en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

于晶晶,女,1989年出生,博士,讲师。主要研究方向为低维纳米材料的制备与表征及材料表面改性。E-mail:17888842536@163.com

中图分类号:O469

DOI:10.11933/j.issn.1007−9289.20221203001

参考文献 1
KOSE S,ATAY F,BILGIN V,et al.Some physical properties of copper oxide films:The effect of substrate temperature[J].Materials Chemistry and Physics,2008,111(2-3):351-358.
参考文献 2
于晶晶,廖斌,张旭,等.热氧化法在泡沫铜上制备CuO纳米线及其光催化性能的研究[J].稀有金属,2016,40(10):1021-1028.YU Jingjing,LIAO Bin,ZHANG Xu,et al.Fabrication of CuO nanowires on copper foams by thermal oxidation and investigation of their photocatalytic properties[J].Rare Metals,2016,40(10):1021-1028.(in Chinese)
参考文献 3
FENG L,YAN H,LI H,et al.Excellent field emission properties of vertically oriented CuO nanowire films[J].AIP Advances,2018,8(4):045109.
参考文献 4
ANANDAN S,WEN X G,YANG S H.Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells[J].Materials Chemistry and Physics,2005,93(1):35-40.
参考文献 5
CAO H J,GU W H,FU J Y,et al.Preparation of superhydrophobic/oleophilic copper mesh for oil-water separation[J].Applied Surface Science,2017,412(1):599-605.
参考文献 6
WANG F,TAO W Z,ZHAO M S,et al.Controlled synthesis of uniform ultrafine CuO naowires as anode material for lithium-ion batteries[J].Journal of Alloys and Compounds,2011,509(41):9798-9803.
参考文献 7
LI Y,YANG X Y,ROOKE J C,et al.Ultralong Cu(OH)2 and CuO nanowire bundles:PEG200-directed crystal growth for enhanced photocatalytic performance[J].Journal of Colloid and Interface Science,2010,348(2):303-12.
参考文献 8
HADIYAN M,SALEHI A,MIRZANEJAD H.Gas sensing behavior of Cu2O and CuO/Cu2O composite nanowires synthesized by template-assisted electrodeposition[J].Journal of the Korean Ceramic Society,2021,58:94–105.
参考文献 9
ZHU L J,CHEN Y T,ZHENG Y T,et al.Ultrasound assisted template-free synthesis of Cu(OH)2 and hierarchical CuO nanowires from Cu7Cl4(OH)10-H2O[J].Materials Letters,2010,64(8):976-979.
参考文献 10
SU Y K,SHEN C M,YANG H T,et al.Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route[J].Transactions of Nonferrous Metals Society of China,2007,17(4):783-786.
参考文献 11
MOISE C C,ENACHE L B,ANASTASOAIE V,et al.On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure[J].Journal of Alloys and Compounds,2021,886(15):161130.
参考文献 12
GUO B,KOŠICEK M,FU J C,et al.Single-crystalline metal oxide nanostructures synthesized by plasmaenhanced thermal oxidation[J].Nanomaterials,2019,9(10):1405.
参考文献 13
NKHAILI L,NARJIS A,AGDAD A,et al.Simple method to control the growth of copper oxide nanowires for solar cells and catalytic applications[J].Advances in Condensed Matter Physics,2020,Article ID 5470817.
参考文献 14
SARAC M F,OZTURK K,YATMAZ H C.A facile two-step fabrication of titanium dioxide coated copper oxide nanowires with enhanced photocatalytic performance[J].Materials Characterization,2020,159:110042.
参考文献 15
LSU C L,TSAI J Y,HSUEH T J.Novel field emission structure of CuO/Cu2O composite nanowires based on copper through silicon via technology[J].RSC Advances,2015,5(43):33762–33766.
参考文献 16
IQBAL M,THEBO A A,SHAH A H,et al.Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires[J].Inorganic Chemistry Communications,2017,76:71-76.
参考文献 17
WANG R C,LIN S N,LIU J Y.Li/Na-doped CuO nanowires and nanobelts:Enhanced electrical properties and gas detection at room temperature[J].Journal of Alloys and Compounds,2017,696:79-85.
参考文献 18
ZHANG L Q,GAO Z F,LIU C,et al.N-doped nanoporous graphene decorated three-dimensional CuO nanowire network and its application to photocatalytic degradation of dyes[J].RSC Adv,2014,4(88):47455-47460.
参考文献 19
张通和,吴瑜光.离子束材料表面工程技术与应用[M].北京:机械工业出版社,2005.ZHANG Tonghe,WU Yuguang.Ion beam surface engineering technology and application[M].Beijing:China Machine Press,2005.(in Chinese)
参考文献 20
LI W Q,ZHAN X Y,SONG X Y,et al.A review of recent applications of ion beam techniques on nanomaterial surface modification:design of nanostructures and energy harvesting[J].Small,2019,15(31):1901820.
参考文献 21
AHN K S,KIM J S,KIM C O,et al.Non-reactive rf treatment of multiwall carbon nanotube with inert argon plasma for enhanced field emission[J].Carbon,2003,41(13):2481-2485.
参考文献 22
CHAUHAN R P,RANA P.Effect of O5+ ion implantation on the electrical and structural properties of Cu nanowires[J].Journal of Radioanalytical and Nuclear Chemistry,2014,302:851-856.
参考文献 23
LEE S F,LEE L Y,CHANG Y P.Enhancement of field emission from Silicon nanowires treated with carbon tetrafluoride plasma[C]//Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems,December 12-14,2013,Cheng Shiu University in Kaohsiung,Taiwan,China.Switzerland:Springer,2014,939-946.
参考文献 24
ZHOU X M,LIU N,SCHMUKI P.Ar+ ion bombardment of TiO2 nanotubes creates co-catalytic effect for photocatalytic open circuit hydrogen evolution[J].Electrochemistry Communications,2014,49:60-64.
参考文献 25
SISMAN O,ZAPPA D,BOLLI E,et al.Influence of iron and nitrogen ion beam exposure on the gas sensing properties of CuO nanowires[J].Sensors and Actuators B:Chemical,2020,321:128579.
参考文献 26
邓建华.载能离子作用下碳纳米材料结构演变与场发射性能的研究[D].北京:北京师范大学,2012.Deng Jianhua.Structural evolution and field emission properties of carbon nanomaterials by energetic ions[D].Beijing:Beijing Normal University,2012.(in Chinese)
参考文献 27
SONG X M,CHEN J.Non-crystallization and enhancement of field emission of cupric oxide nanowires induced by low-energy Ar ion bombardment[J].Applied Surface Science,2015,329:94-103.
参考文献 28
朱小涛.特殊润湿性表面材料的制备及其功能化研究 [D].兰州:中国科学院兰州化学物理研究所,2013.Zhu Xiaotao.Study on preparation and functionalization of materials with special surface wettability[D].Lanzhou:Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences.(in Chinese)
参考文献 29
JIAN S Z,QI Z Y,SUN S R,et al.Design and fabrication of superhydrophobic/superoleophilic Ni3S2-nanorods/Ni-mesh for oil–water separation[J].Surface and Coatings Technology,2018,337:370–378.
参考文献 30
孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)
参考文献 31
郭树虎,于志家.CuO 超疏水表面的制备及分形评价 [J/OL].北京:中国科技论文在线[2012-04-09].http:www.paper.edu.cn.GUO Shuhu,YU Zhijia.Preparation of CuO superhydrophobic surface and estimation by fractal theory [J/OL].Beijing:Chinese Journal of Science and Technology Online[2012-04-09].http:www.paper.edu.cn.(in Chinese)
目录contents

