en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王慧鑫,女,1992年出生,博士,助理研究员。主要研究方向为表面处理工程和仿生工程。E-mail:wanghuixin@jaas.ac.cn

通讯作者:

柏宗春,男,1981年出生,博士,副研究员,硕士研究生导师。主要研究方向为机械工程和养殖工程。E-mail:vipmaple@126.com

中图分类号:TN249;TB17

DOI:10.11933/j.issn.1007−9289.20220902002

参考文献 1
CHEN Feng,ZHANG Dongshi,YANG Qing,et al.Bioinspired wetting surface via laser microfabrication[J].ACS Applied Materials and Interfaces,2013,5(15):6777-6792.
参考文献 2
STRATAKIS E,BONSE J,HEITZ J,et al.Laser engineering of biomimetic surfaces[J].Materials Science and Engineering:R:Reports,2020,141:100562.
参考文献 3
商延赓,金娥,可庆朋,等.仿海豚皮肤结构的功能表面提高离心泵效率[J].农业工程学报,2016,32(7):72-78.SHANG Yangeng,JIN E,KE Qingpeng,et al.Efficiency improvement of centrifugal pump with function surface imitating dolphin skin structure[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(7):72-78.(in Chinese)
参考文献 4
王少伟,李善军,张衍林,等.鼹鼠趾仿生及表面热处理提高齿形开沟刀减阻耐磨性能[J].农业工程学报,2019,35(12):10-20.WANG Shaowei,LI Shanjun,ZHANG Yanlin,et al.Mole toe bionics and surface heat treatment improving resistance reduction and abrasion resistance performance of toothed ditching blade[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2019,35(12):10-20.(in Chinese)
参考文献 5
BHUSHAN Bharat,JUNG Yong Chae.Natural and biomimetic artificial surfaces for superhydrophobicity,self-cleaning,low adhesion,and drag reduction[J].Progress in Materials Science,2011,56(1):1-108.
参考文献 6
JEEVAHAN Jeya,CHANDRASEKARAN M,BRITTO JOSEPH G,et al.Superhydrophobic surfaces:A review on fundamentals,applications,and challenges[J].Journal of Coatings Technology and Research,2018,15(2):231-250.
参考文献 7
CELIA Elena,DARMANIN Thierry,TAFFIN DE GIVENCHY Elisabeth,et al.Recent advances in designing superhydrophobic surfaces[J].Journal of Colloid and Interface Science,2013,402:1-18.
参考文献 8
VAZIRINASAB E,JAFARI R,MOMEN G.Application of superhydrophobic coatings as a corrosion barrier:A review[J].Surface and Coatings Technology,2018,341:40-56.
参考文献 9
TRUESDELL Richard,MAMMOLI Andrea,VOROBIEFF Peter,et al.Drag reduction on a patterned superhydrophobic surface[J].Physical Review Letters,2006,97(4):044504.
参考文献 10
MANCA Michele,CANNAVALE Alessandro,DE MARCO Luisa,et al.Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing[J].Langmuir,2009,25(11):6357-6362.
参考文献 11
YANG Chengjuan,CHAO Jiaqi,ZHANG Jichao,et al.Functionalized CFRP surface with water-repellence,self-cleaning and anti-icing properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,586:124278.
参考文献 12
潘瑞,张红军,钟敏霖.三级微纳超疏水表面的超快激光复合制备及防除冰性能研究[J].中国激光,2021,48(2):0202009.PAN Rui,ZHANG Hongjun,ZHONG Minlin.Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J].Chinese Journal of Lasers,2021,48(2):0202009.(in Chinese)
参考文献 13
李保明,王阳,郑炜超,等.中国规模化养鸡环境控制关键技术与设施设备研究进展[J].农业工程学报,2020,36(16):212-221.LI Baoming,WANG Yang,ZHENG Weichao,et al.Research progress in environmental control key technologies,facilities and equipment for laying hen production in China[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(16):212-221.(in Chinese)
参考文献 14
罗娟,赵立欣,姚宗路,等.规模化养殖场畜禽粪污处理综合评价指标体系构建与应用[J].农业工程学报,2020,36(17):182-189.LUO Juan,ZHAO Lixin,YAO Zonglu,et al.Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(17):182-189.(in Chinese)
参考文献 15
XU Qinqin,SUN Xin,KONG Jian,et al.Preparation of a superhydrophobic ni complementary surface using a walnut wood template[J].ACS Omega,2020,5:2987-2991.
参考文献 16
MA Minglin,MAO Yu,GUPTA Malancha,et al.Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition[J].Macromolecules,2005,38(23):9742-9748.
参考文献 17
POZZATO Alessandro,ZILIO Simone Dal,FOIS Giovanni,et al.Superhydrophobic surfaces fabricated by nanoimprint lithography[J].Microelectronic Engineering,2006,83(4-9):884-888.
参考文献 18
YANG Yushan,HE Haishan,LI Yougui,et al.Using nanoimprint lithography to create robust,buoyant,superhydrophobic PVB/SiO2 coatings on wood surfaces inspired by red roses petal[J].Scientific Reports,2019,9:9961.
参考文献 19
ZHANG Lishen,ZHOU Alvin G,SUN Brigitta R,et al.Functional and versatile superhydrophobic coatings via stoichiometric silanization[J].Nature Communications,2021,12:982.
参考文献 20
ISAKOV Kirill,KAUPPINEN Christoffer,FRANSSILA Sami,et al.Superhydrophobic antireflection coating on glass using grass-like alumina and fluoropolymer[J].ACS Applied Materials and Interfaces,2020,12(44):49957-49962.
参考文献 21
LI Xinyi,JIANG Yue,TAN Xinyu,et al.Superhydrophobic brass surfaces with tunable water adhesion fabricated by laser texturing followed by heat treatment and their anti-corrosion ability[J].Applied Surface Science,2022,575:151596.
参考文献 22
PAN Rui,ZHANG Hongjun,ZHONG Minlin.Triple-Scale Superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J].ACS Applied Materials and Interfaces,2021,13(1):1743-1753.
参考文献 23
VOROBYEV A Y,GUO Chunlei.Multifunctional surfaces produced by femtosecond laser pulses[J].Journal of Applied Physics,2015,117(3):1033-1040.
参考文献 24
WANG Qinghua,WANG Huixin,ZHU Zhixian,et al.Switchable wettability control of titanium via facile nanosecond laser-based surface texturing[J].Surfaces and Interfaces,2021,24:101122.
参考文献 25
WANG Qinghua,WANG Huixin.Tuning water adhesion of superhydrophobic surface by way of facile laserchemical hybrid process[J].Surface Innovations,2021:2100042.
参考文献 26
WANG Qinghua,CHENG Yangyang,ZHU Zhixian,et al.Modulation and control of wettability and hardness of Zr-based metallic glass via facile laser surface texturing[J].Micromachines,2021,12(11):1322.
参考文献 27
WANG Zhiguo,SONG Jinpeng,WANG Tianyi,et al.Laser texturing for superwetting titanium alloy and investigation of its erosion resistance[J].Coatings,2021,11(12):1547.
参考文献 28
AHMADI S.Farzad,UMASHANKAR Viverjita,DEAN Zaara,et al.How multilayered feathers enhance underwater superhydrophobicity[J].ACS Applied Materials and Interfaces,2021,13(23):27567-27574.
参考文献 29
LIU Yuyang,CHEN Xianqiong,XIN Haozhong.Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment[J].Bioinspiration and Biomimetics,2008,3(4):046007.
参考文献 30
RONG Wanting,ZHANG Haifeng,MAO Zhigang,et al.Stable drag reduction of anisotropic superhydrophobic hydrophilic surfaces containing bioinspired micro nanostructured arrays by laser ablation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,622:126712.
参考文献 31
RUKOSUYEV Maxym V,LEE Jason,CHO Seong Jin,et al.One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation[J].Applied Surface Science,2014,313:411-417.
参考文献 32
GAO Nan,YAN Yuying,CHEN Xinyong,et al.Superhydrophobic surfaces with hierarchical structure[J].Materials Letters,2011,65(19-20):2902-2905.
参考文献 33
MARTÍNEZ-CALDERON M,RODRÍGUEZ A,DIAS-PONTE A,et al.Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS[J].Applied Surface Science,2016,374:81-89.
参考文献 34
WANG Huixin,MA Yunhai,BAI Zongchun,et al.Evaluation of tribological performance for laser textured surfaces with diverse wettabilities under water/oil lubrication environments[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,645:128949.
参考文献 35
HAN Jianlin,KISS Loránd,MEI Haibo,et al.Chemical aspects of human and environmental overload with fluorine[J].Chemical Reviews,2021,121(8):4678-4742.
参考文献 36
PREEDY Victor R.Fluorine:chemistry,analysis,function and effects[M].London:rRoyal Society of Chemistry,2015.
参考文献 37
WENZEL Robert N.Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry,1936,28(8):988-994.
参考文献 38
GREGORČIČ P,ŠETINA-BATIČ B,HOČEVAR M,et al.Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences[J].Applied Physics A:Materials Science and Processing,2017,123(12):766.
参考文献 39
兰铃,底月兰,王海斗,等.激光复合加工制备超疏水金属表面的研究进展[J].表面技术,2021,50(12):246-256.LAN Ling,DI Yuelan,WANG Haidou,et al.Research progress on preparation of super-hydrophobic metal surface by laser composite processing[J].Surface Technology,2021,50(12):246-256.(in Chinese)
参考文献 40
CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transaction Faraday Soc,1944,40:546-551.
参考文献 41
LONG Jiangyou,PAN Lin,FAN Peixun,et al.Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser[J].Langmuir,2016,32(4):1065-1072.
参考文献 42
SEO Kwangseok,KIM Minyoung,SEOK Seunghwan,et al.Transparent superhydrophobic surface by silicone oil combustion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,492:110-118.
参考文献 43
BIZI-BANDOKI P,VALETTE S,AUDOUARD E,et al.Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations[J].Applied Surface Science,2013,273:399-407.
参考文献 44
LONG Jiangyou,ZHONG Minlin,ZHANG Hongjun,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J].Journal of Colloid and Interface Science,2015,441:1-9.
参考文献 45
CHUN Doo Man,NGO Chi Vinh,LEE Kyong Min.Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J].CIRP Annals-Manufacturing Technology,2016,65(1):519-522.
参考文献 46
NGO Chi Vinh,CHUN Doo Man.Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces[J].Advanced Engineering Materials,2018,20(7):1701086.
参考文献 47
LI Baojia,LI Huang,HUANG Lijing,et al.Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity[J].Applied Surface Science,2016,389:585-593.
参考文献 48
WANG Qinghua,SAMANTA Avik,SHAW Scott K,et al.Nanosecond laser-based high-throughput surface nanostructuring(nHSN)[J].Applied Surface Science,2020,507:145136.
目录contents

