en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

冉迪,男,1990年出生,博士研究生,工程师。主要研究方向为表面工程与摩擦学。E-mail:18309875611@163.com

通讯作者:

郑鹏,男,1964年出生,博士,教授,博士研究生导师。主要研究方向为现代制造技术与测量。E-mail:sgd_zhp@163.com

中图分类号:TH164

DOI:10.11933/j.issn.1007−9289.20221113001

参考文献 1
GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
参考文献 2
LEE C,WEI X,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
参考文献 3
BOLOTIN K I,SIKES K J,JIANG Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008,146(9-10):351-355.
参考文献 4
NAIR R R,BLAKE P,GRIGORENKO A N,et al.Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308-1308.
参考文献 5
BALANDIN A A,GHOSH S,BAO W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
参考文献 6
徐祥,宋玲玲,官雨柔,等.石墨烯增强金属基复合材料制备方法的研究进展[J].材料热处理学报,2019,40(5):24-31.XU Xiang,SONG Lingling,GUAN Yurou,et al.Research progress in preparation of graphene reinforced metal matrix composites[J].Transactions of Materials and Heat Treatment,2019,40(5):24-31.(in Chinese)
参考文献 7
郭万民,白清顺,窦昱昊,等.石墨烯在不锈钢材料应用中的减摩和耐磨特性研究进展[J].表面技术,2021,50(4):43-55.GUO Wanmin,BAI Qingshun,DOU Yuhao,et al.Research progress in friction reduction and wear resistance of graphene in stainless steel applications[J].Surface Technology,2021,50(4):43-55.(in Chinese)
参考文献 8
陈志宇,郭小平,水晓雪,等.苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J].中国表面工程,2022,34(2):24-34.CHEN Zhiyu,GUO Xiaoping,SHUI Xiaoxue,et al.Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J].China Surface Engineering,2022,34(2):24-34.(in Chinese)
参考文献 9
郭洪飞,赵增祺,朝宝,等.2-6 二氨基吡啶改性氧化石墨烯复合涂层的制备及防腐性能[J].中国表面工程,2022,34(2):126-139.GUO Hongfei,ZHAO Zengqi,CHAO Bao,et al.Preparation and anticorrosion performance of 2-6 diaminopyridine modified graphene oxide composite coating[J].China Surface Engineering,2022,34(2):126-139.(in Chinese)
参考文献 10
NETO A H C,GUINEA F,PERES N M R,et al.The electronic properties of graphene[J].Reviews of Modern Physics,2009,81(1):109-162.
参考文献 11
ZHANG Y B,TANG T T,GIRIT C,et al.Direct observation of a widely tunable bandgap in bilayer graphene[J].Nature,2009,459(7248):820-823.
参考文献 12
NI Z H,YU T,LU Y H,et al.Uniaxial strain on graphene:raman spectroscopy study and bandgap opening[J].ACS Nano,2008,2(11):2301-2305.
参考文献 13
LI J C,LI S,JIN C H,et al.Atomic layers of hybridized boron nitride and graphene domains[J].Nature Materials,2010,9(5):430-435.
参考文献 14
YANG J,MA M,LI L,et al.Graphene nanomesh:new versatile materials[J].Nanoscale,2014,6(22):13301-13313.
参考文献 15
LI X L,WANG X R,ZHANG L,et al.Chemically derived,ultrasmooth graphene nanoribbon semic onductors[J].Science,2008,319(5867):1229-1232.
参考文献 16
张嵛,刘连庆,席宁,等.基于原子力显微镜的石墨烯可控裁剪方法研究[J].中国科学,2012,42(4):358-368.ZHANG Yu,LIU Lianqing,XI Ning.Study on controllable cutting method of graphene based on atomic force microscope[J].Science China,2012,42(4):358-368.(in Chinese)
参考文献 17
KHAC B C T,DELRIO F W,CHUNG K H.Interfacial strength and surface damage characteristics of atomicallythin h-BN,MoS2 and graphene[J].Acs Applied Materials Interfaces,2018,10(10):9164-9177.
参考文献 18
QI Y Z,LIU J,ZHANG J,et al.Wear resistance limited by step edge failure:the rise and fall of graphene as an atomically thin lubricating material[J].Acs Applied Materials & Interfaces,2017,9(1):1099-1106.
参考文献 19
ZHENG F,DUAN F L.Atomistic mechanism of the weakened wear resistance of few-layer graphene induced by point defects[J].Tribology International,2019,134:87-92.
参考文献 20
VASIĆ B,ZURUTUZA A,GAJIĆ R.Spatial variation of wear and electrical properties across wrinkles in chemical vapor deposition graphene[J].Carbon,2016,102:304-310.
参考文献 21
YAO Q Z,QI Y H,ZHANG J,et al.Impacts of the substrate stiffness on the anti-wear performance of graphene[J].Aip Advances,2019,9(7):075317.
参考文献 22
杨红梅,李久盛,曾祥琼.烷基胺边缘功能化氧化石墨烯Pickering乳液的摩擦学行为[J].中国表面工程,2019,32(5):151-159.YANG Hongmei,LI Jiusheng,ZENG Xiangqiong.Tribological behavior of pickering emulsions stabilized with alkylamine edge-functionalized graphene oxide[J].China Surface Engineering,2019,32(5):151-159.(in Chinese)
参考文献 23
YAN Y P,LV J J,LIU S.Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil[J].Nanotechnology,2018,29(16):165703.
参考文献 24
HE X,BAI Q S,SHEN R Q.Atomistic perspective of how graphene protects metal substrate from surface damage in rough contacts[J].Carbon,2018,130:672-679.
参考文献 25
HAMMAD M,ADJIZIAN J J,SACRE C H,et al.Adhesionless and near-ideal contact behavior of graphene on Cu thin film[J].Carbon,2017,122:446-450.
参考文献 26
DONG A Y,FU Q,WEI M M,et al.Graphene-metal interaction and its effect on the interface stability under ambient conditions[J].Applied Surface Science,2017,412:262-270.
参考文献 27
TRIPATHI M,AWAJA F,PAOLICELLI G,et al.Tribological characteristics of few-layer graphene over Ni grain and interface boundaries[J].Nanoscale,2016,8(12):6646-6658.
参考文献 28
LEE C,LI Q,KALB W,et al.Frictional characteristics of atomically thin sheets[J].Science,2010,328(5974):76-80.
参考文献 29
RESTUCCIA P,RIGHI M C.Tribochemistry of graphene on iron and its possible role in lubrication of steel[J].Carbon,2016,106:118-124.
参考文献 30
OSTADHOSSEIN A,YOON K,DUIN A V,et al.Do nickel and iron catalyst nanoparticles affect the mechanical strength of carbon nanotubes?[J].Extreme Mechanics Letters,2018,20:29-37.
参考文献 31
ZHANG C,DUIN A V,SEO J W,et al.Weakening effect of nickel catalyst particles on the mechanical strength of the carbon nanotube/carbon fiber junction[J].Carbon,2017,115:589-599.
参考文献 32
KLEMENZ A,PASTEWKA L,BALAKRISHNA S G,et al.Atomic scale mechanisms of friction reduction and wear protection by graphene[J].Nano Letters,2014,14(12):7145-7152.
参考文献 33
WANG L F,DUAN F L.Nanoscale wear mechanisms of few-layer graphene sheets induced by interfacial adhesion[J].Tribology International,2018,123:266-272.
参考文献 34
GAO L,CHEN X,YAN Y,et al.Enhance the fluorination activity of graphene via the interfacial interaction from Ni(111)substrate[J].Computational Materials Science,2018,147:28-33.
参考文献 35
HAILE J M,JOHNSTON I,MALLINCKRODT A J,et al.Molecular dynamics simulation:elementary methods[J].Computers in Physics,1993,7(6):625.
参考文献 36
NIELSON K D,DUIN A V,OXGAARD J,et al.Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions,with application to the initial stages of the catalytic formation of carbon nanotubes[J].Journal of Physical Chemsistry A,2005,109(3):493-499.
参考文献 37
SANZ-NAVARRO C F,ASTRAND P-O,CHEN D,et al.Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets[J].Journal of Physical Chemistry A,2008,112(7):1392-1402.
参考文献 38
MUELLER J E,DUIN A V,GODDARD W A.Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel[J].Journal of Physical Chemistry C,2010,114(11):4939-4949.
参考文献 39
SENFTLE T P,HONG S,ISLAM M M,et al.The ReaxFF reactive force field:development,applications and future directions[J].npj Computational Materials,2016,2:15011-15025.
目录contents