    摘要

    离子束技术作为一种精确可控的表面改性技术,已开始成为调控纳米材料结构和性能的重要技术之一。利用热氧化法在铜网表面直接合成高密度、高质量和高长径比的 CuO 纳米线(CuO NWs)阵列,采用扫描电镜(SEM)、透射电镜(TEM)、 X 射线光电子能谱(XPS)和接触角测试仪,研究低能(860 eV)Ar 离子束表面处理不同时间(0、5、10、15、20 min)对 CuO NWs 微观结构、化学成分及润湿性能的影响。结果表明:CuO NWs 表面经低能 Ar 离子束处理后,CuO NWs 顶端弯曲,表面变粗糙。随处理时间的增加,相邻 CuO NWs 之间出现熔合现象,CuO NWs 顶端逐渐由双晶结构转变为非晶结构, CuO NWs 表面部分 CuO 逐渐被还原成 Cu2O,CuO NWs 表面的静态水接触角(SWCA)值从(86±2)°先大幅度增大到(152 ±3)°后轻微减小到(141±2)°,当处理时间为 10 min 时,获得最大的 SWCA 值为(152±3)°,表明 CuO NWs 表面具备超疏水性。因此,利用低能 Ar 离子束表面改性技术可以基本实现对 CuO NWs 形貌、结构和性能等的精确调控。研究结果可为离子束技术精确调控其他一维纳米材料性能提供理论基础和试验依据。

    Abstract

    Recently, cupric oxide nanowires(CuO NWs) have drawn considerable attention owing to their unique properties and potential technical applications, which are mainly derived from their small size and particular structure. In practical applications, many methods have been employed to tailor the structure and composition of CuO NWs, and hence improve their performance. Among these, ion beam technology, as a precise and controllable surface decoration technique, has attracted increasing research interest for modulating the properties of CuO NWs. First, highly crystalline CuO NWs with high density and large aspect ratio were prepared via thermal oxidation of a copper mesh in an oxygen atmosphere. Subsequently, the CuO NWs were bombarded with an Ar ion beam for different durations (0, 5, 10, 15, and 20 min) at the energy of 860 eV. The effects of low-energy Ar ion beam treatment on the microstructure, chemical composition, and surface wettability of the CuO NWs were investigated via scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM), and contact angle measurement (CA). The results show that the tips of the CuO NWs became bent, and the surfaces of the CuO NWs were rougher after the low-energy Ar ion beam treatment. The bending of the CuO NWs may be due to the thermal stress generated by the temperature gradient, caused by heat from the incident Ar ions. The surface roughness of the CuO NWs was attributed to the surface sputtering effect. With an increase in treatment time, high-temperature fusion appeared between the adjacent CuO NWs because excessive energy precipitation cannot diffuse in a short time. With longer treatment times, the tip areas of the CuO NWs gradually changed from a bicrystalline(monoclinic) to an amorphous structure. This structural change was due to the formation of crystal defects, such as vacancies, from the surface sputtering effect, as well as the diffusion of defects into the inner CuO NWs induced by the temperature-rising effect. In addition, some of the CuO on the surface of the CuO NWs was reduced to Cu2O after the ion beam treatment. This is closely related to the preferential sputtering of oxygen in the metal oxide, and the vacancy-mediated diffusion of copper atoms to the surface may also play a role in the formation of Cu2O. Furthermore, measurements showed that the static water contact angle(SWCA) of the CuO NWs dramatically increased from (86±2)° to (152±3)°, and then slightly decreased to (141±2)° after treatment for different times. The largest SWCA approached (152±3)° with the optimal treatment time of 10 min, suggesting that the surface of CuO NWs is super-hydrophobic. The shift in the surface wettability of the CuO NWs can be attributed to the special rough structure created by modification with the low-energy Ar ion beam, which enables the surface of the CuO NWs to trap a large amount of air, efficiently avoiding direct contact between the water droplets and CuO NWs. Therefore, low-energy Ar ion beam surface treatment is a promising technique for achieving more precise modulation of the morphology, structure, chemical composition, and properties of CuO NWs. The results of this study also provide a theoretical and experimental basis for accurately regulating the properties of other one-dimensional nanomaterials using ion beam technology.

