-
0 前言
-
压气机叶片是航空发动机的核心零件,通过对空气的压缩和膨胀产生飞行动力,保障飞机的正常运转[1]。其工作环境常处于高速、高温、高压的状态,因此对其表面完整性提出了非常高的要求[2]。叶片经铣削加工后表面会留有铣削刀纹、接刀痕、微裂纹等表面缺陷,表面质量无法满足使用要求,必须经过表面光整来形成最终的工作表面[3]。目前,叶片的光整方式主要有砂轮磨削[4]、砂带磨削[5]、机器人辅助磨削[6]、磨粒流磨削[7]和滚磨光整加工[8]等。
-
滚磨光整加工是将待加工零件置于盛有加工介质的容器中,容器受到外力作用产生一定的运动形式,颗粒介质以一定的作用力和相对速度对工件表面进行碰撞、滚压、滑擦等,以改善工件表面完整性的一种工艺[9-10]。目前振动式滚磨光整加工在叶片的光整中广泛应用。ZENG 等[11]搭建三维振动抛光设备对叶片进行加工,表面粗糙度 Ra 由 0.35~0.5 μm 下降至 0.1~0.12 μm,且光整后叶片表面形成残余压应力,疲劳强度大大提升;汪斌等[8]将多个叶片放入立式振动抛光机中进行自由加工,去除了叶片表面的铣削刀纹,加工效率显著提高;吕光斌等[12]使用振动光饰机对叶片进行加工,加工后叶片表面棱边圆滑,铣削刀纹去除,表面粗糙度下降至 0.4 μm 以下;杨嵩等[13]对叶片振动光饰工艺中磨剂、磨料的选择进行了优化,得到了加工效率高、效果好的工艺参数。使用振动光整工艺加工叶片后基本满足设计和使用要求,但在光整时通常将叶片自由放置于颗粒介质中,加工力较小,加工效率低,且可能因磕碰而产生表面缺陷[12,14]。有学者使用夹具将工件固定于容器中进行加工。王秀枝等[15]发现将工件贴壁固定于抛光机内,与自由放置相比加工效率明显提高;TIAN 等[16]对比了立式抛光机中不同放置方式下工件的加工效果,发现将工件固定放置相较于自由放置表面质量明显改善;姚强等[17]将工件固定于卧式振动抛光机中进行加工,并探究不同固定方式和固定位置下的加工效果。可以看出,将工件固定于容器中,能使颗粒介质与工件产生强制的作用力,从而提高加工效果。近年来部分学者提出一维强制振动光整加工叶片的工艺[18-20],将叶片固定于特殊容器内,形成组合封闭型腔,在某激振参数的作用下,型腔内的颗粒介质对叶片产生强制的力学行为,进而实现叶片表面的高效光整。相比之下,一维强制振动光整加工可以更方便地改变激振参数、设备参数及工艺参数,以控制颗粒介质群的运动状态,使其更适应叶片的表面构型,在更简单的运动方式下达到更大的加工作用力。
-
在实际加工中为了探究合适的加工参数,往往采用试错法,成本高、效率低。离散元法(DEM) 是一种处理非连续介质问题的数值模拟方法[21],其基本原理是将散粒体分离成离散单元的集合,利用牛顿第二定律建立每个单元的运动方程,用动态松弛法迭代求解,在分析离散特性的颗粒介质群体运动时具有明显的优势[22]。目前国内外学者基于离散元法(DEM)进行了大量一维振动中颗粒介质运动行为的研究。TAMTEMOTO 等[23]用离散元法探究一维振动中颗粒介质的运动行为,在相同振动强度下,低振动频率或相同振动频率下的高振动强度会促进颗粒介质流态化;ZHANG 等[24]采用离散元法探究准二维容器中颗粒介质在不同振幅、频率下的运动状态,进一步分析了其能量耗散特性; HASHEMNIA 等[25]对竖直振动中的流态化颗粒介质进行数值模拟,评估不同振幅和频率下颗粒介质的流态化程度;吴远超等[19]采用离散元法探究水平振动中不同激振参数下颗粒介质的运动特征,在特定的振幅和频率下,颗粒介质群实现从类固态到类液态的转变,并且振幅对于颗粒介质流化程度的影响更为显著。以上学者主要探究了激振参数和颗粒介质行为的关系,而容器尺寸对颗粒介质的行为影响同样重要[26],很少有学者研究。
-
本文采用竖直强制振动光整加工工艺,选用工程实际中常用的激振参数(频率 25 Hz、振幅 3.5 mm),通过改变容器的基本尺寸(长、宽、高),基于离散元法分析颗粒介质对叶片表面的力学行为,进而探究对叶片表面加工效果的影响规律,并进行测试分析和加工试验验证,可为滚磨光整加工中容器尺寸的优选提供理论依据。
-
1 竖直强制振动光整加工原理
-
竖直强制振动光整加工原理如图1 所示,加工装置主要由振动系统、控制器、功率放大器、容器、颗粒介质、叶片及其夹具组成。叶片通过特定的夹具固定于容器中,容器在振动系统驱动下产生竖直方向的简谐运动,使颗粒介质在叶片表面产生独特的力学行为,从而实现对叶片的光整加工。
-
图1 竖直强制振动光整加工原理图
-
Fig.1 Schematic diagram of vertical forced vibration polishing
-
2 离散元仿真设置
-
2.1 离散元仿真模型的建立
