en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李胜,男,博士研究生,讲师。主要研究方向为激光增材制造。E-mail:lisheng325@126.com

通讯作者:

邱长军,男,1965年出生,博士,教授,博士研究生导师。主要研究方向为激光增材制造。E-mail:qcj@usc.edu.cn

中图分类号:TG115;TB114

DOI:10.11933/j.issn.1007−9289.20221110002

参考文献 1
YONG C K,GIBBONS G J,WONG C C,et al.A critical review of the material characteristics of additive manufactured IN718 for high-temperature application[J].Metals,2020,10(12):1576.
参考文献 2
MA R,LI L,ZHAI R,et al.Hot deformation behavior and processing map of GH901 superalloy[J].Metals,2021,11(11):1808.
参考文献 3
MA R,LI L,ZHAI R,et al.Effect of heat treatment on alloy GH901 microstructure and mechanical properties[J].Metal Science and Heat Treatment,2022,64(3):198-205.
参考文献 4
KRISHNAN R,NAIK M,THAKUR D G,et al.Experimental investigation on wear behavior of additively manufactured components of IN718 by DMLS process[J].Journal of Failure Analysis and Prevention,2020,20(5):1697-1703.
参考文献 5
DREXLER A,OBERWINKLER B,PRIMIG S,et al.Experimental and numerical investigations of the γ″ and γ′ precipitation kinetics in Alloy 718[J].Materials Science and Engineering:A,2018,723:314-323.
参考文献 6
XU J,MA T,PENG R L,et al.Effect of post-processes on the microstructure and mechanical properties of laser powder bed fused IN718 superalloy[J].Additive Manufacturing,2021,48:102416.
参考文献 7
ZHAO Y,GUO Q,MA Z,et al.Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties[J].Materials Science and Engineering:A,2020,791:139735.
参考文献 8
AMANOV A.Improvement in mechanical properties and fretting wear of Inconel 718 superalloy by ultrasonic nanocrystal surface modification[J].Wear,2020,446:203208.
参考文献 9
ZHU L,XU Z,GU Y.Effect of laser power on the microstructure and mechanical properties of heat treated Inconel 718 superalloy by laser solid forming[J].Journal of Alloys and Compounds,2018,746:159-167.
参考文献 10
黄晓林,金杰,邱维维,等.金属与氮复合注入对 Inconel 718 摩擦磨损性能的影响[J].中国表面工程,2017,30(3):8-15.HUANG Xiaolin,JIN Jie,QIU Weiwei,et al.Effect of metal and nitrogen composite injection on the friction and wear properties of Inconel 718[J].China Surface Engineering,2017,30(3):8-15.(in Chinese)
参考文献 11
王涛,王宁,朱磊,等.激光扫描速度对IN718涂层组织与摩擦磨损性能的影响[J].热加工工艺,2022,51(10):79-84..WANG Tao,WANG Ning,ZHU Lei,et al.Effect of laser scanning speed on the microstructure and friction and wear properties of IN718 coating[J].Hot Working Process,2022,51(10):79-84.(in Chinese)
参考文献 12
贾晓慧,胡亚宝,宋欣灵,等.激光熔化沉积WC复合Inconel718合金微观组织及磨损性能[J].表面技术,2022,51(12):329-339.JIA Xiaohui,HU Yabao,SONG Xinling,et al.Microstructure and wear properties of laser melted deposited WC composite Inconel 718 alloy[J].Surface Technology,2022,51(22):329-339.(in Chinese)
参考文献 13
ZHAO Z,QU H,BAI P,et al.Friction and wear behaviour of Inconel 718 alloy fabricated by selective laser melting after heat treatments[J].Philosophical Magazine Letters,2018,98(12):547-555.
参考文献 14
XU Y,GONG Y,LI P,et al.The effect of laser power on the microstructure and wear performance of IN718 superalloy fabricated by laser additive manufacturing[J].The International Journal of Advanced Manufacturing Technology,2020,108(7):2245-2254.
参考文献 15
GAO Y,ZHANG D,CAO M,et al.Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process[J].Materials Science and Engineering:A,2019,767:138327.
参考文献 16
郭建亭.高温合金材料学(上册)[M].北京:科学出版社,2008.GUO Jianting.High temperature alloy materials(Volume I)[M].Beijing:Science Press,2008.(in Chinese)
参考文献 17
李影,苏彬.镍基单晶高温合金的反常屈服行为与变形机制[J].材料工程,2004(3):45-48.LI Ying,Su Bin Abnormal yield behavior and deformation mechanism of nickel base single crystal superalloy[J].Materials Engineering,2004(3):45-48.(in Chinese)
参考文献 18
宋衎,喻凯,林鑫,等.热处理态激光立体成形 Inconel 718 高温合金的组织及力学性能[J].金属学报,2015,51(8):935-942.SONG Yi,YU Kai,LIN Xin,et al.Weidong Microstructure and mechanical properties of Inconel 718 superalloy formed by laser solid forming in heat treated state[J].Acta Metallica Sinica,2015,51(8):935-942.(in Chinese)
参考文献 19
牛宇生,郝秀清,孙鹏程,等.温度对表面摩擦磨损性能影响的研究进展[J].中国表面工程,2020,33(6):1-22. NIU Yusheng,HAO Xiuqing,SUN Pengcheng,et al.Research progress on the effect of temperature on surface friction and wear performance[J].China Surface Engineering,2020,33(6):1-22.(in Chinese)
参考文献 20
XU Z,LU Z,ZHANG J,et al.The friction and wear behaviours of inconel 718 superalloys at elevated temperature[J].Frontiers in Materials,2021,8:794701.
参考文献 21
刘秀波,朱正兴,候早,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.LIU Xiubo,ZHU Zhengxing,HOU Zao,et al.Research progress in laser prepared self-lubricating composite coatings and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)
参考文献 22
LIN Yinghua,PING Xuelong,KUAN Jiacai,et al.Improving the microstructure and mechanical properties of laser cladded Ni-based alloy coatings by changing their composition:A review[J].Reviews on Advanced Materials Science,2020,59(1):340-351.
参考文献 23
张斌,赖振国,贾倩,等.金属氮化物涂层的高温摩擦学研究进展[J].中国表面工程,2022,35(3):48-63.ZHANG Bin,LAI Zhenguo,JIA Qian,et al.Research progress in high-temperature tribology of metal nitride coatings[J].China Surface Engineering,2022,35(3):48-63.(in Chinese)
参考文献 24
CHEN Y,GUO Y,XU M,et al.Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser[J].Materials Science and Engineering:A,2019,754:339-347.
目录contents