  • 0 前言

  • 在众多金属氧化物中,氧化铜(CuO)具有独特的电子结构,属于单斜晶系,在常温下是一种具有较窄带隙(1.2~1.9 eV)的 p 型半导体材料[1-2]。一维的 CuO NWs 因物理尺寸的纳米化和超大的比表面积,获得明显不同于块体 CuO 材料的优良物理化学性能[2],因此,在场发射阴极[3]、太阳能电池[4]、超润湿性材料[5]、锂离子电池阳极[6]、催化剂[7]及气体传感器[8]等领域有巨大的潜在应用前景,引起了研究人员的广泛关注和研究。现阶段,制备 CuO NWs 的方法,主要有纯溶液法[9]、模板法[10]、热氧化法[11]和等离子体直接氧化法[12]等。其中,热氧化法是一种成本较低、过程简单及易大规模制备的技术方法[11]。同时,热氧化法在衬底材料的选择上更加灵活,可根据具体的需要在不同的衬底材料表面合成 CuO NWs,如金属铜的片材、粉末、丝材、薄膜及合金等[13]

  • 在实际应用中,单一组分的 CuO NWs 无法满足人们日渐增长的对高性能材料的需求。为了改善 CuO NWs 的性能,需要对其进行表面改性处理。目前,常用的 CuO NWs 的改性方法可分为两类:复合改性和掺杂改性[14-17]。前者是通过物理或化学方法将其他具有特殊功能的材料与 CuO NWs 结合,如量子点、纳米颗粒或涂层等,利用多组分的协同效应改善 CuO NWs 的相关性能[14-15];后者是在 CuO NWs 生长过程中有选择地引入某些(金属或非金属)离子进入 CuO NWs 晶格中,改变原有的晶体结构或电子结构,使 CuO NWs 的相关性能发生改善[16-17]。尽管上述两类改性方法,可以在一定程度上改善 CuO NWs 的物理化学性能,但在改性过程中仍然存在一些问题,如复合改性的涂层与 CuO NWs 之间结合力较弱、纳米颗粒在 CuO NWs 表面分布不均匀;掺杂过程中容易引入杂质离子、掺杂离子受扩散系数和温度影响较大。此外,还存在改性工艺繁琐、容易产生污染物等,这些问题容易导致 CuO NWs 的改性效果无法精确控制、可重复性较差、稳定性不好、改性效率低及产生环境污染等[18],极大地限制了 CuO NWs 的实际应用。因此,寻找一种精确可控性高、稳定性好、可重复性高、工艺简单和绿色环保的 CuO NWs 改性方法具有关键性的意义。

  • 载能离子束技术是一种新型材料表面改性技术,属于纯物理过程,具有过程精确可控、不引入杂质、不受结合力和扩散系数限制以及高效率等优点[19-20]。该技术通过载能离子束与材料相互作用,引起材料的微观形貌结构和成分产生一系列的变化,从而使材料的宏观性能发生新变化。对于纳米尺度的材料,其微观形貌结构和化学组成是影响宏观性能的主控因素[20]。近年来,国内外科研人员已经开展了载能离子束技术对一维纳米材料的改性研究,并取得了相当的研究成果[20-24]。例如,AHN 等[21]研究了 Ar 等离子体处理对多壁碳纳米管场发射性能的影响,结果表明 Ar 等离子体对多壁碳纳米管起到了刻蚀和纯化的作用,改善了多壁碳纳米管的结构缺陷,提高了多壁碳纳米管的场发射性能。 CHAUHAN 等[22]对铜纳米线进行 O5+离子注入处理,发现 O5+离子注入过程中,在铜纳米线内部引入空位和间隙原子,使铜纳米线的电导率增加。LEE 等 [23]利用 CF4 等离子体处理 Si 纳米线,研究其对 Si 纳米线场发射性能的影响,试验表明 CF4 等离子体处理可以去除覆盖在 Si 纳米线表面的 SiO2 绝缘层,使电子更容易发射。此外,CF4 等离子体处理使 Si 纳米线的表面形貌发生改变,增加了 Si 纳米线的表面密度和电位点,使 Si 纳米线的场发射性能大幅度提升。ZHOU 等[24]研究了 Ar 等离子体处理对 TiO2 纳米管的光催化分解水制氢性能的影响,结果发现经 Ar 等离子体处理 TiO2 纳米管表面生成了 Ti3+和 Ti2+的氧化物,起到了助催化剂的作用,显著提高了氢的产量。由此可见,将载能离子束技术应用于一维纳米材料的表面改性领域具有巨大的潜在研究空间和重要的基础研究意义,也为获得超高性能的纳米器件提供一种可能途径[20]

  • 需要注意的是,利用载能离子束改性一维纳米材料,由于高能量和高剂量的离子束轰击容易使纳米结构消失[25],因此在离子能量、剂量和尺寸等参数的选择方面有一定的限制。本文首先采用热氧化法在铜网表面制备大面积高质量的 CuO NWs 阵列,随后利用低能的 Ar 离子束对 CuO NWs 阵列进行表面改性处理。主要研究低能 Ar 离子束表面处理引起的 CuO NWs 微观结构、化学成分和润湿性能的演变规律,为进一步实现利用载能离子束技术精细调控 CuO NWs 微观结构、化学成分和宏观性能提供一定的理论和实验依据。

  • 1 试验准备

  • 1.1 CuO NWs 的制备

  • 图1 为试验过程的示意图。选用纯度为 99.9% (30 mm×30 mm×0.1mm)的铜网(200 目)作为基材,依次使用盐酸(1 mol / L)、丙酮、去离子水和无水乙醇进行超声清洗,之后用氮气吹干放入氧化铝方舟中,送入水平石英管式炉,以 10℃ / min 的速率进行升温加热。在温度为 450℃,氧气流量为 60 ml / min 的条件下保温 60 min,反应结束后保持 10℃ / min 的速率将反应室的温度降至室温,取出样品备用,如图1a 所示。

  • 图1 试验过程示意图

  • Fig.1 Schematic diagram of experimental process

  • 1.2 结构表征及力学性能测试

  • 采用由磁过滤阴极真空弧系统产生的载能 Ar 离子束对样品进行表面处理。靶室真空度为 36 μPa,束流为 0.1 A,束斑直径为 100 mm,能量为 860 eV, Ar 气流量为 11 mL / min,垂直样品表面进行轰击,离子束处理时间分别为 0、5、10、15 和 20 min,如图1b 所示。