-
采用离散元法建立竖直强制振动光整加工叶片的数值模拟模型,如图2 所示。振动方向为 Z 向,即重力方向,容器形状为正四棱柱,定义容器沿 X 向的尺寸为容器长度,沿 Y 向的尺寸为容器宽度,沿 Z 向的尺寸为容器高度,并以这三个方向的尺寸作为变量进行分析,如表1 所示。
-
图2 竖直强制振动光整加工离散元模型示意图
-
Fig.2 Schematic diagram of discrete element model of vertical forced vibration polishing
-
颗粒介质为 4 mm×8 mm 斜圆柱,采用颗粒填充的方法,由 47 个尺寸不同的球形颗粒堆叠而成。基于前期试验结果,颗粒介质填充量为容器容积的 80%。待加工工件为某型号压气机静子叶片,为简化分析,将叶片两端轴颈省略,建立与叶片实际尺寸相同的薄壁片状模型(100 mm×40 mm× 2.5 mm)。由于竖直振动的特性,颗粒介质沿竖直方向的运动差异远大于水平方向,为使叶片加工更均匀,使叶片叶身长度方向平行于 X 轴,弦长方向平行于 Z 轴,进气边靠近容器底部,在不同尺寸的容器中其安装位置保持相对不变,始终位于颗粒介质群中部。
-
2.2 离散元仿真参数设置
-
容器、颗粒介质及叶片材料本征参数和接触参数见表2、3 [27]。设置瑞利时间步长为 20%,累计时长为 4 s,其中 0~1 s 为颗粒介质生成时间。
-
模拟仿真中,假设运动中产生的碰撞为弹性碰撞,并忽略颗粒介质尺寸及材质不均匀的影响,采用 Hertz-Mindlin(no slip)模型作为颗粒介质之间及颗粒介质与容器之间的接触模型,并选用 Hertz-Mindlin with Archard Wear 计算叶片表面的磨损情况。
-
2.3 数据提取与处理
-
为确保数据的准确性,导入与叶片型面相贴合的数据块,如图3 所示,叶盆和叶背分别划分 10× 6 个小块均匀覆盖于表面,便于提取各个区域的相关数据。
-
图3 叶片表面数据块划分
-
Fig.3 Data block division of blade surface
-
为探究颗粒介质对叶片的力学行为,提取仿真过程中颗粒介质运动稳定后的 24 个振动周期内叶片表面各区域接触力,以及叶片表面与颗粒介质相对速度,并以单位时间内的均值进行分析。采用 Archard Wear 模型计算叶片表面的磨损情况[28],磨损深度越大,表明加工的能力越强,加工效率越高。磨损深度的计算公式如下:
-
式中,h 为磨损深度,K 为磨损系数,P 为接触压力, v 为相对滑动速度,H 为材料硬度,A 为接触面积。为定量化分析加工均匀性,引入变异系数(RSD) 作为参考[29],计算公式如下:
-
式中,S 为各数据区域磨损深度的标准偏差, 为各数据区域磨损深度的平均值。RSD 值可以准确地描述一组数据的离散程度,RSD 越大,表明样本数据离散程度越大,即加工均匀性越差。
-
3 仿真结果与分析
-
3.1 叶片表面接触力分析
-
图4 显示了不同尺寸容器下叶片表面平均接触力。图4a 显示了不同高度容器下叶片表面平均接触力,随着容器高度的增加,颗粒介质群底部的压强增大,颗粒介质间的力链更加坚固[26],在振动过程中排列结构更为紧密,运动同步性变强,增大了吸收外界输入能量的能力[30],且传递能量的效率变高,作用于叶片表面的法向力和切向力均逐渐增大,当高度增加至 300 mm 之后,由于颗粒介质群底部压强趋于饱和,作用于叶片表面的接触力增长幅度相对平缓。图4b 和图4c 为不同宽度和不同长度容器下叶片表面平均接触力,由于容器沿竖直方向振动,改变其宽度和长度,叶片表面接触力变化趋势相同,均随着尺寸的增加逐渐减小。这是由于随着容器宽度和长度的增加,颗粒介质群受侧壁的限制程度相对减小,排列结构变松散,颗粒介质沿水平方向运动的可能性更高,从而增大了能量的损耗,能量传递效率降低。受叶片安装姿态的影响,容器宽度对于叶片表面颗粒介质的影响程度更大,其接触力的变化幅度相较于改变容器长度更为明显。
-
图4 不同尺寸容器下叶片表面平均接触力
-
Fig.4 Average contact forces on blade surfaces in containers with different sizes
-
