en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

聂开勋,男,1995年出生,硕士研究生。主要研究方向为表面工程。E-mail:2806664667@qq.com

通讯作者:

吴兵,男,1972年出生,硕士研究生,正高级实验师,硕士研究生导师。主要研究方向为表面工程。E-mail:wbingwukk@126.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20221222002

参考文献 1
MEHEDI M,JIANG Yanfeng,SURI P K,et al.Minnealloy:A new magnetic material with high saturation flux density and low magnetic anisotropy[J].Journal of Physics,D:Applied Physics,2017,50:37LT01.
参考文献 2
KRINGS A,BOGLIETTI A,CAVAGNINO A,et al.Soft magnetic material status and trends in electric machines[J].IEEE Transactions on Industrial Electronics,2016,64(3):2405-2414.
参考文献 3
PÉRIGO E A,WEIDENFELLER B,KOLLÁR P,et al.Past,present,and future of soft magnetic composites[J].Applied Physics Reviews,2018,5(3):031301.
参考文献 4
ZHAO Xiaojun,XU Huawei,CHENG Zhiguang,et al.A simulation method for dynamic hysteresis and loss characteristics of GO silicon steel sheet under non-sinusoidal excitation[J].IEEE Transactions on Applied Superconductivity,2021,31(8):1-4.
参考文献 5
CHEN T Y,CASTANON E,GIGAX J G,et al.Nitrogen ion implantation into pure iron for formation of surface nitride layer[J].Nuclear Instruments & Methods in Physics Research.B,Beam Interactions with Materials and Atoms,2019,451:10-13.
参考文献 6
孙建春,盛光敏,王越田,等.工业纯铁表面不锈钢化改性研究[J].稀有金属材料与工程,2011,40(S2):379-383.SUN Jianchun,SHENG Guangmin,WANG Yuetian,et al.Study on the surface stainless-steel-like alloying of commercial iron[J].Rare Metal Materials and Engineering,2011,40(S2):379-383.(in Chinese)
参考文献 7
刘岩,张城兴,李双喜.工业纯铁的氮碳钛离子共渗工艺[J].金属热处理,2021,46(12):252-255.LIU Yan,ZHANG Chengxing,LI Shuangxi.Process of ion nitro-carbon tetanizing for industrial pure iron[J].Heat Treatment of Metals,2021,46(12):252-255.(in Chinese)
参考文献 8
刘嘉琴,王晓方,刘柯钊.铁氮化工艺、氮化铁的性质及其氧化行为的研究现状与展望[J].材料导报,2023(14):1-27.LIU Jiaqin,WANG Xiaofang,LIU Kezhao.Research status and prospect of iron nitriding techniques,properties and oxidation behavior of iron nitrides[J].Materials Reports,2023(14):1-27.(in Chinese)
参考文献 9
张艳,王纳,王胜刚.纳米晶工业纯铁及其Ni镀层的性能[J].沈阳工业大学学报,2018,40(4):391-396. ZHANG Yan,WANG Na,WANG Shenggang.Properties of nanocrystalline industrial pure iron and its Ni plating layer[J].Journal of Shenyang University of Technology,2018,40(4):391-396.(in Chinese)
参考文献 10
BARAL A,ENGELKEN R,STEPHENS W,et al.Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries[J].Archives of Environmental Contamination and Toxicology,2006,50(4):496-502.
参考文献 11
NAIK U C,SRIVASTAVA S,THAKUR I S.Isolation and characterization of bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium[J].Environmental Science & Pollution Research International,2011,19(7):3005-3014.
参考文献 12
YEUNG C F,LAU K H,LUO Defu,et al.Advanced QPC complex salt bath heat treatment[J].Journal of Materials Processing Technology,1997,66(1-3):249-252.
参考文献 13
ZHANG Junwei,ZHANG Weihua,SHIOZAWA K,et al.Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime[J].International Journal of Fatigue,2011,33(7):880-886.
参考文献 14
FUNATANI K.Low-temperature salt bath nitriding of steels[J].Metal Science and Heat Treatment,2004,46(7-8):277-281.
参考文献 15
LI G J,PENG Q,WANG J,et al.Surface microstructure of 316L austenitic stainless steel by the salt bath titrocarburizing and post-oxidation process known as QPQ[J].Surface and Coatings Technology,2008,202(13):2865-2870.
参考文献 16
WANG J,LIN Yuanhua,LI Mingxing,et al.Effects of the treating time on microstructure and erosion corrosion behavior of salt-bath-nitrided 17-4PH stainless steel[J].Metallurgical and Materials Transactions B,2013,44(4):1010-1016.
参考文献 17
TANDON V,PATIL A P,RATHOD R C.Influence of time on low temperature salt bath nitriding and its corrosion behavior of 316L ASS in PEMFC environment[J].Protection of Metals and Physical Chemistry of Surfaces,2020,56(4):772-779.
参考文献 18
DAI Mingyang,LI Chaoyu,CHAI Yating,et al.Rapid salt bath nitriding of steel AISI 1045[J].Metal Science and Heat Treatment,2018,60(7-8),454-456.
参考文献 19
AYDIN H,BAYRAM A,TOPÇU Ş.Friction characteristics of nitrided layers on AISI 430 ferritic stainless steel obtained by various nitriding processes[J].Materials Science-Medziagotyra,2013,19(1):19-24.
参考文献 20
SINGH V,MARYA M.Influence of salt-bath nitrocarburizing on the electrochemical corrosion properties of stainless steels and nickel-based alloys in 3.5-wt.% sodium chloride solution[J].Journal of Materials Engineering and Performance,2022,31:6420-6434.
参考文献 21
CHEN G,WANG J,WANG Danqi,et al.Effect of liquid oxy-nitriding at various temperatures on wear and molten aluminum corrosion behaviors of AISI H13 steel[J].Corrosion Science,2020,178:109088.
参考文献 22
PENG Tiantian,DAI Mingyang,CAI Wei,et al.The enhancement effect of salt bath preoxidation on salt bath nitriding for AISI 1045 steel[J].Applied Surface Science,2019,484:610-615.
参考文献 23
LIU Xiang,LI Guo,SUN Baoyong,et al.The preparation of titanium carbide thin film of Ti6Al4V at low temperature and study of friction and wear properties[J].Journal of Measurements in Engineering,2016,4(3):167-172.
参考文献 24
FERRARA E,OLIVETTI E,FIORILLO F,et al.Microstructure and magnetic properties of pure iron for cyclotron electromagnets[J].Journal of Alloys and Compounds,2014,615:S291-S295.
参考文献 25
雷翔.过渡金属掺杂的氮化铁磁性纳米材料研究[D].长春:吉林大学,2018. LEI Xiang.Study of transition metals doped iron nitride magnetic nanomaterials[D].Changchun:Jilin university,2018.(in Chinese)
参考文献 26
高志恒,付扬帆.32Cr2Mo2NiVNb 钢盐浴氮化工艺[J].表面技术,2015,44(10):68-73.GAO Zhiheng,FU Yangfan.Salt-bath nitriding process for 32Cr2Mo2NiVNb steel[J].Surface Technology,2015,44(10):68-73.(in Chinese)
参考文献 27
RUSET C,GRIGORE E.Some observations on structure of compound layer produced on steels by plasma nitrocarburising[J].Surface Engineering,2013,26(1-2):61-66.
参考文献 28
CHEN Guang,WANG Jun,FAN Hongyuan,et al.Combat molten aluminum corrosion of AISI H13 steel by low-temperature liquid nitrocarburizing[J].Journal of Alloys and Compounds,2018,776:702-711.
参考文献 29
张进.铁离子对 45#钢盐浴氮化疏松层的影响[D].济南:山东大学,2010.ZHANG Jin.The influence of Fe2+ on 45# steel lose layer of liquid nitrogen[D].Jinan:Shandong University,2010.(in Chinese)
参考文献 30
PODGORNIK B,VIINTIN J,WNSTRAND O,et al.Tribology properties of plasma nitrided and hard coated AISI 4140 steel[J].Wear,2001,249(3):254-259.
参考文献 31
侯睿.低温离子增强扩渗对H13钢组织结构与性能的影的影响[D].广州:华南理工大学,2021.HOU Rui.Effect of plasma enhanced diffusion treatment at low temperature on the microstructure and properties of H13 steel[D].Guangzhou:South China University of Technology,2021.(in Chinese)
参考文献 32
YAN M.F,ZHANG Y X,Li D Y,et al.Catalytic growth of diamond-like carbon on Fe3C-containing carburized layer through a single-step plasma-assisted carburizing process[J].Carbon,2017,122(0008-6223):1-8.
参考文献 33
张伟林,赵靖宇,王光辉,等.盐浴氮碳共渗对65Mn弹簧钢耐磨性的影响[J].表面技术,2017,46(2):127-132.ZHANG Weilin,ZHAO Jingyu,WANG Guanghui,et al.Effects of salt bath nitrocarburizing on wear resistance of 65Mn spring steel[J].Surface Technology,2017,46(2):127-132.(in Chinese)
参考文献 34
缪斌,李景才,孙泉,等.离子氮碳共渗与离子渗氮复合处理对45钢组织与性能的影响[J].中国表面工程,2016,29(4):30-34.MIAO Bin,LI Jingcai,SUN Quan,et al.Effects of complex treatment of plasma nitrocarburizing and plasma nitriding on microstructure and properties of 45 steel[J].China Surface Engineering,2016,29(4):30-34.(in Chinese)
参考文献 35
蔡毅仁,王旭东,刘俊珺,等.镁合金化学镀 Ni-Cu-P/Ni-P 复合镀层及腐蚀防护机理研究[J].表面技术,2019,48(3):47-52. CAI Yiren,WANG Xudong,LIU Junjun,et al.Electroless Ni-Cu-P/Ni-P composite coatings on magnesium alloys and anti-corrosion mechanisms[J].Surface Technology,2019,48(3):47-52.(in Chinese)
参考文献 36
MICHLA J R J,RAJINI N,ISMAIL S O,et al.Effects of nitriding on salt spray corrosion resistance of additively manufactured 17-4 PH steels[J].Materials Letters,2023,330:133258..
参考文献 37
OLIVEIRA V M C,AGUIAR C,VAZQUEZ A M,et al.Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings[J],Corrosion Science,2014,88:317-327.
参考文献 38
SPIES H J.Corrosion behaviour of nitrided,nitrocarburised and carburised steels[J].Thermochemical Surface Engineering of Steels,2015:267-309.
参考文献 39
张玉林.TC17 钛合金表面高耐磨涂层腐蚀磨损机理研究[D].北京:北京科技大学,2021.ZHANG Yulin.Tribo-corrosion mechanism of coatings with high-wearing resistance prepared on TC17 titanium alloy[D].Beijing:University of Science and Technology Beijing,2021.(in Chinese)
参考文献 40
LI J,LU Y H.Effects of displacement amplitude on fretting wear behaviors and mechanism of inconel 600 alloy[J].Wear,2013,304(1-2):223-230.
参考文献 41
王梦娇,王云霞,范娜,等.海水环境下2507超级双相不锈钢微动磨损性能研究[J].润滑与密封,2019,44(2):14-20,26.WANG Mengjiao,WANG Yunxia,FAN Na,et al.Fretting wear properties of 2507 super duplex stainless steel in artificial seawater[J].Lubrication Engineering,2019,44(2):14-20,26.(in Chinese)
参考文献 42
宋伟,尘强,俞树荣,等.TC4 合金在不同环境介质中微动磨损行为研究[J].稀有金属材料与工程,2020,49(7):2393-2399. SONG Wei,CHEN Qiang,YU Shurong,et al.Fretting wear behavior of TC4 alloy in different environmental media[J].Rare Metal Materials and Engineering,2020,49(7):2393-2399.(in Chinese)
目录contents