    摘要

    机械裁剪法是简单高效制备石墨烯纳米带的加工方法,目前对基底化学吸附如何影响石墨烯机械裁剪行为的认识尚有不足。为探究基底化学吸附对石墨烯机械裁剪性能的影响机制,基于 ReaxFF 反应力场和 Verlet 算法,采用反应分子动力学方法对 Ni、Pt、Cu 金属基底上的石墨烯机械裁剪行为展开研究,根据纳米压痕和机械裁剪中探针与石墨烯(CT-CG)、石墨烯层内(CG-CG)、石墨烯与基底(CG-M)间键合数量和键合强度的变化规律,分析基底化学吸附对键合性能和石墨烯机械裁剪行为的影响。结果表明:Ni、Pt、Cu 基底对石墨烯的化学吸附能力依次减弱,强化学吸附作用增大了 CG-M 键合强度,促进了 CT-CG 键合,削弱了 CG-CG 键合强度,降低了石墨烯的抗破损强度,Ni、Pt、Cu 基底上的石墨烯抗破损强度分别为 110.19、121.71、176.53 GPa。强化学吸附使石墨烯发生了大面积撕裂破损,弱化学吸附使石墨烯仅发生了部分碳链和碳原子的剥离。强化学吸附基底提高了石墨烯的机械裁剪效率,减小了机械裁剪深度,降低了探针下压载荷,提高了探针对石墨烯的摩擦力,提高了石墨烯的机械裁剪性能。基于反应分子动力学方法可深入探究基底化学吸附对石墨烯机械裁剪性能的影响规律及内在机理,研究结果可为不同化学吸附基底条件下高效、高精度石墨烯纳米带的机械裁剪提供理论依据。

    Abstract

    Graphene nanoribbons with different directions and widths can adjust the zero-energy bandgap of graphene, allowing wide use of graphene in nano-semiconductor devices. Mechanical cutting is a simple and efficient method for preparing graphene nanoribbons. Most current studies assume that the substrate surface and graphene involve physical adsorptions; however, many substrate surfaces involve chemisorption with graphene in actual mechanical cutting. The effect of substrate chemisorption on the mechanical cutting behavior of graphene is not fully understood. This paper investigates the influence mechanism of substrate chemisorption on the mechanical cutting properties of graphene. Based on the ReaxFF reaction potential function and the Verlet algorithm, the mechanical cutting behavior of graphene on Ni, Pt, and Cu metal substrates was studied through reactive molecular dynamics. The effect of substrate chemisorption on bond properties was analyzed according to the bond number and bond strength between tip and graphene (CT-CG), graphene layers (CG-CG), and graphene and substrate (CG-M) in nanoindentation. Graphene mechanical cutting depth was determined according to the friction and wear mechanism by oblique scratching. The mechanical cutting depth was used to scratch the graphene, intuitively revealing the influence mechanism of substrate chemisorption on the mechanical cutting properties of graphene through the bond changes between the tip, substrate, and graphene. The results show that the chemisorption capacities of Ni, Pt, and Cu substrate to graphene were decreased in turn. A strong chemisorption substrate increased the CG-M bond strength and CT-CG bond strength, weakened the CG-CG bond strength, and greatly reduced the breakage strength of graphene. The breakage strengths of graphene on Ni, Pt, and Cu substrates were 110.19 GPa, 121.71 GPa, and 176.53 GPa, respectively, in mechanical cutting. The graphene under the tip center was at the highest stress and most susceptible to breakage. The decrease in CG-CG bond strength promoted the chemical reactivity of graphene and increased CT-CG bond strength. The downward pressure of the tip induced CG-M bonding, weakened CG-CG bond strength, and induced CT-CG bonding. The coupling effect of strong chemisorption of the substrate and downward tip pressure made graphene more easily breakable in mechanical cutting. CG-M bonding occurred before the tip scratching process on the Ni substrate; strong chemisorption reduced the overall CG-CG bond strength of graphene, increased the CT-CG bond number, increased the cutting edge angle of the tip, caused graphene folding and piling on the Ni substrate, and caused extensive graphene tearing and damage. CG-M bonding only occurred in the tip scratching path on the Pt substrate. CG-CG bond strength reduction only occurred in the tip scratching path; graphene outside of the tip scratching path maintained high CG-CG bond strength. A weakened chemisorption capacity caused only partial carbon chain stripping of graphene on the Pt substrate. No CG-M bonding occurred during the tip scratching process on the Cu substrate. All graphene maintained high CG-CG bond strength; only the CG-CG bond strength under the graphene tip was reduced by downward pressure of the tip. Greatly weakened chemisorption caused only partial carbon atom stripping of graphene on the Cu substrate. Graphene on the Pt and Cu substrates was not folded and piled. In summary, strong chemisorption of the substrate improves the mechanical cutting efficiency of graphene, reduces the mechanical cutting depth, reduces the downward tip pressure, increases the tip friction, and improves the mechanical cutting performance. The chemisorption of the substrate changes the bond region, quantity, and strength of CT-CG, CG-CG, and CG-M bonds, and changes the mechanical cutting properties of graphene. The influence and internal mechanism of substrate chemisorption on the mechanical cutting properties of graphene were thoroughly investigated using the reaction molecular dynamics method. This research provides a theoretical basis for preparing graphene nanoribbons by mechanical cutting with high efficiency and high precision in different chemisorption substrate conditions.

  • 0 前言

  • 材料是工业发展和科技进步的基础,随着科学技术的不断进步,研究人员对材料的探索也从传统材料逐渐向低维材料拓展,其中,二维材料丰富的物理化学性质使其在工业领域具有广阔的应用前景。石墨烯作为二维材料的代表,在 2004 年由 GEIM 等[1]通过机械剥离法从石墨中成功分离出来,具有优异的力学性能、电学性能、光学性能、热学性能[2-5],可广泛应用于高性能复合材料、减摩涂层、防腐涂层等领域[6-9]。但由于本征石墨烯没有带隙,无法实现石墨烯基晶体管较大的开关比,这极大地限制了其在纳米半导体器件方面的应用[10]。为了实现石墨烯带隙可调控,研究人员通过施加电场、施加应力、化学掺杂、构建石墨烯纳米网、石墨烯纳米带等方法打开了石墨烯的带隙[11-14]。研究表明,当石墨烯纳米带的宽度少于 10.00 nm,不论其边缘构型如何,均表现为半导体性[15],其带隙可达到 107 的晶体管开关比,满足逻辑器件开关比 106 的要求。因此,石墨烯纳米带的制备一直是学术领域和产业界的研究热点。