  • 1.3 结构表征及性能测试

  • 采用 Hitachi S-4800(SEM)场发射扫描电子显微镜,观察样品的表面形貌,电压 10 kV。利用 FEI Technai G2 F20 200KV(TEM)场发射透射电子显微镜,观察样品的微观结构。使用 SRIM(2013) 程序模拟计算离子在样品中的射程。采用 VGESCALABMKⅡ X 射线光电子能谱(XPS AlKα)仪,分析样品表面的成分。采用 JC2000D1 接触角测量仪,测试样品的表面润湿性,溶液为蒸馏水,水滴体积约 3 μL,在每个样品表面测量 3 个不同的位置,静态水接触角(SWCA)的结果取平均值。

  • 2 结果与讨论

  • 2.1 低能 Ar 离子束表面处理对 CuO NWs 表面形貌的影响

  • 为探究低能 Ar 离子束表面处理对 CuO NWs 表面形貌的影响,利用 SEM 对低能 Ar 离子束处理不同时间下的 CuO NWs 样品表面进行表征,结果如图2 所示。从图2a 可以看出,未处理的 CuO NWs 垂直于基底生长,呈圆锥形,顶端的直径为 10~50 nm,底部的直径为 60~120 nm。图2b 所示为低能 Ar 离子束处理 5 min 的 CuO NWs,观察到 CuO NWs 顶端发生了弯曲,且较长的 CuO NWs 顶端弯曲更明显。这可能是因为载能 Ar 离子束与 CuO NWs 表面相互作用,所传递的能量迅速以热的形式沿着 CuO NWs 的横向和纵向传播,在 CuO NWs 内部产生了温度梯度,而 CuO NWs 是各向异性的。因此,在 CuO NWs 内部的温度梯度形成了热应力,促使 CuO NWs 顶端发生弯曲[20]。随着处理时间的继续增加,CuO NWs 顶端弯曲加剧,邻近的 CuO NWs 在顶端区域出现粘连即熔合现象[26],如图2c~2e 所示。这可能是由过度的能量淀积无法在短时间扩散导致的[26]。低能 Ar 离子束处理不同时间的 CuO NWs 平均长度和平均密度的统计值见表1。可以看到未处理的 CuO NWs 平均长度约为 15.7 um,平均密度约为 4.11×108 个 / cm2。随着处理时间增加,CuO NWs 的平均长度和平均密度均逐渐降低,可能是 Ar 离子束与 CuO NWs 碰撞瞬间产生了强烈的撞击,使一些较细和较长的 CuO NWs 被打断了[24]

  • 图2 低能 Ar 离子束表面处理后 CuO NWs 样品的 SEM 照片

  • Fig.2 SEM images of CuO NW samples after low-energy Ar ion beam treatment

  • 表1 低能 Ar 离子束处理前后 CuO NWs 样品的平均密度、平均长度、一价铜与二价铜含量的比值(Cu+:Cu2+)及吸附氧与晶格氧(OcontOlatt)的含量比值

  • Table1 Average density, average length, Cu+ to Cu2+ ratio, Ocont to Olatt ratio of CuO NW samples before and after low-energy Ar ion beam treatment

  • 2.2 低能 Ar 离子束表面处理对 CuO NWs 微观结构的影响

  • 利用 TEM、HRTEM 和 SAED 对低能 Ar 离子束表面处理前后 CuO NWs 样品的微观结构进行表征,结果如图3 所示。从图3a~3b 可以看出,未处理的纳米线顶端直径较小,约为 20 nm,表面光滑,顶端平直,发现纳米线表面亮度不均,表明纳米线存在不同的晶面。由图3c 观察到纳米线的生长方向 (沿轴向)存在明显的晶界(白色虚线),在晶界两侧具有两种结构相同而取向不同的清晰晶格条纹,表明纳米线的双晶本质。图3d 为纳米线的 SAED 图像,可见纳米线具有两套电子衍射花样,确认了纳米线的双晶结构;同时,以单斜晶系 CuO (a=4.685 3Å;b=3.425 7Å;c=5.130 3Å;β=99.549°; JCPDS-45-0937)对衍射花样进行标定,结果表明纳米线确实为 CuO,晶带轴方向为[0,0,−1]。经低能 Ar 离子束处理 10 min 后,纳米线顶端(相对于底部)受影响较大,由平直变弯曲,表面由光滑变粗糙,如图3e~3f 所示。由图3g 可观察到纳米线的晶格条纹变得模糊不清(与图3c 相比较),出现了一些短程有序(白色虚线圆形)的纳米晶和非晶结构。从图3h 中发现相应的电子衍射花纹变成环形,说明随着处理时间的增加,CuO NWs 顶端逐渐从双晶结构向非晶结构转变。产生以上结果的原因是低能 Ar 离子束轰击 CuO NWs 时,Ar 离子与 CuO NWs 表面原子发生碰撞,当表面原子获得足够的能量将从 CuO NWs 表面被击出即离子束的溅射效应,使 CuO NWs 表面变粗糙;同时,在 CuO NWs 表面晶格中产生晶格缺陷,尤其是点缺陷,如空位和间隙原子。通过 SRIM 软件模拟计算得出 860 eV 的 Ar 离子在 CuO NWs 表面的入射深度约为 17Å,考虑到此条件下 Ar 离子的级联碰撞效应所引发的晶格缺陷仅限于 CuO NWs的晶格表层,不会影响 CuO NWs 的内部晶格结构,因此,将低能 Ar 离子束作用下 CuO NWs 由双晶结构向非晶结构转变的原因认为是:Ar 离子束轰击 CuO NWs 表面时,大部分能量将会转化为热量,使 CuO NWs 表面局部区域升温(热效应),从而促进缺陷向纳米线的内部晶格扩散,最终导致纳米线的非晶化[2027]

