en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

严凯,男,1995年出生,硕士研究生。主要研究方向为机械摩擦与表面技术。E-mail:i510_yank_251@163.com;

吴玉程,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为能源材料和表面工程。E-mail:wyc@tyut.edu.cn

通讯作者:

林乃明,男,1981年出生,博士,副教授,硕士研究生导师。主要研究方向为机械摩擦与表面技术。E-mail:linnaiming@tyut.edu.cn

中图分类号:V219

DOI:10.11933/j.issn.1007−9289.20221214003

参考文献 1
田建明,景建斌,韩广岐.高超声速飞行器地面试验方法综述[J].探测与控制学报,2013,35(5):57-60.TIAN Jianming,JING Jianbin,HAN Guangqi.Overview on hypersonic aircraft ground test method[J].Journal of Detection & Control,2013,35(5):57-60.(in Chinese)
参考文献 2
GERASIMOV S I,EROFEEV V I,KAMCHATNYI V G,et al.The sliding contact condition in stability analysis of stage motion for a rocket sled track facility[J].Journal of Machinery Manufacture and Reliability,2018,47(3):221-226.
参考文献 3
HALE C S,PALAZOTTO A N,BAKER W P,et al.Engineering approach for the evaluation of mechanical wear considering the experimental holloman high-speed test track[J].Journal of Engineering Mechanics,2012,138(9):1127-1140.
参考文献 4
王玮华,谢发勤,吴向清,等.火箭橇滑块超声速、大载荷摩擦磨损失效机理[J].材料导报,2020,34(16):16136-16139.WANG Weihua,XIE Faqin,WU Xiangqing,et al.Investigation on friction and wear failure mechanism of rocket sled slide at supersonic and under high load[J].Materials Reports,2020,34(16):16136-16139.(in Chinese)
参考文献 5
汪笑鹤,刘彬,肖军,等.火箭橇滑块摩擦磨损失效机理及形貌特征分析[J].表面技术,2019,48(3):141-148.WANG Xiaohe,LIU Bin,XIAO Jun,et al.Investigation on friction and wear topography features and failure mechanism of slide of rocket sled[J].Surface Technology,2019,48(3):141-148.(in Chinese)
参考文献 6
黄文强,李卫,毛飞宇,等.面接触应力分布与磨损分析[J].华南理工大学学报:自然科学版,2020,48(8):91-101.HUANG Wenqiang,LI Wei,MAO Feiyu,et al.Analysis of stress distribution and wear in surface contact[J].Journal of South China University of Technology(Natural Science Edition),2020,48(8):91-101.(in Chinese)
参考文献 7
董立春,韩志武,张雷,等.凹坑型仿生形态环块样件接触问题有限元数值模拟[J].吉林大学学报:工学版,2013,43(增刊 1):543-546.DONG Lichun,HAN Zhiwu,ZHANG Lei,et al.Numerical simulation on contact problem of ring model with bionic concave morphology[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(Suppl.1):543-546.(in Chinese)
参考文献 8
BUENTELLO HERNANDEZ R G,PALAZOTTO A N,LE K H.3D Finite element modeling of high-speed sliding wear[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures,Structural dynamics and Materials conference,Boston,Massachusetts,April 8-11,2013.2013:1008-1027.
参考文献 9
ALBAN C J,PALAZOTTO A N,RUTLEDGE J L.Thermal considerations with respect to sliding contact at high speed[J].Journal of Thermophysics and Heat Transfer,2016,30(1):54-61.
参考文献 10
王伯阳,吴向清,谢发勤.火箭橇滑块摩擦热-结构耦合场分析[J].润滑与密封,2014,39(1):80-83.WANG Boyang,WU Xiangqing,XIE Faqin.Friction heat-structure coupled field analysis on the shoe of rocket sled[J].Lubrication Engineering,2014,39(1):80-83.(in Chinese)
参考文献 11
毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)
参考文献 12
KOCIJAN A.Short-and long-term wettability evolution and corrosion resistance of uncoated and polymer-coated laser-textured steel surface[J].Coatings,2019,9(9):592.
参考文献 13
EZHILMARAN V,VASA N J,VIJAYARAGHAVAN L.Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction[J].Surface and Coatings Technology,2018,335:314-326.
参考文献 14
MENG Y G.Is laser surface texturing good or bad for rolling element bearings[J] Friction,2021,9(6):1784-1786.
参考文献 15
赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of influence of surface texture type on lubrication and friction reduction performance of friction pair[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)
参考文献 16
WU W,SHAO T M,CHEN G M.Influence of groove surface texture on temperature rise under dry sliding friction[J].Science China Technological Sciences,2016,59(2):183-190.
参考文献 17
XING Y Q,DENG J X,FENG X T,et al.Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction[J].Materials & Design,2013,52:234-245.
参考文献 18
LI J B,LIU S,YU A B,et al.Effect of laser surface texture on CuSn6 bronze sliding against PTFE material under dry friction[J].Tribology International,2018,118:37-45.
参考文献 19
VLADESCU S C,OLVER A V,PEGG I G,et al.The effects of surface texture in reciprocating contacts—An experimental study[J].Tribology International,2015,82:28-42.
参考文献 20
ARCHARD J F.Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24(8):981-988.
参考文献 21
MENG H C,LUDEMA K C.Wear models and predictive equations:their form and content[J].Wear,1995,181-183:443-457.
参考文献 22
GORYACHEVA I G.Contact mechanics in tribology[M].Dordrecht:Springer,1998.
参考文献 23
林高用,冯迪,郑小燕,等.基于Archard理论的挤压次数对模具磨损量的影响分析[J].中南大学学报:自然科学版,2009,40(5):1245-1251.LIN Gaoyong,FENG Di,ZHENG Xiaoyan,et al.Analysis of influence of extrusion times on total die wear based on Archard theory[J].Journal of Central South University(Science and Technology),2009,40(5):1245-1251.(in Chinese)
参考文献 24
惠玉祥,刘莹,王悦昶,等.考虑磨损的接触式端面密封模型及试验[J].摩擦学学报,2021,41(3):316-324.HUI Yuxiang,LIU Ying,WANG Yuechang,et al.Contact end face seals considering wear:Modelling and experiments[J].Tribology,2021,41(3):316-324.(in Chinese)
参考文献 25
KIM N H,WON D,BURRIS D,et al.Finite element analysis and experiments of metal/metal wear in oscillatory contacts[J].Wear,2005,258(11-12):1787-1793.
参考文献 26
ARUNACHALAM A P S,IDAPALAPATI S.Material removal analysis for compliant polishing tool using adaptive meshing technique and Archard wear model[J].Wear,2019,418-419:140-150.
参考文献 27
ANSYS Inc.Nonlinear adaptivity analysis guide[EB/OL].[2022-10-15].https://ansyshelp.ansys.com/.
参考文献 28
WANG W H,XIE F Q,WU X Q,et al.Microstructure and wear-resistant properties of Ni80Al20-MoS2 composite coating on sled track slippers[J].Coatings.2020,10(7):651.
参考文献 29
BHUSHAN B.Introduction to tribology[M].New York:John Wiley & Sons,2013.
参考文献 30
房明,孙建红,余元元,等.火箭橇系统的摩擦力分析与计算[J].航空动力学报,2017,32(11):2769-2776.FANG Ming,SUN Jianhong,YU Yuanyuan,et al.Friction analyses of the rocket sled system[J].Journal of Aerospace Power,2017,32(11):2769-2776.(in Chinese)
参考文献 31
YUAN S H,HUANG W,WANG X L.Orientation effects of micro-grooves on sliding surfaces[J].Tribology International,2011,44(9):1047-1054.
参考文献 32
CHEN P,LI J L,LI Y L.Effect of geometric micro-groove texture patterns on tribological performance of stainless steel[J].Journal of Central South University,2018,25(2):331-341.
参考文献 33
张辉,刘洋,王伟,等.织构化表面设计及其摩擦学应用[J].机械工程学报,2019,55(17):85-93.ZHANG Hui,LIU Yang,WANG Wei,et al.Surface texture design and its tribological application[J].Journal of Mechanical Engineering,2019,55(17):85-93.(in Chinese)
参考文献 34
胡天昌,丁奇,胡丽天.激光表面织构化对GCr15钢摩擦磨损性能的影响[J].摩擦学学报,2011,31(5):447-451.HU Tianchang,DING Qi,HU Litian.The effect of laser texturing of GCr15 steel surfaces on their tribological properties[J].Tribology,2011,31(5):447-451.(in Chinese)
参考文献 35
SCHMIDT A A,SCHMIDT T,GRABHERR O,et al.Transient wear simulation based on three-dimensional finite element analysis for a dry running tilted shaft-bushing bearing[J].Wear,2018,408/409:171-179.
参考文献 36
LIU J,WANG W H,ZHAO F.Analysis of wear for a rocket sled slipper[J].IOP Conference Series:Materials Science and Engineering,2018,398:012017.
参考文献 37
缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO Chenwei,GUO Zhiwei,YUAN Chengqing.Effects of bionic multi-scales groove textures on surface tribological properties[J].China Surface Engineering,2019,32(1):22-30.(in Chinese)
参考文献 38
熙鹏,丛茜,王庆波,等.仿生条纹形磨辊磨损试验及耐磨机理分析[J].吉林大学学报:工学版,2018,48(6):1787-1792.XI Peng,CONG Qian,WANG Qingbo,et al.Wear test and anti-friction mechanism analysis of bionic stripe grinding roll[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(6):1787-1792.(in Chinese)
参考文献 39
温诗铸,黄平,田煜,等.摩擦学原理[M].5 版.北京:清华大学出版社,2018.WEN Shizhu,HUANG Ping,TIAN Yu,et al.Principles of tribology[M].5th ed.Beijing:Tsinghua University Press,2018.(in Chinese)
参考文献 40
WANG J F,XUE W H,GAO S Y,et al.Effect of groove surface texture on the fretting wear of Ti–6Al–4V alloy[J].Wear,2021,486/487:204079.
参考文献 41
ARFA E,MAGNIER V,DUFRENOY P,et al.Multi‑ scale contact approach considering material heterogeneity and wear[J].Tribology Letters,2021,69(4):135.
参考文献 42
WADDAD Y,MAGNIER V,DUFRENOY P,et al.Multiscale thermomechanical modeling of frictional contact problems considering wear-application to a pin-on-disc system[J].Wear,2019,426/427:1399-1409.
目录contents