    摘要

    盐浴渗氮作为一种有效提高金属材料性能的化学热处理技术而被广泛研究,但目前鲜有在电工纯铁上的应用报道,且缺乏在不同环境下的磨损性能研究。采用盐浴氮化对电工纯铁进行处理,采用 SEM、显微硬度计、XRD、XPS、盐雾测试箱、电化学工作站、摩擦磨损试验机等测试手段对渗氮层的微观组织、硬度、腐蚀行为及不同环境下的磨损行为进行测试分析。结果表明,经过渗氮处理后在试样表面形成主要为 ε-Fe3N、γ′-Fe4N 相的渗层,矫顽力和表面硬度随氮化温度和时间的增加逐渐升高,截面硬度呈梯度分布。其中 580 ℃×4.5 h 工艺试样具有最优的耐腐蚀性能,自腐蚀电位较纯铁正移,自腐蚀电流密度低于纯铁,电荷转移电阻提升了 7.7 倍。空气环境下,氮化试样的摩擦因数比纯铁低,氮化试样磨损率只约为纯铁的 1 / 2; 去离子水与 3.5 wt.% NaCl 溶液环境皆有利于降低摩擦因数,但增加了磨损率,3.5 wt.% NaCl 溶液环境对材料的加速磨损效果比去离子水更明显。系统研究了盐浴渗氮对电工纯铁腐蚀磨损性能的影响,可为提升海工装备电气开关元器件的服役寿命提供一定理论指导与技术支持。

    Abstract

    As a soft magnetic material, pure iron has excellent magnetic properties such as low coercivity and high permeability. Consequently, it has been widely used in circuit breakers, electromagnetic relays, and other electronic components, such as iron cores, and armatures. However, the application of pure iron in extreme environments has been limited, owing to its poor corrosion and wear performance. Salt-bath nitriding is widely studied as a chemical heat treatment technology that can effectively improve the properties of metal materials. However, there are few reports on applying this treatment to pure iron, and there is a lack of research on the wear properties of pure iron in different environments. In order to improve the hardness, wear resistance, and corrosion resistance of pure iron, and enhance the service life of electrical switch components of marine equipment, pure iron samples underwent a salt-bath nitriding treatment. Scanning electron microscopy was used to determine the micromorphology of the surface and the nitrided layer section, and determine the wear mark morphology. The wear products were analyzed by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis was used to conduct phase analysis of the surface of the nitrided layer, while X-ray photoelectron spectroscopy was used to conduct specific phase composition analysis before and after the removal of the loose layer on the surface of the nitrided layer. The surface and section hardness distribution was tested with a microhardness tester, and the corrosion resistance was tested and analyzed with a neutral salt spray test box and electrochemical workstation. The wear performance of the samples before and after nitriding was tested on the ball-disk friction and wear tester, and the test environment was an air, deionized water, and 3.5 wt.% NaCl solution environment. The results showed that the maximum coercivity and surface hardness values were 31.5 A / m and 508.8 HV0.2, respectively, with the values increasing with an increase in nitriding temperature and time. The 580 ℃×4.5 h process sample had the best resistance to neutral salt spray corrosion, and the thickness of the sample after this process was about 200 μm. The sample had ε-Fe3N and γ′-Fe4N phases, with the formation of hard ε-Fe3N and γ′-Fe4N phases being the main reason for the increase of surface hardness. The hardness of the cross section of the sample increases slightly at first and then decreases gradually from the nitrided layer to the matrix. The maximum hardness value was 528.1 HV0.2. The self-corrosion potential of the 580 ℃×4.5 h process sample shifted 0.37 V forward, the self-corrosion current density was significantly reduced, and the charge transfer resistance increased by 7.7 times relative to the respective pure iron values. The improvement in the corrosion performance can be attributed to the improved compactness and chemical stability of the nitrided layer. In an air environment, the friction coefficient of the nitriding sample is lower than that of pure iron, and the wear rate of pure iron and nitriding sample is 2.19×10−5 mm3 /(N·m) and 1.06×10−5 mm3 /(N·m) respectively, with the wear rate of the nitriding sample about 50% lower than that of pure iron. Both deionized water and 3.5 wt.% NaCl solution were conducive to the reduction of the friction coefficient, but resulted in an increased wear rate. The wear rates of the pure iron and nitriding samples in the deionized water environment were 2.75×10−5 mm3 / (N·m) and 1.86×10−5 mm3 / (N·m), respectively, while in the 3.5 wt.% NaCl solution environment they were 3.5×10−5 mm3 / (N·m) and 2.28×10−5 mm3 / (N·m), respectively. The wear rate in the NaCl solution environment was significantly higher than in the other environments; under the synergistic effect of corrosion and wear, the material removal efficiency was higher. Having systematically studied the effect of salt-bath nitriding on the corrosion and wear properties of pure iron, theoretical guidance and technical support can be provided to improving the service life of electrical switch components in marine equipment.