    摘要

    目前规模养殖业中养殖舍内灰尘、皮屑、粪污沾染问题严重,严重影响了环境清洁与动物健康。金属超疏水表面由于具有的特殊性质,有望成为改善养殖环境的重要手段。以鸭羽表面结构为仿生原型,以不锈钢为基底材料,利用激光加工方法制备仿生结构,同时利用低温硅油-热处理方法改变表面化学。最后通过超景深显微镜、SEM、XPS、接触角测量仪等对表面的理化性质进行测试。结果表明,通过表面结构与化学的双重影响,制备后的表面获得较好的超疏水性(接触角 156.8°,滚动角 2.7°),表面的自清洁性获得大幅提升,同时表面粪污粘附情况得到明显优化。通过激光-硅油热处理工艺,加工效率与经济性相比于传统超疏水表面制备方法得到显著提升,且制备过程清洁环保,可为仿生超疏水功能表面在养殖工程中的应用提供重要支持。

    Abstract

    After years of upgrading, the animal feeding industry is advancing toward large-scale production, modernization, and specialization, with the use of many advanced technologies. Due to their special surface functionalities, superhydrophobic metallic surfaces can effectively resolve issues of dust, dander, and dung adhesion and contamination in the animal house, ensuring a clean feeding environment and animal health. In recent years, laser surface-texturing has been widely used for fabrication of superhydrophobic metallic surfaces. However, post-process treatments including long storage time in air, heat treatment, and chemical immersion are required to achieve wettability transition from superhydrophilicity to superhydrophobicity, and can be time-consuming or toxic. Thus, a cost-effective, time-efficient, and health-friendly laser-based method for fabrication of superhydrophobic surfaces must be developed. In this study, laser surface-texturing experiments used a laser marking machine equipped with a 355-nm UV laser source. The laser-textured bionic surfaces were treated by dripping a mixed solution consisting of isopropyl alcohol and silicone oil on a hot plate at 100 ºC for 10 minutes. The surface topography and chemical compositions of the laser-textured bionic surfaces were examined using a 3-D digital microscope, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS). The contact angle of the laser-textured bionic surfaces was evaluated using a contact-angle goniometer equipped with a high-resolution CMOS camera. Self-cleaning, anti-fouling, and long-term stability of the laser-textured bionic surface were also evaluated. There were several key findings in this study: (1) Laser surface-texturing can effectively fabricate bionic surfaces with periodically arrayed surface micro / nanostructures. This dual-scale surface structure with high surface roughness ensures that silicone oil can firmly adhere to the surface, enhancing the long-term stability of the fabricated superhydrophobic surface. (2) The surface chemistry analysis shows that laser-texturing oxidizes the surface in ambient air. With silicone-oil dripping and heat treatment, the Si peak can be detected by XPS analysis, indicating that a thin PDMS layer has been deposited onto the laser-textured bionic surface. The low surface energy of the PDMS layer is the key for the wettability transition of the laser-textured bionic surface. (3) The contact-angle measurement shows that the untreated surface is intrinsically hydrophilic. Immediately after laser-texturing, the bionic surface becomes superhydrophilic with a saturated Wenzel regime. After silicone-oil dripping and heat treatment, the laser-textured bionic surface becomes superhydrophobic. (4) The fabricated bionic surface exhibits a good self-cleaning property, efficiently removing the powder from the surface. Duck feces adhesion was significantly reduced on the fabricated bionic surface. The fabricated bionic surface exhibits good long-term durability based on abrasion tests. (5) Compared with traditional post-process treatment methods, the developed method significantly shortens the treatment duration, lowers the production cost, and can be used in diverse applications. In conclusion, an innovative laser-based fabrication technique that combines laser surface-texturing, silicone-oil dripping, and heat treatment was developed to fabricate a bionic surface with superhydrophobicity. The fabricated surface consists of multi-scale micro / nanostructures. The XPS measurement results confirm the deposition of chemical functional groups with low surface energy on the surface. With dual effects on surface structure and surface chemistry, the fabricated surface exhibits remarkable superhydrophobicity, good self-cleaning and anti-fouling, and long-term durability. The developed laser-based hybrid processing technique significantly increases processing efficiency and economy compared with conventional fabrication techniques for superhydrophobic surfaces, and can provide insight for application of bionic superhydrophobic functional surfaces in cultivation engineering.