  • 2.3 低能 Ar 离子束表面处理对 CuO NWs 表面化学成分的影响

  • 利用 XPS 对低能 Ar 离子束处理前后 CuO NWs 样品表面的化学成分、元素含量和主要化学态进行表征,如图4 所示。图4a 为 Ar 离子束处理不同时间的 CuO NWs 样品表面的 Cu2p3 / 2峰图谱,对于未处理的 CuO NWs 表面,结合能峰值在~933.36 eV 的特征峰对应Cu2+的Cu2p3 / 2峰,在~943.10 eV的卫星峰也属于 Cu2+[11],表明原始 CuO NWs 表面的主要成分为 CuO。随着处理时间的增加,发现 CuO NWs 样品的 Cu2p3 / 2 峰开始展宽,经拟合得到两个结合能峰值在~932.01 和~933.52 eV 的特征峰,分别对应 Cu+ 和Cu2+的Cu2p3 / 2[1],表明低能Ar离子束与CuO NWs 相互作用,使CuO NWs 表面部分CuO被还原成Cu2O。低能 Ar 离子束处理不同时间的 CuO NWs 样品表面的 Cu+ 元素含量的变化(根据拟合峰面积计算),如表1 所示,随着处理时间的增加,Cu+ 含量先从大幅度增加再略微降低,Cu+ 含量与处理时间呈非线性关系。图4b 为 Ar 离子束处理不同时间的 CuO NWs 样品表面的 O1s 峰图谱,可以看到不同 CuO NWs 样品表面的 O1s 峰均可以拟合为结合能峰值分别在~529.48 和~531.02 eV 的两个特征峰,对应来自晶格氧和吸附氧[27],随着处理时间的增加,晶格氧的特征峰强度呈大幅度下降趋势,即 CuO NWs 样品表面的晶格氧含量大幅度降低,说明低能 Ar 离子束表面处理使 CuO NWs 晶格失氧(具体含量见表1)。上述结果是由低能 Ar 离子束的溅射效应引起的,对于氧化物的溅射,因 Cu 原子和 O 原子的质量不同,O 原子质量较小,使 O 原子优先从 CuO NWs 表面晶格溅射出去,产生大量的 O 空位,使 CuO 失去氧原子被还原成 Cu2O[24]。此外,因 Cu 原子比 O 原子的半径大,Cu 原子也可能通过空位机制,扩散到表面,导致表面富集 Cu 原子,使 Cu 原子和 O 原子比例发生变化,形成 Cu2O。

  • 图3 低能 Ar 离子束表面处理前后 CuO NWs 样品的 TEM、HRTEM 和 SAED 图(a)(e)低倍数 TEM 图(b)(f)高分辨 HTEM 图(c)(g)红色虚线区的放大图(d)(h)红色虚线区的 SAED 图

  • Fig.3 TEM,HRTEM and SAED images of CuO NW samples before and after low-energy Ar ion beam treatment. (a) , (e) Low-magnification TEM images; (b) , (f) HRTEM images; (c) , (g) Magnified images of the area in the red dashed rectangles; (d) , (h) Corresponding SAED patterns.

  • 图4 低能 Ar 离子束表面处理不同时间的 CuO NWs 样品表面的 XPS 图谱

  • Fig.4 Variation of XPS spectra of CuO NW samples with low-energy Ar ion beam treatment time

  • 2.4 低能 Ar 离子束表面处理对 CuO NWs 表面润湿性能的影响

  • 利用接触角测量仪测量低能 Ar 离子束处理不同时间的 CuO NWs 样品表面的静态水接触角 (SWCA),结果如图5 所示。从图中曲线可以看出,未处理(处理 0 min)的 CuO NWs 表面 SWCA 值为(86±2°)(小于 90°),表明原始 CuO NWs 表面的亲水性本质[28]。随着处理时间的增加,CuO NWs 表面 SWCA 值先大幅度增加后略微降低。当处理时间为10 min时,CuO NWs表面SWCA值最大为(152±3)°,此时 CuO NWs 表面具备超疏水性质[528]

  • 图5 CuO NWs 样品的 SWCA 值随低能 Ar 离子束处理时间的变化曲线(插图为不同 CuO NWs 表面水滴的光学照片)

  • Fig.5 Change of the SWCA of CuO NW samples with the low-energy Ar ion beam treatment time (The insets show photographs of water droplets on the surface of CuO NW samples)

  • 为进一步确认经低能 Ar 离子束表面处理后 CuO NWs 样品表面具有超疏水性,将低能 Ar 离子束表面处理前后的 CuO NWs 样品放在倾斜的载玻片上,测试水滴(亚甲基蓝染色)在不同 CuO NWs 样品表面的脱离过程(图6)[29]。从图6a 可以看到,将未处理的 CuO NWs 样品放在倾斜的载玻片上(倾斜角大于 30°),水滴滴落在样品表面不能滑动,且随着时间延长至 30 min,水滴依然保持不动。而经低能 Ar 离子束表面处理 10 min 的 CuO NWs 样品,当载玻片稍微倾斜(倾斜角约为 5°)时,水滴滴落在样品表面后无法停留,会立即滚动下来且没有留下痕迹,如图6b 的动态截图所示。这进一步确认低能 Ar 离子束表面处理可以使 CuO NWs 表面获得超疏水性。上述结果表明,低能 Ar 离子束表面处理可以使 CuO NWs 表面的润湿性能发生反转,由亲水性转变为疏水性。最佳处理时间为 10 min,此条件下 CuO NWs 表面获得超疏水性。

  • 图6 不同的 CuO NWs 样品表面水滴的脱离过程照片

  • Fig.6 Photographs of the separation process of a water droplet on the surface of different CuO NW samples

  • 低能 Ar 离子束表面处理使 CuO NWs 表面润湿性发生转变的原因,可以根据 Cassie-Baxter 方程[30] 来理解,如以下方程所示:

  • cosθ*= (1-f) cosθ-f

  • 式中,θ 为原始 CuO NWs 表面的 SWCA;θ*为离子束处理后 CuO NWs 样品表面的 SWCA;f 为离子束处理后 CuO NWs 样品表面气-液接触面积占总接触面积的百分数。根据以上方程,计算低能 Ar 离子束表面处理不同时间 CuO NWs 样品的 f 值,如表2 所示。从计算结果可以看出,低能 Ar 离子束表面处理使 CuO NWs 样品的 f 值均大于 0.770 6,说明样品表面大部分(大于 77.06%)固-液接触面被气-液接触面取代。对处理时间为 10 min 的超疏水 CuO NWs,其 f 值最大为 0.890 6,表明该样品表面接近 89.06%的气-液接触面代替了固-液接触面。

  • 表2 根据 Cassie-Baxter 方程计算的低能 Ar 离子束处理不同时间的 CuO NWs 样品表面的 f

  • Table2 Calculated f of CuO NW samples after low-energy Ar ion beam treatment for various times from the Cassie-Baxter equation

  • 结合前面的 SEM、TEM 和 XPS 表征结果,可以推断:低能 Ar 离子束表面处理引起的 CuO NWs 表面形貌结构的变化,是导致 CuO NWs 表面润湿性发生转变以及获得超疏水性的主要原因。可能的机理如图7 所示,由图7a 可以看到低能 Ar 离子束表面处理使 CuO NWs 顶端发生弯曲,相邻的 CuO NWs 最终形成粗糙的类圆拱形结构。这种特殊的纳米级粗糙结构容易捕获更多的空气,在 CuO NWs 表面形成空气膜层[31]。因此,当小水滴与 CuO NWs 表面接触时,如图7b 所示,在 CuO NWs 表面形成大量的液-气-固复合界面,取代了原来的液-固界面,即空气膜层阻碍了水滴和 CuO NWs 直接接触,从而使 CuO NWs 表面获得超疏水性能。

  • 图7 低能 Ar 离子束表面处理的 CuO NW 表面湿润性转变的机理示意图

  • Fig.7 Schematic illustration of the mechanism from surface wettability conversion of CuO NW samples after low-energy Ar ion beam treatment.

  • 3 结论

  • 基于热氧化技术在铜网表面制备 CuO NWs 阵列,利用低能 Ar 离子束对 CuO NWs 阵列进行表面改性,研究不同表面处理时间对 CuO NWs 微观形貌结构、化学成分与润湿性能的影响。得到的主要结论如下:

  • (1)经低能 Ar 离子束表面处理后,Ar 离子束的热效应在 CuO NWs 内部形成了热应力,使 CuO NWs 顶端发生弯曲。随着处理时间的增加,过度的能量淀积无法在短时间扩散,使相邻 CuO NWs 尖端之间出现熔合。

  • (2)低能 Ar 离子束的溅射效应使 CuO NWs 表面原子被击出,导致 CuO NWs 表面由光滑变粗糙。同时,Ar 离子的级联碰撞效应在表层晶格中引发了晶格缺陷。随着处理时间的增加,Ar 离子束的热效应导致缺陷向 CuO NWs 晶格内部扩散,使 CuO NWs 顶端由双晶结构向非晶结构转变。

  • (3)对于氧化物的溅射,O 原子质量比 Cu 原子质量小,被优先溅射移除,使 CuO NWs 表层部分 CuO 失氧被还原为 Cu2O。此外,因 Cu 原子比 O 原子的半径大,Cu 原子也可能通过空位机制扩散至表面,导致表面富集 Cu 原子,形成 Cu2O。

  • (4)经低能 Ar 离子束表面处理后,CuO NWs 表面的润湿性能发生反转,可由亲水性转变为超疏水性。这与低能 Ar 离子束引起的 CuO NWs 形貌结构的变化是密切相关的。

  • 参考文献

    • [1] KOSE S,ATAY F,BILGIN V,et al.Some physical properties of copper oxide films:The effect of substrate temperature[J].Materials Chemistry and Physics,2008,111(2-3):351-358.

    • [2] 于晶晶,廖斌,张旭,等.热氧化法在泡沫铜上制备CuO纳米线及其光催化性能的研究[J].稀有金属,2016,40(10):1021-1028.YU Jingjing,LIAO Bin,ZHANG Xu,et al.Fabrication of CuO nanowires on copper foams by thermal oxidation and investigation of their photocatalytic properties[J].Rare Metals,2016,40(10):1021-1028.(in Chinese)

    • [3] FENG L,YAN H,LI H,et al.Excellent field emission properties of vertically oriented CuO nanowire films[J].AIP Advances,2018,8(4):045109.

    • [4] ANANDAN S,WEN X G,YANG S H.Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells[J].Materials Chemistry and Physics,2005,93(1):35-40.

    • [5] CAO H J,GU W H,FU J Y,et al.Preparation of superhydrophobic/oleophilic copper mesh for oil-water separation[J].Applied Surface Science,2017,412(1):599-605.

    • [6] WANG F,TAO W Z,ZHAO M S,et al.Controlled synthesis of uniform ultrafine CuO naowires as anode material for lithium-ion batteries[J].Journal of Alloys and Compounds,2011,509(41):9798-9803.

    • [7] LI Y,YANG X Y,ROOKE J C,et al.Ultralong Cu(OH)2 and CuO nanowire bundles:PEG200-directed crystal growth for enhanced photocatalytic performance[J].Journal of Colloid and Interface Science,2010,348(2):303-12.

    • [8] HADIYAN M,SALEHI A,MIRZANEJAD H.Gas sensing behavior of Cu2O and CuO/Cu2O composite nanowires synthesized by template-assisted electrodeposition[J].Journal of the Korean Ceramic Society,2021,58:94–105.

    • [9] ZHU L J,CHEN Y T,ZHENG Y T,et al.Ultrasound assisted template-free synthesis of Cu(OH)2 and hierarchical CuO nanowires from Cu7Cl4(OH)10-H2O[J].Materials Letters,2010,64(8):976-979.

    • [10] SU Y K,SHEN C M,YANG H T,et al.Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route[J].Transactions of Nonferrous Metals Society of China,2007,17(4):783-786.

    • [11] MOISE C C,ENACHE L B,ANASTASOAIE V,et al.On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure[J].Journal of Alloys and Compounds,2021,886(15):161130.