    摘要

    通过增加 IN718 合金中(Ti+Al)含量制备一种镍基高温耐磨合金,以满足超临界机组镍基合金阀门密封面再制造的需求。采用万能试验机、摩擦磨损试验机、XRD、SEM 等仪器和 JMatpro 软件研究该合金激光熔覆试样的组织与性能。研究结果如下:当 IN718 合金的(Ti+Al)含量增加至 7.6 %时熔覆层会出现开裂;当 IN718 合金的(Ti+Al)含量增加至 6.6 % 时,其激光熔覆试样初始平均硬度值为 40 HRC,抗拉强度为 998 MPa,延伸率为 5.2 %,室温摩擦因素为 0.75 左右,磨损量为 0.3275 mm3 ,主相为 γ 相和 γ′相,700 ℃×10 h 时效处理后平均硬度值为 54 HRC,700 ℃摩擦因素为 0.35 左右,磨损量为 0.024 mm3 ,主相 γ′占 53 %。研究结果表明,IN718 合金中(Ti+Al)含量增加至 6.6 %时具有良好的激光熔覆工艺性能和高温摩擦磨损性能,可应用于超临界 / 超超临界机组镍基合金阀门密封面的维修与再制造。

    Abstract

    IN718 is a nickel-based high-temperature alloy with economic performance that is widely used in manufacturing of hot-end components with ambient temperatures not exceeding 650 ℃. Its structural composition includes the γ phase as the matrix; the γ″ phase is the main strengthening phase and the γ′ phase is an auxiliary strengthening phase. In response to the insufficient high-temperature wear-resistance of the nickel-based alloy valve-sealing surface of generator units operating in supercritical / ultra-supercritical environments, two improved nickel-based high-temperature wear-resistant alloy powders were prepared based on IN718 alloy by increasing its (Ti+Al) content to 6.6% and 7.6% to improve performance. The proportion of γ′ precipitate phases and some brittle and hard phases greatly improve the high-temperature wear-resistance of the alloy, meeting the manufacturing and remanufacturing requirements of nickel-based alloy valve-sealing surfaces in supercritical units. A nickel-based high-temperature wear-resistant alloy sample was prepared on 304 stainless steel substrate using laser cladding deposition technology. The room temperature tensile properties of the sample were tested using a universal testing machine. The wear resistance of the sample with (Ti+Al) content up to 6.6% was tested by a high-temperature friction and wear testing machine at room temperature and 700 ℃. The microstructure of the IN718im2 laser cladding sample was studied using XRD and SEM. The phase proportions in IN718 and IN718im2 were calculated using JMatpro software. The results are presented as follows. When the (Ti+Al) content of IN718 alloy was increased to 7.6%, a large transverse crack appeared in the cladding layer. At this point, the SEM morphology of the sample surface showed a large number of δ phases and other brittle phases. The hardness values of the IN718im2 sample before and after heat treatment were 41.22 HRC and 55.6 HRC, respectively. When the (Ti+Al) content of IN718 alloy was increased to 6.6%, the initial average hardness of the laser cladding sample was 40 HRC, the tensile strength was 998 MPa, the elongation was 5.2%, the room temperature friction factor was approximately 0.75, and the wear was 0.3275 mm3 after 10 h of aging treatment at 700 ℃. The average hardness was 54 HRC, the friction coefficient at 700 ℃ was approximately 0.35, and the wear was 0.024 mm3 . The proportions of γ and γ′ phases were 18.19% and 53.5%, respectively. The wear resistance of the IN718im2 sample at 700 ℃ was better than that at room temperature because Nb, Ti, and Al promote in situ formation of a glaze layer, and Ti and Al promote high-temperature self-lubrication of the alloy. The content of (Ti+Al) in IN718im2 was much higher than that in IN718; the proportion of brittle and hard phases was also much higher. The SEM surface scanning results showed that the segregation of Al and Ti was relatively weak; Mo and Nb had obvious segregation, indicating that increasing the (Ti+Al) content within a certain range did not exacerbate segregation of Ti and Al. However, the cracks in the sample with a (Ti+Al) content of 7.6% indicate that excessive Ti and Al contents promote great precipitation of brittle phases and increase dislocation accumulation and stress concentration, leading to formation of cracks in the cladding layer. The results indicate that when the content of (Ti+Al) in IN718 alloy increases to 6.6%, it has good laser cladding process performance and high-temperature friction and wear performance, suitable for use in manufacturing and remanufacturing of nickel-based alloy valve-sealing surfaces in supercritical / ultra-supercritical units, and providing a reference for development of nickel-based high-temperature alloys in laser additive manufacturing.