  • 机械裁剪法可制备具有不同宽度和手型的一维石墨烯纳米带,被视为一种成本低廉、简单高效的纳米带制备方法,机械裁剪法可理解为通过摩擦或磨损石墨烯,对其进行特定几何构型的切割。张嵛等[16]采用原子力显微镜(AFM)对石墨烯进行机械切割,实现了石墨烯纳米带、三角形等纳米结构的加工,但纳米带的裁剪宽度无法达到10.00 nm以下,且边缘构型不可知。KHAC 等[17]采用 AFM 对 1~4 层石墨烯进行抗磨损性能测试,结果表明,石墨烯层数越多,临界失效载荷越高。QI 等[18]采用分子动力学(MD)模拟和 AFM 试验相结合,研究石墨烯台阶边缘处的摩擦磨损行为,结果表明,石墨烯台阶及台阶边缘悬挂键使石墨烯更容易发生粘着磨损,石墨烯边缘在探针划切时更容易撕裂,造成不可逆的机械磨损。ZHENG 等[19]采用 MD 方法对具有 Stone-Wales 缺陷、双空位缺陷和单空位缺陷的少层石墨烯进行划切模拟,结果表明,缺陷降低了石墨烯的力学性能,且缺陷处较高的化学活性还会诱导粘着磨损。VASIC 等[20]采用 AFM 对具有褶皱的单层石墨烯进行抗磨损测试,结果表明,褶皱增大了探针与石墨烯的接触面积和相互作用力,单层石墨烯的撕裂与破损总是最先从褶皱处发生。YAO 等[21]在硬度不同的聚二甲基硅氧烷、环氧树脂、二氧化硅和氧化铝基底上对单层石墨烯进行抗磨损测试,结果表明,基底的硬度越大,临界失效载荷越高。杨红梅等[22]探究烷基胺边缘功能化氧化石墨烯 Pickering 乳液的摩擦学行为,结果表明,功能化氧化石墨烯具有良好的界面润湿性能,其构建的 Pickering 乳液可以在金属表面形成良好的界面润滑膜,更好地吸附或填补到金属表面,从而起到抗磨作用。

  • 目前,已有关于石墨烯摩擦、磨损的文献较多假设基底表面与石墨烯为物理吸附[23-25],很少关注基底表面的化学吸附如何影响石墨烯的机械裁剪性能,而石墨烯在许多基底支撑表面如 Fe、Ni、Ti、 Co 均具有较强的化学吸附[26]。因此,对于基底表面的化学吸附如何影响石墨烯的机械裁剪性能,以及如何影响石墨烯纳米带的制备等问题需要进行进一步的研究。

  • 近年来,随着计算机技术的高速发展,分子模拟的应用越来越广泛,其中,ReaxFF 反应力场的发展使得分子动力学模拟可以从原子尺度直观反映分子的化学反应过程。因此,本文以反应分子动力学方法为研究手段,基于 ReaxFF 反应力场,旨在从原子尺度揭示基底的化学吸附对单层石墨烯机械裁剪性能的影响机制,为不同吸附基底条件下高效、高精度石墨烯纳米带的机械裁剪提供理论依据。

  • 1 机理分析

  • 不同基底对石墨烯的化学吸附能力不同,强化学吸附可使石墨烯在常温常压下与基底自发进行键合,而弱化学吸附则需在高温高压或特定压力作用下才能键合。基底表面的化学吸附可降低石墨烯的面外变形,减小石墨烯的褶皱效应,进而减小摩擦力[27-28],较强的化学吸附阻碍了石墨烯碳原子的剥离,从而增强了石墨烯的抗磨损性能[29]。因此,基底表面的化学吸附对石墨烯的摩擦、磨损、机械裁剪性能具有较大的影响。

  • 1.1 基底化学吸附对原子键合的影响机理

  • 在划切模拟前,首先对基底化学吸附如何影响石墨烯机械裁剪性能的机理进行分析。图1 为探针在不同吸附基底上机械划切石墨烯的键合示意图,如图1 所示,模型中包含了基底、石墨烯和探针,探针以恒定的速度 v 在石墨烯表面进行划切。当基底吸附能力较强时,石墨烯与基底可直接发生键合,在探针已划切路径(探针后端)和未划切路径(探针前端)均会发生石墨烯与基底(CG-M)的键合,此时,CG-M 的键合将削弱石墨烯层内(CG-CG)的键合强度[3031],促进探针与石墨烯(CT-CG)的键合。探针的下压驱动还可进一步促进 CG-M 键合,削弱 CG-CG 键合强度,促进 CT-CG 键合,此时,石墨烯极易在探针正下方产生破损点,并在破损点处向外发生裂纹扩展,造成石墨烯大面积撕裂。当基底吸附能力较弱时,石墨烯仅在探针已划切路径后与基底发生了 CG-M 键合,而在划切路径前和划切路径外(探针侧向)均未发生 CG-M 键合,仅探针划切路径后的石墨烯 CG-CG键合强度有所降低,而其余划切路径外的位置仍保持较高的 CG-CG键合强度,因此,仅会在探针已划切路径上发生部分碳链的剥离,并不会产生裂纹扩展和大面积撕裂破损。当基底吸附能力极弱时,即使在探针下压驱动下,石墨烯也不能与基底发生 CG-M 键合,石墨烯层内整体仍保持较高的 CG-CG键合强度,仅处于探针正下方的石墨烯因探针的压力驱动,使 CG-CG键合强度有一定程度的降低,且探针划切过后的石墨烯仍能恢复较高的 CG-CG键合强度。因此,石墨烯仅会在探针正下方发生少量碳原子的剥离。

  • 图1 不同吸附基底机械划切石墨烯键合示意图

  • Fig.1 Bonding schematic diagram of mechanical scratching graphene on different adsorption substrates

  • 1.2 探针受力分析

  • 图2 为不同吸附基底上机械划切石墨烯的摩擦示意图,当探针下压一定深度 H 后,以恒定速度 v 在石墨烯表面进行划切。此时,探针将受到来自基底的支撑力 Fz,探针与石墨烯 CT-CG键合所产生的粘着阻力 FxwFxs)。当探针在弱化学吸附基底上划切时,探针底端与石墨烯 CT-CG 的键合数量较少,所受到的粘结阻力 Fxw 较小,而当探针在强化学吸附基底上划切时,由于 CG-M 的键合削弱了 CG-CG 键合强度,促进了 CT-CG 键合,使探针底端与石墨烯 CT-CG 的键合强度提高,键合数量增多。此时,探针将受到更大的粘结阻力 Fxs,且较多的 CT-CG键合数量会使石墨烯随探针形状产生翘曲,增大探针的划切刃角 β,探针额外还受到因划切刃角增大而带来的阻力 Fl。因此,在相同下压深度条件下,机械裁剪时强化学吸附基底上的探针对石墨烯的摩擦力 FxFxsFl)将明显高于弱化学吸附基底的摩擦力Fxw。强化学吸附基底可削弱石墨烯的抗破损强度,增大探针对石墨烯的摩擦力,使石墨烯优先产生破损点,探针持续的推挤作用使石墨烯在探针前端发生褶皱和堆积,使破损点处出现裂纹扩展,最终产生大面积的撕裂破损。

  • 图2 不同吸附基底上机械划切石墨烯摩擦示意图

  • Fig.2 Friction schematic diagram of mechanical scratching graphene on different adsorption substrates