  • 0 前言

  • 电工纯铁是一种软磁性金属,因其磁性能优异且稳定、加工成本低而广泛应用于航空航天、海上设备、电子通信等领域[1-3]。特别是高磁导率及低矫顽力被用于电磁阀的铁心、衔铁、轭铁等零部件的原材料[4]。但是耐腐蚀能力差是电工纯铁最致命的缺点,当表面没有经过任何处理的工件暴露在大气中时,表面极易产生锈蚀,在海洋等高盐雾环境下更为严重。

  • 为了提高电工纯铁的腐蚀磨损性能,目前的防护方法主要是通过引入其他元素,在其表面形成相对稳定的化合物层,引入元素包括非金属元素、金属元素及金属与非金属元素的组合,其中最常用且最具有代表性的方法是氮化技术,包括传统气固氮化、电化学熔融盐氮化、粉包氮化、离子注入、等离子体氮化、激光氮化以及激光与氮等离子体束混合法等[5-8]

  • 此外,电镀作为一种传统的表面改性技术也被应用于改善电工纯铁的抗蚀及耐磨性[9]。但是电镀产生的废水特别是所含六价铬离子对人体和环境产生的危害特别大[10-11]。作为替代电镀的表面改性技术之一,盐浴氮化由于工艺简单、技术要求低、低成本、变形小、渗层厚等特点广泛应用于各种金属材料的表面增强处理,且可以实现高疲劳抗力和良好的耐磨性和耐腐蚀性[12-14]。LI 等[15]研究了 316L 奥氏体不锈钢盐浴氮化后的表面微观结构特征,盐浴氮化改变了不锈钢的表面相组成,因此氮化试样硬度得到显著提高。渗氮温度及时间是影响渗氮效果的两大因素,WANG 等[16]发现增加渗氮时间对提高 17-PH 钢的抗磨性能有显著的效果;TANDON 等[17]对质子交换膜燃料电池(PEMFC)双极板材料奥氏体不锈钢(ASS)进行了不同时间的渗氮处理。结果表明,相比于 6、12 h 渗氮,3 h 渗氮获得了最优异的耐腐蚀性,因此渗氮时间需要控制在合理的范围;DAI 等[18]将 AISI 1045 碳钢的盐浴渗氮温度从常规的 560℃增加到 660℃,由于 CNO− 在高温下分解速率提高,因此缩短了所需渗层厚度需要的渗氮时间,提高了渗氮效率,且达到较好的渗层硬度和耐腐蚀性能。AYDIN 等[19]比较了等离子渗氮、气体渗氮及盐浴渗氮对 AISI430 铁素体不锈钢摩擦因数的影响,渗氮时间分别为 1.5、13 和 8 h,以 WC-Co 作为摩擦副的球-盘摩擦试验结果表明,在三种渗氮方式中,渗氮时间最少的盐浴氮化层获得了最好的减磨效果,盐浴氮化具有独特的优势。盐浴氮化也称为液体氮碳共渗,相比于单一的渗氮,盐浴氮化中碳原子的存在将会大大提升渗氮效率,且多相结构的氮化层具有更加优异的耐磨损、耐腐蚀以及抗疲劳性能[20-21]

  • 目前将盐浴氮化应用于提高电工纯铁的腐蚀磨损性能的文献鲜有报道,缺乏系统性研究。本文对电工纯铁基体进行盐浴氮化处理,研究了盐浴氮化对电工纯铁微观组织、硬度、耐腐蚀性以及不同环境下抗磨性能的影响。

  • 1 试验准备

  • 1.1 样品制备

  • 试验所用基体材料为 DT4C 电工纯铁,化学成分(质量分数)见表1,使用线切割将材料切割为 20 mm×20 mm×5 mm 大小的薄片,分别用 1200 #、 1500 #、2000 #、5000 #、7000 #的砂纸进行打磨,然后用石油醚与无水乙醇在超声波清洗机里各清洗 15 min,最后用吹风机吹干待用。

  • 为了进一步烘干工件表面水分并减少工件畸变,将预先处理好的样品置于大气环境下的预热炉内预热,预热温度为 380℃,时间为 10 min,在预热过程中工件表面形成一层薄氧化膜,当试样进入强还原性氮化气氛中时,表面的氧化膜被还原,形成新鲜表面,为渗氮做准备[22-23],接着将试样置于氮化炉并在 540、560、580℃分别进行 3、4.5、6 h 盐浴氮化处理得到氮化试样,试验用氮化盐及设备均由成都赛飞斯金属有限公司提供,氮化盐主要由 NaCNO、KCNO、Li2CO3、Na2CO3、K2CO3、NaCl 组成。

  • 表1 DT4C 电工纯铁化学成分(质量分数 / %)

  • Table1 Chemical composition of electrical pure iron (wt.%)

  • 1.2 结构表征及性能测试

  • 矫顽力测试用天恒测控 TD8220 软磁直流测试系统(饱和外加磁场强度为 10 kA / m),采用扫描电子显微镜(ZEISS Gemini300)及附带能谱仪 (EDS,Mapping)对氮化试样表面及截面进行形貌及元素分析,截面形貌拍摄预处理为对截面打磨抛光,并用 4%硝酸乙醇溶液腐蚀。采用 Smart Lab 型 X 射线衍射仪(日本理学)对渗层表面进行 XRD 分析,测试参数为:Cu 靶(λ=0.154 06 nm),管压 40 kV,管流 40 mA,扫描速度为 5(°)/ min,步长 0.01°,连续扫描。采用配备有单色化 Al 源(1 486.68 eV 的 Al Kα辐射)型号为 Thermo SCIENTIFIC ESCALAB Xi+(美国-赛默飞)X 射线光谱仪对疏松层,以及去除疏松层后的试样表面进行分析,仪器在 14 795.40 V 和 0.010 8 A 的通过能量下运行。硬度测试在 HV-1000 显微硬度计(广州蔚仪)上进行,载荷 200 g,保荷时间为 10 s。电化学测试采用东华 DH7001 电化学工作站,采用三电极体系,被测试样为工作电极,参比电极为饱和甘汞,对比电极为铂电极,测试用溶液为 3.5 wt.% NaCl 溶液,测试样在电解槽上固定后暴露面积为 1 cm2,首先进行 1 h 的开路电位测试,待系统稳定后再进行 Tafel 极化曲线测试,Tafel 扫描速度为 0.5 mV / s;交流阻抗(EIS) 谱测试时扫描频率范围为 105~10−2 Hz,振幅 10 mV。盐雾测试为标准中性盐雾,在型号为 JK-60B 的盐雾箱中进行,腐蚀介质为 5 wt.% NaCl 溶液,试样非测试面用固化剂镶住之后放入盐雾箱,使试样被测表面与垂直方向的角度保持在 20°~35°,记录试样表面腐蚀情况。摩擦磨损测试采用 MFT-5000 型摩擦磨损试验机,对磨球为直径 6 mm 的氮化硅,加载力为 10 N,频率为 1 Hz,往复行程为 4 mm,时间为 30 min,对处理试样分别在干摩擦、去离子水及 3.5 wt.% NaCl 溶液中进行测试,三维表面形貌及二维轮廓通过 Contour EliteK 型三维表面形貌仪 (布鲁克,美国)测试,磨损率通过式(1)计算:

  • K=VFL
    (1)
  • 式中,K 为磨损率(mm 3 / (N·m)),V 为磨损体积(mm 3),F 为加载力(N),L 为滑动距离(m)