  • 0 前言

  • 功能性仿生表面通过模拟生物体表面的各种结构、化学等特征,利用表面改性方法赋予材料表面特定的功能,具有较好的研究与应用前景[1-5]。超疏水表面由于具有的特殊表面润湿性、自清洁性、耐腐蚀性等特点,已经在航空航天、仪器光学、医学等领域广泛展开研究与应用[6-7]。这类表面不仅能够展现出耐腐蚀[8]、减阻[9]等特性,同时还可以拓展表面抗光反射[10]、抗结冰[11-12]等特殊的表面理化性质,促使金属表面在各种领域与需求下的高效应用。

  • 在畜禽养殖业愈发向规模化发展的大背景下,一系列的环境清洁问题也应运而生[13]。畜禽生活中粪污、羽毛、皮屑等在养殖场中弥散,极易沾染在金属笼网、风机叶片、粪污处理装备等区域,不但容易产生细菌繁殖,危害畜禽生物安全,同时粪便等污染物若不及时有效处理,也极易引起环境污染,增加碳排放[14]。粪污、羽毛等总是粘附在养殖环境的表面上,传统的处理方法完全依赖于人工清扫,这样不但增加人工劳动,同时处理不及时带来的污染散布危害极大,引起大气污染的同时极易造成细菌繁殖与疾病传播,制约养殖业的发展。因此,利用先进的科学手段,提升养殖舍内环境表面清洁,降低人工劳作,将有效提升规模化养殖业的技术水平与经济效益。

  • 利用表面工程方法,对养殖场中易受到污染的表面进行功能化改造,赋予其表面超疏水和自清洁特性,将有效改善养殖场内表面清洁情况,同时减少人工劳作。然而,目前还未见功能表面在养殖工业上的应用,主要原因是养殖工程中的表面技术有更多的应用限制。首先由于养殖业的特殊性,动物与环境中的表面直接接触,因此超疏水功能性表面的制备工艺需要满足无毒害的要求。但是目前很多超疏水表面制备工艺需要使用化学毒性较高的含氟化学试剂,因而无法满足无毒害的要求。同时,养殖业的成本控制较为严苛,成本较为昂贵的表面工程技术将大幅增加养殖成本,企业无法进行实际应用。

  • 传统超疏水功能性表面制备方法包括模板法[15]、静电纺丝[16]、光刻[17-18]和表面涂覆[19-20]等。然而,上述方法普遍比较耗时,同时制备成本较高,因此制约了超疏水功能表面在诸多领域中更加广泛的应用。近些年,基于激光表面加工的超疏水功能性表面制备工艺因其高过程灵活性、高精度、高自动化程度和低环境污染等优势,已经展现出了很好的应用前景。目前,国内外很多团队在激光制备超疏水功能性表面领域展开了研究工作。吉林大学任露泉院士团队利用激光表面处理方法在黄铜上制备超疏水表面,并且有效提升了表面的耐腐蚀特性[21]。清华大学钟敏霖教授团队利用飞秒激光微纳制造结合化学氧化的方法,制备具有三级微纳结构的超疏水表面[22]。试验结果表明制备表面不仅具备优异的超疏水稳定性,还展现出了出色的防结冰性能,其冰粘附强度最低为1.7 MPa。罗彻斯特大学郭春雷教授团队利用飞秒激光在铂、钛和铜表面制备具有多级微纳结构的功能性表面[23]。制备表面不仅展现出超疏水和自清洁特性,还在可见光和近红外区间展现出显著提升的吸光特性。本课题组通过前期研究,利用激光表面微织构结合化学修饰和低温热处理等方法,在钛[24]、铝合金[25]和非晶合金[26] 表面上可以实现超疏水特性,同时表面也可展现出显著提升的耐冲蚀特性[27]。然而,制备效率依然是现有激光加工方法在实际工业生产中面临的一个主要问题,这主要有以下几方面原因:①部分激光表面处理工艺使用的光斑过小(<15 µm),并需要多次重复扫描(>3 次),降低了激光表面处理工艺的制备效率。②激光处理后的表面展现出超亲水特性,为了实现表面由超亲水向超疏水特性的转变,需要将表面在空气中放置 7~14 d 使空气中的疏水基团在表面沉积实现超疏水特性,大大增加超疏水表面的制备周期。③通过一些后处理工艺可以加速激光处理表面由超亲水向超疏水特性的转变,然而这些后处理工艺也需花费数小时的时间。④某些方法如化学浸润方法需要使用含氟化学试剂,其较高的化学毒性也限制了其在生物医学等领域的应用。综上所述,研发一种高效率、低成本且无毒害的基于激光加工方法的超疏水表面制备工艺已经成为当务之急。

  • 为此,本文提出一种利用激光加工技术与热处理相结合的复合加工工艺,通过激光加工方法在金属表面制备仿生结构。然后在表面浸润硅油溶液并在空气中加热赋予表面化学的改变。最后通过表面测试、自清洁测试与应用测试对表面性能进行评估,深入分析功能仿生表面的自清洁机制及其在养殖工程中的实际应用效果。此工艺在保证激光表面处理效率的同时,使用硅油-热处理的后处理工艺,仅需 5~10 min 便可完成激光处理表面由超亲水向超疏水特性的转变,因此大大提升了超疏水表面的制备效率。同时,此方法使用的硅油和异丙醇混合溶液对生物体和环境无毒害,且制备成本大幅降低,有望在包括养殖工程在内的诸多领域得到广泛应用。

  • 1 试验准备

  • 1.1 材料与试剂

  • 使用 SS304L 不锈钢作为试验样品,试件尺寸为 20 mm×20 mm×2 mm。使用体积分数为 0.2%的二甲基硅油作为热处理时滴浸溶液,溶解试剂为异丙醇(纯度 99.99%)。

  • 1.2 仿生设计与样品制备

  • 在自然界中,鸭子羽毛展现出了较为明显的防水和抗污损特性,其中主要原因如下:首先,鸭子羽毛上具有致密的微米和纳米级结构,这些微纳结构使得鸭羽表面上呈现出很多的气穴。水滴与气穴之间的引力很低,使得鸭羽表面与水滴之间几乎不产生摩擦,最终使得水滴可以在表面顺利滑落[28]。此外,鸭羽表面的化学组成也是其防水防污的一个重要因素。鸭羽表面具有一层低表面能分子膜,使得其可以有效排斥多种不同的液体,因此这种斥液性能使其具有良好的防污性能[29]。基于上述特点,本文采用鸭羽作为表面结构的仿生原型。图1a~1b 为鸭羽表面结构的显微观察图,其中图1a 为低倍数观察结果。从光学显微镜(20×)与 SEM 显微图(50×)中可以看出,鸭羽表面为高度对称的 V 型结构,且层次分支明显;同时在图1b 的显微图 (300×)中可以看出,鸭羽表面微结构也是具有高层次的分支结构,两侧分支呈 V 型对称于中脊,高倍数插入图(30 000×)中最低层次的分支上具有明显的微米级-纳米级结构[29]。本文以鸭羽的对称 V 型层次结构为仿生原型,设计的仿生表面结构如图1c 所示。经前期参数优化,确定相邻的线间距为 100 μm,顶角的角度为 90°。

  • 本文的复合加工工艺制备方法如图1d~1e 所示。制备试验开始前,将不锈钢样品依次置于丙酮、无水乙醇和去离子水中超声清洗各 5 min,再将样品烘干备用。首先利用激光打标机(MQ5T,Mac Laser Co. Ltd.)在表面上制备仿生图案(图1d),其中激光功率为 6 W,脉冲间隔为 10 ns,脉冲重复率为 40 kHz,波长为 355 nm,功率密度为 0.53 GW / cm2,脉冲能量为 0.2 mJ,扫描速率为 50 mm / s。随即在激光加工后的表面上滴浸硅油溶液(图1e),并将表面放置在加热板上,在空气中加热 10 min,确保硅油与表面的稳固结合。为了研究加工流程对表面理化性质的影响,样品制备过程中使用四种不同的工艺参数(表1):样品 A 为未处理样品,样品 B 只进行激光加工,样品 C 只在表面滴浸硅油溶液后在加热板上加热 10 min,样品 D 为激光与硅油-热处理复合处理工艺制备的表面。

  • 图1 鸭羽结构显微观察,仿生表面设计和复合加工工艺流程图

  • Fig.1 Morphology observation of duck feather structure, design of bionic surface and process schematic of hybrid processing technique

  • 表1 样品表面制备工艺参数

  • Table1 Parameters used for the fabrication process in this study

  • 1.3 表征测试

  • 试验中利用超景深显微镜( VHX-2000E,Keyence)观察表面三维形貌;利用扫描电子显微镜 (SEM,Navo Nano SEM 450)观察表面微观结构; 利用能量色散 X 射线谱(EDS,FEI Inspect F50)和 X 射线光电子能谱(XPS,PREVAC)分析表面的化学成分与化学键;利用接触角测量仪(SCA-100,Mumuxili Technology)分别测试表面对于水的接触角和滚动角,测量过程中滴落的液滴体积约为 4 μL。