    摘要

    火箭橇系统的服役工况条件直接导致火箭橇滑块磨损,而滑块的磨损严重威胁着火箭橇系统的可靠运行和长寿命服役安全,更是制约火箭橇系统发展和应用的主要技术瓶颈。因束缚于极端服役工况条件和高昂的试验成本,以及仅通过二维模型或只考虑局部碰撞变形的模拟仿真,尚且未能克服这一问题。根据 Archard 磨损理论、非线性自适应几何更新和弹塑性变形等有限元分析方法及表面织构技术,建立由 0Cr18Ni9Ti 不锈钢滑块和 U71Mn 钢轨钢滑轨组成的有限元三维磨损模型,并分别对火箭橇滑块光滑表面、沟槽型织构化表面进行磨损仿真,揭示滑块磨损过程中接触面磨损、Von-mises 等效应力以及接触压力等接触特征的变化。结果表明:沟槽型织构能够显著影响滑块磨损,织构密度增加促进了接触面均匀磨损,使得应力分布均匀、梯度变化平稳,缓解了应力集中,避免了长时间的剧烈磨损;接触压力也随织构密度的增加而增加,使得接触面与目标面接触紧密、间隙更小,可有效避免磨粒或磨屑引起的三体磨损。有限元模拟表明,通过恰当表面设计获得沟槽型表面织构能够显著影响磨损,也可为实现兼具减摩抗磨性与结构可设计性于一体的火箭橇滑块提供技术参考和理论支撑。

    Abstract

    A rocket sled system is a piece of dynamic test equipment driven by a rocket engine on a dedicated track at high forward speeds, for the purposes of collecting test data. Wear is a direct consequence of using the rocket sled system that is serviced under certain working conditions. It has been confirmed that the wear of the slider of the rocket sled system under high-speed and heavy-load conditions seriously threatens the reliable operation and service safety of the rocket sled during operation. The wear damage of rocket sled slider wear is inevitable, and has been considered as a technical bottleneck that restricts the development and application of the rocket sled system. The aforementioned issue has not been addressed owing to the extreme service condition and high test cost, with current research often limited to simulations of only two-dimensional models, or local impact deformation analysis. Existing studies have revealed that surface texture can weaken the wear damage of materials to a certain extent. The finite element simulation analysis method has become an effective way to analyze the friction and wear behavior of materials, so that the wear of the slider can be reasonably predicted and evaluated. In the present work, a finite element three-dimensional wear model consisting of a 0Cr18Ni9Ti stainless steel slider and a U71Mn steel rail for railway track was established. First of all, in order to accurately and effectively simulate the wear process of a rocket sled slider, the widely recognized and mature Archard theory and finite element discretization were used as the wear calculation principle and numerical calculation method, respectively. Additionally, to avoid forming mesh distortions caused by repositioning the surface mesh nodes during the wear process of the rocket sled slider, a nonlinear adaptive geometric update strategy was adopted to redivide the mesh when mesh distortion occurred. Furthermore, the elastoplastic deformation of the rocket sled slider was also taken into account; a bilinear isotropic hardening constitutive model of the slider material was provided. Meanwhile, one kind grooved surface texture was designed, with the grooves parallel to the sliding direction. In the simulation, the width and depth of the grooved surface texture was 50 equal parts and 100 equal parts of the symmetrical model width (13.5 mm) — namely 270 μm and 135 μm, respectively — while the texture density was varied between values of 22%, 28%, and 34%. The wear simulation of the smooth surface and the groove-textured surface of the rocket sled slider were carried out. Finally, any changes to contact characteristics during the wear process of the slider such as contact surface wear, von Mises stress, and contact pressure were revealed. The results showed that the smooth surface which presented a significant front-end effect, might lead to the occurrence of eccentric wear. On the other hand, the grooved surface texture have resulted in a uniform stress distribution and stable gradient pressure, and would significantly reduce the wear of slider. The increase in texture density was found to promote uniform wear at the friction interface. In addition, positive variations in uniform stress distribution and stable gradient change were also demonstrated as the texture density increased on groove-textured rocket sled slider, which alleviated the stress concentration and has avoided severe wear of the slider during long time service. Meanwhile, the contact pressure also increased with the increase of texture density, which brought the contact surface in closer contact with the target surface, with the gap between the two appearing smaller. This is able to effectively avoid three-body wear that is induced by formed abrasive particles or debris from wear. Therefore, only the factor of texture density is deserved to be considered, with the 34% texture density the most appropriate value. The finite element simulation suggested that the grooved surface texture was able to reduce wear, which can provide technical reference and theoretical support for the realization of a rocket sled slider with anti-friction properties, anti-wear properties, and structural designability.