  • 2 结果与讨论

  • 2.1 参数优化分析

  • 表2 为 DT4C 基体与盐浴氮化处理后的矫顽力及硬度变化情况,矫顽力的大小表示电工纯铁在磁化后的退磁能力,因此进行盐浴氮化之后矫顽力需满足在一定范围之内。氮化盐中所含 CNO 在高温下分解的 N、C 原子固溶于 α-Fe 会形成 ε-Fe3N 或者 ε-Fe3N、θ-Fe3C 等多相组织,其中主要是 ε-Fe3N 对畴壁的移动产生了钉扎作用,因此矫顽力增大[24-25]。分解过程如下[23]

  • 4CNO-CO32-+2CN-+CO+2[N]
    (2)
  • 2COCO2+[C]
    (3)
  • 表2 盐浴氮化方案及结果

  • Table2 Nitrocarburizing scheme and results

  • 随着氮化温度和氮化时间的增加,矫顽力相较于纯铁基体(26.5 A / m)均有不同幅度的增长,主要是渗层厚度随着氮化温度及氮化时间的增加而增加,即矫顽力的大小取决于ε-Fe3N等氮化物的含量,但在设计要求内(Hc≤50 A / m)。

  • 硬度在一定程度上可以表征试样的抗摩擦磨损能力,从表2 硬度变化趋势看,随着氮化温度及氮化时间的增加,硬度呈增长的趋势,研究认为,硬度的提高是氮化过程中原子固溶产生的晶格畸变程度更大、渗层中高硬度氮化物增多共同作用的结果[26],且氮化温度对硬度的影响比氮化时间更显著,可能是在此工艺设计下,温度梯度对渗层厚度及物相变化的影响更大。

  • 不同制备工艺下的盐雾腐蚀形貌如图1 所示,盐雾进行到 96 h 时,除 580℃处理温度下的试样没出现红锈外,其余试样均产生了不同程度的红锈。在 168 h 时,580℃×6 h 制备工艺下的试样在边缘出现红锈, 312 h 时,580℃×3 h 试样在边缘也出现红锈。从盐雾测试情况来看,在较低温度制备的试样由于渗层较浅,抵抗腐蚀介质侵蚀的能力较弱,相反当温度较高、时间较长时,由于渗入基体内部的 N、C 原子达到饱和,继续增加温度或时间会造成渗层结构疏松甚至出现裂纹[17],降低其抵抗腐蚀介质的能力。此外,渗层所含物相也显著影响渗层的抗盐雾腐蚀性能,如单一 ε-Fe3N 相比 ε-Fe3N、γ′-Fe4N 两相共存的化合物层耐腐蚀更好[27]。从盐雾腐蚀结果来看,580℃×4.5 h 制备工艺下的试样耐中性盐雾性能最好。

  • 因此要选择合适的制备工艺,制备出性能优异且经济的试样,综合考虑中性盐雾和硬度测试情况,选择 580℃×4.5 h 工艺为纯铁的氮化工艺,下文以 SBN 表示所选工艺试样。

  • 图1 不同工艺制备的试样在盐雾腐蚀不同时间后的宏观形貌

  • Fig.1 Macro corrosion morphology of samples prepared by different processes under different salt spray time

  • 2.2 组织形貌及硬度

  • 图2a 为盐浴氮化后的 SBN 表面形貌。在高温盐浴过程中,反应所需的 N、C 元素由熔融氮化盐提供,在原子浓度差驱动力下,N、C 原子源源不断地向纯铁基体表面吸附,并逐渐向内部扩散固溶于 α-Fe。渗层表面 O 元素含量相对较高, O 元素一方面来自氮化过程,研究表明,盐浴氮化无须进行后续氧化处理,渗层表面也会形成氧化层[28],另一方面与冷却过程中的表面氧化有关。

  • 图2d 为渗层截面形貌。渗层包括化合物层与扩散层,化合物层通常由ε-(Fe2~3N)、γ′-Fe4N 及θ-Fe3C 组成,扩散层主要由氮化物和含氮铁素体所组成,扩散层中靠近化合物层富含γ′-Fe4N,越接近基体 γ′-Fe4N 越少,靠近基体处为氮在α-Fe 相中的固溶体[29]。化合物层分布有一层疏松组织,这在氮化工艺中普遍存在,一般认为疏松层的形成是由于化合物层中的ε相在高温下发生分解析出分子氮,将使化合物层出现分布不均、大小不一的微小孔洞。研究表明,这种疏松结构可有效抑制裂纹的进一步扩展,当裂纹从渗层内部萌生且向表层延伸时,由于疏松层结构与致密化合物层存在差异,对阻碍裂纹的连续性起到了一定作用,对热疲劳性能有利[30],但是在腐蚀环境下,这种疏松结构为腐蚀介质提供储存空间,对提升化合物层耐腐蚀性能不利,应尽量避免。

  • 图2 SBN 表面、截面 SEM 形貌

  • Fig.2 SEM morphology of SBN surface and section

  • 图3 为经过盐浴氮化后SBN试样的XRD图谱。经过盐浴氮化后,表面组织主要为 ε-Fe3N 和 γ′-Fe4N。没有检测到渗碳体与氧化物,由于 XRD 检测范围有限,渗碳体与氧化物不存在或者含量较低时,无法被 XRD 检测到[32]

  • 图4 为 SBN 去除疏松层前后的 XPS 全谱及精细谱分析。图4b 中结合能为 248.8 eV 处对应石墨 C[31],结合能为 285.54 eV / 285.32 eV、288.68 eV / 288.37 eV 对应 C-O、C=O[32],一般在碳基材料长期处于空气下形成,没有发现铁碳化合物,证明在盐浴氮化过程中无渗碳体生成。事实上 C 元素的原子半径较大,它在氮化过程中的主要作用是促进 N 原子的吸附与扩散,因此主要分布于渗层疏松氧化层表层,渗入基体中的极少,而结合 Fe-C-N 相图可知,Fe3C 相的出现需要 C 浓度超过 C 在α-Fe 中的最大固溶度[33-34]。图4c 中结合能为 397.49 eV、 399.77 eV / 399.92 eV 对应铁氮化合物与固溶氮,疏松顶层没有检测到铁氮化合物,主要是疏松层存在 O 元素和 C 元素。去除疏松层后的致密化合物层主要由铁氮化合物组成,且图4d 表明有铁的氧化物生成,氧元素的出现是通过疏松多孔结构进入的。

  • 图3 SBN 的 XRD 图谱

  • Fig.3 XRD patterns of SBN

  • 图4 SBN 去除疏松层前后 XPS 分析

  • Fig.4 XPS analysis of SBN before and after removing loose layer

  • 图5 为 SBN 试样截面硬度分布情况。根据硬度分布情况可知渗层深度约为 200 μm,因为渗层所含 N、C 元素含量由表及里逐渐降低,故硬度从表面 (横坐标为零处)到基体呈梯度分布,且渗层表面存在疏松层,因此硬度分布曲线有先升后降的趋势,最高为 528.1 HV0.2

  • 图5 SBN 截面硬度分布

  • Fig.5 Cross-section hardness distribution of SBN

  • 2.3 腐蚀性能

  • 图6 为纯铁基体与 SBN 在 3.5 wt.%NaCl 溶液中的极化曲线图。自腐蚀电位作为热力学参数,表示材料发生腐蚀的倾向,自腐蚀电位越高,表明材料越不容易发生腐蚀。通过 Tafel 外推法对极化曲线进行拟合得出表3 中的自腐蚀电位及自腐蚀电流。结果显示,纯铁基体与 SBN 的自腐蚀电位分别为 0.303 V 和 0.067 V,SBN 相对于基体正移了 0.37 V,经过处理后的试样腐蚀倾向降低。

  • 图6 纯铁基体与 SBN 极化曲线

  • Fig.6 Polarization curves of pure iron matrix and SBN

  • 表3 纯铁基体与 SBN 试样 Tafel 曲线相关参数及 EIS拟合等效电路参数

  • Table3 Tafel polarization curves related parameters and EIS fitting equivalent circuit parameters of pure iron matrix and SBN

  • 自腐蚀电流作为动力学参数,表示材料腐蚀速度的快慢,自腐蚀电流越小,说明材料腐蚀越慢。基体自腐蚀电流为 2.99 μA·cm 2,SBN 的自腐蚀电流为 0.74 μA·cm 2,相对于基体下降了数倍,说明 SBN 的抗腐蚀性能得到提高。