  • 本文搭建了自清洁测试平台,对各样品表面自清洁特性进行测试。测试过程中表面上端被抬高 2 mm,此状态下表面与桌面的夹角约为 5°。表面上涂覆满白色粉末(主要成分为白垩粉,用来模拟表面的灰尘),测试时利用针管在表面上方约 15 mm 处均匀滴落水滴,拍摄试验过程并对比表面液滴与粉末的变化情况。同时,对各样品进行粪污粘附性与清洁性测试,收集新鲜鸭粪置于桶中,静置 2 d 使鸭粪沉淀分层,取桶底部较为粘腻的鸭粪,依次将样品垂直完全浸入粪污中,等待 30 s 后随即垂直取出,拍摄试验过程并对比表面粪污沾染情况。

  • 为了测试制备表面在复杂养殖环境下的耐久性,设计并实施了表面磨损试验。将样品表面放置在 1000 目的碳化硅砂纸上,并在样品背部放置 100 克砝码,用胶带拖动样品和砝码以 1 mm / s 的速度在砂纸上往复移动,单个方向的拖动距离为 100 mm (即一个往复周期的拖动距离为 200 mm)。试验共进行 50 个循环,试验结束后对表面进行接触角测试和自清洁测试,以评价对表面在磨损条件下的超疏水和自清洁性能。

  • 2 结果与讨论

  • 2.1 表面形貌

  • 图2 为经过激光与硅油-热处理复合加工后表面的三维形貌与各样品的微观结构图。如图2a 所示,通过激光加工后,仿生鸭羽图案已经成功地制备到了样品表面上,表面形成有序的 V 型条纹,其中条纹间距为 100 μm,条纹宽度约为 30 μm。图2b 是表面沿 aa'线的深度曲线图,可以看出激光加工后表面凹凸深度差约为 31 μm。

  • 图2 复合加工工艺后样品的表面三维形貌、表面轮廓与表面 SEM 微观结构图

  • Fig.2 3D surface morphology, 3D surface profile and SEM micrographs of the surface treated by the hybrid processing technique

  • 同时,图2c~2f 展示了各样品表面 SEM 微观形貌测试结果,未处理的样品 A 表面(图2c)相对光滑,仅经过激光加工后的样品 B 表面(图2d) 形成了特定的仿生结构,而未被激光加工的区域仍然比较光滑。激光加工过程后,加工区域表面中心形成明显凹陷,同时凹陷两侧产生小幅度的凸起。两侧微凸起结构是由于激光光束与表面作用中心区域的熔融金属受激光冲击影响后,金属颗粒向外溅射且迅速冷却形成[29]。仅硅油加热处理的样品 C 表面微观结构如图2e 所示,可以看出表面相比于未加工表面相对粗糙,是由于硅油热处理的过程中有较为大颗的硅油微粒附着在表面上。这种大颗粒的硅油附着在表面上并不稳定,当经过超声清洗后,大颗粒的硅油即从表面脱落。激光与硅油-热处理复合工艺制备的样品 D 表面微观结构如图2f 所示,可以看出表面结合了样品 B 与样品 C 的双重特征,且对激光加工区域进行高倍数 SEM 观察(图2f 插入图),可以看出复合加工后表面形成了微米-纳米多层级微观结构,这是表面获得超疏水性的必要条件[30-32]。与此同时,样品 D 的 SEM 图片表明,激光处理后表面粗糙度显著上升,使样品表面积得到大幅提升,能够带来更多的硅油颗粒在样品表面附着。此外,激光加工表面布满了微米-纳米多层级微纳结构,这些结构纵横交错,可以进一步阻碍硅油颗粒的脱落。表面粗糙度与微纳结构的耦合作用,能够促使硅油颗粒较为稳定地附着在表面上,提升表面的超疏水稳定性和使用寿命。

  • 2.2 表面化学

  • 利用 X 射线光电子能谱(XPS)测试各个样品的表面化学,结果如图3 所示。样品 A 的全谱扫描结果显示,表面含有 Fe、C、O 三种元素,元素含量分别为 10.66%、48.05%和 41.29%(图3a)。经过激光加工处理后,如图3b 所示,样品 B 表面含有的具体元素没有变化,仍然检测出 Fe、C、O 三种元素,但是表面 O 元素含量明显上升,从 41.29%(样品 A)升高至 66.77%。O 元素的升高是因为激光加工过程中的氧化反应增加了表面氧化物的含量[33]。经过化学处理后,如图3c 所示,除了原始的 Fe,C,O 三种元素外,样品 C 表面还发现了一种新元素 Si,含量约为 17.65%,说明化学处理过程可以促使硅油溶液中的 Si 基团附着在表面上。最后,如图3d 所示,经过激光与硅油-热处理复合加工工艺后,样品 D 也具有 Si 元素(11.44%),且 O 元素含量相比于未处理表面也有一定的上升(从 41.29%升至 50.15%)。

  • 图3 所有样品表面 XPS 全谱分析结果图

  • Fig.3 Analysis results for XPS full spectra for all the surfaces

  • 为了更进一步地分析表面化学差异,对各表面上的 C、O 和 Si 元素进行了核心元素分析,结果如图4 所示。如图4a、4b 所示,通过 O 元素分析可知,样品 A 与 B 中的 O 元素主要以 OH 和 O2− 的形式存在,且样品 B 中的 O2− 含量较高。两表面 O 元素含量区别的主要原因是激光加工过程在空气中进行,激光热效应促使表面金属与氧气发生氧化反应,由此表面形成了大量的 Fe2O3 和少量的 FeO(OH)。在经过化学处理后,如图4c,4d 所示,表面增加了 Si-O 基团,这是硅油中含有的重要化学键,可以侧面说明通过化学处理过程,硅油已经成功地沉积在表面上。

  • 同时,在 C 元素分析结果中,如图4e~4f 所示,样品 A 中的 C 元素主要以 C-C / C-H 和 C-O / C-OH 两种形式存在;而激光加工后,样品 B 中新增了 O-C=O 峰,再一次验证表面激光加工过程中发生了金属氧化反应。在表面经过硅油热处理后,如图4g 所示,样品 C 中检测到了 C-Si 键,这是硅油溶液的主要化学峰,表明硅油溶液中的官能团已经成功地附着在样品表面上。在激光加工与硅油溶液处理的双重作用下,如图4h 所示,样品 D 展现出了两个重要的表面化学标志,表面不但存在 O-C=O 峰,同时也含有 C-Si 键。最后, Si 元素分析结果(图4i)再次验证了 Si-O,Si-C 的存在,以上均是硅油溶液的重要化学键组成,交叉验证了硅油中低表面能的官能团有效地沉积在了处理后的表面上。

  • 另外,在利用含 Si 化合物制备超疏水表面的常见技术中,较常使用的是一系列硅烷溶液,包括 1H,1H,2H,2H-四氢全氟辛烷基三氯硅烷等。由于它具有-CF2-CF2-和-CF3 等特征基团,虽能实现超疏水性质,但是毒性较大,其热分解挥发后会对动物皮肤、黏膜等有刺激作用,因而无法在养殖业中应用[34-35]。在此研究XPS化学检测结果中并未探测到有毒性化学键,证明了此研究制备的表面在养殖业,甚至食品工业中均有一定的适用性与安全性。

  • 图4 XPS 核心元素谱分析结果

  • Fig.4 Core elemental analysis results of XPS spectra

  • 2.3 表面润湿性

  • 图5 列出了样品表面对于水的接触角与滚动角测试结果。样品 A 的接触角为 81.7°±2.3°,滚动角为 66.0°±3.0°;而进行激光处理后,表面接触角下降 2.0°±0.8°,呈现出超亲水性。此时表面为 Wenzel 状态[36-37],在此状态下的接触过程为固液接触,没有空气相的直接参与。当表面的摩擦因数增大时,润湿角将向着更为极端的方向转变,也就是“亲水角度更低,疏水角度更大”[38]。因此,在激光加工后,样品 B 表面粗糙度急剧增加,由此表面接触角急剧降低,表面润湿性转变为超亲水性,水滴极容易浸入沟槽中,并在槽中迅速散布。

