g / min、Ar 气流量为 40 L / min、喷涂功率为 48 kW 时,涂层的各项性能最佳,硬度达到 1 286.7 HV3N,结合强度为 51 MPa,孔隙率为 3.94%。只有送粉量适中时才能获得硬度较高、孔隙率较低的 Al2O3 涂层。

  • 表1 正交试验[19]

  • Table1 Orthogonal test[19]

  • 表2 不同喷涂参数下 Al2O3涂层的孔隙率[19]

  • Table2 Porosity of Al2O3 coatings at different spray parameters[19]

  • 1.3.2 输出功率

  • 通过控制和调节产生等离子体的电源,可以调整等离子体的输出功率。但是功率过高会导致粉末颗粒过热与气化。气化的粉末颗粒附着到基体上后,生成的涂层中会形成气孔,大大降低了涂层质量,同时过高的功率也可能会对喷枪造成损坏;而功率过低会使粉末颗粒熔化不完全,与基体的结合度降低,对涂层质量也会产生不良影响。司先锋等[20]研究了等离子喷涂技术在不同喷涂参数下制备 Al2O3-SiO2 涂层颗粒的熔融状态、微观结构、物相组成对涂层光学反射率的影响规律。结果表明,随着等离子输出功率增加,颗粒熔融状态逐渐变得更加充分。在涂层内部,层状结构的形成和孔隙率的增加均使得涂层光学性能提高。

  • 赵杰荣等[21]研究了大气等离子喷涂技术的喷涂工艺对 Ni / h-BN 涂层结构、力学性能及摩擦性能的影响。随着输出功率提高,涂层中 h-BN 质量分数大体上呈现下降趋势。当喷涂功率较高时,粉末沉积效率高且粉体的熔化较为完全,但涂层孔隙率增加,涂层硬度呈现如图3 所示的先减小后增大的变化趋势。

  • 图3 不同功率时 Ni / h-BN 涂层的显微硬度[21]

  • Fig.3 Microhardness profile of Ni / h-BN coatings under different powers[21]

  • 1.3.3 喷涂距离

  • 喷涂距离是指喷嘴出口到工件表面的距离。喷涂距离会对粉末的熔化程度产生影响,进而影响其飞行速度、飞行时间和到达基体时的温度,从而影响涂层质量。喷涂距离过大时,粉末的飞行时间增加,速度和温度随之降低,进而降低了喷涂效率,并且粉末液滴堆积时压力变小、流动性降低,导致涂层致密度以及与基体的结合度降低;反之,飞行时间短、速度快,会使加热不充分,对基体的撞击力大,熔化不完全使涂层结合强度降低,并且可能对基体造成损坏。

  • 吴艳鹏等[22]通过正交试验探究了等离子喷涂工艺参数对Ni-5Al涂层的综合影响。在喷涂距离从 70 mm 增加到 110 mm 过程中,喷涂距离较短时,易在涂层结合区出现热氧化现象,降低涂层质量,结合强度较低;距离大于90 mm后,由于粒子在超过最大速度的距离情况下,速度减小,焰流和熔融粒子的温度也有所下降。熔融粒子动能减小,对基体材料的撞击效果较差,结合力也随之下降,不同影响因素效应关系图如图4、5 所示。

  • 图4 喷涂电流、距离、主气流量、辅气流量四个因素效应关系图(硬度指标)[22]

  • Fig.4 Effects relationship chart (hardness index) of four factors: spray current, distance, main airflow and auxiliary airflow[22]

  • 图5 喷涂电流、距离、主气流量、辅气流量四个因素效应关系图(强度指标)[22]

  • Fig.5 Effects relationship chart (strength index) of four factors: spray current, distance, main airflow and auxiliary airflow[22]

  • 1.3.4 喷涂速度

  • 喷涂速度是指喷枪移动时和目标工件的相对速度,影响单次喷涂后涂层的厚度。喷枪移动速度一般以束流斑点的直径为依据。根据不同的喷涂工艺方法,其束流斑点直径是不同的,通常取压盖斑点的 30%~50%。当喷涂速度过快时,单次喷涂的涂层厚度较薄,并且每个涂层之间结合度较差,导致涂层表面不平整;反之,喷涂速度过慢,则可能会使工件局部温度过高,对零件造成烧伤,故而调节喷枪的移动速度实际上是控制每次喷涂所得涂层的厚度。此外,喷枪移动速度对基体温度也会产生影响。为了避免基体局部温度升高而造成热变形或热应力过大,可采取提高工件线速度的方法来加快喷枪的移动速度。

  • 1.3.5 等离子喷涂所用气体

  • 喷涂使用的等离子气体包括主气体、次气体和送粉气体。其中,主气体和次气体作用是形成等离子体,影响等离子射流的温度和速度,进一步影响喷涂效率和涂层质量,如致密度、硬度等,因此须选择合适的气体和流量。而送粉气体也要控制合适的流量,过大或过小均会影响喷涂质量,还可能会造成喷涂设备损坏。

  • YANG[23]通过分析孔隙率和显微硬度,利用正交试验对超声速等离子喷涂 Ni60A 涂层的主要工艺参数(喷涂电压、喷涂电流、Ar 气流量和喷涂距离)进行了优化,四个喷涂工艺参数对 Ni60A 涂层质量的影响如图6所示。研究发现,当Ar气流量增加时,焰流温度和 Ar 气吸收热量都有所增加。焰流温度有利于获得融化状态良好的喷涂颗粒,但 Ar 气吸收热量具有相反的作用。

  • 图6 四个喷涂工艺参数对 Ni60A 涂层质量的影响[23]

  • Fig.6 Effect of four spray process parameters on Ni60A coating quality[23]

  • 2 等离子喷涂制备吸波涂层研究现状

  • 不同的喷涂工艺参数不仅对涂层的孔隙率、结合强度、涂层质量等具有重要影响,并且对涂层的吸波性能也有显著影响。选择合适的喷涂工艺参数对制备出吸波效果良好的涂层十分重要。目前,学者们利用等离子喷涂技术制备吸波涂层已有大量研究。

  • 郑广芝等[24]采用高焓大气等离子喷涂技术,以纳米级 ZnO、Al2O3、TiO2 制备了复合吸波陶瓷涂层(简称 AZT 涂层),研究了喷涂工艺对涂层结构和微波介电性能的影响。随着功率提高,粉末融化程度增大,逐渐出现有细小针状的飞溅颗粒产生,阻碍了后续粉末的熔化沉积。伴随着涂层的孔隙率增大,密度降低,介电常数也降低。在 X 波段上,介电常数在功率 60 kW 时达到最低值 6.38,损耗角正切值在 0.11~0.15,总体变化不大。

  • LIU 等[25]采用大气等离子喷涂技术制备了不同石墨烯纳米片含量的 GNSs / ZnO / Al2O3 复合涂层,研究了 GNS 含量对 GNSs / ZnO / Al2O3 涂层在 X 波段介电行为和微波吸收性能的影响。结果表明,涂层的介电常数和反射损耗均随着 GNS 含量增加而增大。涂层的复介电常数实部(ε′)和虚部(ε″)分别从 7.0、0.1 增加到 12.4、1.1。如图7 所示,随着 GNS 含量增加到 15 wt.%,涂层表现出优异的吸波性能。厚度为 1.82 mm 时,在 11.5 GHz 处的最小反射损耗为−45 dB (吸收率大于 99 %),在 11.2~12.0 GHz 频率范围内的反射损耗为−10 dB (90 %吸收) 带宽。引入 GNS 和 ZnO,增加了涂层的导电性、界面极化和阻抗匹配,提高了吸波性能,所制备的涂层具有良好的吸波性能和优异的力学性能。

  • 图7 不同 GNS 含量的 GNSs / ZnO / Al2O3复合涂层的复介电常数[25]

  • Fig.7 Complex dielectric constant of GNSs / ZnO / Al2O3 composite coatings with different GNS content[25]

  • ZHOU 等[26]以 NiCrAlY 合金为吸收剂,采用小功率等离子喷涂制备 NiCrAlY / Al2O3 涂层,并研究在X波段NiCrAlY含量对介电性能和吸波性能的影响。在复合涂层中,NiCrAlY 呈现典型的串状或片状结构,NiCrAlY 填充量增加有利于导电金属团簇的产生。在 X 波段,由于界面极化、弛豫损耗和电导损耗的影响,ε′ε″随着 NiCrAlY 含量增加而增加。优异的阻抗匹配和较好的衰减系数使得厚度为 2.0 mm、NiCrAlY 含量为 20 wt.%的 NiCrAlY / Al2O3 涂层在 8.2~9.5 GHz 处的有效带宽(<−10 dB)为 1.3 GHz,在 8.9 GHz 处获得最小反射损耗为 15.7 dB,表现出最优异的微波吸收性能。GAO 等[27] 采用大气等离子喷涂制备了Al2O3-MoSi2-Cu复合高温吸波涂层,用矢量网络分析仪对 1.7 mm 厚的涂层在 25~500℃的介电性能和微波吸收性能进行了测试。研究发现,Al2O3-MoSi2-Cu涂层在500℃ 时具有良好的微波吸收性能。在高温空气气氛中,涂层中的 Cu 通过氧原子扩散逐渐转化为 Cu2O,涂层的微波吸收性能随温度升高而增强。涂层中 Cu / Cu2O 混合物的存在增加了涂层的电导率损失。 Cu2O 和 Al2O3-MoSi2 形成导电网络,增强了涂层的微波吸收性能,在 X 波段同时具有良好的高温稳定性和微波吸收性能。SHAO 等[28]提出了一种以 (1-x)wt.% Al2O3~x wt.% TiC 为主要成分的新型吸波涂层材料。该涂层采用等离子喷涂进行加工。研究表明,厚度为 1.6 mm 的 80 wt.% Al2O3~20 wt.% TiC 材料在 800℃下具有优异的吸波性能,电磁波吸收可达 3.45 GHz。从图8 的扫描电子显微镜(SEM)照片中可观察到 TiC 在 Al2O3 中分布不均匀,从而导致材料电导率下降,发生界面极化。宏观上则反映为该材料具有良好的电磁阻抗匹配,在高温吸波方面具有应用前景。