  • 图7 为纯铁基体与 SBN 在 3.5 wt.% NaCl 溶液中的交流阻抗谱、等效电路模型及 Bode 图。阻抗谱曲线均显示为不同大小的半圆弧且具有一个时间常数[35],阻抗半径越大,对腐蚀介质的抵抗能力越强。在图7b 等效电路图中,Rs 代表溶液电阻, Rct 代表电荷转移电阻,CPE1 表示双电层电容,试样的抗腐蚀性能由 Rct 决定。采用 Zview 软件拟合计算交流阻抗曲线的等效电路,拟合结果列于表3。与基体相比,SBN 的 Rct 增加了 20.036 kΩ·cm 2,说明 SBN耐腐蚀性较基体显著增强。如图6c 所示,在高频阶段,基体和 SBN 的阻抗模大小不随频率的变化而变化,曲线基本重合,说明溶液电阻基本一致;在中频区域,随着频率的减小,基体和 SBN 的阻抗模值增大,且 SBN 的增速大于基体,表明 SBN 渗层的化学稳定性更高,耐腐蚀性能更强[36];到了低频区,SBN 的阻抗模值远远大于基体的值,耐腐蚀性能明显好于基体。如图7d 所示,基体及 SBN 在高频区域的相位角为零,表明高频区域的阻抗主要来源于溶液,从高频向低频移动的过程中,相位都发生负偏移,基体与 SBN 的相位角在驼峰最高处分别为–60.86°、–67.862°,SBN 相较于基体的驼峰更高,高相角范围更宽,表明电容特性增强[37]

  • 极化曲线及交流阻抗均表明经过盐浴氮化后,基材耐腐蚀性能显著提升,一方面经过处理后试样表面形成了一层致密的化合物层,起到了很好的物理阻隔作用,其次氮化过程中形成的 ε-Fe3N 和 γ′-Fe4N 具有较好的稳定性,腐蚀敏感性较弱,降低了试样的腐蚀倾向和腐蚀速率[38]

  • 图7 纯铁基体及 SBN 交流阻抗曲线

  • Fig.7 AC impedance curve of pure iron matrix and SBN

  • 2.4 摩擦磨损性能

  • 图8 为纯铁基体及 SBN 分别在干摩擦、去离子水及 3.5 wt.% NaCl 溶液环境下的摩擦因数曲线。摩擦因数存在一个快速上升阶段,称为磨合期,由于试样表面存在一些微凸起,摩擦副刚与试样表面接触时,接触面积较小,因此摩擦因数较低,随着磨损的进行,微凸体逐渐被磨平,摩擦因数才趋于相对稳定,SBN 磨合时间比纯铁基体的长,这是由于 N、C 固溶于纯铁基体造成晶格畸变,表面粗糙度较基体更高。纯铁基体和 SBN 在去离子水和 3.5 wt.% NaCl溶液环境下的摩擦因数较空气环境下都降低,表明此环境下具有润滑效果,其中 3.5 wt.% NaCl 溶液环境润滑效果更明显,主要是因为溶液中大量的离子吸附于磨痕表面,起到良好的润滑效果[39]。在空气环境下,SBN 的摩擦因数一直低于纯铁基体,但是与空气环境不同,去离子水和 3.5 wt.% NaCl 溶液环境下,SBN 摩擦因数前期低于纯铁基体,但是磨损后期逐渐高于纯铁基体,可能是这两种环境下 SBN 材料去除量比干摩擦下更多,表层疏松富氧润滑层被去除,润滑效果降低。

  • 图8 纯铁基体及 SBN 在不同环境下的摩擦磨损曲线

  • Fig.8 Friction and wear curves of pure iron matrix and SBN in different environments

  • 图9 为纯铁基体和 SBN 分别在不同环境下的磨痕三维形貌及二维轮廓。在空气环境下,纯铁基体和 SBN 的磨痕深度分别为 2.98、 1.49 μm,SBN 耐磨性的提升得益于渗层中力学性能较好的 ε-Fe3N 与γ′-Fe4N 相。在去离子水和 3.5 wt.% NaCl 溶液环境下,纯铁基体和 SBN 的磨痕深度均比空气环境下更深, 3.5 wt.% NaCl 溶液环境下最深,分别达到了 4.47 μm 和 2.79 μm,表明这两种环境下试样比空气环境磨损严重。

  • 图9 纯铁基体和 SBN 在不同环境下的磨痕三维形貌及二维轮廓

  • Fig.9 Three dimensional morphology and two dimensional profile of wear scar of pure iron matrix and SBN in different environments

  • 图10 为纯铁基体和 SBN 在不同环境下的磨损率统计。空气环境下,SBN 和纯铁基体的磨损率分别为 1.06×10−5 mm 3 /(N·m)、2.19×10−5 mm 3 /(N·m), SBN 磨损率相对于纯铁基体降低了近 50%。在去离子水和 3.5 wt.% NaCl 溶液环境下,纯铁基体和 SBN 的磨损率均有不同程度的提高,表明这两种环境均加速了材料的去除,3.5 wt.% NaCl 溶液腐蚀环境与摩擦的协同作用最显著。

  • 图10 纯铁基体和 SBN 在不同环境下的磨损率统计

  • Fig.10 Wear rate statistics of pure iron matrix and SBN in different environments

  • 图11 为纯铁基体和 SBN 在空气环境下的磨痕形貌。纯铁基体磨粒磨损严重(图11a),且磨痕区域出现了许多微裂纹与剥落坑。当摩擦副刚接触到试样时,接触面积较小,接触应力较大,摩擦副与试样接触区由于剪切滑移形成局部塑形变形[40],材料内部在拉应力和压应力循环交替下萌生微裂纹,微裂纹的出现使材料与材料之间的粘附力减弱,在循环往复的摩擦力作用下,材料从磨痕表面被撕脱,形成大量层状剥落和凹坑。磨粒磨损是由于硬摩擦副对软基体起着磨粒作用,在滑动过程中划伤基材表面形成犁沟痕迹。

  • SBN 磨痕表面分布有大量“鱼鳞”片状组织(图11b),结合面扫元素分布以及表4 点扫结果可知“鱼鳞”片状物主要是 Fe 和 Si 的氧化物,说明出现了大量的摩擦副材料的转移。大量摩擦副材料的转移是由于 SBN 表面硬度较高,与 Si3N4磨球对磨时,磨球被磨损从而发生材料转移,转移材料粘附在磨痕表面,在磨球循环应力下被压实形成“鱼鳞”片状组织,在磨痕表面起到了润滑作用,阻止了试样材料的进一步去除,且填充了磨痕的部分缺陷,因此磨痕较浅,磨损率较低。

  • 图11 纯铁基体和 SBN 在空气环境下的磨痕形貌

  • Fig.11 Wear scar morphology of pure iron matrix and SBN in air

  • 图12 为纯铁基体和 SBN 在去离子水环境下的磨痕形貌。与干摩擦相比,磨痕 Si 含量显著降低(表4),表明摩擦副材料的转移减少,水溶液环境减缓了磨粒磨损的程度,相对于干摩擦磨痕表面较为光滑[41]。但是纯铁基体磨痕表面的剥落坑面积更宽, SBN 磨痕表面“鱼鳞”片状组织减少且分布不均。虽然去离子水具有润滑作用,摩擦因数降低(图8),但这也使得摩擦副材料转移量降低或者转移材料弥散于水溶液中,不能完全停留在磨痕表面,形成具有润滑性能的 Si 氧化物,因此磨损量反而增加。

  • 图12 纯铁基体和 SBN 在去离子环境下的磨痕形貌

  • Fig.12 Wear scar morphology of pure iron matrix and SBN in deionized environment