  • 0 前言

  • 火箭橇系统,即通过火箭橇滑块 / 滑轨摩擦副沿火箭滑轨高速前行,以考核高超声速飞行器力学性能或飞行环境适应性的高精尖地面试验设备[1]。火箭橇滑块作为关键的承载支撑和引导运动零部件,是火箭橇与滑轨衔接的重要桥梁,保障着火箭橇系统安全平稳的运行。自火箭橇滑块受到国内外学者关注以来,火箭橇滑块磨损行为方面的研究取得了一定进展,但磨损机制的多样性和服役工况的复杂性导致滑块磨损研究不透彻。现有研究多数以实测试验手段为主[2-5],即通过对火箭橇试验后得到的滑块进行摩擦学分析,但与实测试验相关的高昂经济成本阻碍了收集表征磨损现象所需的数据,且火箭橇试验样本量少、环境等客观不确定性因素多,试验研究很难完整地揭示滑块摩擦磨损行为的动态演变过程。计算机科学的发展使得 ABAQUS、 ANSYS 等有限元软件在解决面接触问题方面的优异性突显[6-7],因此模拟分析也被应用于火箭橇滑块摩擦界面的研究[8-10]。然而多数模拟分析忽略了滑块滑行过程中接触面磨损对接触面接触特征的影响。接触面磨损与 Von-mises 等效应力、接触压力等接触面接触特征之间联系密切,接触面磨损引起的接触面几何变化直接影响接触面接触特征的变化,而接触特征的变化又会反馈影响接触面几何变化,直至不发生磨损。总体而言,关于滑块的磨损研究工作已经做了很多,然而对其磨损动态演变过程的模拟分析鲜有报道,且尚未有利用技术手段改善滑块磨损行为的研究。

  • 已有研究表明,恰当的表面形貌设计,即形成表面织构亦会对其磨损行为产生积极影响[11]。源于自然界非光滑表面的表面织构能够起到捕捉磨屑、储存润滑剂、减小接触面积等积极作用,表面织构被认为是一种改善材料摩擦磨损性能的有效途径,并在改善金属材料磨损行为方面取得了有益成果[11]。在众多的表面织构制备方法中,激光表面织构化通过激光产生的高温实现部分材料的熔化或气化,可在室温常压下极短时间内在材料表面加工出具有可设计性、可控性的微观织构[11]。激光表面织构化涉及了机械设计、仿生制造、激光加工、表面热强化、计算机控制等多学科体系的交叉融合,凭借其在改善材料磨损行为方面的优异性被广泛应用于诸多工程领域,尤其以轴承[12]、活塞环[13]等机械组件为代表。受限于材料自身或服役环境,很难统一评判表面织构的服役效果[14],但该技术得益于其出色的加工能力、可设计性强等优势在提升材料表面性能方面表现优异,依然是众多表面织构加工方式中的最佳选择。

  • 表面织构按其类型可分为离散型和连续型,离散型织构如圆、椭圆等是单个独立、不连续、不贯通的,因其能产生良好的动压效果而应用在润滑减摩领域[15],但干摩擦条件下,连续型沟槽织构往往拥有更好的摩擦学效应。WU 等[16]分析了沟槽型织构对界面磨损和温升变化的影响,发现沟槽型织构通过影响接触面的热传递减少了局部接触区域温度的升高。XING 等[17]对氮化硅表面上加工的沟槽型织构进行了往复式摩擦试验和仿真分析,结果表明沟槽型织构将摩擦过程中产生的磨损颗粒存储在沟槽中,最大程度地减少了磨损,且表面织构的存在避免了界面应力集中的现象。LI 等[18]研究了 CuSn6 青铜盘表面不同排布方式的沟槽型织构对聚四氟乙烯磨损行为的影响,发现排布方式不同的织构对摩擦系数和磨损形貌有很大影响。VLADESCU 等[19] 研究了石英表面沟槽织构化处理后与钢片之间的磨损行为,试验发现界面磨损随着沟槽数目的增多而呈单调减小的趋势。显然,连续型沟槽织构表现出的摩擦学效应吻合了火箭橇滑块干摩擦的特性,对改善滑块磨损行为是有益的,但鉴于火箭橇试验的经济成本和时间成本,很难通过实测试验手段探究表面织构对滑块磨损行为的影响,且实验室无法完全复刻高速重载这一极端工况。因此,计算机模拟分析是首选。

  • 综上,开展火箭橇滑块 / 滑轨摩擦副研究,借助激光表面织构化,从摩擦磨损等接触特征变化的角度厘清高速重载条件下火箭橇滑块的磨损行为,为促进我国火箭橇试验安全可靠性提供参考。为了更好地显示滑块接触面磨损情况以及接触面接触特征变化,以国内普遍使用的 0Cr18Ni9Ti 不锈钢滑块、U71Mn 钢滑轨作为研究对象,利用 ANSYS 软件建立火箭橇滑块 / 滑轨摩擦副的三维有限元磨损模型,通过实现光滑表面、沟槽型织构化表面两种类型接触面的干摩擦仿真,对滑块磨损过程中接触面磨损、Von-mises 等效应力和接触压力研究分析。

  • 1 滑块磨损模拟

  • 1.1 磨损计算

  • 自 ARCHARD[20]在磨损的一般性规律方面做出里程碑式的工作以来,许多不同的理论和经验模型被发展来提供更准确的磨损预测。事实上,MENG 等[21]和 GORYACHEV[22]确定了磨损计算的多种版本,然而这些表达式均可用式(1)来描述:

  • dhdt=KPαvβHγ
    (1)
  • 式中,dh / dt 为单位时间内的磨损深度变化;Pυ 分别为接触压力和滑动速度;H 为接触对中较软材料的硬度;K 为无量纲磨损系数。指数 αβγ 依据使用的磨损定律而不同,当取值均为 1 时即是经典的 Archard 磨损定律,该磨损定律能够准确模拟各种工况下摩擦副的磨损情况[23-24]。因此,本研究将基于 Archard 磨损定律描述高速重载下滑块的磨损过程。

  • 磨损模拟通常是将实际磨损过程离散化处理,即整个磨损过程被划分为一系列子过程,则滑块接触面某一位置(假设其编号为 i)在第 j 次磨损时的累计磨损深度为:

  • hi,j=hi,j-1+KHP(i,t)v(t)dt
    (2)
  • 1.2 非线性自适应几何更新

  • 更准确地将磨损过程看作一个动态过程,其接触面接触特征随接触面几何的变化而变化,故在模拟分析时采用几何更新策略表示由磨损导致的几何形状的改变是必要的。磨损涉及重新定位节点以模拟材料损失,节点变化必然引起接触压力改变,且网格质量随着磨损的增加而逐渐恶化,最终可能会由于低质量网格而终止分析,所以大多数磨损模拟和预测的工作采用特定的几何网格更新策略来防止因磨损而导致的网格恶化[25-26]。因此,为了更好地实现磨损模拟,基于接触面磨损[27]定义接触面的磨损量与目标面平均深度的临界比值为 0.2 时触发网格更新,进而通过调整所有接触单元和目标单元的节点以提高网格质量(图1 显示了单元节点的变化)。

  • 图1 几何更新策略(移动节点重新划分网格)

  • Fig.1 Geometric update strategy (moving nodes for remeshing)