  • 0 前言

  • 由于超临界 / 超超临界蒸汽轮机组的蒸汽温度一般不超过 700℃,(Ti+Al)含量不超过 3.5%、以固溶强化为主的镍基高温合金广泛应用于制造此类机组中的高温蒸汽阀门部件,如 Inconel718 (IN718)、GH901 等[1–3]。IN718 是一种广泛应用的镍基高温合金,其成分中含有一定量的固溶强化和时效析出强化元素,由 γ″相(Ni3Nb)和 γ′相两种沉淀相起主要强化作用[4-5],具有优异的拉伸、疲劳和蠕变强度,还以其良好的可焊性和优异的抗焊后开裂能力而闻名[6-7]

  • 尽管 IN718 因良好的高温力学性能得到了广泛应用,但是和许多此类镍基合金一样,其耐磨性能 (特别是高温耐磨性能)不尽如人意[8–9]。为了提高 IN718 的表面耐磨性,不少研究人员做出了努力; 黄晓林等[10]通过(N+Ti)组合离子注入(注入元素为 N+Ti)提高了 IN718 的常温摩擦磨损性能,其离子注入后的试样硬度比基体硬度增加了 36 % 左右;王涛等[11]通过调整激光工艺参数在一定程度上改善了 IN718 的耐磨性能;贾晓慧等[12]通过往 IN718 合金粉末中添加 WC 颗粒制备了 WC / IN718 激光熔覆层,其平均显微硬度比原 IN718 高 9%左右,且磨损率下降至原来的 65.3 %,提高了合金的常温耐磨性能;ZHAO 等[13]通过从 IN718 的热处理工艺入手,采用固溶+双时效热处理制度使一部分 γ″相转化成 δ 相稳定析出,提高了 SLM-ed IN718 表面硬度和常温耐磨性能;XU 等[14]研究了激光功率对 IN718 摩擦磨损性能的影响,结果表明功率为 1.2 kW 时,熔覆层显微硬度最高为 262.7 HV。上述改善 IN718 合金耐磨性能的研究主要集中在制备过程工艺参数和后热处理工艺参数的优化,且未进行高温耐磨性能测试,但为本研究在样品制备、热处理工艺等提供了一定的参考。

  • 蒸汽阀门作为超临界和超超临界机组中一个重要的高温蒸汽控制部件,其镍基合金阀门密封面和阀杆活动面经常在运行过程中因磨损而失效。针对此类部件激光增材修复的需要,在 IN718 的基础上进行成分调整,通过提高(Ti+Al)的含量增加其脆硬析出相(γ′相、δ 相等),制备了一种 IN718 改进型的镍基高温耐磨合金粉末,该合金激光熔覆层在 700℃环境下具有优异的耐磨性能,可应用于镍基高温蒸汽阀门磨损面的修复与再制造。

  • 1 试验准备

  • 1.1 样品制备

  • 1.1.1 试验材料

  • 熔覆的粉末有两种。一种为在 IN718 基础上将 (Ti+Al)含量提高至 7.6%的氩气雾化法球形粉末 (将其命名为 IN718im1),其成分(质量分数 / wt.%) 如下:2.66% Mo、3.83% Ti、3.83% Al、18.53% Cr、 4.62% Nb、0.05% C、0.04% Cu、0.02% Si、0.03% Mn、 17.56% Fe、0.06% Co、0.02% O,其余均为 Ni。另一种材料为在 IN718 基础上将(Ti+Al)含量提高至 6.6% 的氩气雾化法球形粉末(将其命名为 IN718im2),其成分(质量分数/wt.%)如下:2.69% Mo、 3.34% Ti、3.34% Al、18.72% Cr、4.67% Nb、0.05% C、 0.04% Cu、0.02% Si、0.03% Mn、17.75% Fe、0.07% Co、0.02% O,其余均为 Ni。将上述粉末放置于 60℃ 干燥箱中 2 h,以保证粉末的流动性;因 IN718 中奥氏体相占据很大一部分,故基材采用 304 奥氏体不锈钢(尺寸为 100 mm×60 mm×30 mm),可降低熔覆层与基材发生分离的可能性。激光熔覆前用磨床对基材表面进行处理,并用无水乙醇进行清洗。

  • 1.1.2 试验设备及方法:

  • 采用同轴送粉法在 304 基材表面上激光熔覆配制好的镍基高温耐磨合金涂层。激光熔覆平台的组成为:XL-1000 型激光器,HW-05SF 型送粉器, CW-5000 型水冷系统,CWFL-1000 制冷控制器,4 轴 CNC6090 型数控平台;激光器的额定功率为 1.0 kW。激光熔覆制样过程工艺参数如下:送粉速度为 3.8 g / min,激光功率密度为 390 W / mm2,扫描速度 550 mm / min,搭接率 50%。图1 为激光熔覆样品制备原理图,最下方是一块水冷平台(冷却水温设置为 18℃),上面放置基材,同步送粉装置协同激光器在基材表面按图所示扫描路径激光熔覆,完成一层熔覆后激光加工头回到原点,重复上述过程直至达到所需厚度。

  • 图1 激光熔覆原理图

  • Fig.1 Schematic diagram of laser cladding

  • 熔覆层厚度为 6.5 mm,熔覆后用磨床将熔覆层表面磨平并抛光,然后用电火花线切割将熔覆层从基材表面切下得到 6 mm 厚的摩擦磨损试样;试样尺寸示意图如图2 所示。

  • 图2 摩擦磨损试样尺寸

  • Fig.2 Dimensions of friction-wear samples

  • 初步的检测发现 IN718im1 的熔覆层出现裂纹,故不对其进行进一步组织性能表征。

  • 1.2 结构表征及力学性能测试

  • 采用 SEM、EDS 观察并分析熔覆层试样的微观组织与化学成分。使用 XRD 对其进行物相鉴定,起始角为 20°,终止角为 90°,波长为 1.540 6 Å,电压为 36 kV,电流为 25 mA。采用洛氏硬度计检测涂层的硬度值,测量 5 次取平均值。利用 HT-1000型摩擦磨损试验机在 25~700℃温度区间内对该试样进行摩擦磨损试验;电机频率 10 Hz,摩擦半径 4 mm,对磨材料为氮化硅,载荷 500 g,测试时间 30 min;为了保证实验数据的准确性,在同一温度下进行两次试验。试验后,采用轮廓仪分析其磨损形貌、测量其磨损量,采用电液万能伺服动静万能试验机(型号为 PWS-E100)对试样的拉伸性能进行测试,拉伸试样的表面用金相砂纸(180~600 目)打磨,拉伸速度为 0.2 mm / min。

  • 2 结果与讨论

  • 2.1 微观组织结构表征

  • 图3 为 IN718im1 试样表面的 SEM 形貌图,从图中可以看出,δ 相的数量比较多,δ 相是亚稳相 γ″ 的稳定相,是一种高熔点、高硬度的相,一定量的 δ 相在晶界析出可以阻止 IN718 合金在热处理过程中晶粒长大,获得细小均匀的晶粒组织,使该合金实现强韧化,但是析出过多则会减少合金中强化相 γ′和 γ″的析出,会明显降低合金的抗张强度、屈服强度和持久时间,综合性能会急剧下降[15]。从图4 可以看出,该试样表面已经出现了一条裂纹,这是由于 δ 相的大量沉淀增加了 δ 相附近的位错塞积和应力集中,导致熔覆层裂纹的产生[15]

  • 图3 IN718im1 试样表面的 SEM 形貌

  • Fig.3 Surface morphology of IN718im1 sample by SEM

  • 图4 IN718im1 试样裂纹形貌 (a)表面 SEM (b)截面 OM

  • Fig.4 Crack morphology of IN718im1 sample. (a) Surface morphology by SEM; (b) Section morphology by OM.

  • IN718im2 时效样品的 SEM 和 EDS 结果如图5、6 所示。根据图6a 的能谱分析可知,此区域主要分布 Ni、Cr、Fe 三种元素,与所配制合金粉末的元素占比相近,可知图5a 中灰暗色的Ⅰ 区域为 γ 相;图5a 的Ⅱ区域的形状多为球状、片状,结合图6b 的能谱分析图(Al 元素偏高且 Al 元素是 γ′相的主要组成元素之一)可知该区域为 γ′相;图5(Ⅰ)的Ⅲ区域 Nb 和 C 元素的含量偏高,说明形成了 NbC 和其他碳化物,还有一定量的 O 元素,表明还伴随产生了一些氧化物; 5(Ⅰ)中的Ⅳ区域 Nb 元素含量很高,且在 10% 左右,根据郭建亭等[16]的研究,δ 相为短针状、白色条状,δ 相的组成元素与 γ″相一样(为 Ni3Nb),且 Nb 元素一般在 10%左右,由此可知图5 (Ⅰ)的Ⅳ区域为 δ 相。(Ti+Al)含量的提高显著增加了 γ′相的析出,而 γ′相是沉淀强化合金的主要强化相之一,根据李影等[17]的研究发现,γ′ 相的反常屈服效应使它在高温环境下(600~750℃)形成一个硬化壳层,使合金的硬度和屈服强度升高。一部分 γ″相在 700℃时效热处理过程中转化为其稳定态的 δ 相,而 GAO 等[15]的研究表明,适量的 δ 相与 γ′相和 γ″相一样会阻碍位错滑移,使材料的强度和硬度得到提升。

  • 图5 IN718im2 试样 SEM 组织形貌(I. 低倍,II. 高倍)

  • Fig.5 SEM morphology of IN718im2 sample (I. low magnification; II. high magnification)