  • 表4 不同环境下磨痕元素含量

  • Table4 Element content of wear scar in different environments

  • 图13 为纯铁基体和 SBN 在 3.5 wt.% NaCl 溶液中的磨痕形貌。相较于干摩擦和去离子水环境,磨痕表面犁沟在深度和数量上有所降低,由于离子浓度更高,润滑性能更好,摩擦副材料转移量也最低。可以看到纯铁基体磨损区域出现了团聚物,通过元素分析可知,这可能是腐蚀形成的氧化物,随着磨损的进行,腐蚀介质如氯离子侵入材料的裂缝以及孔隙,磨痕表面出现了腐蚀孔,材料在腐蚀的协同作用下更容易被磨损去除。由于磨损促进了腐蚀的进行,腐蚀又加速了材料的去除,两者同时进行,形成复杂的“正”交互作用[42]。从图10 磨损量值可知,在 3.5 wt.% NaCl 溶液中的材料去除率最高,磨损机制主要为轻微磨粒磨损和腐蚀磨损。

  • 图13 纯铁基体和 SBN 在 3.5 wt.% NaCl 溶液环境下的磨痕形貌

  • Fig.13 Wear scar morphology of pure iron matrix and SBN in 3.5 wt.% NaCl solution

  • 3 结论

  • 采用盐浴氮化对电工纯铁进行处理,研究盐浴氮化对电工纯铁显微组织、耐腐蚀性及耐磨损性能的影响,得出如下结论:

  • (1)电工纯铁经过盐浴氮化后,获得了表面物相组织主要为 ε-Fe3N 和γ′-Fe4N 的渗氮层,矫顽力及硬度随渗氮温度和时间的增加而增大。

  • (2)有渗氮层保护的电工纯铁表现出优良的抗中性盐雾及电化学腐蚀性能。

  • (3)渗氮后电工纯铁在空气环境下的摩擦因数相对于渗氮前有所降低。去离子水与 3.5 wt.% NaCl 溶液环境均降低了盐浴渗氮前后电工纯铁的摩擦因数,但磨损率升高。在同种环境下,渗氮后的电工纯铁表现出了比渗氮前更优异的耐磨损性能。

  • 参考文献

    • [1] MEHEDI M,JIANG Yanfeng,SURI P K,et al.Minnealloy:A new magnetic material with high saturation flux density and low magnetic anisotropy[J].Journal of Physics,D:Applied Physics,2017,50:37LT01.

    • [2] KRINGS A,BOGLIETTI A,CAVAGNINO A,et al.Soft magnetic material status and trends in electric machines[J].IEEE Transactions on Industrial Electronics,2016,64(3):2405-2414.

    • [3] PÉRIGO E A,WEIDENFELLER B,KOLLÁR P,et al.Past,present,and future of soft magnetic composites[J].Applied Physics Reviews,2018,5(3):031301.

    • [4] ZHAO Xiaojun,XU Huawei,CHENG Zhiguang,et al.A simulation method for dynamic hysteresis and loss characteristics of GO silicon steel sheet under non-sinusoidal excitation[J].IEEE Transactions on Applied Superconductivity,2021,31(8):1-4.

    • [5] CHEN T Y,CASTANON E,GIGAX J G,et al.Nitrogen ion implantation into pure iron for formation of surface nitride layer[J].Nuclear Instruments & Methods in Physics Research.B,Beam Interactions with Materials and Atoms,2019,451:10-13.

    • [6] 孙建春,盛光敏,王越田,等.工业纯铁表面不锈钢化改性研究[J].稀有金属材料与工程,2011,40(S2):379-383.SUN Jianchun,SHENG Guangmin,WANG Yuetian,et al.Study on the surface stainless-steel-like alloying of commercial iron[J].Rare Metal Materials and Engineering,2011,40(S2):379-383.(in Chinese)

    • [7] 刘岩,张城兴,李双喜.工业纯铁的氮碳钛离子共渗工艺[J].金属热处理,2021,46(12):252-255.LIU Yan,ZHANG Chengxing,LI Shuangxi.Process of ion nitro-carbon tetanizing for industrial pure iron[J].Heat Treatment of Metals,2021,46(12):252-255.(in Chinese)

    • [8] 刘嘉琴,王晓方,刘柯钊.铁氮化工艺、氮化铁的性质及其氧化行为的研究现状与展望[J].材料导报,2023(14):1-27.LIU Jiaqin,WANG Xiaofang,LIU Kezhao.Research status and prospect of iron nitriding techniques,properties and oxidation behavior of iron nitrides[J].Materials Reports,2023(14):1-27.(in Chinese)

    • [9] 张艳,王纳,王胜刚.纳米晶工业纯铁及其Ni镀层的性能[J].沈阳工业大学学报,2018,40(4):391-396. ZHANG Yan,WANG Na,WANG Shenggang.Properties of nanocrystalline industrial pure iron and its Ni plating layer[J].Journal of Shenyang University of Technology,2018,40(4):391-396.(in Chinese)

    • [10] BARAL A,ENGELKEN R,STEPHENS W,et al.Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries[J].Archives of Environmental Contamination and Toxicology,2006,50(4):496-502.

    • [11] NAIK U C,SRIVASTAVA S,THAKUR I S.Isolation and characterization of bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium[J].Environmental Science & Pollution Research International,2011,19(7):3005-3014.

    • [12] YEUNG C F,LAU K H,LUO Defu,et al.Advanced QPC complex salt bath heat treatment[J].Journal of Materials Processing Technology,1997,66(1-3):249-252.

    • [13] ZHANG Junwei,ZHANG Weihua,SHIOZAWA K,et al.Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime[J].International Journal of Fatigue,2011,33(7):880-886.

    • [14] FUNATANI K.Low-temperature salt bath nitriding of steels[J].Metal Science and Heat Treatment,2004,46(7-8):277-281.

    • [15] LI G J,PENG Q,WANG J,et al.Surface microstructure of 316L austenitic stainless steel by the salt bath titrocarburizing and post-oxidation process known as QPQ[J].Surface and Coatings Technology,2008,202(13):2865-2870.

    • [16] WANG J,LIN Yuanhua,LI Mingxing,et al.Effects of the treating time on microstructure and erosion corrosion behavior of salt-bath-nitrided 17-4PH stainless steel[J].Metallurgical and Materials Transactions B,2013,44(4):1010-1016.

    • [17] TANDON V,PATIL A P,RATHOD R C.Influence of time on low temperature salt bath nitriding and its corrosion behavior of 316L ASS in PEMFC environment[J].Protection of Metals and Physical Chemistry of Surfaces,2020,56(4):772-779.

    • [18] DAI Mingyang,LI Chaoyu,CHAI Yating,et al.Rapid salt bath nitriding of steel AISI 1045[J].Metal Science and Heat Treatment,2018,60(7-8),454-456.

    • [19] AYDIN H,BAYRAM A,TOPÇU Ş.Friction characteristics of nitrided layers on AISI 430 ferritic stainless steel obtained by various nitriding processes[J].Materials Science-Medziagotyra,2013,19(1):19-24.

    • [20] SINGH V,MARYA M.Influence of salt-bath nitrocarburizing on the electrochemical corrosion properties of stainless steels and nickel-based alloys in 3.5-wt.% sodium chloride solution[J].Journal of Materials Engineering and Performance,2022,31:6420-6434.

    • [21] CHEN G,WANG J,WANG Danqi,et al.Effect of liquid oxy-nitriding at various temperatures on wear and molten aluminum corrosion behaviors of AISI H13 steel[J].Corrosion Science,2020,178:109088.

    • [22] PENG Tiantian,DAI Mingyang,CAI Wei,et al.The enhancement effect of salt bath preoxidation on salt bath nitriding for AISI 1045 steel[J].Applied Surface Science,2019,484:610-615.

    • [23] LIU Xiang,LI Guo,SUN Baoyong,et al.The preparation of titanium carbide thin film of Ti6Al4V at low temperature and study of friction and wear properties[J].Journal of Measurements in Engineering,2016,4(3):167-172.

    • [24] FERRARA E,OLIVETTI E,FIORILLO F,et al.Microstructure and magnetic properties of pure iron for cyclotron electromagnets[J].Journal of Alloys and Compounds,2014,615:S291-S295.