  • 1.3 有限元模型

  • 有限元方法是将结构上连续的模型进行网格离散化,使得实体模型被划分为一系列有限的网格,即把具有无限个自由度的结构问题转换为具有有限个自由度的问题,从而便于计算机通过矩阵代数进行计算分析。二维模型在分析因磨损而发生材料去除方面表现优异,但实际磨损是发生在三维空间的有限接触区域内,因此通过三维模型来阐明接触面磨损情况是更合理的。

  • 0Cr18Ni9Ti 滑块试样尺寸为 284 mm×94 mm ×21 mm,等比例建模固然能真实地诠释滑块实际磨损情况,但关注沟槽型织构的磨损行为是重点。而且与滑块初始厚度相比,高速短时间磨损过程导致滑块 / 滑轨界面摩擦热不能及时扩散至滑块整体,出现显著热波动区域的厚度仅为 6 mm,显然摩擦磨损的影响区域是局部的[10]。此外,滑块磨损主要发生在滑块与滑轨轨面相互作用的区域[8],且由于滑块沿滑动方向具有对称性,因此为了减少仿真计算量,采用仿真对称分析和尺寸等比例缩小,在对称截面设置对称边界条件并且建立 81 mm×13.5 mm×6 mm 长方体滑块以及 2 101 mm×13.5 mm×6 mm 滑轨模型,即图2 所示模型建立示意图。

  • 图2 模型建立示意图

  • Fig.2 Schematic diagram for model building

  • 磨损计算过程中,分别以 0Cr18Ni9Ti 滑块和 U71Mn 滑轨作为接触面和目标面的选取对象,并在接触设置中采用表面投影法和增强拉格朗日算法,前者将使得应力结果云图分布更平滑且有利于接触检测和磨损计算,后者能够有效避免出现滑块磨损中刚度矩阵的计算收敛性和矩阵病态问题。同时采用迭代法不断更新刚度矩阵,以满足非线性计算中矩阵的变化。

  • 0Cr18Ni9Ti 不锈钢维氏硬度为 197,其在载荷 10 N、转速 224 r·min−1、旋转半径 10 mm、磨损半小时后的磨损率为 4.85×10−6 mm 3 ·N−1 ·m−1[28],由此可得磨损系数 K 为 9.365×10−6,计算结果吻合了多数材料磨损系数在 10−5~10−7 的普遍取值范围[29],这对于预测滑块的磨损是合适的。

  • 除此之外,为了更准确地反映滑块在重载下的弹塑性变形,取滑块材料弹性模量的 1 / 20 作为切线模量,从而规定滑块的材料本构模型为双线性等向强化模型。材料属性均依据实际情况设置,具体参数如表1 所示。

  • 表1 有限元模型材料参数

  • Table1 Parameters of finite element model material

  • 1.4 边界条件

  • 边界条件的设置反映滑块的运行工况,但滑块的运动过程十分复杂,往往涉及变加速度、变载荷、变摩擦力等等,仅当火箭推力为零时滑块的运动形式单一,承受恒定载荷[30]。因此,为了便于开展研究,假设滑块始终承载 2 kN,并在 100 m·s −1 初速度下以恒定 100 m·s −2 加速度加速滑行,用时 0.02 s 以预测磨损的发展。同时为了反映滑轨与地面之间的固定接触,约束滑轨底部所有方向的自由度,为了反映滑轨在实际中由于很长而几乎不会出现横向变形,约束滑轨前后两端沿着滑动方向的平动自由度。

  • 此外,按文献[30]可得摩擦因数随火箭橇速度的变化曲线如图3 示,摩擦因数在 0.07~0.1,本文摩擦因数近似取值 0.1。

  • 图3 摩擦因数随速度的变化[30]

  • Fig.3 Variation of friction factor with velocity[30]

  • 1.5 沟槽型表面织构

  • 沟槽方向与滑动方向一致时在很大程度上会避免接触面应力集中现象的发生[31],且平行于摩擦滑动方向的沟槽型织构能够及时去除磨损磨料,表现出极佳的减摩效果[32],因此设计的沟槽型织构主要参数如图4 所示,沟槽截面为等腰三角形,同时沟槽在横向上贯通。

  • 图4 沟槽织构主要参数

  • Fig.4 Main parameters of groove texture

  • 目前,织构化表面设计尚未形成系统性、一致性的结论[33],但高速重载下为了有利于表面织构捕获磨屑从而减少磨粒磨损,设计较宽且深的沟槽型织构是合理的[34],这样也避免了密集的沟槽型织构网格引起的有限元分析效率降低,因此以对称模型宽度(13.5 mm)的 50 等份以及 100 等份分别作为沟槽型织构的宽度和深度,分析不同织构密度下滑块的摩擦学行为变化,即如表2 所示。

  • 表2 沟槽织构设计参数

  • Table2 Design parameters of groove texture

  • 1.6 网格划分

  • 滑块与滑轨网格全局划分尺寸(用 G 来表示) 以滑块厚度为基准,同时滑块划分尺寸(用 P 来表示)则以其厚度的三分之一为基准,并始终对接触面采用一级网格细分。考虑到求解时间(用 ST 来表示)以及求解精度与网格划分密切相关,因此以织构密度 22%(即 T1 时)为例进行不同网格参数下的模拟。

  • 式(2)表明接触压力对磨损计算起着重要作用,故图5 描述不同网格参数下接触压力随时间的变化,可以发现不同网格参数下接触压力变化趋势极其相似,反映了网格划分对滑块磨损不会起着决定性作用,这与 SCHMIDT 等[35]的研究结果完全相同。在 GP 的前提下,P 越小则意味着滑块的网格数量越多甚至几何倍增长,所以求解时间 ST 不会因 G 值减小而明显增加,反而会随着 P 值减小而显著增加。

  • 因此为了在较短的求解时间内得到较高的求解精度,采用 G=4 mm、P=1.5 mm 和接触面一级网格细分的划分策略。

  • 图5 不同网格参数下接触压力随时间的变化

  • Fig.5 Variation of contact pressure with time under different mesh parameters

  • 2 模拟结果分析

  • 单次仿真计算的平均用时为 27 h。需要注意的是,滑块是沿着全局坐标系 X 轴方向运动的,因此在各变化云图中均给出了全局坐标系来代替速度方向的标识,另外在图中以红色虚线位置表示对称面位置。

  • 2.1 接触面磨损

  • 整个磨损过程中滑块滑移距离(2 020 mm)远远低于实际火箭橇高达数千米的滑移距离,故磨损数量级仅为 10−5,如图6 所示。以图6 中 T3 条件为例,在 0.02 s 时其最大磨损深度为 37.890 1 nm,远低于沟槽型织构的深度,甚至远远低于滑块的网格尺寸1.5 mm,因此当磨损深度出现微米级甚至以下的细微变化时, ANSYS 软件很难输出与之相对应的具有极其细微变化的磨损云图,但可以发现,接触面磨损变化在不同时刻的规律性是类似的,即持续性滑动导致了滑块磨损随着时间的增加而累加,因此在这里仅描述 0.02 s 时滑块接触面上的磨损随织构密度的变化情况。

  • 一方面,由于织构密度增加导致单位面积内承受的载荷更大,引起短时间内较大的磨损,因此从数值变化上可看出滑块磨损程度随织构密度的增加而明显增加。另一方面,从云图变化来看,沟槽型织构的存在导致滑块整个侧边区域(与红色虚线对立的边)磨损程度最低,对称面一侧次之,而磨损程度最高的区域在滑块前端和后端,并且前端比后端明显,即表现出显著的前端效应,而沟槽型织构接触面磨损更均匀。