  • 图8 80 wt.% Al2O3~20 wt.% TiC 的 SEM 图像[28]

  • Fig.8 SEM images of the80 wt.% Al2O3~20 wt.% TiC coating[28]

  • LISJAK 等[29]以六角铁氧体和聚酯为原料,采用大气等离子喷涂技术制备了复合吸波涂层,并与其纯相涂层进行了对比。在喷涂过程中,六角铁氧体结晶结构得以保留,聚酯在冷却过程中部分熔化并重新凝固。六角铁氧体磁损耗和介电损耗与聚酯介电损耗的耦合使复合涂层的性能相对于组成相为纯单相的涂层更加优异。BU 等[30] 采用电解等离子喷涂技术在碳纤维表面制备了 SiC / SiO2 涂层,容易将电磁波传入内部,同时介电损耗和反射损耗的共同作用极大提升了对电磁波的吸收能力。在 7.1 GHz 处,厚度为 2.3 mm 时的反射损耗最小为−11.6 dB。另外,碳纤维上的 SiC / SiO2 涂层也具有抗氧化性能,比裸样提高了 28%。YANG 等[31]利用高温固相合成 CrTiO 粉体,采用等离子喷涂技术制备了不同 Cr2O3 含量的 CrTiO 涂层,并对其电磁波吸收性能进行了研究。由于载流子浓度、弛豫极化、电子极化和磁极化等增强,涂层的复介电常数和复磁导率随着 Cr2O3 含量增加而增加。如图9 所示,当 Cr2O3 含量为 15%、样品厚度为 1.9 mm 时,复合涂层在 8.2~12.4 GHz 波段表现出电磁衰弱。通过频率选择表面改善 CrTiO 涂层的吸波性能,结果表明,吸波涂层的吸波性能主要取决于涂层的频率选择表面 Cr2O3 含量及厚度。LI 等[32]采用行星球磨和等离子喷涂工艺制备了碳纳米管增强 Y2O3 / ZrB2 陶瓷。Y2O3 / ZrB2 / CNT 陶瓷由于具有致密的导电逾渗通道,可以响应电导损耗的存在。 Y2O3 / ZrB2 / CNT 陶瓷的 ε′ε″值随着 ZrB2 或 CNT 含量增加而增大,从而提高微波吸收能力。 Y83(即 Y2O3 含量为 83%)样品在 12.3 GHz 处的最小反射损耗为−25.7 dB、厚度为 1.9 mm。可以通过调节 Y2O3、ZrB2 和 CNT 的质量分数来控制 Y2O3 / ZrB2 / CNT 陶瓷的电磁性能。

  • 综上所述,等离子喷涂工艺参数的设定对所制备的涂层质量影响较大。根据不同喷涂喂料,优化等离子喷涂的工艺参数是获得性能良好涂层的必由之路。等离子喷涂制备涂层涉及到的工艺参数复杂繁多,故而须要对工艺参数的确定与选择进行更加深入的研究。

  • 图9 不同 Y2O3含量陶瓷的反射损耗与介电损耗曲线[32]

  • Fig.9 Reflection loss and dielectric loss curves of ceramics with different Y2O3 contents[32]

  • 3 等离子渗碳技术

  • 3.1 渗碳技术

  • 表面化学热处理强化是指将材料在热处理设备中加热到一定温度后,保温一段时间再进行冷却的强化工艺。在热处理时,设备内通常含有一些防止工件氧化的保护性气体和为材料渗碳或者渗氮提供活性原子的富化气。按照活性原子的不同,热处理通常可以分为渗碳、渗氮、碳氮共渗等热处理方法。渗碳是对金属表面进行热处理的一种方法,采用渗碳的多为低碳钢或低合金钢渗碳。与其他化学热处理一样,渗碳包含三个基本过程:①分解— 渗碳介质分解产生活性碳原子;②吸附—活性碳原子被钢件表面吸收后即溶到表层奥氏体中,使奥氏体中碳含量增加;③扩散—表面碳含量增加与心部碳含量出现浓度差,表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度,同时与工件中被渗元素内外浓度差和钢中合金元素含量有关。渗碳零件的材料一般选用低碳钢或低碳合金钢(碳含量小于 0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体、残留奥氏体和少量碳化物;心部组织为韧性好的低碳马氏体或含有非马氏体的组织,但应避免出现铁素体。渗碳淬火后,工件表面产生压缩内应力,对提高工件的疲劳强度有利。因此,渗碳被广泛用以提高零件强度、冲击韧性和耐磨性,借以延长零件的使用寿命[33]。利用渗碳的方法对材料表面进行强化是一种工艺成熟、应用广泛的表面改性技术。近年来有一种等离子渗碳技术发展得越来越迅速,该技术利用辉光放电产生的电场将由气氛分离出的离子进行加速,撞击工件表面,使得碳等离子渗入到材料层面,形成一层强化层,提高材料表面的硬度、耐磨性、耐蚀性等[34-35]

  • 3.2 渗碳处理工艺

  • 3.2.1 传统渗碳热处理工艺

  • 渗碳热处理的由来历史悠久。1910 年,美国煤气炉公司使用卧式回火炉实现了渗碳。经过不断发展,1925 年前后具有生产规模的渗碳炉开始投入使用。1932 年,上海大隆机器厂开始使用含氰盐浴渗碳技术,后来由于氰化物含有毒性,气体渗碳开始成为主流渗碳工艺。最开始,气体渗碳的难点在于炉内碳势控制。上海机械制造技术研究所于 20 世纪 70 年代设计出变滴量渗碳技术,依靠渗碳炉内 CO2红外仪、电阻法等对炉内碳势进行控制。 20 世纪 70 年代末,我国洛阳拖拉机厂成功研制了氮基气氛气体渗碳。1980 年,WGOEHRING 提出综合利用氧探头、CO2 红外仪、炉温三种信息,通过微机处理对炉气碳势进行综合控制,并建立了渗碳气氛参数对碳势影响的数学模型[36]。早年间,对热处理工艺设计完全处于摸索阶段,只有通过大量的试验对比来获得较好的热处理工艺。早在 1976 年,无锡微型轴承厂针对热处理淬火工艺进行了多因素正交试验。结果显示,在 845℃保温 8 min 后的淬火回火得到的材料组织性能最佳[37]。张树理[38]在1992年发现20Cr1MoVNbTiB高温螺栓钢在热处理后,组织力学性能不稳定。针对不同尺寸的螺栓钢原料进行不同的热处理工艺。当原料直径大于 90 mm 且有粗晶的情况下,采用 1 030℃等温后转入 750℃炉内等温 3 h 后炉冷,再进行 980℃油淬和 710~720℃回火;对于小直径试样采用 980℃油淬加 700℃回火工艺。黄春峰[39]于 1994 年根据工艺试验及参考文献[40],利用数理统计方法给出了 50 种常见钢的回火方程,通过回火方程可以对回火工艺进行设计。丁盛等[41]对扁平状行星齿轮平放在载物台支架上进行渗碳后重新加热淬火,发现齿轮翘曲变形比较严重且硬度偏低。将热处理工艺改为渗碳后降温至 810℃直接淬火,并且齿轮改为悬挂形式进行渗碳淬火过程,通过工艺调整后的结果满足技术要求。周洪刚等[42] 对 17Cr2Ni2MoVNb 钢在 930℃碳势、1.25%工况下进行强渗,在碳势 1.0%工况下扩散,之后进行淬火试验,发现材料存在大量网状碳化物。对热处理工艺调整为碳势为 1.2%强渗、0.8%~0.85%扩散期、770~790℃淬火和 180℃回火的组合,得到的试验结果更符合实际生产要求。