    • [25] 雷翔.过渡金属掺杂的氮化铁磁性纳米材料研究[D].长春:吉林大学,2018. LEI Xiang.Study of transition metals doped iron nitride magnetic nanomaterials[D].Changchun:Jilin university,2018.(in Chinese)

    • [26] 高志恒,付扬帆.32Cr2Mo2NiVNb 钢盐浴氮化工艺[J].表面技术,2015,44(10):68-73.GAO Zhiheng,FU Yangfan.Salt-bath nitriding process for 32Cr2Mo2NiVNb steel[J].Surface Technology,2015,44(10):68-73.(in Chinese)

    • [27] RUSET C,GRIGORE E.Some observations on structure of compound layer produced on steels by plasma nitrocarburising[J].Surface Engineering,2013,26(1-2):61-66.

    • [28] CHEN Guang,WANG Jun,FAN Hongyuan,et al.Combat molten aluminum corrosion of AISI H13 steel by low-temperature liquid nitrocarburizing[J].Journal of Alloys and Compounds,2018,776:702-711.

    • [29] 张进.铁离子对 45#钢盐浴氮化疏松层的影响[D].济南:山东大学,2010.ZHANG Jin.The influence of Fe2+ on 45# steel lose layer of liquid nitrogen[D].Jinan:Shandong University,2010.(in Chinese)

    • [30] PODGORNIK B,VIINTIN J,WNSTRAND O,et al.Tribology properties of plasma nitrided and hard coated AISI 4140 steel[J].Wear,2001,249(3):254-259.

    • [31] 侯睿.低温离子增强扩渗对H13钢组织结构与性能的影的影响[D].广州:华南理工大学,2021.HOU Rui.Effect of plasma enhanced diffusion treatment at low temperature on the microstructure and properties of H13 steel[D].Guangzhou:South China University of Technology,2021.(in Chinese)

    • [32] YAN M.F,ZHANG Y X,Li D Y,et al.Catalytic growth of diamond-like carbon on Fe3C-containing carburized layer through a single-step plasma-assisted carburizing process[J].Carbon,2017,122(0008-6223):1-8.

    • [33] 张伟林,赵靖宇,王光辉,等.盐浴氮碳共渗对65Mn弹簧钢耐磨性的影响[J].表面技术,2017,46(2):127-132.ZHANG Weilin,ZHAO Jingyu,WANG Guanghui,et al.Effects of salt bath nitrocarburizing on wear resistance of 65Mn spring steel[J].Surface Technology,2017,46(2):127-132.(in Chinese)

    • [34] 缪斌,李景才,孙泉,等.离子氮碳共渗与离子渗氮复合处理对45钢组织与性能的影响[J].中国表面工程,2016,29(4):30-34.MIAO Bin,LI Jingcai,SUN Quan,et al.Effects of complex treatment of plasma nitrocarburizing and plasma nitriding on microstructure and properties of 45 steel[J].China Surface Engineering,2016,29(4):30-34.(in Chinese)

    • [35] 蔡毅仁,王旭东,刘俊珺,等.镁合金化学镀 Ni-Cu-P/Ni-P 复合镀层及腐蚀防护机理研究[J].表面技术,2019,48(3):47-52. CAI Yiren,WANG Xudong,LIU Junjun,et al.Electroless Ni-Cu-P/Ni-P composite coatings on magnesium alloys and anti-corrosion mechanisms[J].Surface Technology,2019,48(3):47-52.(in Chinese)

    • [36] MICHLA J R J,RAJINI N,ISMAIL S O,et al.Effects of nitriding on salt spray corrosion resistance of additively manufactured 17-4 PH steels[J].Materials Letters,2023,330:133258..

    • [37] OLIVEIRA V M C,AGUIAR C,VAZQUEZ A M,et al.Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings[J],Corrosion Science,2014,88:317-327.

    • [38] SPIES H J.Corrosion behaviour of nitrided,nitrocarburised and carburised steels[J].Thermochemical Surface Engineering of Steels,2015:267-309.

    • [39] 张玉林.TC17 钛合金表面高耐磨涂层腐蚀磨损机理研究[D].北京:北京科技大学,2021.ZHANG Yulin.Tribo-corrosion mechanism of coatings with high-wearing resistance prepared on TC17 titanium alloy[D].Beijing:University of Science and Technology Beijing,2021.(in Chinese)

    • [40] LI J,LU Y H.Effects of displacement amplitude on fretting wear behaviors and mechanism of inconel 600 alloy[J].Wear,2013,304(1-2):223-230.

    • [41] 王梦娇,王云霞,范娜,等.海水环境下2507超级双相不锈钢微动磨损性能研究[J].润滑与密封,2019,44(2):14-20,26.WANG Mengjiao,WANG Yunxia,FAN Na,et al.Fretting wear properties of 2507 super duplex stainless steel in artificial seawater[J].Lubrication Engineering,2019,44(2):14-20,26.(in Chinese)

    • [42] 宋伟,尘强,俞树荣,等.TC4 合金在不同环境介质中微动磨损行为研究[J].稀有金属材料与工程,2020,49(7):2393-2399. SONG Wei,CHEN Qiang,YU Shurong,et al.Fretting wear behavior of TC4 alloy in different environmental media[J].Rare Metal Materials and Engineering,2020,49(7):2393-2399.(in Chinese)

  • 参考文献

    • [1] MEHEDI M,JIANG Yanfeng,SURI P K,et al.Minnealloy:A new magnetic material with high saturation flux density and low magnetic anisotropy[J].Journal of Physics,D:Applied Physics,2017,50:37LT01.

    • [2] KRINGS A,BOGLIETTI A,CAVAGNINO A,et al.Soft magnetic material status and trends in electric machines[J].IEEE Transactions on Industrial Electronics,2016,64(3):2405-2414.

    • [3] PÉRIGO E A,WEIDENFELLER B,KOLLÁR P,et al.Past,present,and future of soft magnetic composites[J].Applied Physics Reviews,2018,5(3):031301.

    • [4] ZHAO Xiaojun,XU Huawei,CHENG Zhiguang,et al.A simulation method for dynamic hysteresis and loss characteristics of GO silicon steel sheet under non-sinusoidal excitation[J].IEEE Transactions on Applied Superconductivity,2021,31(8):1-4.

    • [5] CHEN T Y,CASTANON E,GIGAX J G,et al.Nitrogen ion implantation into pure iron for formation of surface nitride layer[J].Nuclear Instruments & Methods in Physics Research.B,Beam Interactions with Materials and Atoms,2019,451:10-13.

    • [6] 孙建春,盛光敏,王越田,等.工业纯铁表面不锈钢化改性研究[J].稀有金属材料与工程,2011,40(S2):379-383.SUN Jianchun,SHENG Guangmin,WANG Yuetian,et al.Study on the surface stainless-steel-like alloying of commercial iron[J].Rare Metal Materials and Engineering,2011,40(S2):379-383.(in Chinese)

    • [7] 刘岩,张城兴,李双喜.工业纯铁的氮碳钛离子共渗工艺[J].金属热处理,2021,46(12):252-255.LIU Yan,ZHANG Chengxing,LI Shuangxi.Process of ion nitro-carbon tetanizing for industrial pure iron[J].Heat Treatment of Metals,2021,46(12):252-255.(in Chinese)

    • [8] 刘嘉琴,王晓方,刘柯钊.铁氮化工艺、氮化铁的性质及其氧化行为的研究现状与展望[J].材料导报,2023(14):1-27.LIU Jiaqin,WANG Xiaofang,LIU Kezhao.Research status and prospect of iron nitriding techniques,properties and oxidation behavior of iron nitrides[J].Materials Reports,2023(14):1-27.(in Chinese)

    • [9] 张艳,王纳,王胜刚.纳米晶工业纯铁及其Ni镀层的性能[J].沈阳工业大学学报,2018,40(4):391-396. ZHANG Yan,WANG Na,WANG Shenggang.Properties of nanocrystalline industrial pure iron and its Ni plating layer[J].Journal of Shenyang University of Technology,2018,40(4):391-396.(in Chinese)

    • [10] BARAL A,ENGELKEN R,STEPHENS W,et al.Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries[J].Archives of Environmental Contamination and Toxicology,2006,50(4):496-502.

    • [11] NAIK U C,SRIVASTAVA S,THAKUR I S.Isolation and characterization of bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium[J].Environmental Science & Pollution Research International,2011,19(7):3005-3014.

    • [12] YEUNG C F,LAU K H,LUO Defu,et al.Advanced QPC complex salt bath heat treatment[J].Journal of Materials Processing Technology,1997,66(1-3):249-252.