  • 2 分子动力学计算

  • 2.1 模型建立

  • 如图3 所示,模型中包含了金刚石探针、单层石墨烯、金属基底。为了准确识别探针在机械划切过程中的键合数量和受力变化,将探针设置为半径仅为 20.00 Å 的圆球,并置于石墨烯表面上方 2.50 Å 处,作为探针下压的起始点,探针的材质选为金刚石,沿 xyz 方向的晶向指数分别为[1 –1 0]、[1 1 –2]、[1 1 1],探针在整个下压和划切的过程中被设定为刚体,即不考虑探针变形对石墨烯机械划切性能的影响。为了对比不同基底化学吸附对石墨烯机械裁剪性能的影响,基底材质分别选为镍(Ni)、铂 (Pt)、铜(Cu),基底在 xyz 方向的尺寸分别为140.00 Å×100.00 Å×6.00 Å,基底尺寸可以保证本次模拟结果的可靠性[32-33],基底沿 xyz 方向的晶向指数分别为[1 –1 0]、[1 1 –2]、[1 1 1]。基底共由 4 层原子组成,底端第一层原子设为固定层,防止基底在探针下压和划切作用下发生整体移动;底端第二层原子设为恒温层,用于控制体系的整体温度;剩余两层设为牛顿层,以模拟基底在探针划切作用下的动态变化。当石墨烯在探针划切作用下破损后,只有顶层的基底被磨损,因此,4 层原子厚度的基底适合于模拟基底与石墨烯之间的相互作用[34]。石墨烯在 xy 方向尺寸为 140.00 Å×100.00 Å,位于基底牛顿层的正上方,石墨烯在 y 方向边缘两端 2.50 Å 宽度处做固定处理,防止石墨烯在探针划切的作用下整体偏移。

  • 图3 机械划切模型图

  • Fig.3 Mechanical scratching model diagram

  • 2.2 模拟过程

  • 根据基底材质不同,共建立 Ni、Pt、Cu 三种金属基底模型。模拟过程中,xy 方向均采用周期性边界条件,z 方向采用自由边界条件,时间步长设定为 0.50 fs。首先,将体系能量进行最小化,使体系达到平衡构型,然后将体系在正则系综(NVT) 下弛豫 40.00 ps,使用 Nose-Hoover 控温算法将体系温度控制在 300.00 K。为揭示基底化学吸附对石墨烯机械裁剪性能的影响机制,首先,使用探针对石墨烯表面进行纳米压痕模拟,以揭示不同基底的化学吸附对探针、石墨烯、金属基底之间键合的影响。随后,使用探针对石墨烯表面进行斜向划切模拟,即探针以恒定的横向和法向速度划切石墨烯表面,直至石墨烯划切破损,结合原子之间的键合信息,以获取超滑摩擦、粘着摩擦、磨损三种不同摩擦状态下的临界法向下压深度,并将磨损状态下的临界下压深度作为石墨烯的机械裁剪深度。最后,将探针下压至机械裁剪深度,以恒定的横向速度在石墨烯表面划切。模拟过程中采用 Verlet 算法进行计算[35],模拟过程中收集探针所受法向力、摩擦力、下压深度、石墨烯原子应力、原子键合数量和键级强度等信息进行分析。

  • 2.3 计算方法

  • 模拟中采用 DUIN 等[36-38]开发的 ReaxFF 力场来描述 C、Ni、Pt、Cu 之间的相互作用,该力场已广泛用于构建石墨烯和金属间相互作用的模型。目前,ReaxFF 力场已经广泛应用于燃烧、热解、催化等领域,该力场可高效地描述化学反应过程[39]。 ReaxFF 反应力场解决了量子化学计算效率低和经典分子动力学无法描述化学反应的问题,基于反应力场的分子动力学方法可作为量子化学和分子动力学方法的桥梁,应用在各领域的科学研究中。与传统的经典力场不同,ReaxFF 反应力场采用键级 (Bond order,BO)和极化电荷来描述原子间的键合与裂解,ReaxFF 反应力场以原子间的键级关系为基础,将能量划分为多个部分,每部分能量均为键级的函数,具体表达式为:

  • Esystem =Ebond +Eover +Eangle +Etors +EvdWaals +Ecoulomb +Especific
    (1)
  • 式中,Ebond为键能项,表示键伸缩相互作用,决定原子间距;Eover 为惩罚势能,用于避免原子形成超过其化合价的化学键;EangleEtors 分别为键角弯曲和二面角扭曲势能;EvdwaalsEcoulomb 分别为原子间的色散能和电势能;Especfic 为考虑体系特定性质而加入的能量项。

  • 键级 BOij 又为原子间距 rij 的函数,即

  • BOij'=BOij'σ+BOij'π+BOij'π=ρbo1rijr0σPb02+expρbo3rijr0πPbo4+expρbo5rijr0ππPboσ
    (2)
  • 式中,BOij'σ为单键键级;BOij'π为双键键级;BOij'ππ为三键键级;r0 为平衡键长;Pbo1Pbo2Pbo3Pbo4 等分别为 ReaxFF 力场回归计算出的经验参数。

  • 3 结果与讨论

  • 3.1 纳米压痕对键合作用的影响

  • 为分析不同基底化学吸附对探针、石墨烯、金属基底之间键合作用的影响,对不同基底上的石墨烯进行了纳米压痕模拟。图4 为石墨烯与基底的 CG-M 键合数量 N(Nr of CT-M)及其键级均值 B (Average Bond Oder,Avg BO)随探针下压深度 H 的变化关系,其中,键级均值越大键合强度越高。如图4 所示,在探针下压前,石墨烯已与 Ni 基底发生了 CG-M 键合,已存在一定的键合数量,且键合数量和键级均值在纳米压痕过程中均保持最大,因此,Ni 基底对石墨烯具有较强的化学吸附能力。石墨烯与 Pt 基底在探针下压前并未发生 CG-M 键合,而是在探针下压指定深度后才发生 CG-M 键合, CG-M 键合后的键级均值增幅明显,已接近于 Ni 基底的键级均值,因此,Pt 基底对石墨烯仍具有一定的化学吸附能力。Ni、Pt 基底的 CG-M 键合数量及键级均值均随探针下压深度的增大而增加。而 Cu 基底上,石墨烯与基底并未发生 CG-M 键合,因此, Ni、Pt、Cu 基底对石墨烯的化学吸附能力依次减弱。

  • 图4 CG-M 键合数量和键级均值随压入深度的变化关系

  • Fig.4 Relationship between CG-M bond number and average bond oder with pressing depth

  • 图5 为探针所受法向力 Fz随下压深度的变化关系,如图5 所示,当下压深度低于 2.00 Å 时,Ni 基底上的法向力略高于 Pt、Cu 基底,这是由于基底表面较强的化学吸附使石墨烯面内弯曲刚度增大,进而增大了法向承载力[2728]。随着探针下压深度的增加,探针所受的法向力均以锯齿状形式增大,但锯齿状位置的形成并无明显规律。为此,结合探针与石墨烯 CT-CG 键合数量及键级均值进行分析。图6 为 CT-CG键合数量及其键级均值随探针下压深度的变化关系。为了准确描述纳米压痕中键合数量与法向力的关系,减少周边原子对键合结果的影响,仅选择探针正下方尺寸为 10.00 Å×10.00 Å 的石墨烯、基底牛顿层、探针底端少部分原子进行分析,结合图5、6 可知,每当 CT-CG发生键合或键合数量增加时,对应下压深度的法向力会骤降,这是由于 CT-CG的键合使石墨烯原子的 z 向应力(σz)得以释放,从而导致探针法向力的骤降,如图7 所示,以 Ni 基底为例,在 CT-CG键合前,石墨烯局部原子在探针挤压作用下具有较高的 z 向应力,而当 CT-CG键合后,局部原子的 z 向应力由 158.33 GPa 骤降至 50.31 GPa。

  • 图5 探针所受法向力随压入深度的变化关系

  • Fig.5 Relationship between tip normal force and pressing depth

  • 图6 CT-CG键合数量和键级均值随压入深度的变化关系

  • Fig.6 Relationship between CT-CG bond number and average bond order with pressing depth