  • 相比于 T1、T2、T3 沟槽型织构表面,T0 光滑表面显示出了显著的前端效应,造成更多材料的损失,使得滑块出现一端严重磨损的偏磨现象。损失的材料在高速摩擦接触面之间易形成硬质磨损颗粒,进而造成滑块表面出现犁沟或划痕,加剧磨损,同时损失的材料也会由较高载荷挤压而在磨损表面上形成大量连续磨屑层,这与文献[4][5]中对试验后的滑块试样分析结果完全一致。另外,T0 条件下前端效应造成的偏磨现象使得滑块前端的磨损始终是最大的,这与文献[3][36]中对试验后滑块试样厚度的测量结果一致。

  • 图6 四种条件下分别滑行 0.02 s 时滑块接触面的磨损深度(mm)

  • Fig.6 Wearing depth of slider contact surface when sliding for 0.02 s under four conditions (mm)

  • 然而,沟槽型织构的存在使得接触面磨损均匀、变化连续,尽管磨损增大,但接触面积的减少在一定程度上等同于降低了接触磨损的时间[37],且实际情况下磨粒或磨屑进入沟槽后易被排出,进而避免了整个织构表面更为严重的磨损[32]

  • 2.2 Von-mises 等效应力

  • Von-mises 等效应力是评价表面磨损的重要特征之一。滑块在初始磨损时受惯性效应影响,即力和滑移距离的突然增加或传递失真,造成计算不准确,因此在这里不讨论等效应力剧烈变化的时刻。

  • 图7 显示了磨损计算过程中滑块接触面的典型应力变化。光滑表面时,滑块接触面应力分布如图7 中 T0 时所示,接触面应力始终分布不均匀,存在明显的应力梯度变化区和应力集中区,说明滑块受力不均,易引起局部区域产生微裂纹甚至犁沟,进一步加剧磨损。由于磨损是从前端开始逐渐过渡至后端[6],较大的应力梯度变化区也从滑块前端向后端过渡,直至应力在滑块后端集中,而最大应力减少了 6.90%左右是磨损导致接触面积增加的结果。

  • 图7 四种条件下滑块接触面 Von-mises 等效应力变化云图(MPa)

  • Fig.7 Variation of Von-mises equivalent stress on contact surface of slider under four conditions (MPa)

  • 对比观察 T1、T2 和 T3,沟槽型织构的存在反而改善了接触面应力分布,进而避免应力集中现象,且接触面应力梯度沿横纵方向均变化平缓、过渡平滑,最大应力分别减少了 5.36%、6.03%、11.71%,这说明沟槽型织构化滑块磨损过程中应力相对均匀稳定,避免了滑块受力不均造成的破坏[38]

  • 磨损过程中 Von-mises 等效应力最大值的变化如图8 所示。显然,初始磨损时因为力和位移的突然增加导致了应力骤然变化,这恰恰是滑块初始滑移时将产生较高磨损率的一种表现,而织构密度增加致使实际接触面积减少,单位面积载荷量更大,应力也就更为显著变化。一旦计算平稳迭代且磨损导致接触面积稳步增加时,应力便呈现波浪式下降,说明接触面应力逐渐均匀化,应力不再集中且减小,接触面将趋于稳定磨损状态,磨损减缓[39]

  • 图8 四种条件下滑块 Von-mises 等效应力最大值变化

  • Fig.8 Variation of maximum Von-mises equivalent stress of sliders under four conditions

  • 图9 为 0.005 s 及 0.02 s 时滑块前端面应力变化云图。光滑表面时滑块前端面应力集中于侧边区域,而沟槽型织构化滑块的前端面出现了应力集中于沟槽附近,如图9 中在 T1、T2 和 T3 条件下 0.005 s 时所示,沟槽附近较大的应力易导致材料变形,且应力随着织构密度的增加而增加,但在远离沟槽的区域随织构密度的增加而均匀分布,因此织构化滑块相比于光滑平面滑块的变形会更小[40]

  • 图9 四种条件下滑块前端面 Von-mises 等效应力变化云图(MPa)

  • Fig.9 Variation of Von-mises equivalent stress in front surface of slider under four conditions (MPa)

  • 当然,由于磨损过程中应力分布会发生变化, T1、T2、T3 三种沟槽型织构化滑块在经过一段时间磨损后,前端面沟槽附近应力集中的现象不明显甚至消失,如图9 中在 T1、T2 和 T3 条件下 0.02 s 时所示。而 T0 条件下该时刻时滑块前端面没有表现出应力集中现象,但结合图7 在 T0 条件下 0.02 s 时滑块接触面应力分布可知此时整个滑块均处在应力不均匀分布状态,由此可以得知沟槽型织构可以防止应力在磨损过程中长期保持集中,促进应力分布均匀,避免滑块长时间的局部区域较高的磨损,从整体上减少滑块的磨损。

  • 2.3 接触压力变化

  • 从 1.1 和 1.2 节的描述可知,在磨损过程中接触压力的变化明显与时间和空间位置相关,因此接触区域的接触压力是变化的,但模拟结果发现接触压力的变化不会因为织构密度的改变而发生显著变化,故以织构密度 22%为例描述滑块接触面上接触压力随时间的变化,如图10 所示。鉴于接触压力变化在部分时间段内呈现出近似一致的变化,因此没有展示更多时刻下的压力分布。

  • 图10 织构密度为 22%时滑块接触面接触压力变化(MPa)

  • Fig.10 Variation of contact pressure on contact surface of slider when the texture density is 22% (MPa)

  • 初始惯性效应导致滑块在 0.005 s 时局部接触压力达到最大,最大接触压力主要集中在滑块前端和后端,滑块前端与中部存在明显压力梯度过渡区,滑块侧边区域接触压力最小,对称面一侧较小,中部区域压力均匀,如图10 中 0.005 s 时所示。

  • 当数值计算中的力和位移平稳迭代时,滑块接触面不断磨损且接触面积增加,单位面积内承受的载荷将减小,导致接触压力降低,如图10 中 0.01 s 及 0.015 s 时所示。这与文献[41][42]中的结果完全相同。同时,滑块前端和后端依旧是压力集中区域,侧边区域、对称面一侧以及中部区域均出现断续性压力分布,且越靠近前端越明显,这说明了前端区域磨损变化最突出。反观在 0.02 s 时,最高接触压力集中在滑块后端,前端不再有压力集中现象,且侧边区域的接触压力与中部区域、前端区域几乎相同,说明此时滑块的磨损主要发生在后端。

  • 为了了解沟槽型织构密度对接触压力的影响,图11 给出了 0.02 s 时滑块接触压力随织构密度的变化云图。T0 光滑表面时最大和最小接触压力分别位于后端和前端,而沟槽型织构表面使得接触压力的分布状态发生改变,压力集中在后端,但四种条件下接触面中部区域靠近前端的位置均存在断续性压力分布,这与图6 中滑块磨损变化一致,反映了接触压力对磨损计算起着至关重要的作用。若仅从接触压力数值变化来看,织构密度增加时接触压力也随之升高,使得滑块与滑轨之间接触紧密、间隙更小,磨粒或磨屑被沟槽所捕获,可有效防止磨粒或磨屑进入接触界面,进而避免了磨损加剧。

  • 图11 四种条件下分别滑行 0.02 s 时滑块接触面接触压力变化(MPa)

  • Fig.11 Variation of contact pressure on slider interface when sliding for 0.02 s under four conditions (MPa)