  • 3.2.2 新型渗碳热处理工艺

  • 表面改性研究领域的工作者们还研究出多种新型的渗碳工艺[43],如真空渗碳、高温渗碳、等离子体渗碳等。真空渗碳处理是在真空炉中进行的,通常使用碳氢化合物作为碳源,在低于大气压的条件下对工件进行表面处理,并在冷却过程中采用气体淬火的方式。因此,经过真空渗碳处理的工件变形量小,且无表面氧化、脱碳等问题[44]。同时,与常规气体渗碳相比,真空渗碳能够在渗碳层中获得更细小且弥散分布的碳化物[45]。李倩等[46]对 18CrNiMo7-6 钢齿轮进行了真空脉冲渗碳处理,将齿轮表面硬度提高至 730 HV0.5。经真空渗碳处理后,18CrNiMo7-6 钢齿轮表面没有出现脱碳现象,有效硬化层深度达到 1.18 mm,渗碳层中的碳化物为一级粒状碳化物。王志新等[47]将真空渗碳应用到 20CrNi2Mo 钢齿轮的表面改性中。在渗碳过程中,渗碳温度为 960℃,强渗时间和扩渗时间之比为 1∶10。20CrNi2Mo 钢齿轮经过真空渗碳处理后,表面为银白色,没有发生表面氧化,渗碳层厚度达到 3.2 mm。高温渗碳将渗碳温度提升到 980℃及以上,通过提高碳的扩散速率实现生产效率的提高。研究表明,当渗碳温度由 900℃升至 950℃时,渗碳时间可以减少约 50%。但在高温渗碳过程中,奥氏体晶粒粗化严重,影响工件的疲劳性能。因此,研究者重点研究了适用于高温渗碳处理的本质细晶粒钢。目前这一问题主要通过钢的微合金化来解决,如在钢中加入 Nb、Ti 等合金元素,渗碳过程中在奥氏体晶界形成 Nb(C,N)、Ti(C,N)等碳化物,阻碍奥氏体晶界的迁移[48]。张国强等[49]研究发现,添加 0.10 wt.%的 Nb 元素后,可以将高温渗碳后的晶粒尺寸控制在 26 μm 左右,有效抑制了钢的高温粗化行为。GRUBE 等[50]在 19 世纪 70 年代提出等离子体渗碳热处理工艺。在等离子体渗碳设备中,待渗工件作为阴极。碳源被电离后在电势差的作用下轰击工件表面,在工件周围均匀分布,有利于获得高质量的渗碳层。渗碳气体能够被完全电离,增大了气氛中碳的活度,提高了渗碳效率[51]。因此,等离子体渗碳具有渗碳层碳浓度高、组织均匀以及渗碳效率高等优势。 BALANOVSKII等[52]分析了ST3钢经过等离子体渗碳处理后耐磨性的变化。结果表明,与传统渗碳方法相比,与相同的磨料颗粒相互作用时,通过等离子体渗碳得到的表面耐磨性提高了 50%。DONG 等[53] 用空心阴极放电的方法增加了工件周围等离子体的密度,提高了渗碳动力学。在有空心阴极放电辅助时获得的 12CrNi2 钢渗碳层与无空心阴极放电辅助时获得的渗碳层相比,淬硬层深度增加了约 300 μm,表面硬度提高了 157 HV,摩擦因数降低了 0.04,钢的性能进一步得到了提高。渗碳过程包含钢的表面反应、碳原子在钢中的扩散等子过程[54],它们共同影响渗碳效率和渗碳层质量。不同的渗碳方法具有不同的表面反应,而碳原子在钢中的扩散均遵循扩散定律。不同的渗碳方法有各自的优缺点,须要根据待渗工件的特点和性能需求选择合适的渗碳方法以及工艺参数。

  • 3.3 等离子渗碳技术原理与发展

  • 等离子体一词是 LANGMUIR 在 19 世纪 30 年代引入到物理文献中的[55],用于表示气体放电中正负电荷相等而呈电中性的区域。更早可追溯到 1879 年不列颠协会的 WILLIAM,他在做气体导电试验时确认放电管中存在物质的第四态(等离子体)。20 世纪 60 年代以来,等离子体技术在物理、化学、电子学等学科交叉基础上发展成一门新兴学科[56],得到广泛的研究和应用。等离子体是一种电离度超过 0.10%的气体,是由离子、电子和中性粒子(原子和分子)所组成的集合体。等离子体整体呈中性,但有相当数量的电子和离子表现出相应的电磁学等性能,如等离子中有带电粒子的热运动和扩散,也有电场作用下的迁移。等离子体是一种物质能量较高的聚集状态,它的能量范围比气态、液态、固态物质都高,所以被称为物质的第四态[57]。等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,因此引起了世界各地研究者的兴趣[51]

  • 3.3.1 等离子渗碳技术原理

  • 等离子渗碳的机理是在电场作用下,碳源(气体、固体)在空气中发生离解、电离,带电粒子会向试件表面产生定向移动,轰击表面形成渗碳。相比于其他渗碳工艺,等离子渗碳时到达工件的离子和活性原子数更多。碳离子的撞击打入作为等离子渗碳独有的渗碳特点,增加了工件内部碳离子浓度梯度,加速了碳离子向试样内部的扩散。相比于气体渗碳和激光渗碳,等离子渗碳时高速移动的碳原子使工件表面的碳原子含量快速增加,快速的扩散相应缩短了循环周期。碳氢化合物分子的激发和离化仅在阴极降压区域发生,即直接在工件附近进行。由于等离子渗碳是依靠电场力驱使碳离子加速撞击工件而实现渗碳,可在低压气氛下进行,且容易控制,不会出现氧化、脱碳等现象[58]

  • 3.3.2 等离子渗碳技术的发展

  • 第一次尝试使用等离子体加速碳渗过程中的碳转移可以追溯到 20 世纪 70 年代。20 世纪 80 年代见证了该工艺的主要发展和第一次工业应用。接下来的 10 年,该技术应用在工业的各个分支。纵观等离子渗碳技术的发展历史和当今工业对其提出的要求,可以预见等离子渗碳技术在新世纪的光明前景[59]

  • 渗碳技术有着悠久的历史。最初是将价格低廉的低碳合金钢材料在碳基气氛中加热,使活性碳原子渗入母材表面的热处理方法,直到今天仍然是一种较好的提高不锈钢表面硬度、耐磨性和疲劳强度的表面改性技术。传统的高温气体渗碳技术存在着许多问题,如晶界氧化物的产生导致了渗碳层异常,降低了合金钢的硬度和疲劳强度,且处理时间长、能耗大、渗碳层薄、碳浓度低。而真空渗碳虽然可以改善表面质量,但依旧无法摆脱处理时间长、处理温度高等问题。等离子体是一种由离子、电子和中性分子组成的电离态气体,整体呈电中性,常被认为是除固、液、气外,物质存在的第四形态。等离子体技术的发展为许多先进领域的发展提供了新技术和工艺。20 世纪 70 年代,美国通用汽车公司利用辉光放电原理将等离子体渗碳技术引入到工业技术层面。经试验得出,温度相同下,等离子体渗碳的效率要远高于真空渗碳[60]。进入 20 世纪 80 年代,起步较晚的等离子体渗碳技术在诸多方面都取得了长足发展,很快进入到了应用领域。进入 20 世纪 90 年代,等离子体渗碳在各领域的应用进一步扩展,不但应用在各大交通工具上,而且在磨具上也得到了广泛应用。但是,传统的等离子体渗碳会使不锈钢渗碳层中析出碳化物,虽然该技术可以提高表面硬度,但是耐腐蚀性能严重降低,丧失了不锈钢应有的特性。为解决这些问题,等离子体低温渗碳技术迅速发展起来。等离子体渗碳技术和等离子体渗氮技术很相似,都是利用气体辉光放电原理,将工件放在阴极,炉体为阳极,阴极和阳极之间加上几百伏的直流脉冲电压,烷类气体(以 CH4 为例)和氢气在电场的作用下发生离化。相比较于传统等离子体渗碳,等离子体低温渗碳技术具有鲜明的工艺特点。烷类气体在辉光放电的作用下被电离成活性碳,这种活性碳的获得方式在其他低温渗碳中是不存在的。离子渗碳过程中,中性分子与带电粒子在电场作用下共同向工件表面做定向运动,到达工件表面的活性碳原子要比在真空渗碳中多,从而大幅度提高了渗碳速度,节约了渗碳时间和工作气体,提高了渗碳效率。在小于 500℃的条件下进行渗碳处理,使大量的活性碳原子通过奥氏体不锈钢表面进入到奥氏体八面体间隙中,形成了渗碳层,碳原子固溶于奥氏体八面体间隙中,无碳化物析出,这种结构称为γC。由于碳原子溶入奥氏体,原先的奥氏体面心立方晶格发生膨胀,进而导致点阵常数增大,从而大幅度提高了奥氏体不锈钢表面的硬度和耐磨性。同时因为低温未析出碳化物,不锈钢的耐腐蚀性没有损失,并且其耐孔蚀能力有所提高。但是γC 相是一种不稳定相,当高于某一温度时,γC 相将发生分解,析出铬碳化合物[61],耐腐蚀性能丧失。英国伯明翰大学的 BELL 在奥氏体不锈钢低温渗碳处理(Low temperature carburizing process,LTCP)表面改性技术方面已取得一定的研究成果[62]。近十几年来,低温渗碳技术不断发展进步,奥氏体不锈钢低温等离子体渗碳技术已成为最有发展前途的等离子体表面硬化技术。20 世纪 90 年代初,英国伯明翰大学的 SUN 率先用含碳气体代替渗氮气体进行了离子渗碳处理,并成功获得了一层γC 相渗碳层[63]。相比较于离子渗氮,离子渗碳所得到的硬化层更为均匀,且具有平缓的硬度梯度,因而渗碳层韧性更好,承载能力更强。离子渗碳技术也因此受到了国内外专家学者的广泛研究和关注。