  • 图5 各样品的接触角与滚动角结果

  • Fig.5 Contact angle and sliding angle measurement results of all the samples

  • 仅硅油热处理后,样品 C 表面接触角为 125.2°± 1.8°,滚动角为 43.2°±2.0°,此时样品 C 表面的接触角已经达到疏水要求(接触角大于 120.0°),但是仍然无法达到超疏水性要求(接触角大于 150.0°)。由于样品 C 表面光滑,缺少粗糙的微纳结构,无法有效沉积更多的疏水性官能团,同时硅油溶液与表面结合性相对较弱。因此,虽然直接使用硅油热处理可以在一定程度上提升表面的疏水特性,但是无法形成超疏水表面。最后,通过激光与硅油-热处理复合加工工艺,样品 D 表面接触角高达 156.8°±1.5°,且滚动角为 3.0°±1.0°,此时样品 D 成功地获得了超疏水特性。激光与硅油-热处理复合加工表面接触角显著提升,此时表面结合了高粗糙度与低表面能双重作用,表面转变为 Cassie 状态[39-40],粗糙纹理主要被空气占据,表面上的水滴无法渗透到粗糙纹理中,因此该表面通过固体-气体-液体三相界面相互制约,从而形成一种不均匀的润湿状态,显著提高了表面接触角。

  • 综合以上结果,激光处理和硅油热处理在表面润湿性提升的过程中均有着非常重要的作用。激光处理过程会为表面带来粗糙度的提升,不但会给表面带来多层级的微纳结构,同时也会增加表面积,增强后续硅油热处理的效果;硅油热处理过程可以有效改变表面化学,使其中具有低表面能的化学键沉积在表面上[41]。因此,表面微纳结构与表面化学的共同作用实现了超疏水表面的制备。

  • 2.4 表面自清洁性

  • 图6a~6d 中展示了各样品表面自清洁测试结果。在第一滴水接触到表面时,所有样品表面的水滴均从上方滚落。此时的滚落过程与表面的性质无关:首先由于粉末的存在,水滴无法直接接触到表面;同时粉末颗粒状的结构促使水滴在表面上形成滚动摩擦,大大降低了表面摩擦力,水滴因此滚动下落。

  • 在水滴持续滴落的过程中,样品 A 的表面上水滴与表面粉末杂质逐渐融合同时水滴持续增大,液滴与粉末形成污渍溶液并在试验后期产生扩散,液滴移除后在表面仍有明显痕迹。样品 B 上的液滴首先接触粉末并在表面短暂停留,在持续滴落的过程中,粉末与水相溶且溶液直接接触到了表面,此时溶液迅速在表面散开,逐渐溶解附近粉末并产生大面积污渍。随着水滴的持续滴落,样品 C 上的粉末也会在水中溶解,溶液体积逐渐增大并发生扩散,此时液滴的接触角明显大于样品 A 的接触角。

  • 最后,当水滴在接触样品 D 表面时,水滴随即迅速向下滚动,同时带离表面粉末,在表面中心形成明显的清洁区域,且该区域没有任何被润湿与污染的现象,证明表面形成了很好的自清洁效应。激光与硅油-热处理复合加工表面的自清洁测试过程原理如图6e 所示。由于表面具有的超疏水特性与粗糙的表层,粉末与表面中间会有空气间隙,当水滴滴落时仅能接触到粉末与空气层,无法浸入到表面的粗糙空隙中。水滴接触到粉末后即开始向下滚落,并将粉末溶解后带离表面。因此水滴经过的区域不但清洁而且干燥,从而实现了高效的表面自清洁特性。

  • 图6 各样品的自清洁测试结果与激光-硅油-热处理表面的自清洁原理

  • Fig.6 Self-cleaning test results for all the samples and the processing mechanism of the self-cleaning tests for the laser-silicone oil-heat treatment hybrid processed surface

  • 综合以上结论,本文中复合工艺制备的超疏水表面能够应用在养殖场灰尘、羽毛聚集区域,如风机叶片、湿帘、通风孔等重点区域。该功能表面仅通过水的简单冲洗就可将表面的灰尘、羽毛等杂质带离,不但能够有效减少人工清洁的劳动力,降低清洁工作成本;同时清洁环节的动作简便,可有效降低养殖场内畜禽的行为应激现象发生,提升养殖效益。

  • 2.5 表面粪污粘附性与清洁性

  • 为了更明显地测试与对比不同表面对于鸭粪的粘附性与清洁性,选取含水量较低的鸭粪进行测试。收集新鲜的鸭粪静置于桶中 2 d,待其上下分层后,挖取下层粘附性更强的鸭粪进行测试。测试过程中将样品逐个缓慢垂直插入鸭粪中,等待 2 s 后随即缓慢垂直取出,垂直静置 3 s 观察对比鸭粪在表面的粘附情况。

  • 图7a~7d 展示了各样品进行粪污粘附性测试的过程与结果。可以看出,样品 A、样品 B 和样品 C 表面在浸入粪污再取出后,表面完全被粪污覆盖,其中样品 B 上沾染的粪污量最多;而样品 D 在浸入粪污再取出后,表面加工区域能够基本保持原始清洁状态,仅有样品四周的未进行激光处理部分有少量粪污沾染。也就是说,激光与硅油-热处理复合加工制备的超疏水表面相比于其他表面展现出了优秀的抗粪污粘附特性,可以在粪污环境中保持自身清洁。

  • 图7 各样品的表面粪污粘附与清洁测试结果和各表面与粪污的相互作用机理

  • Fig.7 Anti-fecal adhesion and self-cleaning test results for all the samples and the schematic illustration for the interaction mechanism between each sample surface and feces

  • 图7e 展示了粪污粘附性试验中的各样品与粪污的作用过程机理。当样品 A、样品 B 和样品 C 浸入到粪污中后,粪污与表面直接接触并粘附在表面上,由于粪污的粘性较大且在表面的粘附力较强,当表面取出后粪污仍粘着在表面上,即使抖动也无法将粪污从表面上分离。然而,当样品 D 浸入到粪污中时,由于激光与硅油-热处理复合加工表面具备的超疏水特性,粪污与表面之间会有空气间隙,因此粪污并不会直接接触到表面,当表面从粪污中取出后,粪污随即在空气的阻碍与自身重力的作用下自动脱离,促使表面区域洁净无污渍,证明了复合加工表面优秀的抗粪污粘附性与清洁性。

  • 综合以上结论,本文中激光与硅油-热处理复合工艺制备的超疏水表面能够应用在养殖过程的粪污聚集区域,如养殖笼具底网、粪污传送与处理设备、蛋品收集设备等位置。该功能表面接触粪污时不发生粘附现象,并促使粪污在重力的作用下沿着倾斜表面向下掉落。因此,该功能表面的使用不但能够有效保持畜禽接触的表面清洁,减少粪污粘附现象,降低细菌传染概率,而且可以通过简单的倾斜导向作用进行粪污收集,便于后续的表面清洁与粪污收集处理。

  • 2.6 表面耐久性测试

  • 由于家禽养殖的金属器具经常受到家禽身体的刮擦,制备表面需要较为良好的稳定性来保证其在在复杂养殖环境下应用性。因此,对表面进行了磨损试验以测试其耐久性。图8a 为磨损试验前后,样品 D 的表面接触角测试结果。从图中可以看到,磨损试验前,样品 D 的表面接触角为 156.8°±1.5°。经过 50 个循环后,表面接触角为 149.2°±0.9°。这主要是由于磨损测试对表面微纳结构和表面化学造成了一定程度的破坏,从而使表面接触角呈现了一定程度的下降。然而,磨损后的表面仍可以保持一个接近 150°的接触角,充分展现出激光与硅油-热处理复合加工表面在磨损条件下仍可以保持良好的疏水性能。图8b 为磨损试验后,样品 D 的表面自清洁测试结果。可以看到经过 50 个循环后,水滴仍可以在样品 D 表面顺利向下滚落并清除表面粉末。这说明磨损试验后,样品 D 表面仍保持了较好的自清洁性能,也充分说明了激光与硅油-热处理复合加工表面具有较好的耐磨性能。

  • 图8 激光与硅油-热处理复合加工表面在磨损试验后的接触角变化和自清洁特性变化

  • Fig.8 Contact angle evolution and self-cleaning test result for the laser-silicone oil-heat treatment hybrid processed surface before and after abrasion test.