  • 2.4 分析讨论

  • 基于上述分析可知:短时间磨损过程中,沟槽型织构化滑块的磨损程度比光滑表面大,但随着织构密度的增加,应力和压力都呈现出均匀化分布趋势(图7 和图11),滑块整体变形减小,且最大应力的减小程度增加,压力增大也促使了接触面与目标面紧密接触,因此在本研究水平范围内,当织构密度为 34%时为宜。

  • 另外,本研究以广泛认可且十分成熟的 Archard 理论和有限元离散化分别为磨损计算原则和数值计算方法,这在一定程度上反映了本研究模拟结果的准确性,但由于建立的简化滑块 / 滑轨摩擦副模型为基于理想情形下(恒定载荷、摩擦系数、加速度等工况条件)的分析,因此很难完全地符合实际试验结果,但通过前述分析可以发现模拟结果与相关文献中的结果具有较高的吻合程度高,客观上验证了本研究模拟结果具有一定的可靠性。

  • 总体上,沟槽型织构化滑块接触面接触特征之间的关联性如图12 所示。沟槽型织构影响磨损变化进而导致 Von-mises 等效应力、接触压力等一系列接触面接触特征的改变,因此,通过表面织构化可实现摩擦界面紧密接触,捕获磨屑,避免磨粒造成犁沟或划痕而导致磨损加剧,同时减缓应力集中现象,减小实际接触面积,并使滑块的磨损过程更为稳定,进而降低整个表面织构化滑块的磨损,保障火箭橇系统的运行安全性。

  • 图12 沟槽型织构化滑块摩擦接触面接触特征之间的相关性

  • Fig.12 Correlation between the friction contact features of the grooved surface textured slider

  • 3 结论

  • (1)相比于二维模型或局部碰撞变形模型,三维磨损模型能够更加清晰地诠释接触表面的磨损状态,应力以及压力等接触特征的变化。

  • (2)不同于光滑表面所产生的严重偏磨现象,沟槽型织构化滑块未出现偏磨,且磨损均匀、变化连续,前端效应不显著。

  • (3)对于光滑表面或沟槽型织构化滑块,最大 Von-mises 等效应力均呈现波浪式下降,但后者应力分布均匀、梯度变化平稳,这将有效避免由应力集中导致滑块出现更为严重的磨损。

  • (4)沟槽型织构化滑块接触压力分布与磨损变化趋势一致,随着织构密度的增加,接触面与目标面之间由接触压力增大使得摩擦界面的接触更为紧密、间隙更小,能够抑制磨粒磨损的加剧。

  • (5)为降低模拟计算的时间成本,仅选择了较窄的速度变化范围,并忽略摩擦热等其他客观条件的影响,尚不能够全面地描述整个磨损过程。后续工作中,将致力于平衡计算效率和时间成本,以更加切合实际。

  • 参考文献

    • [1] 田建明,景建斌,韩广岐.高超声速飞行器地面试验方法综述[J].探测与控制学报,2013,35(5):57-60.TIAN Jianming,JING Jianbin,HAN Guangqi.Overview on hypersonic aircraft ground test method[J].Journal of Detection & Control,2013,35(5):57-60.(in Chinese)

    • [2] GERASIMOV S I,EROFEEV V I,KAMCHATNYI V G,et al.The sliding contact condition in stability analysis of stage motion for a rocket sled track facility[J].Journal of Machinery Manufacture and Reliability,2018,47(3):221-226.

    • [3] HALE C S,PALAZOTTO A N,BAKER W P,et al.Engineering approach for the evaluation of mechanical wear considering the experimental holloman high-speed test track[J].Journal of Engineering Mechanics,2012,138(9):1127-1140.

    • [4] 王玮华,谢发勤,吴向清,等.火箭橇滑块超声速、大载荷摩擦磨损失效机理[J].材料导报,2020,34(16):16136-16139.WANG Weihua,XIE Faqin,WU Xiangqing,et al.Investigation on friction and wear failure mechanism of rocket sled slide at supersonic and under high load[J].Materials Reports,2020,34(16):16136-16139.(in Chinese)

    • [5] 汪笑鹤,刘彬,肖军,等.火箭橇滑块摩擦磨损失效机理及形貌特征分析[J].表面技术,2019,48(3):141-148.WANG Xiaohe,LIU Bin,XIAO Jun,et al.Investigation on friction and wear topography features and failure mechanism of slide of rocket sled[J].Surface Technology,2019,48(3):141-148.(in Chinese)

    • [6] 黄文强,李卫,毛飞宇,等.面接触应力分布与磨损分析[J].华南理工大学学报:自然科学版,2020,48(8):91-101.HUANG Wenqiang,LI Wei,MAO Feiyu,et al.Analysis of stress distribution and wear in surface contact[J].Journal of South China University of Technology(Natural Science Edition),2020,48(8):91-101.(in Chinese)

    • [7] 董立春,韩志武,张雷,等.凹坑型仿生形态环块样件接触问题有限元数值模拟[J].吉林大学学报:工学版,2013,43(增刊 1):543-546.DONG Lichun,HAN Zhiwu,ZHANG Lei,et al.Numerical simulation on contact problem of ring model with bionic concave morphology[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(Suppl.1):543-546.(in Chinese)

    • [8] BUENTELLO HERNANDEZ R G,PALAZOTTO A N,LE K H.3D Finite element modeling of high-speed sliding wear[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures,Structural dynamics and Materials conference,Boston,Massachusetts,April 8-11,2013.2013:1008-1027.

    • [9] ALBAN C J,PALAZOTTO A N,RUTLEDGE J L.Thermal considerations with respect to sliding contact at high speed[J].Journal of Thermophysics and Heat Transfer,2016,30(1):54-61.

    • [10] 王伯阳,吴向清,谢发勤.火箭橇滑块摩擦热-结构耦合场分析[J].润滑与密封,2014,39(1):80-83.WANG Boyang,WU Xiangqing,XIE Faqin.Friction heat-structure coupled field analysis on the shoe of rocket sled[J].Lubrication Engineering,2014,39(1):80-83.(in Chinese)

    • [11] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)

    • [12] KOCIJAN A.Short-and long-term wettability evolution and corrosion resistance of uncoated and polymer-coated laser-textured steel surface[J].Coatings,2019,9(9):592.

    • [13] EZHILMARAN V,VASA N J,VIJAYARAGHAVAN L.Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction[J].Surface and Coatings Technology,2018,335:314-326.

    • [14] MENG Y G.Is laser surface texturing good or bad for rolling element bearings[J] Friction,2021,9(6):1784-1786.

    • [15] 赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of influence of surface texture type on lubrication and friction reduction performance of friction pair[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)

    • [16] WU W,SHAO T M,CHEN G M.Influence of groove surface texture on temperature rise under dry sliding friction[J].Science China Technological Sciences,2016,59(2):183-190.

    • [17] XING Y Q,DENG J X,FENG X T,et al.Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction[J].Materials & Design,2013,52:234-245.

    • [18] LI J B,LIU S,YU A B,et al.Effect of laser surface texture on CuSn6 bronze sliding against PTFE material under dry friction[J].Tribology International,2018,118:37-45.

    • [19] VLADESCU S C,OLVER A V,PEGG I G,et al.The effects of surface texture in reciprocating contacts—An experimental study[J].Tribology International,2015,82:28-42.

    • [20] ARCHARD J F.Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24(8):981-988.