    • [12] GUO B,KOŠICEK M,FU J C,et al.Single-crystalline metal oxide nanostructures synthesized by plasmaenhanced thermal oxidation[J].Nanomaterials,2019,9(10):1405.

    • [13] NKHAILI L,NARJIS A,AGDAD A,et al.Simple method to control the growth of copper oxide nanowires for solar cells and catalytic applications[J].Advances in Condensed Matter Physics,2020,Article ID 5470817.

    • [14] SARAC M F,OZTURK K,YATMAZ H C.A facile two-step fabrication of titanium dioxide coated copper oxide nanowires with enhanced photocatalytic performance[J].Materials Characterization,2020,159:110042.

    • [15] LSU C L,TSAI J Y,HSUEH T J.Novel field emission structure of CuO/Cu2O composite nanowires based on copper through silicon via technology[J].RSC Advances,2015,5(43):33762–33766.

    • [16] IQBAL M,THEBO A A,SHAH A H,et al.Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires[J].Inorganic Chemistry Communications,2017,76:71-76.

    • [17] WANG R C,LIN S N,LIU J Y.Li/Na-doped CuO nanowires and nanobelts:Enhanced electrical properties and gas detection at room temperature[J].Journal of Alloys and Compounds,2017,696:79-85.

    • [18] ZHANG L Q,GAO Z F,LIU C,et al.N-doped nanoporous graphene decorated three-dimensional CuO nanowire network and its application to photocatalytic degradation of dyes[J].RSC Adv,2014,4(88):47455-47460.

    • [19] 张通和,吴瑜光.离子束材料表面工程技术与应用[M].北京:机械工业出版社,2005.ZHANG Tonghe,WU Yuguang.Ion beam surface engineering technology and application[M].Beijing:China Machine Press,2005.(in Chinese)

    • [20] LI W Q,ZHAN X Y,SONG X Y,et al.A review of recent applications of ion beam techniques on nanomaterial surface modification:design of nanostructures and energy harvesting[J].Small,2019,15(31):1901820.

    • [21] AHN K S,KIM J S,KIM C O,et al.Non-reactive rf treatment of multiwall carbon nanotube with inert argon plasma for enhanced field emission[J].Carbon,2003,41(13):2481-2485.

    • [22] CHAUHAN R P,RANA P.Effect of O5+ ion implantation on the electrical and structural properties of Cu nanowires[J].Journal of Radioanalytical and Nuclear Chemistry,2014,302:851-856.

    • [23] LEE S F,LEE L Y,CHANG Y P.Enhancement of field emission from Silicon nanowires treated with carbon tetrafluoride plasma[C]//Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems,December 12-14,2013,Cheng Shiu University in Kaohsiung,Taiwan,China.Switzerland:Springer,2014,939-946.

    • [24] ZHOU X M,LIU N,SCHMUKI P.Ar+ ion bombardment of TiO2 nanotubes creates co-catalytic effect for photocatalytic open circuit hydrogen evolution[J].Electrochemistry Communications,2014,49:60-64.

    • [25] SISMAN O,ZAPPA D,BOLLI E,et al.Influence of iron and nitrogen ion beam exposure on the gas sensing properties of CuO nanowires[J].Sensors and Actuators B:Chemical,2020,321:128579.

    • [26] 邓建华.载能离子作用下碳纳米材料结构演变与场发射性能的研究[D].北京:北京师范大学,2012.Deng Jianhua.Structural evolution and field emission properties of carbon nanomaterials by energetic ions[D].Beijing:Beijing Normal University,2012.(in Chinese)

    • [27] SONG X M,CHEN J.Non-crystallization and enhancement of field emission of cupric oxide nanowires induced by low-energy Ar ion bombardment[J].Applied Surface Science,2015,329:94-103.

    • [28] 朱小涛.特殊润湿性表面材料的制备及其功能化研究 [D].兰州:中国科学院兰州化学物理研究所,2013.Zhu Xiaotao.Study on preparation and functionalization of materials with special surface wettability[D].Lanzhou:Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences.(in Chinese)

    • [29] JIAN S Z,QI Z Y,SUN S R,et al.Design and fabrication of superhydrophobic/superoleophilic Ni3S2-nanorods/Ni-mesh for oil–water separation[J].Surface and Coatings Technology,2018,337:370–378.

    • [30] 孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)

    • [31] 郭树虎,于志家.CuO 超疏水表面的制备及分形评价 [J/OL].北京:中国科技论文在线[2012-04-09].http:www.paper.edu.cn.GUO Shuhu,YU Zhijia.Preparation of CuO superhydrophobic surface and estimation by fractal theory [J/OL].Beijing:Chinese Journal of Science and Technology Online[2012-04-09].http:www.paper.edu.cn.(in Chinese)

  • 参考文献

    • [1] KOSE S,ATAY F,BILGIN V,et al.Some physical properties of copper oxide films:The effect of substrate temperature[J].Materials Chemistry and Physics,2008,111(2-3):351-358.

    • [2] 于晶晶,廖斌,张旭,等.热氧化法在泡沫铜上制备CuO纳米线及其光催化性能的研究[J].稀有金属,2016,40(10):1021-1028.YU Jingjing,LIAO Bin,ZHANG Xu,et al.Fabrication of CuO nanowires on copper foams by thermal oxidation and investigation of their photocatalytic properties[J].Rare Metals,2016,40(10):1021-1028.(in Chinese)

    • [3] FENG L,YAN H,LI H,et al.Excellent field emission properties of vertically oriented CuO nanowire films[J].AIP Advances,2018,8(4):045109.

    • [4] ANANDAN S,WEN X G,YANG S H.Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells[J].Materials Chemistry and Physics,2005,93(1):35-40.

    • [5] CAO H J,GU W H,FU J Y,et al.Preparation of superhydrophobic/oleophilic copper mesh for oil-water separation[J].Applied Surface Science,2017,412(1):599-605.