  • 2.7 工艺制备效率与经济性分析

  • 对于功能表面在生产中的实际应用,制备效率是较为重要的分析指标之一。图9 对比分析了常见的基于激光加工技术的超疏水表面制备后处理方案的效率。当采用空气中放置工艺时,表面需要 7~14 d 的时间获得超疏水特性[42-43],且此种方式的表面耐久性较差,当表面接触其他物质后即有可能发生性质转变。当采用烘干箱热处理工艺时,制备超疏水表面的时间需要 2~3 h [44-45]。当采用硅烷溶液浸润处理时,制备时长缩短到了 1~2 h[46-47],但是由于使用了具有毒性的硅烷溶液,因此无法在养殖环境中或人体长时间接触环境中大量使用。最后,在使用本文中的硅油处理过程时,超疏水表面的制备之间缩短至 10~15 min,与效率相对较高的硅烷溶液处理过程相比,此工作中超疏水表面制备效率提升了 83.3%(以制备方法的最低耗时计算效率提升效果)。

  • 图9 常见超疏水表面制备方法后处理工艺效率对比

  • Fig.9 Comparison of processing efficiency for post-process treatments of superhydrophobic surface fabrication.

  • 更进一步,制备工艺的经济性是确认其是是否能成功进行产业推广的重要因素。表2 中列出了常见超疏水表面制备方法后处理工艺的经济性对比情况。上文已经对时间效益进行了重点分析,本文中的硅油处理仅需要 10~15 min 的时间,时间成本最低。在试剂成本方面,空气放置处理与热处理无需额外的化学试剂,硅烷溶液的价格为 500 元 / 100 g,本文中硅油处理试剂成本约 20 元 / 100 g。在制备设备成本方面,空气放置与硅烷溶液处理方法无需额外设备投入,而热处理需要价格相对较高的干燥箱,本文中硅油处理仅需要价格非常低廉的加热板即可。综合以上分析,本文中硅油处理方法在时间成本、试剂成本和设备成本上均处于较低水平,对于后续的实际推广应用,在经济性方面具有非常明显的优势。

  • 表2 常见超疏水表面制备方法后处理工艺制备经济性对比

  • Table2 Comparison of fabrication economy for post-process treatments of superhydrophobic surface fabrication

  • 3 结论

  • 通过激光与硅油-热处理复合处理工艺成功制备了超疏水表面,研究了制备表面自清洁性能的提升,得到如下结论:

  • (1)复合加工工艺制备后的表面具有优秀的自清洁性,能够应用在养殖场灰尘、羽毛聚集区域和粪污易沾染区域。

  • (2)激光加工过程使表面获得了多层级的微纳结构;硅油-热处理工艺改变表面化学,使疏水性 Si 元素沉积在表面上并降低表面能;表面结构与表面化学的共同作用促使表面处于 Cassie 状态,从而获得极高的接触角与极低的滚动角。

  • (3)复合制备工艺在时间、试剂和设备成本上均处于较低水平,整体经济性极佳,具有较为突出的应用推广优势。

  • (4)通过对表面激光改性工艺在养殖工程中的应用的探索,形成了养殖环境清洁优化的新方法,对养殖工程技术革新具有一定的科学指导意义。

  • 参考文献

    • [1] CHEN Feng,ZHANG Dongshi,YANG Qing,et al.Bioinspired wetting surface via laser microfabrication[J].ACS Applied Materials and Interfaces,2013,5(15):6777-6792.

    • [2] STRATAKIS E,BONSE J,HEITZ J,et al.Laser engineering of biomimetic surfaces[J].Materials Science and Engineering:R:Reports,2020,141:100562.

    • [3] 商延赓,金娥,可庆朋,等.仿海豚皮肤结构的功能表面提高离心泵效率[J].农业工程学报,2016,32(7):72-78.SHANG Yangeng,JIN E,KE Qingpeng,et al.Efficiency improvement of centrifugal pump with function surface imitating dolphin skin structure[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(7):72-78.(in Chinese)

    • [4] 王少伟,李善军,张衍林,等.鼹鼠趾仿生及表面热处理提高齿形开沟刀减阻耐磨性能[J].农业工程学报,2019,35(12):10-20.WANG Shaowei,LI Shanjun,ZHANG Yanlin,et al.Mole toe bionics and surface heat treatment improving resistance reduction and abrasion resistance performance of toothed ditching blade[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2019,35(12):10-20.(in Chinese)

    • [5] BHUSHAN Bharat,JUNG Yong Chae.Natural and biomimetic artificial surfaces for superhydrophobicity,self-cleaning,low adhesion,and drag reduction[J].Progress in Materials Science,2011,56(1):1-108.

    • [6] JEEVAHAN Jeya,CHANDRASEKARAN M,BRITTO JOSEPH G,et al.Superhydrophobic surfaces:A review on fundamentals,applications,and challenges[J].Journal of Coatings Technology and Research,2018,15(2):231-250.

    • [7] CELIA Elena,DARMANIN Thierry,TAFFIN DE GIVENCHY Elisabeth,et al.Recent advances in designing superhydrophobic surfaces[J].Journal of Colloid and Interface Science,2013,402:1-18.

    • [8] VAZIRINASAB E,JAFARI R,MOMEN G.Application of superhydrophobic coatings as a corrosion barrier:A review[J].Surface and Coatings Technology,2018,341:40-56.

    • [9] TRUESDELL Richard,MAMMOLI Andrea,VOROBIEFF Peter,et al.Drag reduction on a patterned superhydrophobic surface[J].Physical Review Letters,2006,97(4):044504.

    • [10] MANCA Michele,CANNAVALE Alessandro,DE MARCO Luisa,et al.Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing[J].Langmuir,2009,25(11):6357-6362.

    • [11] YANG Chengjuan,CHAO Jiaqi,ZHANG Jichao,et al.Functionalized CFRP surface with water-repellence,self-cleaning and anti-icing properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,586:124278.

    • [12] 潘瑞,张红军,钟敏霖.三级微纳超疏水表面的超快激光复合制备及防除冰性能研究[J].中国激光,2021,48(2):0202009.PAN Rui,ZHANG Hongjun,ZHONG Minlin.Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J].Chinese Journal of Lasers,2021,48(2):0202009.(in Chinese)

    • [13] 李保明,王阳,郑炜超,等.中国规模化养鸡环境控制关键技术与设施设备研究进展[J].农业工程学报,2020,36(16):212-221.LI Baoming,WANG Yang,ZHENG Weichao,et al.Research progress in environmental control key technologies,facilities and equipment for laying hen production in China[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(16):212-221.(in Chinese)

    • [14] 罗娟,赵立欣,姚宗路,等.规模化养殖场畜禽粪污处理综合评价指标体系构建与应用[J].农业工程学报,2020,36(17):182-189.LUO Juan,ZHAO Lixin,YAO Zonglu,et al.Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(17):182-189.(in Chinese)

    • [15] XU Qinqin,SUN Xin,KONG Jian,et al.Preparation of a superhydrophobic ni complementary surface using a walnut wood template[J].ACS Omega,2020,5:2987-2991.

    • [16] MA Minglin,MAO Yu,GUPTA Malancha,et al.Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition[J].Macromolecules,2005,38(23):9742-9748.

    • [17] POZZATO Alessandro,ZILIO Simone Dal,FOIS Giovanni,et al.Superhydrophobic surfaces fabricated by nanoimprint lithography[J].Microelectronic Engineering,2006,83(4-9):884-888.