由于研究所用静子叶片叶盆和叶背形状差异较小,表面接触力基本一致,以叶盆表面各个位置的法向接触力为代表进行分析。图5 为不同尺寸容器下叶盆表面平均法向接触力云图。由于在竖直振动中,能量主要从容器底部输入,向上传递并逐渐衰减,而进气边一侧更靠近容器底部,因此其法向力大于排气边。同样,由于侧壁对于颗粒介质的剪切作用,也会输入一定能量并向容器内部逐渐衰减,叶片轴颈两端离侧壁更近,因此其表面接触力略大于中间部分。容器尺寸的改变,不仅可以改变叶片表面接触力的大小,而且可以在一定程度上改善叶片表面接触力的均匀性。随着容器高度的增加,由于颗粒介质排列更加紧密,运动同步性增强,接触力沿叶片弦长方向(Z 向)上的分布差异略微减小; 随着容器宽度的增加,颗粒介质排列愈发松散,叶片表面接触力沿叶片弦长方向上的差异增大;同样,随着容器长度的增加,接触力沿叶片弦长方向上的差异略微增大,但是在水平方向上的差异明显减小,这是由于容器长度较小时,叶片轴颈端附近的颗粒介质与容器侧壁更近,受侧壁的影响程度较大,导致叶片轴颈端处受力更大。
-
图5 不同尺寸容器叶盆表面平均接触力云图
-
Fig.5 Average contact force mesh surface of blade basin surface in container with different sizes
-
3.2 叶片表面与颗粒介质相对速度
-
图6 为不同尺寸容器下叶片表面与颗粒介质的平均相对速度。颗粒介质的主要运动方向沿竖直方向,对叶片表面的光整加工主要以滑擦作用为主,整体上相对切向速度远大于相对法向速度。随着容器高度的增加,颗粒介质传递能量的效率增大导致叶片表面颗粒介质运动速度增大,叶片与颗粒介质间产生更加剧烈的相对运动,相对速度逐渐变大; 而随着容器宽度和长度的增加,相对速度呈现出先增大后减小的趋势,这是由于当容器宽度和长度较小时,叶片表面颗粒介质与侧壁距离较近,受到侧壁的摩擦作用较明显,在容器侧壁的剪切作用下与组合型腔保持较为同步的运动,相对速度较低,随着宽度和长度的增加,侧壁对于颗粒介质的限制程度逐渐降低,相对速度逐渐增大。当宽度增加至 160 mm 后,侧壁对于叶片表面颗粒介质的影响程度较弱,由于能量传递效率的降低,叶片与颗粒间的相对速度开始减小;同理,当容器长度为 200 mm 时,相对速度最大。由于叶片放置姿态的影响,容器宽度对相对速度的影响相较于容器长度更为明显。
-
图6 不同尺寸容器叶片表面与颗粒介质平均相对速度
-
Fig.6 Average relative velocity between blade and surface granular media in container with different sizes
-
3.3 叶片表面磨损深度
-
图7 显示了叶片表面磨损深度均值及其 RSD 值。图8 为不同尺寸容器下叶片表面各区域磨损深度云图,由于叶盆和叶背型面差异较小,磨损情况基本一致;进气边一侧的磨损深度由于受力更大而高于排气边一侧,靠近两端轴颈的部分也略高于中间部分。结合两图可以发现:容器高度对于叶片表面磨损深度的影响程度最为显著,随着容器高度的增加,由于叶片表面接触力和相对速度均逐渐增大,其磨损深度单调增加,RSD 值也由于受力更均匀而越来越小。容器宽度的影响程度次之,当容器宽度较小时,虽然叶片表面接触力较大,但由于叶片与颗粒介质相对速度非常小,难以造成表面材料的去除,磨损深度较小。当容器宽度为 120 mm 时,叶片表面磨损深度最大,继续增加容器宽度,磨损深度随着接触力的减小而逐渐减小。随着容器宽度的增加,叶片表面接触力分布均匀性变差,导致其磨损深度 RSD 值也逐渐增大。容器长度对于叶片表面磨损深度影响程度最小,随着容器长度尺寸的增加,由于接触力的减小,叶片表面磨损深度逐渐减小,并且由于叶片沿水平方向上的受力更均匀,其 RSD 值逐渐降低。可以看出,磨损深度是由接触力和相对速度共同决定的,但受接触力的影响程度更为明显,其分布规律与接触力更为接近。
-
图7 叶片表面磨损深度及其 RSD 值
-
Fig.7 Blade surface wearing depth and RSD
-
图8 不同尺寸容器叶片表面磨损云图
-
Fig.8 Blade surface wearing depth cloud atlas in container with different sizes
-
综合考虑,在容器高度为 300 mm 时加工效率较高,均匀性较好,继续增加容器高度,加工效率和均匀性改善程度相对较小,实际加工中经济性较差;当容器宽度为 120 mm 时加工效率最高,且加工均匀性较好;容器长度为 200 mm 时,加工效率较高,均匀性较好,继续增加容器长度,加工效率降低且均匀性改善不明显。最终确定采用竖直强制振动光整加工工艺加工该压气机叶片的较优容器尺寸为 300 mm(高度)×120 mm(宽度)×200 mm(长度)。
-
4 有效性验证
-
4.1 试验条件
-