  • 图7 石墨烯 z 向应力分布

  • Fig.7 z-direction stress distribution of graphene

  • 图6 中,随着探针下压深度的增大,不同基底条件下探针与石墨烯 CT-CG 键合数量和键级均值均随下压深度的增大而增加,其中,Ni 基底上的探针优先与石墨烯层发生了 CT-CG 键合,且键合数量和键级均值均高于 Pt、Cu 基底。因此,Ni 基底条件下,探针更易与石墨烯发生键合,且键合后可使探针获得更大的摩擦力。Pt 基底条件下,CT-CG 键合时的探针下压深度最深,键合最晚,但 CT-CG 键合后的键合数量和键级均值增幅明显,故探针对石墨烯仍具有一定的粘着能力。而 Cu 基底上的 CT-CG 键级均值相对较小。因此,Ni、Pt、Cu 基底上探针对石墨烯的粘着能力依次减弱,对石墨烯碳原子剥离和撕裂能力也依次减弱。

  • 图8 为石墨烯 CG-CG键合数量和键级均值随探针下压深度的变化关系,如图8 所示,Ni、Pt、Cu 基底上初始的 CG-CG键合数量有一定差异,这是由较强的化学吸附能力使石墨烯在基底上的铺展更为彻底。因此,Ni、Pt、Cu 基底上单位面积下所容纳的石墨烯碳原子数量依次增大,导致 Ni、Pt、Cu 基底上 CG-CG键合数量依次增加。在探针下压初期, Ni 基底上的石墨烯 CG-CG 键级均值最小,Cu 基底次之,Pt 基底最大,而当 Pt 基底上的石墨烯在探针下压驱动下发生 CG-M 键合后,CG-CG 键级均值骤降至 Cu 基底以下,Ni 基底上的 CG-CG 键级均值在探针下压过程中仍保持最低,即使 CG-CG 键断裂后的 CG-CG 键级均值有一定上升,但仍明显低于 Pt、Cu 基底。因此,Ni 基底上的石墨烯 CG-CG 键数量在纳米压痕过程中优先减少,且优先发生 CG-CG 键断裂,Pt 基底次之,而 Cu 基底上的石墨烯并未出现 CG-CG 断裂。CG-M 的键合明显削弱石墨烯 CG-CG 键合强度,减小了 CG-CG 键断裂时探针的下压深度,降低了探针的下压载荷。Ni、Pt、 Cu 基底上 CG-CG的键级均值均随着探针下压深度的增大而减小。

  • 图8 CG-CG键合数量和键级均值随压入深度的变化关系

  • Fig.8 Relationship between CG-CG bond number and average bond oder with pressing depth

  • 结合图4、6、8 中的 CT-CG、CG-M、CG-CG 键合数量、键级均值、键合变化顺序等信息可知, Ni、Pt、Cu 基底对石墨烯的化学吸附能力依次减弱。强化学吸附基底具有较强的 CG-M 键合强度,但削弱了石墨烯 CG-CG 键合强度,使石墨烯 CG-CG键更容易断裂,石墨烯更易发生破损,这与 ZHANG 等[31]关于 Ni 颗粒与碳纳米结构间的键合削弱了碳-碳键强度的结果一致。而当发生 CG-M 键合时,CG-CG 键合强度降低,石墨烯层产生了伪缺陷,石墨烯的化学反应活性有所提高,进而诱导了探针与石墨烯的 CT-CG 键合,这与 ZHENG 等[19]关于具有较高化学活性的缺陷石墨烯可在较低载荷下诱导探针与石墨烯键合的结果一致。探针下压驱动进一步促进了 CG-M 键合,削弱了 CG-CG 键合强度,诱导了 CT-CG 键合,探针的下压驱动使石墨烯更易发生破损。

  • 3.2 斜向划切确定机械裁剪深度

  • 为获取超滑摩擦、粘着摩擦、磨损三种不同摩擦状态的临界法向下压深度,将探针沿法向以 20.00 m / s 的速度下压,同时,沿横向以 200.00 m / s 的速度斜向划切石墨烯表面,较大的划切速度可在单位下压深度条件下获得更多摩擦力变化周期,结合原子键合信息,可获取更为准确的临界法向下压深度。本文将探针与石墨烯第一个 CT-CG 键合时的探针下压深度作为粘着摩擦的临界下压深度,以高于粘着摩擦临界下压深度 0.30 Å 的下压深度作为超滑摩擦的临界下压深度,0.30 Å 的取值可获得较为稳定的超滑摩擦状态,以石墨烯层内第一个 CG-CG 键断裂时探针的下压深度作为磨损状态的临界下压深度,即机械裁剪深度。图9 为探针所受摩擦力 Fx和 CT-CG键合数量随划切深度的变化关系。如图9 所示,在划切初期,当探针在 Ni、Pt、Cu 基底上的划切深度分别低于 0.45、 1.67、1.08 Å 时,探针与石墨烯并未产生键合,此时,摩擦处于超滑摩擦状态。而当探针在 Ni、 Pt、Cu 基底上的划切深度分别为 0.75、2.02、1.36 Å 时,探针与石墨烯开始发生 CT-CG 键合,键合后探针所受摩擦力增加明显,并出现周期性振荡,此时,摩擦处于粘着摩擦状态。随着划切深度进一步增大,探针与石墨烯原子的键合数量不断增加,当 Ni、Pt、Cu 基底上的划切深度分别为 1.96、 2.20、2.27 Å 时,石墨烯 CG-CG 键开始发生断裂,此时,摩擦处于磨损状态。在 Ni 基底上,探针优先与石墨烯发生了 CT-CG 键合,Pt 基底上 CT-CG 键合时的划切深度最深,键合最晚,这与纳米压痕模拟结果一致。在相同下压条件下,Ni 基底上的 CT-CG键合数量和摩擦力明显高于 Pt、Cu 基底。由于 Pt、Cu 基底对石墨烯碳原子的键合能力较弱,过大的探针斜向划切深度会使部分石墨烯原子被挤压进基底内部,影响体系的稳定性。

  • 图9 摩擦力和 CT-CG键合数量随划切深度的变化关系

  • Fig.9 Relationship between friction and CT-CG bond number with scratching depth

  • 3.3 不同摩擦状态的摩擦特性分析

  • 采用不同摩擦状态下的临界下压深度划切石墨烯,以对比不同摩擦状态的摩擦机制。此时,探针以 100.00 m / s 的速度在石墨烯表面进行划切,图10 为超滑摩擦、粘着摩擦、磨损状态下探针所受摩擦力 Fx随划切距离 L 的变化关系。如图10 所示,当处于超滑摩擦状态时,探针与石墨烯并未产生 CT-CG键合,摩擦力均值约为 0.00 nN,摩擦力变化具有较强的周期性,此时,摩擦力主要来源于原子间的范德华力,其中,由于 Pt 基底上 CT-CG键合时的临界下压深度较大,导致超滑状态的临界下压深度较大,探针具有更高的法向力,因此 Pt 基底上探针所受的摩擦力略高于 Ni、Cu 基底。当处于粘着摩擦状态时,探针与石墨烯产生了 CT-CG 键合, CT-CG 键合使探针所受的摩擦力显著增加,此时,由于不同基底上的石墨烯与探针最大键合数量相等,最大键合数量均为 4,因此不同基底上探针所受的摩擦力峰值也相近。其中,Ni、Cu 基底上探针所受摩擦力仍保持较为稳定的振荡周期,这是由于探针在划切过程中并未改变石墨烯与基底的键合状态,即基底与石墨烯仍然处于完全键合或未键合状态,基底仍保持对石墨烯极强或极弱的束缚,因此并未影响探针所受摩擦力的振荡周期。超滑摩擦和黏着摩擦状态并未使石墨烯产生损伤,无法实现石墨烯的机械裁剪。当处于磨损状态时,探针所受摩擦力变化周期均消失,Ni 基底上的摩擦力均值最大,约为 41.79 nN,相较于粘着状态增加了 36.88 nN,这是由于 Ni 基底上的石墨烯与探针 CT-CG 键合能力较强,探针持续性的划切使石墨烯发生大面积撕裂,显著提高了探针所受摩擦力。而 Pt、Cu 基底上摩擦力均值约为 18.36、18.51 nN,相较于粘着状态仅增加了 9.55、12.79 nN,这是由于石墨烯层仅发生了部分碳链和碳原子的剥离,而并未发生大面积撕裂。其中,由于 Cu 基底对石墨烯束缚能力最弱,石墨烯会随着探针发生大面积偏移,导致摩擦力急剧升高,而当石墨烯偏移达到极限位置时,石墨烯迅速恢复至原始构型,导致摩擦力迅速下降,因此,Cu 基底上的摩擦力振荡幅度较大。