  • 在传统的等离子体渗碳过程中,气态碳氢化合物作为碳源,在 900~1 000℃温度范围内产生活性炭原子。例如,KIM 等[64]在 900℃、250 MPa、 21.6 ks 的条件下,在 Ti-6Al-4V 合金上制备了 150 μm 厚的渗碳层。渗碳后,合金表面被细小且均匀分散的 TiC 和 V4C3 颗粒覆盖,使合金硬度从基体的 400 HV 提高到表面的 1 600 HV。表面形成的碳化物可将耐磨性和疲劳寿命提高两倍以上,断裂模式由韧性断裂转变为韧性断裂,渗碳处理后形成韧性和脆性的混合断裂。

  • 等离子体固体渗碳在上述常规渗碳过程中,碳源均为甲烷或乙炔,这必然会导致钛合金的氢脆。因此,采用以高纯固体石墨为碳源的等离子体无氢渗碳工艺,避免了氢脆性的发生[65-67]。JI 等[68]将 Ti-6Al-4V 合金放入真空炉进行无氢渗碳,发现渗碳后没有形成杂化或含氢相。渗碳层由疏松吸积层 (TiC)、渗碳层(TiC)和扩散层(固溶体和少量 TiC)组成。XING 和 ZHANG 等[69-71]使用等离子体无氢渗碳技术处理 Ti-6Al-4V 合金。结果表明,渗碳后的渗碳层由一层薄薄的化合物(TiC)层构成,表层为 TiC / α-Ti 混合层(图10)。复合层(TiC) 和 TiC / α-Ti 混合层分别对应渗碳层和扩散层。然而,没有观察到吸积层。结果表明,加工时间[70] 和加工温度[71]对 Ti-6Al-4V 合金的组织和性能均有显著影响。渗碳层的厚度随渗碳时间增加而增加。在 950℃处理 3 h 时,由于其碳含量最高,硬度最高。当加工温度为 900~1 000℃时,950℃时的硬度最大、耐磨性最佳,这是由于硬化层深度最高、摩擦因数最低。

  • 图10 Ti-6Al-4V 合金在 950℃ 2 h 碳化的截面组织[70]

  • Fig.10 Cross-sectional structure of Ti-6Al-4V alloy carbonized at 950℃ for 2h[70]

  • X 射线衍射结果表明,样品表面主要由 TiC、 V8C7、α-Ti、β-Ti 和游离碳[72]组成。渗碳过程中,固体石墨中的活性碳原子与钛原子发生反应,在 Ti-6Al-4V 表面形成钛碳化物。由图11 TiC 相图可知,当碳含量为 19.2%时,TiC 和石墨开始形成。此外,活性炭原子扩散到 Ti-6Al-4V 合金表面形成固溶体。在920℃时,碳在α-Ti中的最大固溶度约为 0.5 wt.%。Ti-6Al-4V 合金在 995℃[73]时α相转变为β相。900℃渗碳样品α-相布拉格峰左移,表明碳原子溶解到α-Ti 晶格中。950℃和 1 000℃处理的样品布拉格峰移位值相同,表明碳在α-Ti 中的固溶性有限,如图11 所示。

  • 图11 TiC 二相图[72]

  • Fig.11 TiC two-phase diagram[72]

  • 4 结论与展望

  • 等离子喷涂具有生产效率高、成本低的显著优势,近年来常用于制备吸波涂层。目前吸波涂层不仅需要满足高吸波性、耐久性、宽带性,还要在满足使用需求的基础上尽可能的薄,以减轻装备整体的重量。在军事应用中,吸波涂层具有抵抗电磁干扰或者电磁脉冲、耐高温以及与基体高结合强度的优点。目前,国内外对于等离子喷涂制备吸波涂层以及等离子渗碳表面改性技术进行了大量的研究。总体看,等离子喷涂和等离子渗碳技术已经日趋成熟,且经过改性后的材料具有良好的耐腐蚀、吸波性能、耐磨损性能,故而在航空航天等领域具有广泛应用。然而,为了进一步提升材料的综合使用性能,还须在以下几个方面进行深入研究:

  • (1)等离子喷涂技术除了调节基础的喷涂工艺参数之外,通过对电磁参数、力学性能等进行协同设计,探究新型喷涂工艺的调控方法,更好满足雷达吸波涂层吸波能力强、涂层厚度薄等要求,得到性能更加优异的吸波涂层。

  • (2)等离子喷涂制备的吸波涂层主要用于武器装备等材料表面。涂层与基体的结合强度须要不断提高以满足在良好电磁吸收性能的条件下具有良好的耐高温抗热振性。

  • (3)合理调节等离子渗碳的加工时间和温度可改善材料性能。等离子渗碳工艺参数可进一步优化。另外在如残余应力、晶界、位错等渗碳机理方面的研究还须进一步的深化。

  • 参考文献

    • [1] TENNANT A,CHAMBERS B.Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface[J].Smart Materials and Structures,2003,13(1):122-125.

    • [2] LIU R,JI C,MOCK J J,et al.Broadband ground-plane cloak[J].Science,2009,323(5912):366-369.

    • [3] CHIN W S,LEE D G,et al.Development of the composite RAS(radar absorbing structure)for the X-band frequency range[J].Composite Structures,2007,77(4):457-465.

    • [4] HERNÁNDEZ-BARRIOS C A,SAAVEDRA J A,HIGUERA S L,et al.Effect of cerium on the physicochemical and anticorrosive features of TEOS-GPTMS sol-gel coatings deposited on the AZ31 magnesium alloy[J].Surfaces and Interfaces,2020,21:100671.

    • [5] MOSAYEBI S,REZAEI M,MAHIDASHTI Z.Comparing corrosion behavior of Ni and Ni-Mo electroplated coatings in chloride mediums[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,594:124654.

    • [6] GUAN X,XU X,HONG W,et al.Double-layer gradient MoSi2-borosilicate glass coating prepared by in-situ reaction method with high contact damage resistance and interface bonding strength[J].Journal of Alloys and Compounds,2020,822:153720.

    • [7] 张昊,张晶晶,刘旭,等.等离子喷涂不同比例掺杂 G-Al2O3-13% TiO2 复合涂层的耐腐蚀性能[J].中国表面工程,2020,33(3):95-103.ZHANG Hao,ZHANG Jingjing,LIU Xu,et al.Corrosion resistance of plasma spraying with different proportions doped G-Al2O3-13% TiO2 composite coating[J].China Surface Engineering,2020,33(3):95-103.(in Chinese)

    • [8] 魏新龙,朱无言,朱德佳,等.热喷涂制备铁基非晶涂层耐腐蚀性能的研究进展[J].南京工业大学学报(自然科学版),2020,42(1):1-8.WEI Xinlong,ZHU Wuyan,ZHU Dejia,et al.Research progress on corrosion resistance of iron-based amorphous coatings prepared by thermal spraying[J].Journal of Nanjing University of Technology(Natural Science Edition),2020,42(1):1-8.(in Chinese)

    • [9] 袁晓静,查柏林,陈小虎,等.WC-10Co-4Cr 涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J].材料工程,2019,47(5):63-71.YUAN Xiaojing,ZHA Bolin,CHEN Xiaohu,et al.Corrosion resistance of WC-10Co-4Cr coating in acid and NaCl solution at different temperatures[J].Journal of Materials Engineering,2019,47(5):63-71.(in Chinese)

    • [10] 路广明,刘宏伟,乌日开西·艾依提.等离子喷涂氧化铝复合涂层的研究进展[J].热加工工艺,2018,47(6):5-8,14.LU Guangming,LIU Hongwei,WURIKAISI Ayiti.Research progress of plasma spraying alumina composite coating[J].Hot Working Technology,2018,47(6):5-8,14.(in Chinese)

    • [11] 刘立营,李太江,李勇,等.低压等离子喷涂MCrAlY涂层的高温耐腐蚀性能[J].金属热处理,2017,42(9):195-201.LIU Liying,LI Taijiang,LI Yong,et al.High temperature corrosion resistance of MCrAlY coating coated with low pressure plasma[J].Metal Heat Treatment,2017,42(9):195-201.(in Chinese)

    • [12] HAM G S,KIM K W,CHO G S,et al.Fabrication,microstructure and wear properties of novel Fe-Mo-Cr-C-B metallic glass coating layers manufactured by various thermal spray processes[J].Materials & Design,2020:109043.

    • [13] ZHAO C,HE W,WEI L,et al.Microstructures of La2Ce2O7 coatings produced by plasma spray-physical vapor deposition[J].Journal of the European Ceramic Society,2020,40(4):1462-1470.