    • [13] ZHANG Junwei,ZHANG Weihua,SHIOZAWA K,et al.Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime[J].International Journal of Fatigue,2011,33(7):880-886.

    • [14] FUNATANI K.Low-temperature salt bath nitriding of steels[J].Metal Science and Heat Treatment,2004,46(7-8):277-281.

    • [15] LI G J,PENG Q,WANG J,et al.Surface microstructure of 316L austenitic stainless steel by the salt bath titrocarburizing and post-oxidation process known as QPQ[J].Surface and Coatings Technology,2008,202(13):2865-2870.

    • [16] WANG J,LIN Yuanhua,LI Mingxing,et al.Effects of the treating time on microstructure and erosion corrosion behavior of salt-bath-nitrided 17-4PH stainless steel[J].Metallurgical and Materials Transactions B,2013,44(4):1010-1016.

    • [17] TANDON V,PATIL A P,RATHOD R C.Influence of time on low temperature salt bath nitriding and its corrosion behavior of 316L ASS in PEMFC environment[J].Protection of Metals and Physical Chemistry of Surfaces,2020,56(4):772-779.

    • [18] DAI Mingyang,LI Chaoyu,CHAI Yating,et al.Rapid salt bath nitriding of steel AISI 1045[J].Metal Science and Heat Treatment,2018,60(7-8),454-456.

    • [19] AYDIN H,BAYRAM A,TOPÇU Ş.Friction characteristics of nitrided layers on AISI 430 ferritic stainless steel obtained by various nitriding processes[J].Materials Science-Medziagotyra,2013,19(1):19-24.

    • [20] SINGH V,MARYA M.Influence of salt-bath nitrocarburizing on the electrochemical corrosion properties of stainless steels and nickel-based alloys in 3.5-wt.% sodium chloride solution[J].Journal of Materials Engineering and Performance,2022,31:6420-6434.

    • [21] CHEN G,WANG J,WANG Danqi,et al.Effect of liquid oxy-nitriding at various temperatures on wear and molten aluminum corrosion behaviors of AISI H13 steel[J].Corrosion Science,2020,178:109088.

    • [22] PENG Tiantian,DAI Mingyang,CAI Wei,et al.The enhancement effect of salt bath preoxidation on salt bath nitriding for AISI 1045 steel[J].Applied Surface Science,2019,484:610-615.

    • [23] LIU Xiang,LI Guo,SUN Baoyong,et al.The preparation of titanium carbide thin film of Ti6Al4V at low temperature and study of friction and wear properties[J].Journal of Measurements in Engineering,2016,4(3):167-172.

    • [24] FERRARA E,OLIVETTI E,FIORILLO F,et al.Microstructure and magnetic properties of pure iron for cyclotron electromagnets[J].Journal of Alloys and Compounds,2014,615:S291-S295.

    • [25] 雷翔.过渡金属掺杂的氮化铁磁性纳米材料研究[D].长春:吉林大学,2018. LEI Xiang.Study of transition metals doped iron nitride magnetic nanomaterials[D].Changchun:Jilin university,2018.(in Chinese)

    • [26] 高志恒,付扬帆.32Cr2Mo2NiVNb 钢盐浴氮化工艺[J].表面技术,2015,44(10):68-73.GAO Zhiheng,FU Yangfan.Salt-bath nitriding process for 32Cr2Mo2NiVNb steel[J].Surface Technology,2015,44(10):68-73.(in Chinese)

    • [27] RUSET C,GRIGORE E.Some observations on structure of compound layer produced on steels by plasma nitrocarburising[J].Surface Engineering,2013,26(1-2):61-66.

    • [28] CHEN Guang,WANG Jun,FAN Hongyuan,et al.Combat molten aluminum corrosion of AISI H13 steel by low-temperature liquid nitrocarburizing[J].Journal of Alloys and Compounds,2018,776:702-711.

    • [29] 张进.铁离子对 45#钢盐浴氮化疏松层的影响[D].济南:山东大学,2010.ZHANG Jin.The influence of Fe2+ on 45# steel lose layer of liquid nitrogen[D].Jinan:Shandong University,2010.(in Chinese)

    • [30] PODGORNIK B,VIINTIN J,WNSTRAND O,et al.Tribology properties of plasma nitrided and hard coated AISI 4140 steel[J].Wear,2001,249(3):254-259.

    • [31] 侯睿.低温离子增强扩渗对H13钢组织结构与性能的影的影响[D].广州:华南理工大学,2021.HOU Rui.Effect of plasma enhanced diffusion treatment at low temperature on the microstructure and properties of H13 steel[D].Guangzhou:South China University of Technology,2021.(in Chinese)

    • [32] YAN M.F,ZHANG Y X,Li D Y,et al.Catalytic growth of diamond-like carbon on Fe3C-containing carburized layer through a single-step plasma-assisted carburizing process[J].Carbon,2017,122(0008-6223):1-8.

    • [33] 张伟林,赵靖宇,王光辉,等.盐浴氮碳共渗对65Mn弹簧钢耐磨性的影响[J].表面技术,2017,46(2):127-132.ZHANG Weilin,ZHAO Jingyu,WANG Guanghui,et al.Effects of salt bath nitrocarburizing on wear resistance of 65Mn spring steel[J].Surface Technology,2017,46(2):127-132.(in Chinese)

    • [34] 缪斌,李景才,孙泉,等.离子氮碳共渗与离子渗氮复合处理对45钢组织与性能的影响[J].中国表面工程,2016,29(4):30-34.MIAO Bin,LI Jingcai,SUN Quan,et al.Effects of complex treatment of plasma nitrocarburizing and plasma nitriding on microstructure and properties of 45 steel[J].China Surface Engineering,2016,29(4):30-34.(in Chinese)

    • [35] 蔡毅仁,王旭东,刘俊珺,等.镁合金化学镀 Ni-Cu-P/Ni-P 复合镀层及腐蚀防护机理研究[J].表面技术,2019,48(3):47-52. CAI Yiren,WANG Xudong,LIU Junjun,et al.Electroless Ni-Cu-P/Ni-P composite coatings on magnesium alloys and anti-corrosion mechanisms[J].Surface Technology,2019,48(3):47-52.(in Chinese)

    • [36] MICHLA J R J,RAJINI N,ISMAIL S O,et al.Effects of nitriding on salt spray corrosion resistance of additively manufactured 17-4 PH steels[J].Materials Letters,2023,330:133258..

    • [37] OLIVEIRA V M C,AGUIAR C,VAZQUEZ A M,et al.Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings[J],Corrosion Science,2014,88:317-327.

    • [38] SPIES H J.Corrosion behaviour of nitrided,nitrocarburised and carburised steels[J].Thermochemical Surface Engineering of Steels,2015:267-309.

    • [39] 张玉林.TC17 钛合金表面高耐磨涂层腐蚀磨损机理研究[D].北京:北京科技大学,2021.ZHANG Yulin.Tribo-corrosion mechanism of coatings with high-wearing resistance prepared on TC17 titanium alloy[D].Beijing:University of Science and Technology Beijing,2021.(in Chinese)

    • [40] LI J,LU Y H.Effects of displacement amplitude on fretting wear behaviors and mechanism of inconel 600 alloy[J].Wear,2013,304(1-2):223-230.

    • [41] 王梦娇,王云霞,范娜,等.海水环境下2507超级双相不锈钢微动磨损性能研究[J].润滑与密封,2019,44(2):14-20,26.WANG Mengjiao,WANG Yunxia,FAN Na,et al.Fretting wear properties of 2507 super duplex stainless steel in artificial seawater[J].Lubrication Engineering,2019,44(2):14-20,26.(in Chinese)

    • [42] 宋伟,尘强,俞树荣,等.TC4 合金在不同环境介质中微动磨损行为研究[J].稀有金属材料与工程,2020,49(7):2393-2399. SONG Wei,CHEN Qiang,YU Shurong,et al.Fretting wear behavior of TC4 alloy in different environmental media[J].Rare Metal Materials and Engineering,2020,49(7):2393-2399.(in Chinese)

  • 手机扫一扫看