为了验证仿真模拟的有效性,在苏试 DC-5000-50振动台上进行试验验证,测试在激振参数为 25 Hz、 3.5 mm 时不同容器参数下试件的表面受力及加工效果。试验测试系统及加工组件如图9 所示,容器材料为亚克力,通过螺栓固定在振动台上,在容器侧壁的各个位置设有通孔,挡板通过螺栓与侧壁固定,通过改变挡板的位置以实现容器宽度尺寸的有级调节,并通过改变磨块的填充高度实现容器高度的调节。试验所用的颗粒介质形状为 4 mm×8 mm 的斜圆柱,材料为碳化硅,填充量为 80%。由于选用的静子叶片弯扭程度小,结构较简单,且叶盆和叶背形状差异非常小,因此将试验试件简化为 100 mm×40 mm×2.5 mm 的直板,材料为 TC4。试件表面经铣削加工后,表面粗糙度为 0.65 μm± 0.1 μm。
-
图9 试验测试系统及加工组件
-
Fig.9 Experimental test system and machining components
-
对不同尺寸容器下加工介质与试件之间的接触力进行测试。传感器型号为 501F01,使用 DH5902 数据采集系统以及计算机进行接触力数据的采集。传感器的灵敏度为 10.02 mV / N,采样频率 10 kHz。
-
对不同尺寸容器下试件加工效果进行测试。使用马尔 M300 粗糙度仪测量加工前后的表面粗糙度 Ra,该设备轮廓分辨率为 12 nm,测量精度为 0.001 μm,扫描长度为 5.6 mm;使用电子天平测量加工前后试件质量 m,测量精度为 0.001 g;使用 OLYMPUS 超景深三维显微镜测量加工前后表面形貌。
-
4.2 接触力测试
-
选择对叶片表面磨损效果影响较为显著的两个变量,容器高度和容器宽度进行试验验证,试验参数设置与仿真相同。首先对不同尺寸容器下叶片表面接触力进行测试,测试区域的划分如图10 所示,由于结构的对称性,为简化试验流程,选择轴颈端一侧的两个区域和中部两个区域进行测量,每个采样点测量三次。对测得的信号使用 haar 小波降噪,去除正值后求平均再求正。将测得的不同尺寸容器下试件表面各区域接触力与仿真中对应区域接触力进行比较,如图11 所示,试验测得的接触力数值略小于仿真,平均误差为 10.6%,叶片表面接触力分布规律与仿真中基本对应:靠近进气边一侧两个区域的接触力大于排气边一侧,靠近轴颈端两个区域的接触力略大于叶身中部;随着容器高度的增加,试件表面接触力均值逐渐增加;随着容器宽度的增加,试件表面接触力均值逐渐减小。
-
图10 接触力测试区域划分
-
Fig.10 Division of contact force test area
-
图11 接触力测试结果与仿真对比
-
Fig.11 Comparison of contact force test result and simulation
-
4.3 加工效果测试
-
在不同尺寸容器下分别对试件进行累计 120 min 的加工,将试件表面沿长度和宽度方向均匀划分为 4×3 个区域,如图12 所示。每隔 20 min 对各区域表面粗糙度 Ra 及试件质量进行 3 次测量。为了减小试件初始表面粗糙度值不同所造成的影响,使用表面粗糙度下降率%ΔRa 和材料去除量 Δm 来表征加工效果。
-
图12 粗糙度测试区域划分
-
Fig.12 Division of roughness test area
-
%ΔRa 计算公式为:
-
式中, Ra0 为加工前试件表面粗糙度,μm; Rat 为加工时间 t(分钟)后试件表面粗糙度,μm。
-
Δm 计算公式为:
-
式中,m0 为加工前试件质量,g;mt为加工 t(分钟) 后试件质量,g。
-
图13、14 显示了不同尺寸容器下试件表面粗糙度均值下降率与材料去除量随时间变化,两者变化趋势基本一致,材料去除量越大,表明试件表面波峰、波谷去除效果越好,表面粗糙度 Ra 改善程度越好,%ΔRa 越大。随着加工时长的增加,%ΔRa 和 Δm 增长幅度逐渐缓慢,到 80~100 min 到达极限,此时%ΔRa 和 Δm 均不再发生明显变化。将不同尺寸容器下试验加工后试件表面粗糙度下降率与仿真中的磨损深度变化趋势进行对比,如图15 所示。随着容器高度的增加,试件表面加工作用力逐渐增大,与颗粒介质间的相对运动更加剧烈,加工能力变强,表面材料去除量逐渐增大,波峰、波谷去除效果更加明显,表面粗糙度下降率%ΔRa 由 51.9%增加至 67.2%,且在高度增加至 300 mm 后加工效率不再明显提升。随着容器宽度的增加,在颗粒介质对叶片的力学行为作用的综合影响下,加工能力先增强后减弱,试件表面粗糙度下降率%ΔRa 先增大后减小,在 120 mm 时达到最大值 60.6%。与仿真中磨损深度的变化趋势基本一致。
-
图13 不同尺寸容器下试件表面粗糙度均值下降率%ΔRa
-
Fig.13 %ΔRa in container with different sizes
-
图14 不同尺寸容器下试件表面材料去除量 Δm
-