    • [14] 黄华栋,卞达,秦卢梦,等.石墨烯/碳纳米管增强氧化铝陶瓷涂层的耐腐蚀性能研究[J].中国陶瓷,2019,55(5):1-6.HUANG Huadong,BIAN Da,QIN Lumeng,et al.Study on corrosion resistance of graphene/carbon nanotube reinforced alumina ceramic coating[J].China Ceramics,2019,55(5):1-6.(in Chinese)

    • [15] CHAKRABORTY A,GOVARDHANA P,MONDAL A,et al.Microstructural development of prior nickel coated hot dipped galvanised coatings[J].Journal of Alloys and Compounds,2017,699:648-656.

    • [16] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Application and research progress and challenges of thermal spraying technology[J].Thermal Spraying Technology,2018,10(4):1-22.(in Chinese)

    • [17] 邓文兴.热喷涂制备陶瓷基复合涂层及其性能研究[D].上海:上海海洋大学,2022.DENG Wenxing.Preparation of ceramic-based compositecoating by thermal spraying and its properties[D].Shanghai:Shanghai Ocean University,2022.(in Chinese)

    • [18] 李少伟,李疆,田煜,等.等离子喷涂制备超疏水表面研究进展[J].材料工程,2023,51(2):1-18.LI Shaowei,LI Jiang,TIAN Yu,et al.Research progress on preparation of superhydrophobic surfaces by plasma spraying[J].Materials Engineering,2023,51(2):1-18.(in Chinese)

    • [19] 唐强,伍建华,颜超,等.大气等离子喷涂工艺参数对 Al2O3 涂层性能的影响[J].材料保护,2019,52(4):106-109,115.TANG Qiang,WU Jianhua,YAN Chao,et al.Effects of atmospheric plasma spraying process parameters on the properties of Al2O3 coatings[J].Materials Protection,2019,52(4):106-109,115.(in Chinese)

    • [20] 司先锋,马壮,高丽红,等.等离子喷涂沉积 Al2O3-SiO2 涂层的光学性能[J].硅酸盐学报,2019,47(2):236-242.SI Xianfeng,MA Zhuang,GAO Lihong,et al.Optical properties of plasma spray deposition Al2O3-SiO2 coating[J].Journal of the Chinese Ceramic Society,2019,47(2):236-242.(in Chinese)

    • [21] 赵杰荣,李云,郭纯,等.等离子喷涂 Ni/h-BN 复合涂层的制备及其摩擦学性能[J].热加工工艺,2023,52(6):109-115.ZHAO Jierong,LI Yun,GUO Chun,et al.Preparation and frictional properties of plasma sprayed Ni/h-BN composite coatings[J].Hot Working Technology,2023,52(6):109-115.(in Chinese)

    • [22] 吴艳鹏,魏剑辉,李文戈,等.铝合金表面等离子喷涂 Al2O3-3% TiO2 复合涂层工艺参数优化的研究[J].表面技术,2019,48(6):322-331.WU Yanpeng,WEI Jianhui,LI Wenge,et al.Study on optimization of process parameters of aluminum alloy surface plasma spraying Al2O3-3% TiO2 composite coating[J].Surface Technology,2019,48(6):322-331.(in Chinese)

    • [23] YANG X.Rolling contact fatigue life of supersonic plasma sprayed Ni60A coatings[J].Journal of Mechanical Engineering,2016,52(20):38-43.

    • [24] 郑广芝,王敏,袁建辉,等.大气等离子喷涂 Al2O3/ZnO/TiO2 涂层微波介电性能的研究[J].功能材料,2022,53(1):1128-1133.ZHENG Guangzhi,WANG Min,YUAN Jianhui,et al.Study on microwave dielectric properties of atmospheric plasma spraying Al2O3/ZnO/TiO2 coating[J].Journal of Functional Materials,2022,53(1):1128-1133.(in Chinese)

    • [25] LIU X,LU X,SONG Y,et al.Plasma-sprayed graphene nanosheets/ZnO/Al2O3 coatings with highly efficient microwave absorption properties[J].Thermal Spray Technology,2021,30(6):1524-1534.

    • [26] ZHOU L,SU G X,WANG H B,et al.Influence of NiCrAlY content on dielectric and microwave absorption properties of NiCrAlY/Al2O3 composite coatings[J].Journal of Alloys and Compounds,2019,777:478-484.

    • [27] GAO C,JIANG Y,CAI D,et al.High-temperature dielectric and microwave absorption property of atmospheric plasma sprayed Al2O3-MoSi2-Cu composite coating[J].Coatings,2021,11(9):1029.

    • [28] SHAO T,MA H,WANG J,et al.High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material[J].Journal of the European Ceramic Society,2020,40(5):2013-2019.

    • [29] LISJAK D,BÉGARD M,BRUEHL M,et al.Hexaferrite/polyester composite coatings for electromagnetic-wave absorbers[J].Journal of Thermal Spray Technology,2011,20:638-644.

    • [30] BU A,ZHANG Y,XIANG Y,et al.Enhanced antioxidation and microwave absorbing properties of SiC/SiO2 coating on carbon fiber[J].Materials Science and Electronics:Materials Science and Electronic Technology,2020,31:17067-17074.

    • [31] YANG Z N,REN W,ZHU L,et al.Electromagnetic-wave absorption property of Cr2O3-TiO2 coating with frequency selective surface[J].Journal of Alloys and Compounds,2019,803:111-117.

    • [32] LI R,QING Y.Effects of Multi-components on the microwave absorption and dielectric properties of plasma-sprayed carbon nanotube/Y2O3/ZrB2 ceramics[J].Nanomaterials,2021,11(10):2640.

    • [33] 潘邻.现代表面热处理技术[M].北京:机械工业出版社,2017.PAN Lin.Modern surface heat treatment technology[M].Beijing:China Machine Press,2017.

    • [34] 唐光昕,朱张校.离子轰击渗扩技术的特点及应用[J].表面技术,2002,31(3):52-53,57.TANG Guangxin,ZHU Zhangxiao.Characteristics and application of ion bombardment permeation technology[J].Surface Technology,2002,31(3):52-53,57.(in Chinese)

    • [35] 山中久彦.离子渗氮[D].李贻锦,朱雅年,译.北京:机械工业出版社.1985.HISAHIKO YAMANAKA.Ion nitriding[D].LI Yijin,ZHU Yanian,translated.Beijing:China Machine Press.1985.(in Chinese)

    • [36] 郭德胜.基于AVR的碳势控制系统的研究与开发[D].西安:西安科技大学,2010.GUO Desheng.Research and development of AVR-based carbon potential control system[D].Xi’ an:Xi’ an University of Science and Technology,2010.(in Chinese)

    • [37] 无锡微型轴承厂.采用多因素优选正交试验设计改进热处理淬火工艺[J].江苏机械,1976(2):200-208.Wuxi Micro Bearing Factory.Improved heat treatment quenching process by multi-factor preferred orthogonal experimental design[J].Jiangsu Machinery,1976(2):200-208.(in Chinese)

    • [38] 张树理.20Cr1Mo1VNbTiB高温螺栓钢热处理工艺的优化设计[J].华北电力技术,1992(5):31-36.ZHANG Shuli.Optimization design of heat treatment process of 20Cr1Mo1VNbTiB high temperature bolted steel[J].North China Electric Power Technology,1992(5):31-36.(in Chinese)

    • [39] 黄春峰.钢的热处理工艺设计[J].铸锻热,1994(3):18-23.HUANG Chunfeng.Design of heat treatment process of steel[J].Casting and Forging Heat,1994(3):18-23.(in Chinese)

    • [40] 赵振东.新钢种热处理工艺设计[J].新技术新工艺,1993(2):6,8,10.ZHAO Zhendong.Heat treatment process design for new steel types[J].New Technology and New Processes,1993(2):6,8,10.(in Chinese)

    • [41] 丁盛,顾伟伟,杨威.某行星齿轮的渗碳淬火工艺优化 [J].热加工工艺,2020,49(4):151-153.DING Sheng,GU Weiwei,YANG Wei.Optimization of carburizing and quenching process of a planetary gear[J].Hot Working Technology,2020,49(4):151-153.(in Chinese)

    • [42] 周洪刚,朱旭,刘克,等.17Cr2Ni2MoVNb 钢的渗碳淬火工艺[J].金属热处理,2019,44(10):117-121.ZHOU Honggang,ZHU Xu,LIU Ke,et al.Carburizing and quenching process of 17Cr2Ni2MoVNb steel[J].Heat Treatment of Metals,2019,44(10):117-121.(in Chinese)

    • [43] EDWARD J,KUBCL J R,宣天鹏,等.发展中的渗碳技术[J].国外金属热处理,1991(1):13-18.EDWARD J,KUBCL J R,XUAN Tianpeng,et al.Carburizing technology under development[J].Foreign Metal Heat Treatment,1991(1):13-18.(in Chinese)

    • [44] STRATTON P F,BRUCE S,CHEETHAM VLow-pressure carburizing systems:A review of current technology[J].China Surface Engineering,2006,151(11):451-456.

    • [45] WANG H,WANG B,WANG Z,et al.Optimizing the low-pressure carburizing process of 16Cr3NiWMoVNbE gear steel[J].Journal of Materials Science & Technology,2019,35(7):1218-1227.