    • [18] YANG Yushan,HE Haishan,LI Yougui,et al.Using nanoimprint lithography to create robust,buoyant,superhydrophobic PVB/SiO2 coatings on wood surfaces inspired by red roses petal[J].Scientific Reports,2019,9:9961.

    • [19] ZHANG Lishen,ZHOU Alvin G,SUN Brigitta R,et al.Functional and versatile superhydrophobic coatings via stoichiometric silanization[J].Nature Communications,2021,12:982.

    • [20] ISAKOV Kirill,KAUPPINEN Christoffer,FRANSSILA Sami,et al.Superhydrophobic antireflection coating on glass using grass-like alumina and fluoropolymer[J].ACS Applied Materials and Interfaces,2020,12(44):49957-49962.

    • [21] LI Xinyi,JIANG Yue,TAN Xinyu,et al.Superhydrophobic brass surfaces with tunable water adhesion fabricated by laser texturing followed by heat treatment and their anti-corrosion ability[J].Applied Surface Science,2022,575:151596.

    • [22] PAN Rui,ZHANG Hongjun,ZHONG Minlin.Triple-Scale Superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J].ACS Applied Materials and Interfaces,2021,13(1):1743-1753.

    • [23] VOROBYEV A Y,GUO Chunlei.Multifunctional surfaces produced by femtosecond laser pulses[J].Journal of Applied Physics,2015,117(3):1033-1040.

    • [24] WANG Qinghua,WANG Huixin,ZHU Zhixian,et al.Switchable wettability control of titanium via facile nanosecond laser-based surface texturing[J].Surfaces and Interfaces,2021,24:101122.

    • [25] WANG Qinghua,WANG Huixin.Tuning water adhesion of superhydrophobic surface by way of facile laserchemical hybrid process[J].Surface Innovations,2021:2100042.

    • [26] WANG Qinghua,CHENG Yangyang,ZHU Zhixian,et al.Modulation and control of wettability and hardness of Zr-based metallic glass via facile laser surface texturing[J].Micromachines,2021,12(11):1322.

    • [27] WANG Zhiguo,SONG Jinpeng,WANG Tianyi,et al.Laser texturing for superwetting titanium alloy and investigation of its erosion resistance[J].Coatings,2021,11(12):1547.

    • [28] AHMADI S.Farzad,UMASHANKAR Viverjita,DEAN Zaara,et al.How multilayered feathers enhance underwater superhydrophobicity[J].ACS Applied Materials and Interfaces,2021,13(23):27567-27574.

    • [29] LIU Yuyang,CHEN Xianqiong,XIN Haozhong.Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment[J].Bioinspiration and Biomimetics,2008,3(4):046007.

    • [30] RONG Wanting,ZHANG Haifeng,MAO Zhigang,et al.Stable drag reduction of anisotropic superhydrophobic hydrophilic surfaces containing bioinspired micro nanostructured arrays by laser ablation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,622:126712.

    • [31] RUKOSUYEV Maxym V,LEE Jason,CHO Seong Jin,et al.One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation[J].Applied Surface Science,2014,313:411-417.

    • [32] GAO Nan,YAN Yuying,CHEN Xinyong,et al.Superhydrophobic surfaces with hierarchical structure[J].Materials Letters,2011,65(19-20):2902-2905.

    • [33] MARTÍNEZ-CALDERON M,RODRÍGUEZ A,DIAS-PONTE A,et al.Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS[J].Applied Surface Science,2016,374:81-89.

    • [34] WANG Huixin,MA Yunhai,BAI Zongchun,et al.Evaluation of tribological performance for laser textured surfaces with diverse wettabilities under water/oil lubrication environments[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,645:128949.

    • [35] HAN Jianlin,KISS Loránd,MEI Haibo,et al.Chemical aspects of human and environmental overload with fluorine[J].Chemical Reviews,2021,121(8):4678-4742.

    • [36] PREEDY Victor R.Fluorine:chemistry,analysis,function and effects[M].London:rRoyal Society of Chemistry,2015.

    • [37] WENZEL Robert N.Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry,1936,28(8):988-994.

    • [38] GREGORČIČ P,ŠETINA-BATIČ B,HOČEVAR M,et al.Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences[J].Applied Physics A:Materials Science and Processing,2017,123(12):766.

    • [39] 兰铃,底月兰,王海斗,等.激光复合加工制备超疏水金属表面的研究进展[J].表面技术,2021,50(12):246-256.LAN Ling,DI Yuelan,WANG Haidou,et al.Research progress on preparation of super-hydrophobic metal surface by laser composite processing[J].Surface Technology,2021,50(12):246-256.(in Chinese)

    • [40] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transaction Faraday Soc,1944,40:546-551.

    • [41] LONG Jiangyou,PAN Lin,FAN Peixun,et al.Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser[J].Langmuir,2016,32(4):1065-1072.

    • [42] SEO Kwangseok,KIM Minyoung,SEOK Seunghwan,et al.Transparent superhydrophobic surface by silicone oil combustion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,492:110-118.

    • [43] BIZI-BANDOKI P,VALETTE S,AUDOUARD E,et al.Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations[J].Applied Surface Science,2013,273:399-407.

    • [44] LONG Jiangyou,ZHONG Minlin,ZHANG Hongjun,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J].Journal of Colloid and Interface Science,2015,441:1-9.

    • [45] CHUN Doo Man,NGO Chi Vinh,LEE Kyong Min.Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J].CIRP Annals-Manufacturing Technology,2016,65(1):519-522.

    • [46] NGO Chi Vinh,CHUN Doo Man.Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces[J].Advanced Engineering Materials,2018,20(7):1701086.

    • [47] LI Baojia,LI Huang,HUANG Lijing,et al.Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity[J].Applied Surface Science,2016,389:585-593.

    • [48] WANG Qinghua,SAMANTA Avik,SHAW Scott K,et al.Nanosecond laser-based high-throughput surface nanostructuring(nHSN)[J].Applied Surface Science,2020,507:145136.

  • 参考文献

    • [1] CHEN Feng,ZHANG Dongshi,YANG Qing,et al.Bioinspired wetting surface via laser microfabrication[J].ACS Applied Materials and Interfaces,2013,5(15):6777-6792.

    • [2] STRATAKIS E,BONSE J,HEITZ J,et al.Laser engineering of biomimetic surfaces[J].Materials Science and Engineering:R:Reports,2020,141:100562.

    • [3] 商延赓,金娥,可庆朋,等.仿海豚皮肤结构的功能表面提高离心泵效率[J].农业工程学报,2016,32(7):72-78.SHANG Yangeng,JIN E,KE Qingpeng,et al.Efficiency improvement of centrifugal pump with function surface imitating dolphin skin structure[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(7):72-78.(in Chinese)

    • [4] 王少伟,李善军,张衍林,等.鼹鼠趾仿生及表面热处理提高齿形开沟刀减阻耐磨性能[J].农业工程学报,2019,35(12):10-20.WANG Shaowei,LI Shanjun,ZHANG Yanlin,et al.Mole toe bionics and surface heat treatment improving resistance reduction and abrasion resistance performance of toothed ditching blade[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2019,35(12):10-20.(in Chinese)

    • [5] BHUSHAN Bharat,JUNG Yong Chae.Natural and biomimetic artificial surfaces for superhydrophobicity,self-cleaning,low adhesion,and drag reduction[J].Progress in Materials Science,2011,56(1):1-108.

    • [6] JEEVAHAN Jeya,CHANDRASEKARAN M,BRITTO JOSEPH G,et al.Superhydrophobic surfaces:A review on fundamentals,applications,and challenges[J].Journal of Coatings Technology and Research,2018,15(2):231-250.

    • [7] CELIA Elena,DARMANIN Thierry,TAFFIN DE GIVENCHY Elisabeth,et al.Recent advances in designing superhydrophobic surfaces[J].Journal of Colloid and Interface Science,2013,402:1-18.

    • [8] VAZIRINASAB E,JAFARI R,MOMEN G.Application of superhydrophobic coatings as a corrosion barrier:A review[J].Surface and Coatings Technology,2018,341:40-56.