Fig.14 Δm in container with different sizes
-
图15 试验加工后%ΔRa 与仿真磨损深度变化趋势对比
-
Fig.15 Comparison of variation trend of %ΔRa and simulation wear depth
-
图16 为在不同尺寸容器下加工 120 min 后叶片表面各区域粗糙度%ΔRa 云图。可以看出:靠近轴颈的两端由于离侧壁更近,受力更大,%ΔRa 略高于中间部分;而试件进气边区域由于加工时更靠近容器底部,受力更大,%ΔRa 较高。随着容器高度的增加,由于颗粒介质间排列结构更加紧密,颗粒介质群运动的同步性增强,试件表面各区域受力更均匀,各区域%ΔRa 差异相对更小,加工均匀性更好;随着容器宽度的增加,颗粒介质间排列结构变松散,各区域%ΔRa 差异增大,加工均匀性逐渐变差。其分布规律与仿真中叶片表面磨损深度基本吻合,进一步证明了仿真的有效性。
-
图16 不同尺寸容器试件加工后表面各区域%ΔRa 云图
-
Fig.16 %ΔRa cloud atlas of after processing blade surface in container with different sizes
-
4.4 优选参数下加工效果
-
采用竖直强制振动光整加工工艺,容器尺寸 300 mm×120 mm×200 mm,加工所用颗粒介质为 4 mm×8 mm 斜圆柱碳化硅,填充量为 80%,叶片固定于颗粒介质群中心,加工时长为 80 min,加工后试件表面各区域表面粗糙度 Ra 均值由 0.645 μm 降至 0.246 μm,达到工业对叶片表面粗糙度的要求 (Ra 0.4 μm 以下)[31]。使用超景深显微镜测得的表面三维形貌如图17 所示,特别对进、排气边区域进行测量,观察是否出现表面缺陷。加工前,试件表面存在明显的铣削痕迹,波峰、波谷差异明显,Sz 达到了 10.165 μm;加工后试件表面的铣削痕迹明显去除,表面轮廓最大高度 Sz 下降至 3.774 μm;由于越靠近容器底部的区域表面受力越大,进气边区域加工质量略高于中间区域,表面平整,不存在较明显的波峰和高点;排气边区域加工质量略微低于中间区域。
-
图17 试件加工前后表面形貌
-
Fig.17 Surface topography of test specimen before and after processing
-
5 结论
-
对竖直强制振动光整加工中不同尺寸容器内颗粒介质对叶片表面的力学行为进行分析,探究对叶片表面加工效果的影响规律,为滚磨光整中容器尺寸的优选提供了数据支持。得出结论如下:
-
(1)振动过程中颗粒介质对叶片表面的力学行为受容器尺寸的影响发生改变,进而影响叶片的加工效果。其中,容器高度影响程度最为明显,容器宽度次之,容器长度最小。随着容器高度增加,叶片表面法向力逐渐增大,与颗粒介质的相对速度逐渐增大,叶片表面的加工效率和加工均匀性均逐渐改善;随着容器宽度的增加,叶片表面法向力逐渐减小,与颗粒介质的相对速度先增大后减小,叶片表面加工效率先增大后减小,加工均匀性逐渐变差; 随着容器长度的增加,叶片表面法向力逐渐减小,与颗粒介质的相对速度先增大后减小,叶片表面加工效率逐渐减小,但加工均匀性更好。
-
(2)最终确定容器较优尺寸参数为 300 mm(高度)×120 mm(宽度)×200 mm(长度)。在该参数下,试件加工 80 min 后表面粗糙度 Ra 由 0.645 μm 降至 0.246 μm,铣削痕迹去除效果明显,表面质量显著改善。
-
(3)受重力因素的影响,采用该工艺对叶片进行光整,沿竖直方向上的加工效果存在一定差异,后续可通过在当前尺寸基础上更改容器几何构形或添加辅助运动以进一步完善。
-
参考文献
-
[1] 陈亚莉,李翊萌.航空发动机叶片加工变形因素分析及控制研究[J].科技创新与应用,2020(2):97-98.CHEN Yali,LI Yimeng.Analysis and control study of aero-engine blade processing and induced machining deformation factors[J].Technology Innovation and Application,2020(2):97-98.(in Chinese)
-
[2] LIU D,SHI Y Y,LIN X J,et al.Polishing surface integrity of TC17 aeroengine blades[J].Journal of Mechanical Science and Technology,2020,34(2):689-699.