    • [46] 李倩,丛培武,王赫,等.18CrNiMo7-6 钢齿轮真空渗碳[J].金属热处理,2017,42(3):69-71.LI Qian,CONG Peiwu,WANG He,et al.18CrNiMo7-6 steel gear vacuum carburizing[J].Heat Treatment of Metals,2017,42(3):69-71.(in Chinese)

    • [47] 王志新,施建军,梅俊歌,等.20CrNi2Mo 钢真空渗碳工艺及数值模拟[J].金属热处理,2017,42(11):117-122.WANG Zhixin,SHI Jianjun,MEI Junge,et al.Vacuum carburizing process and numerical simulation of 20CrNi2Mo steel[J].Heat Treatment of Metals,2017,42(11):117-122.(in Chinese)

    • [48] 杨延辉,王毛球,陈敬超,等.高温渗碳齿轮钢的研究进展[J].特殊钢,2013,34(1):22-24.YANG Yanhui,WANG Maoqiu,CHEN Jingchao,et al.Research progress of high temperature carburized gear steel[J].Special Steel,2013,34(1):22-24.(in Chinese)

    • [49] 张国强,何肖飞,尉文超,等.高温渗碳齿轮钢的晶粒粗化行为[J].钢铁,2019,54(5):68-72.ZHANG Guoqiang,HE Xiaofei,WEI Wenchao,et al.Grain coarsening behavior of high-temperature carburized gear steel[J].Iron and Steel,2019,54(5):68-72.(in Chinese)

    • [50] GRUBE W L,GAY J G.High-rate carburizing in a glow-discharge methane plasma[J].Metallurgical Transactions A,1978,9(10):1421-1429.

    • [51] 王金双,赵步青,陆臻.等离子体表面改性技术及其应用[J].机械工人,2001(5):56-57.WANG Jinshuang,ZHAO Buqing,LU Zhen.Plasma surface modification technology and its application[J].Mechanical Worker,2001(5):56-57.(in Chinese)

    • [52] BALANOVSKII A E,VAN H V.Estimation of wear resistance of plasma-carburized steel surface in conditions of abrasive wear[J].Journal of Friction and Wear,2018,39(4):311-318.

    • [53] DONG Z H,ZHANG W,KANG H W,et al.Surface hardening of laser melting deposited 12CrNi2 alloy steel by enhanced plasma carburizing via hollow cathode discharge[J].Surface and Coatings Technology,2020,397:125976.

    • [54] SPROGE L,AGREN J.Experimental and theoreticalstudies of gas consumption in the gas carburizing process[J].Journal of Heat Treating,1988,6(1):9-19.

    • [55] LANGMUIR I.Oscillations in ionized gases[J].Proceedings of the National Academy of Sciences,1928,14(8):627-637.

    • [56] 朱元右.低温等离子体在金属材料表面改性中的应用[J].江苏冶金,2004(2):12-15.ZHU Yuanyou.Application of low-temperature plasma in surface modification of metal materials[J].Jiangsu Metallurgy,2004(2):12-15.(in Chinese)

    • [57] 王健,马驰,陈尔凡,等.离子体表面改性技术[J].辽宁化工,2012,41(5):486-487,525.WANG Jian,MA Chi,CHEN Erfan.Plasma surface modification technology[J].Liaoning Chemical Industry,2012,41(5):486-487,525.(in Chinese)

    • [58] 庄唯,王耀勉,杨换平,等.钛合金渗碳处理研究进展 [J].材料导报,2020,34(S2):1344-1347,1355.ZHUANG Wei,WANG Yaomian,YANG Huanping,et al.Research progress of carburizing treatment of titanium alloy[J].Materials Reports,2020,34(S2):1344-1347,1355.(in Chinese)

    • [59] EDENHOFER B,GRÄFEN W,MÜLLER-ZILLER.Plasma-carburising a surface heat treatment process for the new century[J].Surface & Coatings Technology,2001,142:225-234.

    • [60] 李炳华.快速渗碳技术-等离子渗碳[J].金属加工(热加工),1997(3):2-5.LI Binghua.Rapid carburizing technology-plasma carburizing[J].Metal Processing(Hot Working),1997(3):2-5.(in Chinese)

    • [61] THOMAS B,CHEN X L.不锈钢低温渗氮和渗碳(续)[J].热处理,2003,18(2):59-60.THOMAS B,CHEN X L.Low temperature nitriding and carburizing processes for stainless steel(continuance)[J].Heat Treatment,2003,18(2):59-60.(in Chinese)

    • [62] SUN Y,BELL T.Dry sliding wear resistance of low temperature plasma carburized austenitic stainless steel[J].Wear,2002,253(5-6):689-693.

    • [63] 徐滨士,刘世参.中国材料工程大典第16卷材料表面工程(上册)[M].北京:化学工业出版社,2006.XU Binshi,LIU Shican.Chinese materials engineering dictionary,Volume 16,Material Surface Engineering(Volume I)[M].Beijing:Chemical Industry Press,2006.(in Chinese)

    • [64] KIM T S,PARK Y G,WEY M Y.Characterization ofTi-6Al-4V alloy modified by plasma carburizing process[J].Materials Science and Engineering A,2003,361(1-2):275-280.

    • [65] LI Z,ZHOU H,DU J,et al.Double-glow discharged plasma non-hydrogen carburizing on titanium alloy surface[J].Rare Metal Materials and Engineering,2004,33(12):1355-1357.

    • [66] ZHANG G H,PAN J D,ZHANG P Z,et al.Friction and wear behavior of double glow plasma no-hydrogen carburized layer on titanium alloy[J].Tribology,2004,24(2):111-114.

    • [67] ZHANG G H,ZHANG P Z,GE H L,et al.The preparation processing parameter study of the double glow discharge plasma hydrogen-free carburizing on titanium alloy surface[J].Transactions of Materials and Heat Treatment,2001,28:110-114.

    • [68] JI S,LI Z,DU J,et al.Analysis of hydrogen-free carburized coating on Ti6Al4V substrate[J].Rare Metal Materials and Engineering,2010,39(12):2152-2156.

    • [69] XING Y Z,JIANG C P,HAO J M.Surface strengthen of Ti-6Al-4V alloy by glow plasma carbonization process[J].Rare Metal Materials and Engineering,2013,42(6):1101-1104.

    • [70] XING Y Z,JIANG C P,HAO J M.Time dependence of microstructure and hardness in plasma carbonized Ti-6Al-4V alloys[J].Vacuum,2013,95:12-17.

    • [71] ZHANG Y,WEI Q L,XING Y Z,et al.Evaluation of microstructure and wear properties of Ti-6Al-4V alloy plasma carbonized at different temperatures[J].Wuhan University of Technology-Materials Science Education,2015,30(3):631-638.

    • [72] TANG R,TIAN R.Binary alloy phase diagrams and crystal structure of intermediate phase[M].Changsha:Central South University Press,2009.

    • [73] VEIGA C,DAVIM J P,LOUREIRO A J R.Properties and applications of titanium alloys:A brief review[J].Reviews on Advanced Materials Science,2012,32(2):133-148.

  • 参考文献

    • [1] TENNANT A,CHAMBERS B.Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface[J].Smart Materials and Structures,2003,13(1):122-125.

    • [2] LIU R,JI C,MOCK J J,et al.Broadband ground-plane cloak[J].Science,2009,323(5912):366-369.

    • [3] CHIN W S,LEE D G,et al.Development of the composite RAS(radar absorbing structure)for the X-band frequency range[J].Composite Structures,2007,77(4):457-465.

    • [4] HERNÁNDEZ-BARRIOS C A,SAAVEDRA J A,HIGUERA S L,et al.Effect of cerium on the physicochemical and anticorrosive features of TEOS-GPTMS sol-gel coatings deposited on the AZ31 magnesium alloy[J].Surfaces and Interfaces,2020,21:100671.

    • [5] MOSAYEBI S,REZAEI M,MAHIDASHTI Z.Comparing corrosion behavior of Ni and Ni-Mo electroplated coatings in chloride mediums[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,594:124654.

    • [6] GUAN X,XU X,HONG W,et al.Double-layer gradient MoSi2-borosilicate glass coating prepared by in-situ reaction method with high contact damage resistance and interface bonding strength[J].Journal of Alloys and Compounds,2020,822:153720.