  • 图10 不同摩擦状态的摩擦力随划切深度的变化关系

  • Fig.10 Relationship between friction and scratching depth at different friction states

  • 3.4 化学吸附对机械裁剪性能的影响

  • 为了探究基底化学吸附在裁剪过程中对石墨烯 CG-CG 键强度的影响,将探针下压至机械裁剪深度后划切石墨烯表面,以探针中心为原点,对石墨烯破损前的等效应力(Von Mises Stress,σv)进行分析,图11 为石墨烯破损前的等效应力分布,如图11a 所示,Ni 基底上的石墨烯破损前所能承受的最大破损等效应力最低,约为 110.19 GPa,低于 Pt、 Cu 基底上的最大破损等效应力 121.71、176.53 GPa。其中,Ni、Pt 基底上的最大破损等效应力相近,明显低于 Cu 基底,这是由于 Ni、Pt 基底与石墨烯在裁剪过程中均发生了 CG-M 键合,从而降低了 CG-CG 的键合强度,而 Cu 基底在划切过程中未发生 CG-M 键合,石墨烯 CG-CG键仍保持较高的强度,强化学吸附作用明显削弱了石墨烯的抗磨损性能,这与 QI[18]和 ZHANG[31]等关于石墨烯与其他界面键合降低石墨烯抗磨损性能的结果一致。如图11b 所示,在石墨烯破损前的原子等效应力分布中,Ni、Pt、 Cu 基底上的石墨烯层碳原子的最大等效应力均分布在探针中心正下方,因此石墨烯破损起始点均发生在探针划切的正下方。Cu 基底上具有较高等效应力的碳原子数量明显多于 Ni、Pt 基底,且 Cu 基底上的等效应力扩展范围更均匀,这是由于 Cu 基底对石墨烯的束缚能力较弱,探针划切时的应力可更加均匀地分布在石墨烯表面。

  • 图11 石墨烯等效应力分布

  • Fig.11 Von Mises stress distribution of graphene

  • 图12为石墨烯的机械裁剪过程,如图12所示,在探针下压至机械裁剪深度后,划切前 Ni 基底与石墨烯整体已发生了 CG-M 键合,Pt 基底仅在探针正下方与石墨烯发生了 CG-M 键合,而 Cu 基底即使在探针压力的驱动下也未发生 CG-M 键合。由于 CG-M 键合提高了石墨烯的化学反应活性,促进了 CT-CG 键合,因此 Ni 基底上探针的键合区域和数量高于 Pt、Cu 基底,探针也在划切前端与石墨烯发生了键合,从而显著增大了探针的划切刃角。由于 Ni 基底的强化学吸附作用明显降低了石墨烯整体 CG-CG 键合强度,因此 Ni 基底上的石墨烯优先产生了破损点。Ni 基底上较强的 CT-CG 键合作用使探针获得了更大的摩擦力和较大的划切刃角,使得石墨烯在探针划切前端产生了堆积,形成了褶皱,最终造成石墨烯的大面积撕裂。而 Pt 基底由于化学吸附能力弱,石墨烯仅在探针划切路径后与基底发生了 CG-M 键合,仅造成了划切路径后的石墨烯 CG-CG 键合强度降低,而划切路径外的位置仍保持较高的 CG-CG 键合强度,且探针的 CT-CG 键合能力较弱,因此石墨烯仅在划切过后的路径上发生了少量碳链的剥离,裂纹无法扩展至划切路径外,无法产生大面积撕裂。而由于 Cu 基底的化学吸附能力极弱,仅探针的下压驱动使得石墨烯的 CG-CG 键合强度有一定程度的降低,强度降低的位置仅位于探针的正下方,而其余位置均保持较高的 CG-CG 键合强度,且划切后的石墨烯可再次恢复较高的 CG-CG 键合强度。因此,石墨烯仅在探针正下方发生了部分碳原子的剥离,而未发生大面积撕裂和碳链剥离。

  • 图12 石墨烯机械裁剪过程

  • Fig.12 Mechanical cutting process of graphene

  • 图13 为机械裁剪状态下 CT-CG、CG-CG键合数量随划切距离的变化关系,由图13 可知,在划切开始前,由于 Ni 基底上的 CT-CG 键合能力较强,Ni 基底上的探针在较小机械裁剪深度下仍具有最高的 CT-CG 键合数量。随着划切距离的增加,Ni 基底上的 CT-CG 键合数量增加明显,而 Pt、Cu 基底上的 CT-CG键合数量增加有限,这是由于 Ni 基底上的石墨烯在探针前端已发生了堆积和褶皱,与探针发生了大量的 CT-CG键合。由于 CG-M 键合极大削弱了 Ni 基底上石墨烯的 CG-CG键合强度,因此 Ni 基底上石墨烯优先发生了 CG-CG 键断裂,而 Cu 基底上的 CG-CG键断裂最晚。由于 Ni 基底上的石墨烯在探针划切的作用下发生了大面积撕裂,CG-CG 键合数量明显减少,而 Pt、Cu 基底上仅出现了部分碳链和碳原子的剥离,因此 Pt、Cu 基底 CG-CG键合数量减幅较小。

  • 图13 CT-CG和 CG-CG键合数量随划切距离的变化关系

  • Fig.13 Relationship between CT-CG and CG-CG bond number with scratching distance

  • 4 结论

  • 采用反应分子动力学方法研究 Ni、Pt、Cu 金属基底的化学吸附对石墨烯机械裁剪性能的影响规律,揭示了基底的化学吸附对石墨烯机械裁剪性能的影响机制,得出以下结论:

  • (1)强化学吸附具有较强的 CG-M 键合强度,促进了 CT-CG键合,削弱了 CG-CG键合强度,提高了探针对石墨烯摩擦力,减小了石墨烯的机械裁剪深度和下压载荷,可使石墨烯产生大面积撕裂破损,有利于提高石墨烯机械裁剪的性能。

  • (2)探针的下压驱动可进一步促进 CG-M 的键合,削弱 CG-CG键合强度,诱导 CT-CG键合,探针的下压驱动有助于提高石墨烯的机械裁剪性能。

  • (3)反应分子动力学模拟准确、高效地描述了机械裁剪石墨烯的化学反应过程,研究结果可为不同吸附基底条件下高效、高精度石墨烯纳米带的机械裁剪提供理论依据。但由于裁剪过程中石墨烯的裂纹扩展方向不可控,未来仍须结合超声振动辅助切削及原子催化裂解等方法导向切割出边缘整齐的石墨烯纳米带。

  • 参考文献

    • [1] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.

    • [2] LEE C,WEI X,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.

    • [3] BOLOTIN K I,SIKES K J,JIANG Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008,146(9-10):351-355.

    • [4] NAIR R R,BLAKE P,GRIGORENKO A N,et al.Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308-1308.

    • [5] BALANDIN A A,GHOSH S,BAO W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.