-
[3] 杨印权,张亚双,梁巧云.滚磨光整技术在航空发动机产品制造中的应用研究[J].航空制造技术,2016(11):69-71.YANG Yinquan,ZHANG Yashuang,LIANG Qiaoyun.Research on application of barrel finishing technology in manufacture of aeroengine[J].Aeronautical Manufacturing Technology,2016(11):69-71.(in Chinese)
-
[4] ZHU Z Q,CHEN Z T,ZHANG Y.A novel polishing technology for leading and trailing edges of aero-engine blade[J].The International Journal of Advanced Manufacturing Technology,2021,116:1871-1880.
-
[5] ZHANG J F,SHI Y Y,LIN X J,et al.Parameter optimization of five-axis polishing using abrasive belt flap wheel for blisk blade[J].Journal of Mechanical Science and Technology,2017,31(10):4805-4812.
-
[6] ZHANG J J,LIU J,YANG S Q.Trajectory planning of robot-assisted abrasive cloth wheel polishing blade based on flexible contact[J].The International Journal of Advanced Manufacturing Technology,2022,119:8211-8225.
-
[7] FU Y Z,GAO H,YAN Q S,et al.An efficient approach to improving the finishing properties of abrasive flow machining with the analyses of initial surface texture of workpiece[J].The International Journal of Advanced Manufacturing Technology,2020,107(5-6):2417-2432.
-
[8] 汪斌,何坚,余杰,等.高效光饰加工技术在航空发动机典型零件加工中的应用[J].金刚石与磨料磨具工程,2018(3):75-80.WANG Bin,HE Jian,YU Jie,et al.Application of high efficiency polishing technology in manufacturing aeroengine components[J].Diamond and Abrasives Engineering,2018(3):75-80.(in Chinese)
-
[9] 杨胜强,李文辉,陈红玲.表面光整加工理论与新技术 [M].北京:国防工业出版社,2011.YANG Shengqiang,LI Wenhui,CHEN Hongling,et al.Surface finishing theory and new technology[M].Beijing:National Defense Industry Press,2011.(in Chinese)
-
[10] 李秀红,李文辉,王程伟,等.TC4 钛合金滚磨光整加工的表面完整性与抗疲劳性能[J].中国表面工程,2018,31(1):15-25.LI Xiuhong,LI Wenhui,WANG Chengwei,et al.Surface integrity and anti-fatigue performance of TC4 titanium alloy by mass finishing[J].China Surface Engineering,2018,31(1):15-25.(in Chinese)
-
[11] ZENG G Y,ZHAO D F.Experimental investigation of strengthening and polishing aeroengine blades[J].Applied Mechanics and Materials,2012,102:909-912.