  • 根据图7 的 EDS 结果可以发现,Ni、Cr、Fe、 Al、Ti 元素的偏析程度比较弱,而 Mo 和 Nb 有着比较明显的偏析,Mo 和 Nb 的富集引起非平衡共晶反应,导致脆性相(Laves 相和 δ 相)的生成,这也是改进后的合金延伸性能不如 IN718 原因。

  • 图6 IN718im2 试样表面四个微区 EDS 结果[图(a)、(b)、(c)、(d)分别对应图5 的 4 个区域]

  • Fig.6 EDS results of four micro areas on the surface of IN718im2 sample [ (a) 、 (b) 、 (c) 、 (d) correspond to the four areas in Fig.5]

  • 图7 IN718im2 试样的 EDS 面扫描结果

  • Fig.7 EDS Results of IN718im2 sample face scan

  • 2.2 XRD 测试

  • 图8 为 IN718im2 合金粉末所制成的试样在不同状态下的 XRD 图谱。从图中可以看出,试样在热处理前和 700℃×10 h 时效热处理后的衍射峰基本一致。试样在热处理前后只能观测到 γ′相的衍射峰,难以在 XRD 图谱中区分 γ 相、γ′相和 γ″相; 这与 GAO[15]和宋衍等[18]研究 IN718 的情况类似,这是因为 γ 相、γ′相和 γ″相共格且晶格常数都比较接近。而合金中其他相(碳化物、Laves 相等)的面积分数很小,所以很难通过 XRD 图谱来辨识其衍射峰。

  • 图8 IN718im2 试样在不同状态下的 XRD 图谱

  • Fig.8 XRD patterns of IN718im2 samples in different states

  • 2.3 JMatpro 物相计算结果

  • 从图9 可以看出,在 700℃时的状态下,IN718 的 γ 相占据了 75.49%,这是 IN718 具有优异延申性能的重要原因,但是 γ′相只有 7%左右,这也是 IN718 耐磨性能不好的一个重要因素;IN718im2 试样在 700℃×10 h 时效后的 γ′相高达 53.5%,同时 γ 相还保持有 16.19%,将在大大提高其高温耐磨性能的同时还让其有一定的延伸率;除此之外该物相模拟图还显示所制备合金的高温脆硬相也增多了(其中 δ 相变化最明显,从原来的 11.62%增加到 30.24%),为改善其高温耐磨性能提供了一定的物相基础。

  • 图9 IN718 与 IN718im700℃时的物相计算结果

  • Fig.9 Phase calculation of IN718 and IN718im at 700℃

  • 2.4 力学性能

  • 2.4.1 硬度测试

  • 材料的硬度值在一定范围内和其耐磨损性能呈正相关,根据其硬度值就能判断是否具有作为耐磨材料使用的条件。从图10 可知,IN718 原始态 (Untreated)的硬度值仅为 20 HRC 左右,即便经过 700℃×10 h 时效热处理(AHT),其硬度值仅增加到 35 HRC 左右,这也是 IN718 耐磨性能不佳的一个体现;而 IN718im1 和 IN718im2 的原始态的硬度值都已超过 40 HRC,并且在经过 700℃×10 h 时效热处理后,其硬度值达到了 55 HRC 左右;硬度值的剧增是 γ 相向 γ′相和 γ″相转变以及部分高温脆硬相(比如 δ 相)生成的结果。

  • 图10 IN718、IN718im1 和 IN718im2 在不同状态下的硬度

  • Fig.10 Hardness values of IN718, IN718im1 and IN718im2 under different conditions

  • 2.4.2 摩擦磨损性能测试

  • IN718im2 的摩擦磨损试样分为 3 组:1#为原始态的试样在室温进行摩擦磨损性能试验;2#为经过 700℃×10 h 时效热处理的试样在室温环境下进行摩擦磨损试验;3#为试样经过 700℃×10 h 时效热处理后在 700℃环境下进行高温摩擦磨损测试。

  • 从图11 可以看出,未经热处理的试样(1#)在室温下的摩擦因素比较大(平均在 0.7127),但是比原 IN718 的摩擦因素(平均在 0.8 左右)要小。1# 摩擦因素曲线波动比较大,这是由于未经热处理的试样 δ 相的析出比较少(析出温度为 700℃),而且 γ′相的析出也不够充足,硬度值过低,严重影响了该合金的耐磨性能。与 1#相比,经过时效热处理的两组试样(2#和 3#)的摩擦因素曲线就比较平缓,平均摩擦因素也变小了,这是因为经过 700℃时效热处理后,合金中析出了一定量 γ′相和 δ 相,其硬度也明显上升(增加了 15 HRC 左右)。

  • 图11 IN718im2 试样在不条件下的摩擦因素曲线

  • Fig.11 Friction factor Curve of IN718im2 samples under unconditional conditions