    • [9] TRUESDELL Richard,MAMMOLI Andrea,VOROBIEFF Peter,et al.Drag reduction on a patterned superhydrophobic surface[J].Physical Review Letters,2006,97(4):044504.

    • [10] MANCA Michele,CANNAVALE Alessandro,DE MARCO Luisa,et al.Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing[J].Langmuir,2009,25(11):6357-6362.

    • [11] YANG Chengjuan,CHAO Jiaqi,ZHANG Jichao,et al.Functionalized CFRP surface with water-repellence,self-cleaning and anti-icing properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,586:124278.

    • [12] 潘瑞,张红军,钟敏霖.三级微纳超疏水表面的超快激光复合制备及防除冰性能研究[J].中国激光,2021,48(2):0202009.PAN Rui,ZHANG Hongjun,ZHONG Minlin.Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J].Chinese Journal of Lasers,2021,48(2):0202009.(in Chinese)

    • [13] 李保明,王阳,郑炜超,等.中国规模化养鸡环境控制关键技术与设施设备研究进展[J].农业工程学报,2020,36(16):212-221.LI Baoming,WANG Yang,ZHENG Weichao,et al.Research progress in environmental control key technologies,facilities and equipment for laying hen production in China[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(16):212-221.(in Chinese)

    • [14] 罗娟,赵立欣,姚宗路,等.规模化养殖场畜禽粪污处理综合评价指标体系构建与应用[J].农业工程学报,2020,36(17):182-189.LUO Juan,ZHAO Lixin,YAO Zonglu,et al.Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(17):182-189.(in Chinese)

    • [15] XU Qinqin,SUN Xin,KONG Jian,et al.Preparation of a superhydrophobic ni complementary surface using a walnut wood template[J].ACS Omega,2020,5:2987-2991.

    • [16] MA Minglin,MAO Yu,GUPTA Malancha,et al.Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition[J].Macromolecules,2005,38(23):9742-9748.

    • [17] POZZATO Alessandro,ZILIO Simone Dal,FOIS Giovanni,et al.Superhydrophobic surfaces fabricated by nanoimprint lithography[J].Microelectronic Engineering,2006,83(4-9):884-888.

    • [18] YANG Yushan,HE Haishan,LI Yougui,et al.Using nanoimprint lithography to create robust,buoyant,superhydrophobic PVB/SiO2 coatings on wood surfaces inspired by red roses petal[J].Scientific Reports,2019,9:9961.

    • [19] ZHANG Lishen,ZHOU Alvin G,SUN Brigitta R,et al.Functional and versatile superhydrophobic coatings via stoichiometric silanization[J].Nature Communications,2021,12:982.

    • [20] ISAKOV Kirill,KAUPPINEN Christoffer,FRANSSILA Sami,et al.Superhydrophobic antireflection coating on glass using grass-like alumina and fluoropolymer[J].ACS Applied Materials and Interfaces,2020,12(44):49957-49962.

    • [21] LI Xinyi,JIANG Yue,TAN Xinyu,et al.Superhydrophobic brass surfaces with tunable water adhesion fabricated by laser texturing followed by heat treatment and their anti-corrosion ability[J].Applied Surface Science,2022,575:151596.

    • [22] PAN Rui,ZHANG Hongjun,ZHONG Minlin.Triple-Scale Superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J].ACS Applied Materials and Interfaces,2021,13(1):1743-1753.

    • [23] VOROBYEV A Y,GUO Chunlei.Multifunctional surfaces produced by femtosecond laser pulses[J].Journal of Applied Physics,2015,117(3):1033-1040.

    • [24] WANG Qinghua,WANG Huixin,ZHU Zhixian,et al.Switchable wettability control of titanium via facile nanosecond laser-based surface texturing[J].Surfaces and Interfaces,2021,24:101122.

    • [25] WANG Qinghua,WANG Huixin.Tuning water adhesion of superhydrophobic surface by way of facile laserchemical hybrid process[J].Surface Innovations,2021:2100042.

    • [26] WANG Qinghua,CHENG Yangyang,ZHU Zhixian,et al.Modulation and control of wettability and hardness of Zr-based metallic glass via facile laser surface texturing[J].Micromachines,2021,12(11):1322.

    • [27] WANG Zhiguo,SONG Jinpeng,WANG Tianyi,et al.Laser texturing for superwetting titanium alloy and investigation of its erosion resistance[J].Coatings,2021,11(12):1547.

    • [28] AHMADI S.Farzad,UMASHANKAR Viverjita,DEAN Zaara,et al.How multilayered feathers enhance underwater superhydrophobicity[J].ACS Applied Materials and Interfaces,2021,13(23):27567-27574.

    • [29] LIU Yuyang,CHEN Xianqiong,XIN Haozhong.Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment[J].Bioinspiration and Biomimetics,2008,3(4):046007.

    • [30] RONG Wanting,ZHANG Haifeng,MAO Zhigang,et al.Stable drag reduction of anisotropic superhydrophobic hydrophilic surfaces containing bioinspired micro nanostructured arrays by laser ablation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,622:126712.

    • [31] RUKOSUYEV Maxym V,LEE Jason,CHO Seong Jin,et al.One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation[J].Applied Surface Science,2014,313:411-417.

    • [32] GAO Nan,YAN Yuying,CHEN Xinyong,et al.Superhydrophobic surfaces with hierarchical structure[J].Materials Letters,2011,65(19-20):2902-2905.

    • [33] MARTÍNEZ-CALDERON M,RODRÍGUEZ A,DIAS-PONTE A,et al.Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS[J].Applied Surface Science,2016,374:81-89.

    • [34] WANG Huixin,MA Yunhai,BAI Zongchun,et al.Evaluation of tribological performance for laser textured surfaces with diverse wettabilities under water/oil lubrication environments[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,645:128949.

    • [35] HAN Jianlin,KISS Loránd,MEI Haibo,et al.Chemical aspects of human and environmental overload with fluorine[J].Chemical Reviews,2021,121(8):4678-4742.

    • [36] PREEDY Victor R.Fluorine:chemistry,analysis,function and effects[M].London:rRoyal Society of Chemistry,2015.

    • [37] WENZEL Robert N.Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry,1936,28(8):988-994.

    • [38] GREGORČIČ P,ŠETINA-BATIČ B,HOČEVAR M,et al.Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences[J].Applied Physics A:Materials Science and Processing,2017,123(12):766.

    • [39] 兰铃,底月兰,王海斗,等.激光复合加工制备超疏水金属表面的研究进展[J].表面技术,2021,50(12):246-256.LAN Ling,DI Yuelan,WANG Haidou,et al.Research progress on preparation of super-hydrophobic metal surface by laser composite processing[J].Surface Technology,2021,50(12):246-256.(in Chinese)

    • [40] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transaction Faraday Soc,1944,40:546-551.

    • [41] LONG Jiangyou,PAN Lin,FAN Peixun,et al.Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser[J].Langmuir,2016,32(4):1065-1072.

    • [42] SEO Kwangseok,KIM Minyoung,SEOK Seunghwan,et al.Transparent superhydrophobic surface by silicone oil combustion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,492:110-118.

    • [43] BIZI-BANDOKI P,VALETTE S,AUDOUARD E,et al.Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations[J].Applied Surface Science,2013,273:399-407.

    • [44] LONG Jiangyou,ZHONG Minlin,ZHANG Hongjun,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J].Journal of Colloid and Interface Science,2015,441:1-9.

    • [45] CHUN Doo Man,NGO Chi Vinh,LEE Kyong Min.Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J].CIRP Annals-Manufacturing Technology,2016,65(1):519-522.

    • [46] NGO Chi Vinh,CHUN Doo Man.Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces[J].Advanced Engineering Materials,2018,20(7):1701086.

    • [47] LI Baojia,LI Huang,HUANG Lijing,et al.Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity[J].Applied Surface Science,2016,389:585-593.

    • [48] WANG Qinghua,SAMANTA Avik,SHAW Scott K,et al.Nanosecond laser-based high-throughput surface nanostructuring(nHSN)[J].Applied Surface Science,2020,507:145136.

  • 手机扫一扫看