-
[12] 吕光斌,宋扬,刘景科.汽轮机叶片光饰抛光加工方法分析与研究[J].汽轮机技术,2011,53(3):239-240.LÜ Guangbin,SONG Yang,LIU Jingke.Analysis and study of polishing method for turbine blade[J].Turbine Technology,2011,53(3):239-240.(in Chinese)
-
[13] 杨嵩,戚厚军,秦程现,等.铝硅涂层叶片的振动光饰制备工艺参数优化[J].机械设计与制造,2021(5):115-119.YANG Song,QI Houjun,QIN Chengxian,et al.Optimization of technological parameters for vibration finishing of aluminum-silicon coated blades[J].Machinery Design and Manufacture,2021(5):115-119.(in Chinese)
-
[14] 颜科红.压气机叶片在振动光饰加工中色差花纹产生的研究[J].现代制造工程,2016(10):104-107,147.YAN Kehong.Research on the generation of surface waviness in vibration polishing process for compressor blade[J].Modern Manufacturing Engineering,2016(10):104-107,147.(in Chinese)
-
[15] 王秀枝,杨胜强,李文辉,等.薄壁片状试件贴壁式振动光饰实验研究[J].表面技术,2017,46(10):261-267.WANG Xiuzhi,YANG Shengqiang,LI Wenhui,et al.Experimental Investigation of adherent vibratory finishing for sheet specimens[J].Surface Technology,2017,46(10):261-267.(in Chinese)
-
[16] TIAN Y,ZHONG Z,TAN S.Kinematic analysis and experimental investigation on vibratory finishing[J].International Journal of Advanced Manufacturing Technology,2016,86:3113-3121.
-
[17] 姚强,MD Ahmed Sanuar Hossain,李秀红,等.工件固定方式对振动式滚磨光整加工效果影响的实验研究[J].机械设计与制造,2022,373(3):7-14.YAO Qiang,MD Ahmed Sanuar Hossain,LI Xiuhong,et al.Experimental study on the effect of fixing method of workpiece on vibratory finishing[J].Machinery Design and Manufacture,2022,373(3):7-14.(in Chinese)
-
[18] 李秀红,李文辉,杨胜强,等.一种用于叶片表面加工的组合封闭型腔振动式滚磨光整加工装置及其方法:中国,110842749B[P].2020-02-28.LI Xiuhong,LI Wenhui,YANG Shengqiang,et al.The utility model relates to a combined closed cavity vibrating roller polishing finishing device for blade surface processing and a method thereof:China,110842749B[P].2020-02-28.(in Chinese)
-
[19] 吴远超,李秀红,王嘉明,等.水平振动抛磨颗粒介质流场特性分析[J].表面技术,2021,50(11):329-338.WU Yuanchao,LI Xiuhong,WANG Jiaming,et al.Flow field characteristics analysis of media for horizontal vibratory mass finishing[J].Surface Technology,2021,50(11):329-338.(in Chinese)
-
[20] 师世豪.圆柱型腔中叶片一维振动光整力学行为及磨损的影响研究[D].太原:太原理工大学,2021.SHI Shihao.Study on the influence of the characteristic parameters of the cylindrical cavity on the mechanical behavior and wear of the one-dimensional vibration mass finishing blade[D].Taiyuan:Taiyuan University of Technology,2021.(in Chinese)
-
[21] 徐爽,朱浮声,张俊.离散元法及其耦合算法的研究综述[J].力学与实践,2013,35(1):8-14,19.XU Shuang,ZHU Fusheng,ZHANG Jun.A overview of the discrete element method and its coupling algorithms[J].Mechanics and Engineering,2013,35(1):8-14,19.(in Chinese)
-
[22] 杨军伟,孙慧男,张卓青.离散元法及其在农业工程中的应用综述[J].现代食品,2015(10):28-33.YANG Junwei,SUN Huinan,ZHANG Zhuoqing.A review on fundamentals of distinct element method and its applications in agricultural engineering realm[J].Modern Food,2015(10):28-33.(in Chinese)
-
[23] TATEMOTO Yuji,MAWATARI Yoshihide,YASUKAWA Tomoyam,et al.Numerical simulation of particle motion in vibrated fluidized bed[J].Chemical Engineering Science,2004,59(2):437-447.