  • 这 3 组试样的磨痕的二维轮廓如图12 所示,很明显未经热处理的试样的磨痕深度要比经过时效热处理的深度明显要深,其磨痕深度为 10.28 μm,磨痕宽度为 0.918 mm,经过 700℃×10 h 时效热处理的试样经过常温摩擦磨损试验后其磨痕深度为 8.54 μm,而经过热处理的试样在 700℃高温摩擦磨损试验后其磨痕深度仅为 5.11 μm,而且磨痕宽度也明显变小(仅为 0.486 mm)。所测得的磨损量也是呈明显的阶梯式下降(每组磨损量均测 6 次取平均值)。由图13 可知,与其他两组相比,第三组的磨损量最少(仅为 0.024 mm3),为第二组磨损量的 23%、第一组磨损量的 7.3%。值得注意的是,热处理后的样品在 700℃高温下的摩擦磨损因素和磨损量均比在常温下进行摩擦磨损试验的要小; 根据牛宇生等[19]的研究,温度会影响材料表面的组织结构,进而影响其摩擦磨损性能。XU 等[20]对 IN718 磨损机理进行了研究,在高温环境下 IN718 合金表面会具有润滑作用的氧化层(如氧化铝),在一定程度上改善了材料表面的耐磨性;刘秀波等[21]揭示了镍基涂层高温元素扩散动力学机制,阐释了一些微量元素对高温釉化层原位形成的作用;LIN 等[22]的研究结果表明 Nb、Ti、Al 等元素能够促进釉化层原位形成;张斌等[23]研究表明,Ti、Al 元素对合金的高温自润滑有促进作用,由于 IN718im2 中(Ti+Al)含量远高于 IN718,且其脆硬相占比也远高于 IN718,这是 IN718im2 具有优良高温摩擦磨损性能的原因。

  • 图12 IN718im2 试样在不同条件下的磨痕二维轮廓.

  • Fig.12 Two dimensional profile curve of wear scar of IN718im2 samples under different conditions

  • 图13 IN718im2 试样在不同条件下的平均磨损量

  • Fig.13 Average wear amount of IN718im2 sample under different conditions

  • 2.4.3 拉伸性能

  • 为了更全面表征 N718im2 熔覆层的使用性能,对其和 IN718 分别进行拉伸试验。试样的抗拉强度、屈服强度以及断后延伸率如图14 所示,IN718im2 试样的抗拉强度为 998 MPa,屈服强度为 820 MPa,断后延伸率为 5.23%,IN718 激光熔覆试样的拉伸性能(屈服强度 643 MPa)与 CHEN 等[24]激光熔覆 IN718 试样的性能一致。与 IN718 相比,IN718im2 的屈服强度增加了 177 MPa,并且仍具有一定的延伸率,使该合金在作为耐磨熔覆层时具有良好的使用性能。

  • 图14 IN718 与 IN718im2 的拉伸曲线

  • Fig.14 Tensile curve of IN718 samples and IN718im2

  • 3 结论

  • (1)激光熔覆 IN718im1[(Ti+Al)含量为 7.6%] 合金粉末时其熔覆层会出现裂纹,表明 Ti、Al 元素含量过高会严重降低合金的塑性。

  • (2)适当提高 IN718 合金的 Ti、Al 元素含量可使其硬度和高温耐磨性能显著提升,IN718im2 合金粉末[(Ti+Al)含量为 6.6%]的熔覆层试样各项综合性能良好,在具有高强度、高硬度和优异的耐磨性能同时还保持有 5%左右的断后延伸率。

  • (3)在 700℃环境下耐磨性能良好的 IN718im2 高温耐磨合金,可为超临界 / 超超临界蒸汽轮机组高温镍基合金阀门密封面的维修与再制造提供一种新的选择,但是对于 IN718 合金中 Ti、Al 元素的最佳添加量还须进行进一步的探索。

  • 参考文献

    • [1] YONG C K,GIBBONS G J,WONG C C,et al.A critical review of the material characteristics of additive manufactured IN718 for high-temperature application[J].Metals,2020,10(12):1576.

    • [2] MA R,LI L,ZHAI R,et al.Hot deformation behavior and processing map of GH901 superalloy[J].Metals,2021,11(11):1808.

    • [3] MA R,LI L,ZHAI R,et al.Effect of heat treatment on alloy GH901 microstructure and mechanical properties[J].Metal Science and Heat Treatment,2022,64(3):198-205.

    • [4] KRISHNAN R,NAIK M,THAKUR D G,et al.Experimental investigation on wear behavior of additively manufactured components of IN718 by DMLS process[J].Journal of Failure Analysis and Prevention,2020,20(5):1697-1703.

    • [5] DREXLER A,OBERWINKLER B,PRIMIG S,et al.Experimental and numerical investigations of the γ″ and γ′ precipitation kinetics in Alloy 718[J].Materials Science and Engineering:A,2018,723:314-323.

    • [6] XU J,MA T,PENG R L,et al.Effect of post-processes on the microstructure and mechanical properties of laser powder bed fused IN718 superalloy[J].Additive Manufacturing,2021,48:102416.

    • [7] ZHAO Y,GUO Q,MA Z,et al.Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties[J].Materials Science and Engineering:A,2020,791:139735.

    • [8] AMANOV A.Improvement in mechanical properties and fretting wear of Inconel 718 superalloy by ultrasonic nanocrystal surface modification[J].Wear,2020,446:203208.

    • [9] ZHU L,XU Z,GU Y.Effect of laser power on the microstructure and mechanical properties of heat treated Inconel 718 superalloy by laser solid forming[J].Journal of Alloys and Compounds,2018,746:159-167.