    • [6] WANG F,TAO W Z,ZHAO M S,et al.Controlled synthesis of uniform ultrafine CuO naowires as anode material for lithium-ion batteries[J].Journal of Alloys and Compounds,2011,509(41):9798-9803.

    • [7] LI Y,YANG X Y,ROOKE J C,et al.Ultralong Cu(OH)2 and CuO nanowire bundles:PEG200-directed crystal growth for enhanced photocatalytic performance[J].Journal of Colloid and Interface Science,2010,348(2):303-12.

    • [8] HADIYAN M,SALEHI A,MIRZANEJAD H.Gas sensing behavior of Cu2O and CuO/Cu2O composite nanowires synthesized by template-assisted electrodeposition[J].Journal of the Korean Ceramic Society,2021,58:94–105.

    • [9] ZHU L J,CHEN Y T,ZHENG Y T,et al.Ultrasound assisted template-free synthesis of Cu(OH)2 and hierarchical CuO nanowires from Cu7Cl4(OH)10-H2O[J].Materials Letters,2010,64(8):976-979.

    • [10] SU Y K,SHEN C M,YANG H T,et al.Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route[J].Transactions of Nonferrous Metals Society of China,2007,17(4):783-786.

    • [11] MOISE C C,ENACHE L B,ANASTASOAIE V,et al.On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure[J].Journal of Alloys and Compounds,2021,886(15):161130.

    • [12] GUO B,KOŠICEK M,FU J C,et al.Single-crystalline metal oxide nanostructures synthesized by plasmaenhanced thermal oxidation[J].Nanomaterials,2019,9(10):1405.

    • [13] NKHAILI L,NARJIS A,AGDAD A,et al.Simple method to control the growth of copper oxide nanowires for solar cells and catalytic applications[J].Advances in Condensed Matter Physics,2020,Article ID 5470817.

    • [14] SARAC M F,OZTURK K,YATMAZ H C.A facile two-step fabrication of titanium dioxide coated copper oxide nanowires with enhanced photocatalytic performance[J].Materials Characterization,2020,159:110042.

    • [15] LSU C L,TSAI J Y,HSUEH T J.Novel field emission structure of CuO/Cu2O composite nanowires based on copper through silicon via technology[J].RSC Advances,2015,5(43):33762–33766.

    • [16] IQBAL M,THEBO A A,SHAH A H,et al.Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires[J].Inorganic Chemistry Communications,2017,76:71-76.

    • [17] WANG R C,LIN S N,LIU J Y.Li/Na-doped CuO nanowires and nanobelts:Enhanced electrical properties and gas detection at room temperature[J].Journal of Alloys and Compounds,2017,696:79-85.

    • [18] ZHANG L Q,GAO Z F,LIU C,et al.N-doped nanoporous graphene decorated three-dimensional CuO nanowire network and its application to photocatalytic degradation of dyes[J].RSC Adv,2014,4(88):47455-47460.

    • [19] 张通和,吴瑜光.离子束材料表面工程技术与应用[M].北京:机械工业出版社,2005.ZHANG Tonghe,WU Yuguang.Ion beam surface engineering technology and application[M].Beijing:China Machine Press,2005.(in Chinese)

    • [20] LI W Q,ZHAN X Y,SONG X Y,et al.A review of recent applications of ion beam techniques on nanomaterial surface modification:design of nanostructures and energy harvesting[J].Small,2019,15(31):1901820.

    • [21] AHN K S,KIM J S,KIM C O,et al.Non-reactive rf treatment of multiwall carbon nanotube with inert argon plasma for enhanced field emission[J].Carbon,2003,41(13):2481-2485.

    • [22] CHAUHAN R P,RANA P.Effect of O5+ ion implantation on the electrical and structural properties of Cu nanowires[J].Journal of Radioanalytical and Nuclear Chemistry,2014,302:851-856.

    • [23] LEE S F,LEE L Y,CHANG Y P.Enhancement of field emission from Silicon nanowires treated with carbon tetrafluoride plasma[C]//Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems,December 12-14,2013,Cheng Shiu University in Kaohsiung,Taiwan,China.Switzerland:Springer,2014,939-946.

    • [24] ZHOU X M,LIU N,SCHMUKI P.Ar+ ion bombardment of TiO2 nanotubes creates co-catalytic effect for photocatalytic open circuit hydrogen evolution[J].Electrochemistry Communications,2014,49:60-64.

    • [25] SISMAN O,ZAPPA D,BOLLI E,et al.Influence of iron and nitrogen ion beam exposure on the gas sensing properties of CuO nanowires[J].Sensors and Actuators B:Chemical,2020,321:128579.

    • [26] 邓建华.载能离子作用下碳纳米材料结构演变与场发射性能的研究[D].北京:北京师范大学,2012.Deng Jianhua.Structural evolution and field emission properties of carbon nanomaterials by energetic ions[D].Beijing:Beijing Normal University,2012.(in Chinese)

    • [27] SONG X M,CHEN J.Non-crystallization and enhancement of field emission of cupric oxide nanowires induced by low-energy Ar ion bombardment[J].Applied Surface Science,2015,329:94-103.

    • [28] 朱小涛.特殊润湿性表面材料的制备及其功能化研究 [D].兰州:中国科学院兰州化学物理研究所,2013.Zhu Xiaotao.Study on preparation and functionalization of materials with special surface wettability[D].Lanzhou:Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences.(in Chinese)

    • [29] JIAN S Z,QI Z Y,SUN S R,et al.Design and fabrication of superhydrophobic/superoleophilic Ni3S2-nanorods/Ni-mesh for oil–water separation[J].Surface and Coatings Technology,2018,337:370–378.

    • [30] 孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)

    • [31] 郭树虎,于志家.CuO 超疏水表面的制备及分形评价 [J/OL].北京:中国科技论文在线[2012-04-09].http:www.paper.edu.cn.GUO Shuhu,YU Zhijia.Preparation of CuO superhydrophobic surface and estimation by fractal theory [J/OL].Beijing:Chinese Journal of Science and Technology Online[2012-04-09].http:www.paper.edu.cn.(in Chinese)

  • 手机扫一扫看