    • [21] MENG H C,LUDEMA K C.Wear models and predictive equations:their form and content[J].Wear,1995,181-183:443-457.

    • [22] GORYACHEVA I G.Contact mechanics in tribology[M].Dordrecht:Springer,1998.

    • [23] 林高用,冯迪,郑小燕,等.基于Archard理论的挤压次数对模具磨损量的影响分析[J].中南大学学报:自然科学版,2009,40(5):1245-1251.LIN Gaoyong,FENG Di,ZHENG Xiaoyan,et al.Analysis of influence of extrusion times on total die wear based on Archard theory[J].Journal of Central South University(Science and Technology),2009,40(5):1245-1251.(in Chinese)

    • [24] 惠玉祥,刘莹,王悦昶,等.考虑磨损的接触式端面密封模型及试验[J].摩擦学学报,2021,41(3):316-324.HUI Yuxiang,LIU Ying,WANG Yuechang,et al.Contact end face seals considering wear:Modelling and experiments[J].Tribology,2021,41(3):316-324.(in Chinese)

    • [25] KIM N H,WON D,BURRIS D,et al.Finite element analysis and experiments of metal/metal wear in oscillatory contacts[J].Wear,2005,258(11-12):1787-1793.

    • [26] ARUNACHALAM A P S,IDAPALAPATI S.Material removal analysis for compliant polishing tool using adaptive meshing technique and Archard wear model[J].Wear,2019,418-419:140-150.

    • [27] ANSYS Inc.Nonlinear adaptivity analysis guide[EB/OL].[2022-10-15].https://ansyshelp.ansys.com/.

    • [28] WANG W H,XIE F Q,WU X Q,et al.Microstructure and wear-resistant properties of Ni80Al20-MoS2 composite coating on sled track slippers[J].Coatings.2020,10(7):651.

    • [29] BHUSHAN B.Introduction to tribology[M].New York:John Wiley & Sons,2013.

    • [30] 房明,孙建红,余元元,等.火箭橇系统的摩擦力分析与计算[J].航空动力学报,2017,32(11):2769-2776.FANG Ming,SUN Jianhong,YU Yuanyuan,et al.Friction analyses of the rocket sled system[J].Journal of Aerospace Power,2017,32(11):2769-2776.(in Chinese)

    • [31] YUAN S H,HUANG W,WANG X L.Orientation effects of micro-grooves on sliding surfaces[J].Tribology International,2011,44(9):1047-1054.

    • [32] CHEN P,LI J L,LI Y L.Effect of geometric micro-groove texture patterns on tribological performance of stainless steel[J].Journal of Central South University,2018,25(2):331-341.

    • [33] 张辉,刘洋,王伟,等.织构化表面设计及其摩擦学应用[J].机械工程学报,2019,55(17):85-93.ZHANG Hui,LIU Yang,WANG Wei,et al.Surface texture design and its tribological application[J].Journal of Mechanical Engineering,2019,55(17):85-93.(in Chinese)

    • [34] 胡天昌,丁奇,胡丽天.激光表面织构化对GCr15钢摩擦磨损性能的影响[J].摩擦学学报,2011,31(5):447-451.HU Tianchang,DING Qi,HU Litian.The effect of laser texturing of GCr15 steel surfaces on their tribological properties[J].Tribology,2011,31(5):447-451.(in Chinese)

    • [35] SCHMIDT A A,SCHMIDT T,GRABHERR O,et al.Transient wear simulation based on three-dimensional finite element analysis for a dry running tilted shaft-bushing bearing[J].Wear,2018,408/409:171-179.

    • [36] LIU J,WANG W H,ZHAO F.Analysis of wear for a rocket sled slipper[J].IOP Conference Series:Materials Science and Engineering,2018,398:012017.

    • [37] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO Chenwei,GUO Zhiwei,YUAN Chengqing.Effects of bionic multi-scales groove textures on surface tribological properties[J].China Surface Engineering,2019,32(1):22-30.(in Chinese)

    • [38] 熙鹏,丛茜,王庆波,等.仿生条纹形磨辊磨损试验及耐磨机理分析[J].吉林大学学报:工学版,2018,48(6):1787-1792.XI Peng,CONG Qian,WANG Qingbo,et al.Wear test and anti-friction mechanism analysis of bionic stripe grinding roll[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(6):1787-1792.(in Chinese)

    • [39] 温诗铸,黄平,田煜,等.摩擦学原理[M].5 版.北京:清华大学出版社,2018.WEN Shizhu,HUANG Ping,TIAN Yu,et al.Principles of tribology[M].5th ed.Beijing:Tsinghua University Press,2018.(in Chinese)

    • [40] WANG J F,XUE W H,GAO S Y,et al.Effect of groove surface texture on the fretting wear of Ti–6Al–4V alloy[J].Wear,2021,486/487:204079.

    • [41] ARFA E,MAGNIER V,DUFRENOY P,et al.Multi‑ scale contact approach considering material heterogeneity and wear[J].Tribology Letters,2021,69(4):135.

    • [42] WADDAD Y,MAGNIER V,DUFRENOY P,et al.Multiscale thermomechanical modeling of frictional contact problems considering wear-application to a pin-on-disc system[J].Wear,2019,426/427:1399-1409.

  • 参考文献

    • [1] 田建明,景建斌,韩广岐.高超声速飞行器地面试验方法综述[J].探测与控制学报,2013,35(5):57-60.TIAN Jianming,JING Jianbin,HAN Guangqi.Overview on hypersonic aircraft ground test method[J].Journal of Detection & Control,2013,35(5):57-60.(in Chinese)

    • [2] GERASIMOV S I,EROFEEV V I,KAMCHATNYI V G,et al.The sliding contact condition in stability analysis of stage motion for a rocket sled track facility[J].Journal of Machinery Manufacture and Reliability,2018,47(3):221-226.

    • [3] HALE C S,PALAZOTTO A N,BAKER W P,et al.Engineering approach for the evaluation of mechanical wear considering the experimental holloman high-speed test track[J].Journal of Engineering Mechanics,2012,138(9):1127-1140.

    • [4] 王玮华,谢发勤,吴向清,等.火箭橇滑块超声速、大载荷摩擦磨损失效机理[J].材料导报,2020,34(16):16136-16139.WANG Weihua,XIE Faqin,WU Xiangqing,et al.Investigation on friction and wear failure mechanism of rocket sled slide at supersonic and under high load[J].Materials Reports,2020,34(16):16136-16139.(in Chinese)

    • [5] 汪笑鹤,刘彬,肖军,等.火箭橇滑块摩擦磨损失效机理及形貌特征分析[J].表面技术,2019,48(3):141-148.WANG Xiaohe,LIU Bin,XIAO Jun,et al.Investigation on friction and wear topography features and failure mechanism of slide of rocket sled[J].Surface Technology,2019,48(3):141-148.(in Chinese)

    • [6] 黄文强,李卫,毛飞宇,等.面接触应力分布与磨损分析[J].华南理工大学学报:自然科学版,2020,48(8):91-101.HUANG Wenqiang,LI Wei,MAO Feiyu,et al.Analysis of stress distribution and wear in surface contact[J].Journal of South China University of Technology(Natural Science Edition),2020,48(8):91-101.(in Chinese)

    • [7] 董立春,韩志武,张雷,等.凹坑型仿生形态环块样件接触问题有限元数值模拟[J].吉林大学学报:工学版,2013,43(增刊 1):543-546.DONG Lichun,HAN Zhiwu,ZHANG Lei,et al.Numerical simulation on contact problem of ring model with bionic concave morphology[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(Suppl.1):543-546.(in Chinese)

    • [8] BUENTELLO HERNANDEZ R G,PALAZOTTO A N,LE K H.3D Finite element modeling of high-speed sliding wear[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures,Structural dynamics and Materials conference,Boston,Massachusetts,April 8-11,2013.2013:1008-1027.