    • [10] 黄晓林,金杰,邱维维,等.金属与氮复合注入对 Inconel 718 摩擦磨损性能的影响[J].中国表面工程,2017,30(3):8-15.HUANG Xiaolin,JIN Jie,QIU Weiwei,et al.Effect of metal and nitrogen composite injection on the friction and wear properties of Inconel 718[J].China Surface Engineering,2017,30(3):8-15.(in Chinese)

    • [11] 王涛,王宁,朱磊,等.激光扫描速度对IN718涂层组织与摩擦磨损性能的影响[J].热加工工艺,2022,51(10):79-84..WANG Tao,WANG Ning,ZHU Lei,et al.Effect of laser scanning speed on the microstructure and friction and wear properties of IN718 coating[J].Hot Working Process,2022,51(10):79-84.(in Chinese)

    • [12] 贾晓慧,胡亚宝,宋欣灵,等.激光熔化沉积WC复合Inconel718合金微观组织及磨损性能[J].表面技术,2022,51(12):329-339.JIA Xiaohui,HU Yabao,SONG Xinling,et al.Microstructure and wear properties of laser melted deposited WC composite Inconel 718 alloy[J].Surface Technology,2022,51(22):329-339.(in Chinese)

    • [13] ZHAO Z,QU H,BAI P,et al.Friction and wear behaviour of Inconel 718 alloy fabricated by selective laser melting after heat treatments[J].Philosophical Magazine Letters,2018,98(12):547-555.

    • [14] XU Y,GONG Y,LI P,et al.The effect of laser power on the microstructure and wear performance of IN718 superalloy fabricated by laser additive manufacturing[J].The International Journal of Advanced Manufacturing Technology,2020,108(7):2245-2254.

    • [15] GAO Y,ZHANG D,CAO M,et al.Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process[J].Materials Science and Engineering:A,2019,767:138327.

    • [16] 郭建亭.高温合金材料学(上册)[M].北京:科学出版社,2008.GUO Jianting.High temperature alloy materials(Volume I)[M].Beijing:Science Press,2008.(in Chinese)

    • [17] 李影,苏彬.镍基单晶高温合金的反常屈服行为与变形机制[J].材料工程,2004(3):45-48.LI Ying,Su Bin Abnormal yield behavior and deformation mechanism of nickel base single crystal superalloy[J].Materials Engineering,2004(3):45-48.(in Chinese)

    • [18] 宋衎,喻凯,林鑫,等.热处理态激光立体成形 Inconel 718 高温合金的组织及力学性能[J].金属学报,2015,51(8):935-942.SONG Yi,YU Kai,LIN Xin,et al.Weidong Microstructure and mechanical properties of Inconel 718 superalloy formed by laser solid forming in heat treated state[J].Acta Metallica Sinica,2015,51(8):935-942.(in Chinese)

    • [19] 牛宇生,郝秀清,孙鹏程,等.温度对表面摩擦磨损性能影响的研究进展[J].中国表面工程,2020,33(6):1-22. NIU Yusheng,HAO Xiuqing,SUN Pengcheng,et al.Research progress on the effect of temperature on surface friction and wear performance[J].China Surface Engineering,2020,33(6):1-22.(in Chinese)

    • [20] XU Z,LU Z,ZHANG J,et al.The friction and wear behaviours of inconel 718 superalloys at elevated temperature[J].Frontiers in Materials,2021,8:794701.

    • [21] 刘秀波,朱正兴,候早,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.LIU Xiubo,ZHU Zhengxing,HOU Zao,et al.Research progress in laser prepared self-lubricating composite coatings and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)

    • [22] LIN Yinghua,PING Xuelong,KUAN Jiacai,et al.Improving the microstructure and mechanical properties of laser cladded Ni-based alloy coatings by changing their composition:A review[J].Reviews on Advanced Materials Science,2020,59(1):340-351.

    • [23] 张斌,赖振国,贾倩,等.金属氮化物涂层的高温摩擦学研究进展[J].中国表面工程,2022,35(3):48-63.ZHANG Bin,LAI Zhenguo,JIA Qian,et al.Research progress in high-temperature tribology of metal nitride coatings[J].China Surface Engineering,2022,35(3):48-63.(in Chinese)

    • [24] CHEN Y,GUO Y,XU M,et al.Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser[J].Materials Science and Engineering:A,2019,754:339-347.

  • 参考文献

    • [1] YONG C K,GIBBONS G J,WONG C C,et al.A critical review of the material characteristics of additive manufactured IN718 for high-temperature application[J].Metals,2020,10(12):1576.

    • [2] MA R,LI L,ZHAI R,et al.Hot deformation behavior and processing map of GH901 superalloy[J].Metals,2021,11(11):1808.

    • [3] MA R,LI L,ZHAI R,et al.Effect of heat treatment on alloy GH901 microstructure and mechanical properties[J].Metal Science and Heat Treatment,2022,64(3):198-205.

    • [4] KRISHNAN R,NAIK M,THAKUR D G,et al.Experimental investigation on wear behavior of additively manufactured components of IN718 by DMLS process[J].Journal of Failure Analysis and Prevention,2020,20(5):1697-1703.

    • [5] DREXLER A,OBERWINKLER B,PRIMIG S,et al.Experimental and numerical investigations of the γ″ and γ′ precipitation kinetics in Alloy 718[J].Materials Science and Engineering:A,2018,723:314-323.