    • [6] 徐祥,宋玲玲,官雨柔,等.石墨烯增强金属基复合材料制备方法的研究进展[J].材料热处理学报,2019,40(5):24-31.XU Xiang,SONG Lingling,GUAN Yurou,et al.Research progress in preparation of graphene reinforced metal matrix composites[J].Transactions of Materials and Heat Treatment,2019,40(5):24-31.(in Chinese)

    • [7] 郭万民,白清顺,窦昱昊,等.石墨烯在不锈钢材料应用中的减摩和耐磨特性研究进展[J].表面技术,2021,50(4):43-55.GUO Wanmin,BAI Qingshun,DOU Yuhao,et al.Research progress in friction reduction and wear resistance of graphene in stainless steel applications[J].Surface Technology,2021,50(4):43-55.(in Chinese)

    • [8] 陈志宇,郭小平,水晓雪,等.苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J].中国表面工程,2022,34(2):24-34.CHEN Zhiyu,GUO Xiaoping,SHUI Xiaoxue,et al.Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J].China Surface Engineering,2022,34(2):24-34.(in Chinese)

    • [9] 郭洪飞,赵增祺,朝宝,等.2-6 二氨基吡啶改性氧化石墨烯复合涂层的制备及防腐性能[J].中国表面工程,2022,34(2):126-139.GUO Hongfei,ZHAO Zengqi,CHAO Bao,et al.Preparation and anticorrosion performance of 2-6 diaminopyridine modified graphene oxide composite coating[J].China Surface Engineering,2022,34(2):126-139.(in Chinese)

    • [10] NETO A H C,GUINEA F,PERES N M R,et al.The electronic properties of graphene[J].Reviews of Modern Physics,2009,81(1):109-162.

    • [11] ZHANG Y B,TANG T T,GIRIT C,et al.Direct observation of a widely tunable bandgap in bilayer graphene[J].Nature,2009,459(7248):820-823.

    • [12] NI Z H,YU T,LU Y H,et al.Uniaxial strain on graphene:raman spectroscopy study and bandgap opening[J].ACS Nano,2008,2(11):2301-2305.

    • [13] LI J C,LI S,JIN C H,et al.Atomic layers of hybridized boron nitride and graphene domains[J].Nature Materials,2010,9(5):430-435.

    • [14] YANG J,MA M,LI L,et al.Graphene nanomesh:new versatile materials[J].Nanoscale,2014,6(22):13301-13313.

    • [15] LI X L,WANG X R,ZHANG L,et al.Chemically derived,ultrasmooth graphene nanoribbon semic onductors[J].Science,2008,319(5867):1229-1232.

    • [16] 张嵛,刘连庆,席宁,等.基于原子力显微镜的石墨烯可控裁剪方法研究[J].中国科学,2012,42(4):358-368.ZHANG Yu,LIU Lianqing,XI Ning.Study on controllable cutting method of graphene based on atomic force microscope[J].Science China,2012,42(4):358-368.(in Chinese)

    • [17] KHAC B C T,DELRIO F W,CHUNG K H.Interfacial strength and surface damage characteristics of atomicallythin h-BN,MoS2 and graphene[J].Acs Applied Materials Interfaces,2018,10(10):9164-9177.

    • [18] QI Y Z,LIU J,ZHANG J,et al.Wear resistance limited by step edge failure:the rise and fall of graphene as an atomically thin lubricating material[J].Acs Applied Materials & Interfaces,2017,9(1):1099-1106.

    • [19] ZHENG F,DUAN F L.Atomistic mechanism of the weakened wear resistance of few-layer graphene induced by point defects[J].Tribology International,2019,134:87-92.

    • [20] VASIĆ B,ZURUTUZA A,GAJIĆ R.Spatial variation of wear and electrical properties across wrinkles in chemical vapor deposition graphene[J].Carbon,2016,102:304-310.

    • [21] YAO Q Z,QI Y H,ZHANG J,et al.Impacts of the substrate stiffness on the anti-wear performance of graphene[J].Aip Advances,2019,9(7):075317.

    • [22] 杨红梅,李久盛,曾祥琼.烷基胺边缘功能化氧化石墨烯Pickering乳液的摩擦学行为[J].中国表面工程,2019,32(5):151-159.YANG Hongmei,LI Jiusheng,ZENG Xiangqiong.Tribological behavior of pickering emulsions stabilized with alkylamine edge-functionalized graphene oxide[J].China Surface Engineering,2019,32(5):151-159.(in Chinese)

    • [23] YAN Y P,LV J J,LIU S.Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil[J].Nanotechnology,2018,29(16):165703.

    • [24] HE X,BAI Q S,SHEN R Q.Atomistic perspective of how graphene protects metal substrate from surface damage in rough contacts[J].Carbon,2018,130:672-679.

    • [25] HAMMAD M,ADJIZIAN J J,SACRE C H,et al.Adhesionless and near-ideal contact behavior of graphene on Cu thin film[J].Carbon,2017,122:446-450.

    • [26] DONG A Y,FU Q,WEI M M,et al.Graphene-metal interaction and its effect on the interface stability under ambient conditions[J].Applied Surface Science,2017,412:262-270.

    • [27] TRIPATHI M,AWAJA F,PAOLICELLI G,et al.Tribological characteristics of few-layer graphene over Ni grain and interface boundaries[J].Nanoscale,2016,8(12):6646-6658.

    • [28] LEE C,LI Q,KALB W,et al.Frictional characteristics of atomically thin sheets[J].Science,2010,328(5974):76-80.

    • [29] RESTUCCIA P,RIGHI M C.Tribochemistry of graphene on iron and its possible role in lubrication of steel[J].Carbon,2016,106:118-124.

    • [30] OSTADHOSSEIN A,YOON K,DUIN A V,et al.Do nickel and iron catalyst nanoparticles affect the mechanical strength of carbon nanotubes?[J].Extreme Mechanics Letters,2018,20:29-37.

    • [31] ZHANG C,DUIN A V,SEO J W,et al.Weakening effect of nickel catalyst particles on the mechanical strength of the carbon nanotube/carbon fiber junction[J].Carbon,2017,115:589-599.

    • [32] KLEMENZ A,PASTEWKA L,BALAKRISHNA S G,et al.Atomic scale mechanisms of friction reduction and wear protection by graphene[J].Nano Letters,2014,14(12):7145-7152.

    • [33] WANG L F,DUAN F L.Nanoscale wear mechanisms of few-layer graphene sheets induced by interfacial adhesion[J].Tribology International,2018,123:266-272.

    • [34] GAO L,CHEN X,YAN Y,et al.Enhance the fluorination activity of graphene via the interfacial interaction from Ni(111)substrate[J].Computational Materials Science,2018,147:28-33.

    • [35] HAILE J M,JOHNSTON I,MALLINCKRODT A J,et al.Molecular dynamics simulation:elementary methods[J].Computers in Physics,1993,7(6):625.

    • [36] NIELSON K D,DUIN A V,OXGAARD J,et al.Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions,with application to the initial stages of the catalytic formation of carbon nanotubes[J].Journal of Physical Chemsistry A,2005,109(3):493-499.

    • [37] SANZ-NAVARRO C F,ASTRAND P-O,CHEN D,et al.Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets[J].Journal of Physical Chemistry A,2008,112(7):1392-1402.

    • [38] MUELLER J E,DUIN A V,GODDARD W A.Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel[J].Journal of Physical Chemistry C,2010,114(11):4939-4949.

    • [39] SENFTLE T P,HONG S,ISLAM M M,et al.The ReaxFF reactive force field:development,applications and future directions[J].npj Computational Materials,2016,2:15011-15025.

  • 参考文献

    • [1] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.

    • [2] LEE C,WEI X,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.

    • [3] BOLOTIN K I,SIKES K J,JIANG Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008,146(9-10):351-355.

    • [4] NAIR R R,BLAKE P,GRIGORENKO A N,et al.Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308-1308.