    • [7] 张昊,张晶晶,刘旭,等.等离子喷涂不同比例掺杂 G-Al2O3-13% TiO2 复合涂层的耐腐蚀性能[J].中国表面工程,2020,33(3):95-103.ZHANG Hao,ZHANG Jingjing,LIU Xu,et al.Corrosion resistance of plasma spraying with different proportions doped G-Al2O3-13% TiO2 composite coating[J].China Surface Engineering,2020,33(3):95-103.(in Chinese)

    • [8] 魏新龙,朱无言,朱德佳,等.热喷涂制备铁基非晶涂层耐腐蚀性能的研究进展[J].南京工业大学学报(自然科学版),2020,42(1):1-8.WEI Xinlong,ZHU Wuyan,ZHU Dejia,et al.Research progress on corrosion resistance of iron-based amorphous coatings prepared by thermal spraying[J].Journal of Nanjing University of Technology(Natural Science Edition),2020,42(1):1-8.(in Chinese)

    • [9] 袁晓静,查柏林,陈小虎,等.WC-10Co-4Cr 涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J].材料工程,2019,47(5):63-71.YUAN Xiaojing,ZHA Bolin,CHEN Xiaohu,et al.Corrosion resistance of WC-10Co-4Cr coating in acid and NaCl solution at different temperatures[J].Journal of Materials Engineering,2019,47(5):63-71.(in Chinese)

    • [10] 路广明,刘宏伟,乌日开西·艾依提.等离子喷涂氧化铝复合涂层的研究进展[J].热加工工艺,2018,47(6):5-8,14.LU Guangming,LIU Hongwei,WURIKAISI Ayiti.Research progress of plasma spraying alumina composite coating[J].Hot Working Technology,2018,47(6):5-8,14.(in Chinese)

    • [11] 刘立营,李太江,李勇,等.低压等离子喷涂MCrAlY涂层的高温耐腐蚀性能[J].金属热处理,2017,42(9):195-201.LIU Liying,LI Taijiang,LI Yong,et al.High temperature corrosion resistance of MCrAlY coating coated with low pressure plasma[J].Metal Heat Treatment,2017,42(9):195-201.(in Chinese)

    • [12] HAM G S,KIM K W,CHO G S,et al.Fabrication,microstructure and wear properties of novel Fe-Mo-Cr-C-B metallic glass coating layers manufactured by various thermal spray processes[J].Materials & Design,2020:109043.

    • [13] ZHAO C,HE W,WEI L,et al.Microstructures of La2Ce2O7 coatings produced by plasma spray-physical vapor deposition[J].Journal of the European Ceramic Society,2020,40(4):1462-1470.

    • [14] 黄华栋,卞达,秦卢梦,等.石墨烯/碳纳米管增强氧化铝陶瓷涂层的耐腐蚀性能研究[J].中国陶瓷,2019,55(5):1-6.HUANG Huadong,BIAN Da,QIN Lumeng,et al.Study on corrosion resistance of graphene/carbon nanotube reinforced alumina ceramic coating[J].China Ceramics,2019,55(5):1-6.(in Chinese)

    • [15] CHAKRABORTY A,GOVARDHANA P,MONDAL A,et al.Microstructural development of prior nickel coated hot dipped galvanised coatings[J].Journal of Alloys and Compounds,2017,699:648-656.

    • [16] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Application and research progress and challenges of thermal spraying technology[J].Thermal Spraying Technology,2018,10(4):1-22.(in Chinese)

    • [17] 邓文兴.热喷涂制备陶瓷基复合涂层及其性能研究[D].上海:上海海洋大学,2022.DENG Wenxing.Preparation of ceramic-based compositecoating by thermal spraying and its properties[D].Shanghai:Shanghai Ocean University,2022.(in Chinese)

    • [18] 李少伟,李疆,田煜,等.等离子喷涂制备超疏水表面研究进展[J].材料工程,2023,51(2):1-18.LI Shaowei,LI Jiang,TIAN Yu,et al.Research progress on preparation of superhydrophobic surfaces by plasma spraying[J].Materials Engineering,2023,51(2):1-18.(in Chinese)

    • [19] 唐强,伍建华,颜超,等.大气等离子喷涂工艺参数对 Al2O3 涂层性能的影响[J].材料保护,2019,52(4):106-109,115.TANG Qiang,WU Jianhua,YAN Chao,et al.Effects of atmospheric plasma spraying process parameters on the properties of Al2O3 coatings[J].Materials Protection,2019,52(4):106-109,115.(in Chinese)

    • [20] 司先锋,马壮,高丽红,等.等离子喷涂沉积 Al2O3-SiO2 涂层的光学性能[J].硅酸盐学报,2019,47(2):236-242.SI Xianfeng,MA Zhuang,GAO Lihong,et al.Optical properties of plasma spray deposition Al2O3-SiO2 coating[J].Journal of the Chinese Ceramic Society,2019,47(2):236-242.(in Chinese)

    • [21] 赵杰荣,李云,郭纯,等.等离子喷涂 Ni/h-BN 复合涂层的制备及其摩擦学性能[J].热加工工艺,2023,52(6):109-115.ZHAO Jierong,LI Yun,GUO Chun,et al.Preparation and frictional properties of plasma sprayed Ni/h-BN composite coatings[J].Hot Working Technology,2023,52(6):109-115.(in Chinese)

    • [22] 吴艳鹏,魏剑辉,李文戈,等.铝合金表面等离子喷涂 Al2O3-3% TiO2 复合涂层工艺参数优化的研究[J].表面技术,2019,48(6):322-331.WU Yanpeng,WEI Jianhui,LI Wenge,et al.Study on optimization of process parameters of aluminum alloy surface plasma spraying Al2O3-3% TiO2 composite coating[J].Surface Technology,2019,48(6):322-331.(in Chinese)

    • [23] YANG X.Rolling contact fatigue life of supersonic plasma sprayed Ni60A coatings[J].Journal of Mechanical Engineering,2016,52(20):38-43.

    • [24] 郑广芝,王敏,袁建辉,等.大气等离子喷涂 Al2O3/ZnO/TiO2 涂层微波介电性能的研究[J].功能材料,2022,53(1):1128-1133.ZHENG Guangzhi,WANG Min,YUAN Jianhui,et al.Study on microwave dielectric properties of atmospheric plasma spraying Al2O3/ZnO/TiO2 coating[J].Journal of Functional Materials,2022,53(1):1128-1133.(in Chinese)

    • [25] LIU X,LU X,SONG Y,et al.Plasma-sprayed graphene nanosheets/ZnO/Al2O3 coatings with highly efficient microwave absorption properties[J].Thermal Spray Technology,2021,30(6):1524-1534.

    • [26] ZHOU L,SU G X,WANG H B,et al.Influence of NiCrAlY content on dielectric and microwave absorption properties of NiCrAlY/Al2O3 composite coatings[J].Journal of Alloys and Compounds,2019,777:478-484.

    • [27] GAO C,JIANG Y,CAI D,et al.High-temperature dielectric and microwave absorption property of atmospheric plasma sprayed Al2O3-MoSi2-Cu composite coating[J].Coatings,2021,11(9):1029.

    • [28] SHAO T,MA H,WANG J,et al.High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material[J].Journal of the European Ceramic Society,2020,40(5):2013-2019.

    • [29] LISJAK D,BÉGARD M,BRUEHL M,et al.Hexaferrite/polyester composite coatings for electromagnetic-wave absorbers[J].Journal of Thermal Spray Technology,2011,20:638-644.

    • [30] BU A,ZHANG Y,XIANG Y,et al.Enhanced antioxidation and microwave absorbing properties of SiC/SiO2 coating on carbon fiber[J].Materials Science and Electronics:Materials Science and Electronic Technology,2020,31:17067-17074.

    • [31] YANG Z N,REN W,ZHU L,et al.Electromagnetic-wave absorption property of Cr2O3-TiO2 coating with frequency selective surface[J].Journal of Alloys and Compounds,2019,803:111-117.

    • [32] LI R,QING Y.Effects of Multi-components on the microwave absorption and dielectric properties of plasma-sprayed carbon nanotube/Y2O3/ZrB2 ceramics[J].Nanomaterials,2021,11(10):2640.

    • [33] 潘邻.现代表面热处理技术[M].北京:机械工业出版社,2017.PAN Lin.Modern surface heat treatment technology[M].Beijing:China Machine Press,2017.

    • [34] 唐光昕,朱张校.离子轰击渗扩技术的特点及应用[J].表面技术,2002,31(3):52-53,57.TANG Guangxin,ZHU Zhangxiao.Characteristics and application of ion bombardment permeation technology[J].Surface Technology,2002,31(3):52-53,57.(in Chinese)

    • [35] 山中久彦.离子渗氮[D].李贻锦,朱雅年,译.北京:机械工业出版社.1985.HISAHIKO YAMANAKA.Ion nitriding[D].LI Yijin,ZHU Yanian,translated.Beijing:China Machine Press.1985.(in Chinese)

    • [36] 郭德胜.基于AVR的碳势控制系统的研究与开发[D].西安:西安科技大学,2010.GUO Desheng.Research and development of AVR-based carbon potential control system[D].Xi’ an:Xi’ an University of Science and Technology,2010.(in Chinese)

    • [37] 无锡微型轴承厂.采用多因素优选正交试验设计改进热处理淬火工艺[J].江苏机械,1976(2):200-208.Wuxi Micro Bearing Factory.Improved heat treatment quenching process by multi-factor preferred orthogonal experimental design[J].Jiangsu Machinery,1976(2):200-208.(in Chinese)

    • [38] 张树理.20Cr1Mo1VNbTiB高温螺栓钢热处理工艺的优化设计[J].华北电力技术,1992(5):31-36.ZHANG Shuli.Optimization design of heat treatment process of 20Cr1Mo1VNbTiB high temperature bolted steel[J].North China Electric Power Technology,1992(5):31-36.(in Chinese)