    • [6] XU J,MA T,PENG R L,et al.Effect of post-processes on the microstructure and mechanical properties of laser powder bed fused IN718 superalloy[J].Additive Manufacturing,2021,48:102416.

    • [7] ZHAO Y,GUO Q,MA Z,et al.Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties[J].Materials Science and Engineering:A,2020,791:139735.

    • [8] AMANOV A.Improvement in mechanical properties and fretting wear of Inconel 718 superalloy by ultrasonic nanocrystal surface modification[J].Wear,2020,446:203208.

    • [9] ZHU L,XU Z,GU Y.Effect of laser power on the microstructure and mechanical properties of heat treated Inconel 718 superalloy by laser solid forming[J].Journal of Alloys and Compounds,2018,746:159-167.

    • [10] 黄晓林,金杰,邱维维,等.金属与氮复合注入对 Inconel 718 摩擦磨损性能的影响[J].中国表面工程,2017,30(3):8-15.HUANG Xiaolin,JIN Jie,QIU Weiwei,et al.Effect of metal and nitrogen composite injection on the friction and wear properties of Inconel 718[J].China Surface Engineering,2017,30(3):8-15.(in Chinese)

    • [11] 王涛,王宁,朱磊,等.激光扫描速度对IN718涂层组织与摩擦磨损性能的影响[J].热加工工艺,2022,51(10):79-84..WANG Tao,WANG Ning,ZHU Lei,et al.Effect of laser scanning speed on the microstructure and friction and wear properties of IN718 coating[J].Hot Working Process,2022,51(10):79-84.(in Chinese)

    • [12] 贾晓慧,胡亚宝,宋欣灵,等.激光熔化沉积WC复合Inconel718合金微观组织及磨损性能[J].表面技术,2022,51(12):329-339.JIA Xiaohui,HU Yabao,SONG Xinling,et al.Microstructure and wear properties of laser melted deposited WC composite Inconel 718 alloy[J].Surface Technology,2022,51(22):329-339.(in Chinese)

    • [13] ZHAO Z,QU H,BAI P,et al.Friction and wear behaviour of Inconel 718 alloy fabricated by selective laser melting after heat treatments[J].Philosophical Magazine Letters,2018,98(12):547-555.

    • [14] XU Y,GONG Y,LI P,et al.The effect of laser power on the microstructure and wear performance of IN718 superalloy fabricated by laser additive manufacturing[J].The International Journal of Advanced Manufacturing Technology,2020,108(7):2245-2254.

    • [15] GAO Y,ZHANG D,CAO M,et al.Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process[J].Materials Science and Engineering:A,2019,767:138327.

    • [16] 郭建亭.高温合金材料学(上册)[M].北京:科学出版社,2008.GUO Jianting.High temperature alloy materials(Volume I)[M].Beijing:Science Press,2008.(in Chinese)

    • [17] 李影,苏彬.镍基单晶高温合金的反常屈服行为与变形机制[J].材料工程,2004(3):45-48.LI Ying,Su Bin Abnormal yield behavior and deformation mechanism of nickel base single crystal superalloy[J].Materials Engineering,2004(3):45-48.(in Chinese)

    • [18] 宋衎,喻凯,林鑫,等.热处理态激光立体成形 Inconel 718 高温合金的组织及力学性能[J].金属学报,2015,51(8):935-942.SONG Yi,YU Kai,LIN Xin,et al.Weidong Microstructure and mechanical properties of Inconel 718 superalloy formed by laser solid forming in heat treated state[J].Acta Metallica Sinica,2015,51(8):935-942.(in Chinese)

    • [19] 牛宇生,郝秀清,孙鹏程,等.温度对表面摩擦磨损性能影响的研究进展[J].中国表面工程,2020,33(6):1-22. NIU Yusheng,HAO Xiuqing,SUN Pengcheng,et al.Research progress on the effect of temperature on surface friction and wear performance[J].China Surface Engineering,2020,33(6):1-22.(in Chinese)

    • [20] XU Z,LU Z,ZHANG J,et al.The friction and wear behaviours of inconel 718 superalloys at elevated temperature[J].Frontiers in Materials,2021,8:794701.

    • [21] 刘秀波,朱正兴,候早,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.LIU Xiubo,ZHU Zhengxing,HOU Zao,et al.Research progress in laser prepared self-lubricating composite coatings and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)

    • [22] LIN Yinghua,PING Xuelong,KUAN Jiacai,et al.Improving the microstructure and mechanical properties of laser cladded Ni-based alloy coatings by changing their composition:A review[J].Reviews on Advanced Materials Science,2020,59(1):340-351.

    • [23] 张斌,赖振国,贾倩,等.金属氮化物涂层的高温摩擦学研究进展[J].中国表面工程,2022,35(3):48-63.ZHANG Bin,LAI Zhenguo,JIA Qian,et al.Research progress in high-temperature tribology of metal nitride coatings[J].China Surface Engineering,2022,35(3):48-63.(in Chinese)

    • [24] CHEN Y,GUO Y,XU M,et al.Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser[J].Materials Science and Engineering:A,2019,754:339-347.

  • 手机扫一扫看