    • [5] BALANDIN A A,GHOSH S,BAO W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.

    • [6] 徐祥,宋玲玲,官雨柔,等.石墨烯增强金属基复合材料制备方法的研究进展[J].材料热处理学报,2019,40(5):24-31.XU Xiang,SONG Lingling,GUAN Yurou,et al.Research progress in preparation of graphene reinforced metal matrix composites[J].Transactions of Materials and Heat Treatment,2019,40(5):24-31.(in Chinese)

    • [7] 郭万民,白清顺,窦昱昊,等.石墨烯在不锈钢材料应用中的减摩和耐磨特性研究进展[J].表面技术,2021,50(4):43-55.GUO Wanmin,BAI Qingshun,DOU Yuhao,et al.Research progress in friction reduction and wear resistance of graphene in stainless steel applications[J].Surface Technology,2021,50(4):43-55.(in Chinese)

    • [8] 陈志宇,郭小平,水晓雪,等.苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J].中国表面工程,2022,34(2):24-34.CHEN Zhiyu,GUO Xiaoping,SHUI Xiaoxue,et al.Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J].China Surface Engineering,2022,34(2):24-34.(in Chinese)

    • [9] 郭洪飞,赵增祺,朝宝,等.2-6 二氨基吡啶改性氧化石墨烯复合涂层的制备及防腐性能[J].中国表面工程,2022,34(2):126-139.GUO Hongfei,ZHAO Zengqi,CHAO Bao,et al.Preparation and anticorrosion performance of 2-6 diaminopyridine modified graphene oxide composite coating[J].China Surface Engineering,2022,34(2):126-139.(in Chinese)

    • [10] NETO A H C,GUINEA F,PERES N M R,et al.The electronic properties of graphene[J].Reviews of Modern Physics,2009,81(1):109-162.

    • [11] ZHANG Y B,TANG T T,GIRIT C,et al.Direct observation of a widely tunable bandgap in bilayer graphene[J].Nature,2009,459(7248):820-823.

    • [12] NI Z H,YU T,LU Y H,et al.Uniaxial strain on graphene:raman spectroscopy study and bandgap opening[J].ACS Nano,2008,2(11):2301-2305.

    • [13] LI J C,LI S,JIN C H,et al.Atomic layers of hybridized boron nitride and graphene domains[J].Nature Materials,2010,9(5):430-435.

    • [14] YANG J,MA M,LI L,et al.Graphene nanomesh:new versatile materials[J].Nanoscale,2014,6(22):13301-13313.

    • [15] LI X L,WANG X R,ZHANG L,et al.Chemically derived,ultrasmooth graphene nanoribbon semic onductors[J].Science,2008,319(5867):1229-1232.

    • [16] 张嵛,刘连庆,席宁,等.基于原子力显微镜的石墨烯可控裁剪方法研究[J].中国科学,2012,42(4):358-368.ZHANG Yu,LIU Lianqing,XI Ning.Study on controllable cutting method of graphene based on atomic force microscope[J].Science China,2012,42(4):358-368.(in Chinese)

    • [17] KHAC B C T,DELRIO F W,CHUNG K H.Interfacial strength and surface damage characteristics of atomicallythin h-BN,MoS2 and graphene[J].Acs Applied Materials Interfaces,2018,10(10):9164-9177.

    • [18] QI Y Z,LIU J,ZHANG J,et al.Wear resistance limited by step edge failure:the rise and fall of graphene as an atomically thin lubricating material[J].Acs Applied Materials & Interfaces,2017,9(1):1099-1106.

    • [19] ZHENG F,DUAN F L.Atomistic mechanism of the weakened wear resistance of few-layer graphene induced by point defects[J].Tribology International,2019,134:87-92.

    • [20] VASIĆ B,ZURUTUZA A,GAJIĆ R.Spatial variation of wear and electrical properties across wrinkles in chemical vapor deposition graphene[J].Carbon,2016,102:304-310.

    • [21] YAO Q Z,QI Y H,ZHANG J,et al.Impacts of the substrate stiffness on the anti-wear performance of graphene[J].Aip Advances,2019,9(7):075317.

    • [22] 杨红梅,李久盛,曾祥琼.烷基胺边缘功能化氧化石墨烯Pickering乳液的摩擦学行为[J].中国表面工程,2019,32(5):151-159.YANG Hongmei,LI Jiusheng,ZENG Xiangqiong.Tribological behavior of pickering emulsions stabilized with alkylamine edge-functionalized graphene oxide[J].China Surface Engineering,2019,32(5):151-159.(in Chinese)

    • [23] YAN Y P,LV J J,LIU S.Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil[J].Nanotechnology,2018,29(16):165703.

    • [24] HE X,BAI Q S,SHEN R Q.Atomistic perspective of how graphene protects metal substrate from surface damage in rough contacts[J].Carbon,2018,130:672-679.

    • [25] HAMMAD M,ADJIZIAN J J,SACRE C H,et al.Adhesionless and near-ideal contact behavior of graphene on Cu thin film[J].Carbon,2017,122:446-450.

    • [26] DONG A Y,FU Q,WEI M M,et al.Graphene-metal interaction and its effect on the interface stability under ambient conditions[J].Applied Surface Science,2017,412:262-270.

    • [27] TRIPATHI M,AWAJA F,PAOLICELLI G,et al.Tribological characteristics of few-layer graphene over Ni grain and interface boundaries[J].Nanoscale,2016,8(12):6646-6658.

    • [28] LEE C,LI Q,KALB W,et al.Frictional characteristics of atomically thin sheets[J].Science,2010,328(5974):76-80.

    • [29] RESTUCCIA P,RIGHI M C.Tribochemistry of graphene on iron and its possible role in lubrication of steel[J].Carbon,2016,106:118-124.

    • [30] OSTADHOSSEIN A,YOON K,DUIN A V,et al.Do nickel and iron catalyst nanoparticles affect the mechanical strength of carbon nanotubes?[J].Extreme Mechanics Letters,2018,20:29-37.

    • [31] ZHANG C,DUIN A V,SEO J W,et al.Weakening effect of nickel catalyst particles on the mechanical strength of the carbon nanotube/carbon fiber junction[J].Carbon,2017,115:589-599.

    • [32] KLEMENZ A,PASTEWKA L,BALAKRISHNA S G,et al.Atomic scale mechanisms of friction reduction and wear protection by graphene[J].Nano Letters,2014,14(12):7145-7152.

    • [33] WANG L F,DUAN F L.Nanoscale wear mechanisms of few-layer graphene sheets induced by interfacial adhesion[J].Tribology International,2018,123:266-272.

    • [34] GAO L,CHEN X,YAN Y,et al.Enhance the fluorination activity of graphene via the interfacial interaction from Ni(111)substrate[J].Computational Materials Science,2018,147:28-33.

    • [35] HAILE J M,JOHNSTON I,MALLINCKRODT A J,et al.Molecular dynamics simulation:elementary methods[J].Computers in Physics,1993,7(6):625.

    • [36] NIELSON K D,DUIN A V,OXGAARD J,et al.Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions,with application to the initial stages of the catalytic formation of carbon nanotubes[J].Journal of Physical Chemsistry A,2005,109(3):493-499.

    • [37] SANZ-NAVARRO C F,ASTRAND P-O,CHEN D,et al.Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets[J].Journal of Physical Chemistry A,2008,112(7):1392-1402.

    • [38] MUELLER J E,DUIN A V,GODDARD W A.Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel[J].Journal of Physical Chemistry C,2010,114(11):4939-4949.

    • [39] SENFTLE T P,HONG S,ISLAM M M,et al.The ReaxFF reactive force field:development,applications and future directions[J].npj Computational Materials,2016,2:15011-15025.

  • 手机扫一扫看