    • [39] 黄春峰.钢的热处理工艺设计[J].铸锻热,1994(3):18-23.HUANG Chunfeng.Design of heat treatment process of steel[J].Casting and Forging Heat,1994(3):18-23.(in Chinese)

    • [40] 赵振东.新钢种热处理工艺设计[J].新技术新工艺,1993(2):6,8,10.ZHAO Zhendong.Heat treatment process design for new steel types[J].New Technology and New Processes,1993(2):6,8,10.(in Chinese)

    • [41] 丁盛,顾伟伟,杨威.某行星齿轮的渗碳淬火工艺优化 [J].热加工工艺,2020,49(4):151-153.DING Sheng,GU Weiwei,YANG Wei.Optimization of carburizing and quenching process of a planetary gear[J].Hot Working Technology,2020,49(4):151-153.(in Chinese)

    • [42] 周洪刚,朱旭,刘克,等.17Cr2Ni2MoVNb 钢的渗碳淬火工艺[J].金属热处理,2019,44(10):117-121.ZHOU Honggang,ZHU Xu,LIU Ke,et al.Carburizing and quenching process of 17Cr2Ni2MoVNb steel[J].Heat Treatment of Metals,2019,44(10):117-121.(in Chinese)

    • [43] EDWARD J,KUBCL J R,宣天鹏,等.发展中的渗碳技术[J].国外金属热处理,1991(1):13-18.EDWARD J,KUBCL J R,XUAN Tianpeng,et al.Carburizing technology under development[J].Foreign Metal Heat Treatment,1991(1):13-18.(in Chinese)

    • [44] STRATTON P F,BRUCE S,CHEETHAM VLow-pressure carburizing systems:A review of current technology[J].China Surface Engineering,2006,151(11):451-456.

    • [45] WANG H,WANG B,WANG Z,et al.Optimizing the low-pressure carburizing process of 16Cr3NiWMoVNbE gear steel[J].Journal of Materials Science & Technology,2019,35(7):1218-1227.

    • [46] 李倩,丛培武,王赫,等.18CrNiMo7-6 钢齿轮真空渗碳[J].金属热处理,2017,42(3):69-71.LI Qian,CONG Peiwu,WANG He,et al.18CrNiMo7-6 steel gear vacuum carburizing[J].Heat Treatment of Metals,2017,42(3):69-71.(in Chinese)

    • [47] 王志新,施建军,梅俊歌,等.20CrNi2Mo 钢真空渗碳工艺及数值模拟[J].金属热处理,2017,42(11):117-122.WANG Zhixin,SHI Jianjun,MEI Junge,et al.Vacuum carburizing process and numerical simulation of 20CrNi2Mo steel[J].Heat Treatment of Metals,2017,42(11):117-122.(in Chinese)

    • [48] 杨延辉,王毛球,陈敬超,等.高温渗碳齿轮钢的研究进展[J].特殊钢,2013,34(1):22-24.YANG Yanhui,WANG Maoqiu,CHEN Jingchao,et al.Research progress of high temperature carburized gear steel[J].Special Steel,2013,34(1):22-24.(in Chinese)

    • [49] 张国强,何肖飞,尉文超,等.高温渗碳齿轮钢的晶粒粗化行为[J].钢铁,2019,54(5):68-72.ZHANG Guoqiang,HE Xiaofei,WEI Wenchao,et al.Grain coarsening behavior of high-temperature carburized gear steel[J].Iron and Steel,2019,54(5):68-72.(in Chinese)

    • [50] GRUBE W L,GAY J G.High-rate carburizing in a glow-discharge methane plasma[J].Metallurgical Transactions A,1978,9(10):1421-1429.

    • [51] 王金双,赵步青,陆臻.等离子体表面改性技术及其应用[J].机械工人,2001(5):56-57.WANG Jinshuang,ZHAO Buqing,LU Zhen.Plasma surface modification technology and its application[J].Mechanical Worker,2001(5):56-57.(in Chinese)

    • [52] BALANOVSKII A E,VAN H V.Estimation of wear resistance of plasma-carburized steel surface in conditions of abrasive wear[J].Journal of Friction and Wear,2018,39(4):311-318.

    • [53] DONG Z H,ZHANG W,KANG H W,et al.Surface hardening of laser melting deposited 12CrNi2 alloy steel by enhanced plasma carburizing via hollow cathode discharge[J].Surface and Coatings Technology,2020,397:125976.

    • [54] SPROGE L,AGREN J.Experimental and theoreticalstudies of gas consumption in the gas carburizing process[J].Journal of Heat Treating,1988,6(1):9-19.

    • [55] LANGMUIR I.Oscillations in ionized gases[J].Proceedings of the National Academy of Sciences,1928,14(8):627-637.

    • [56] 朱元右.低温等离子体在金属材料表面改性中的应用[J].江苏冶金,2004(2):12-15.ZHU Yuanyou.Application of low-temperature plasma in surface modification of metal materials[J].Jiangsu Metallurgy,2004(2):12-15.(in Chinese)

    • [57] 王健,马驰,陈尔凡,等.离子体表面改性技术[J].辽宁化工,2012,41(5):486-487,525.WANG Jian,MA Chi,CHEN Erfan.Plasma surface modification technology[J].Liaoning Chemical Industry,2012,41(5):486-487,525.(in Chinese)

    • [58] 庄唯,王耀勉,杨换平,等.钛合金渗碳处理研究进展 [J].材料导报,2020,34(S2):1344-1347,1355.ZHUANG Wei,WANG Yaomian,YANG Huanping,et al.Research progress of carburizing treatment of titanium alloy[J].Materials Reports,2020,34(S2):1344-1347,1355.(in Chinese)

    • [59] EDENHOFER B,GRÄFEN W,MÜLLER-ZILLER.Plasma-carburising a surface heat treatment process for the new century[J].Surface & Coatings Technology,2001,142:225-234.

    • [60] 李炳华.快速渗碳技术-等离子渗碳[J].金属加工(热加工),1997(3):2-5.LI Binghua.Rapid carburizing technology-plasma carburizing[J].Metal Processing(Hot Working),1997(3):2-5.(in Chinese)

    • [61] THOMAS B,CHEN X L.不锈钢低温渗氮和渗碳(续)[J].热处理,2003,18(2):59-60.THOMAS B,CHEN X L.Low temperature nitriding and carburizing processes for stainless steel(continuance)[J].Heat Treatment,2003,18(2):59-60.(in Chinese)

    • [62] SUN Y,BELL T.Dry sliding wear resistance of low temperature plasma carburized austenitic stainless steel[J].Wear,2002,253(5-6):689-693.

    • [63] 徐滨士,刘世参.中国材料工程大典第16卷材料表面工程(上册)[M].北京:化学工业出版社,2006.XU Binshi,LIU Shican.Chinese materials engineering dictionary,Volume 16,Material Surface Engineering(Volume I)[M].Beijing:Chemical Industry Press,2006.(in Chinese)

    • [64] KIM T S,PARK Y G,WEY M Y.Characterization ofTi-6Al-4V alloy modified by plasma carburizing process[J].Materials Science and Engineering A,2003,361(1-2):275-280.

    • [65] LI Z,ZHOU H,DU J,et al.Double-glow discharged plasma non-hydrogen carburizing on titanium alloy surface[J].Rare Metal Materials and Engineering,2004,33(12):1355-1357.

    • [66] ZHANG G H,PAN J D,ZHANG P Z,et al.Friction and wear behavior of double glow plasma no-hydrogen carburized layer on titanium alloy[J].Tribology,2004,24(2):111-114.

    • [67] ZHANG G H,ZHANG P Z,GE H L,et al.The preparation processing parameter study of the double glow discharge plasma hydrogen-free carburizing on titanium alloy surface[J].Transactions of Materials and Heat Treatment,2001,28:110-114.

    • [68] JI S,LI Z,DU J,et al.Analysis of hydrogen-free carburized coating on Ti6Al4V substrate[J].Rare Metal Materials and Engineering,2010,39(12):2152-2156.

    • [69] XING Y Z,JIANG C P,HAO J M.Surface strengthen of Ti-6Al-4V alloy by glow plasma carbonization process[J].Rare Metal Materials and Engineering,2013,42(6):1101-1104.

    • [70] XING Y Z,JIANG C P,HAO J M.Time dependence of microstructure and hardness in plasma carbonized Ti-6Al-4V alloys[J].Vacuum,2013,95:12-17.

    • [71] ZHANG Y,WEI Q L,XING Y Z,et al.Evaluation of microstructure and wear properties of Ti-6Al-4V alloy plasma carbonized at different temperatures[J].Wuhan University of Technology-Materials Science Education,2015,30(3):631-638.

    • [72] TANG R,TIAN R.Binary alloy phase diagrams and crystal structure of intermediate phase[M].Changsha:Central South University Press,2009.

    • [73] VEIGA C,DAVIM J P,LOUREIRO A J R.Properties and applications of titanium alloys:A brief review[J].Reviews on Advanced Materials Science,2012,32(2):133-148.

  • 手机扫一扫看