    • [9] ALBAN C J,PALAZOTTO A N,RUTLEDGE J L.Thermal considerations with respect to sliding contact at high speed[J].Journal of Thermophysics and Heat Transfer,2016,30(1):54-61.

    • [10] 王伯阳,吴向清,谢发勤.火箭橇滑块摩擦热-结构耦合场分析[J].润滑与密封,2014,39(1):80-83.WANG Boyang,WU Xiangqing,XIE Faqin.Friction heat-structure coupled field analysis on the shoe of rocket sled[J].Lubrication Engineering,2014,39(1):80-83.(in Chinese)

    • [11] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)

    • [12] KOCIJAN A.Short-and long-term wettability evolution and corrosion resistance of uncoated and polymer-coated laser-textured steel surface[J].Coatings,2019,9(9):592.

    • [13] EZHILMARAN V,VASA N J,VIJAYARAGHAVAN L.Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction[J].Surface and Coatings Technology,2018,335:314-326.

    • [14] MENG Y G.Is laser surface texturing good or bad for rolling element bearings[J] Friction,2021,9(6):1784-1786.

    • [15] 赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of influence of surface texture type on lubrication and friction reduction performance of friction pair[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)

    • [16] WU W,SHAO T M,CHEN G M.Influence of groove surface texture on temperature rise under dry sliding friction[J].Science China Technological Sciences,2016,59(2):183-190.

    • [17] XING Y Q,DENG J X,FENG X T,et al.Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction[J].Materials & Design,2013,52:234-245.

    • [18] LI J B,LIU S,YU A B,et al.Effect of laser surface texture on CuSn6 bronze sliding against PTFE material under dry friction[J].Tribology International,2018,118:37-45.

    • [19] VLADESCU S C,OLVER A V,PEGG I G,et al.The effects of surface texture in reciprocating contacts—An experimental study[J].Tribology International,2015,82:28-42.

    • [20] ARCHARD J F.Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24(8):981-988.

    • [21] MENG H C,LUDEMA K C.Wear models and predictive equations:their form and content[J].Wear,1995,181-183:443-457.

    • [22] GORYACHEVA I G.Contact mechanics in tribology[M].Dordrecht:Springer,1998.

    • [23] 林高用,冯迪,郑小燕,等.基于Archard理论的挤压次数对模具磨损量的影响分析[J].中南大学学报:自然科学版,2009,40(5):1245-1251.LIN Gaoyong,FENG Di,ZHENG Xiaoyan,et al.Analysis of influence of extrusion times on total die wear based on Archard theory[J].Journal of Central South University(Science and Technology),2009,40(5):1245-1251.(in Chinese)

    • [24] 惠玉祥,刘莹,王悦昶,等.考虑磨损的接触式端面密封模型及试验[J].摩擦学学报,2021,41(3):316-324.HUI Yuxiang,LIU Ying,WANG Yuechang,et al.Contact end face seals considering wear:Modelling and experiments[J].Tribology,2021,41(3):316-324.(in Chinese)

    • [25] KIM N H,WON D,BURRIS D,et al.Finite element analysis and experiments of metal/metal wear in oscillatory contacts[J].Wear,2005,258(11-12):1787-1793.

    • [26] ARUNACHALAM A P S,IDAPALAPATI S.Material removal analysis for compliant polishing tool using adaptive meshing technique and Archard wear model[J].Wear,2019,418-419:140-150.

    • [27] ANSYS Inc.Nonlinear adaptivity analysis guide[EB/OL].[2022-10-15].https://ansyshelp.ansys.com/.

    • [28] WANG W H,XIE F Q,WU X Q,et al.Microstructure and wear-resistant properties of Ni80Al20-MoS2 composite coating on sled track slippers[J].Coatings.2020,10(7):651.

    • [29] BHUSHAN B.Introduction to tribology[M].New York:John Wiley & Sons,2013.

    • [30] 房明,孙建红,余元元,等.火箭橇系统的摩擦力分析与计算[J].航空动力学报,2017,32(11):2769-2776.FANG Ming,SUN Jianhong,YU Yuanyuan,et al.Friction analyses of the rocket sled system[J].Journal of Aerospace Power,2017,32(11):2769-2776.(in Chinese)

    • [31] YUAN S H,HUANG W,WANG X L.Orientation effects of micro-grooves on sliding surfaces[J].Tribology International,2011,44(9):1047-1054.

    • [32] CHEN P,LI J L,LI Y L.Effect of geometric micro-groove texture patterns on tribological performance of stainless steel[J].Journal of Central South University,2018,25(2):331-341.

    • [33] 张辉,刘洋,王伟,等.织构化表面设计及其摩擦学应用[J].机械工程学报,2019,55(17):85-93.ZHANG Hui,LIU Yang,WANG Wei,et al.Surface texture design and its tribological application[J].Journal of Mechanical Engineering,2019,55(17):85-93.(in Chinese)

    • [34] 胡天昌,丁奇,胡丽天.激光表面织构化对GCr15钢摩擦磨损性能的影响[J].摩擦学学报,2011,31(5):447-451.HU Tianchang,DING Qi,HU Litian.The effect of laser texturing of GCr15 steel surfaces on their tribological properties[J].Tribology,2011,31(5):447-451.(in Chinese)

    • [35] SCHMIDT A A,SCHMIDT T,GRABHERR O,et al.Transient wear simulation based on three-dimensional finite element analysis for a dry running tilted shaft-bushing bearing[J].Wear,2018,408/409:171-179.

    • [36] LIU J,WANG W H,ZHAO F.Analysis of wear for a rocket sled slipper[J].IOP Conference Series:Materials Science and Engineering,2018,398:012017.

    • [37] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO Chenwei,GUO Zhiwei,YUAN Chengqing.Effects of bionic multi-scales groove textures on surface tribological properties[J].China Surface Engineering,2019,32(1):22-30.(in Chinese)

    • [38] 熙鹏,丛茜,王庆波,等.仿生条纹形磨辊磨损试验及耐磨机理分析[J].吉林大学学报:工学版,2018,48(6):1787-1792.XI Peng,CONG Qian,WANG Qingbo,et al.Wear test and anti-friction mechanism analysis of bionic stripe grinding roll[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(6):1787-1792.(in Chinese)

    • [39] 温诗铸,黄平,田煜,等.摩擦学原理[M].5 版.北京:清华大学出版社,2018.WEN Shizhu,HUANG Ping,TIAN Yu,et al.Principles of tribology[M].5th ed.Beijing:Tsinghua University Press,2018.(in Chinese)

    • [40] WANG J F,XUE W H,GAO S Y,et al.Effect of groove surface texture on the fretting wear of Ti–6Al–4V alloy[J].Wear,2021,486/487:204079.

    • [41] ARFA E,MAGNIER V,DUFRENOY P,et al.Multi‑ scale contact approach considering material heterogeneity and wear[J].Tribology Letters,2021,69(4):135.

    • [42] WADDAD Y,MAGNIER V,DUFRENOY P,et al.Multiscale thermomechanical modeling of frictional contact problems considering wear-application to a pin-on-disc system[J].Wear,2019,426/427:1399-1409.

  • 手机扫一扫看