-
[24] ZHANG K,CHEN T N,HE L.Damping behaviors of granular particles in a vertically vibrated closed container[J].Powder Technology,2017,321:173-179.
-
[25] HASHEMNIA K,POURANDI S.Study the effect of vibration frequency and amplitude on the quality of fluidization of a vibrated granular flow using discrete element method[J].Powder Technology,2018,327:335-345.
-
[26] 孔维姝,胡林,李世雄,等.探讨激振频率和容器宽度对颗粒层中对流的影响[J].振动与冲击,2010,29(4):88-91,233.KONG Weishu,HU Lin,LI Shixiong,et al.The influence of excitation frequency and container width onconvection in particle layer[J].Journal of Vibration and Shock,2010,29(4):88-91,233.(in Chinese)
-
[27] 张荔,李文辉,杨胜强.滚磨光整加工中磨料颗粒堆积角的离散元参数标定[J].中国科技论文,2016,11(16):1821-1825.ZHANG Li,LI Wenhui,YANG Shengqiang.Calibration of discrete element parameters of abrasive particle in mass finishing process[J].China Sciencepaper,2016,11(16):1821-1825.(in Chinese)
-
[28] 桂长林.Archard 的磨损设计计算模型及其应用方法[J].润滑与密封,1990,15(1):12-21.GUI Changlin.The archard design calculation model and its application methods[J].Lubrication Engineering,1990,15(1):12-21.(in Chinese)
-
[29] 李鹏,李文辉,李秀红,等.航空发动机整体叶盘回转式滚磨光整加工数值模拟与分析[J].机械科学与技术,2021,40(4):633-640.LI Peng,LI Wenhui,LI Xiuhong,et al.Numerical simulation and analysis of rotary typed mass finishing for aeroengine blisk[J].Mechanical Science and Technology for Aerospace Engineering,2021,40(4):633-640.(in Chinese)
-
[30] 姜泽辉,刘新影,彭雅晶,等.竖直振动颗粒床中的倍周期运动[J].物理学报,2005,54(12):5692-5698.JIANG Zehui,LIU Xinying,PENG Yajing,et al.Period doubling motion in vertically vibrated granular beds[J].Acta Physica Sinica,2005,54(12):5692-5698.(in Chinese)
-
[31] 黄云,侯明明,刘阳,等.航空发动机钛合金叶片机器人浮动砂带磨削技术及其试验研究[J].航空制造技术,2020,63(5):14-19.HUANG Yun,HOU Mingming,LIU Yang,et al.Robotic floating belt grinding technology and experimental study on aero-engine titanium alloy blade[J].Aeronautical Manufacturing Technology,2020,63(5):14-19.(in Chinese)
-
摘要
为实现航发叶片的均匀一致性高效光整,探究竖直强制振动光整加工工艺中容器尺寸对叶片加工效果的影响。以正四棱柱容器的高度、宽度、长度作为变量,基于离散元法,对不同尺寸参数下颗粒介质对叶片表面的力学行为及加工效果进行分析,确定较优的容器尺寸参数,并通过接触力测试分析和加工试验验证模拟的有效性。结果表明:叶片安装位置相对不变时,容器尺寸直接影响叶片的加工效果;容器高度对叶片加工效果影响程度最为明显,随着容器高度的增加,叶片表面所受法向力增大,叶片与颗粒介质间的相对速度增大,加工效率变高,加工均匀性变好;随着容器宽度的增加,加工效率先提高后降低,均匀性逐渐变差;随着容器长度的增加,加工效率降低,均匀性变好;当容器的高度为 300 mm、宽度为 120 mm、长度为 200 mm 时,加工效果较优;采用该工艺参数对试件加工后,表面粗糙度由 0.645 μm 下降至 0.246 μm,表面轮廓相对平整,铣削痕迹明显去除。研究成果可为滚磨光整加工中容器尺寸的优选提供数据支持。
Abstract
A compressor blade is a key component of an aero-engine often in a high-speed, high-temperature, and high-pressure environment. After milling, there are surface defects such as milling cutter marks and microcracks on the surface of the blade. The surface quality after milling cannot meet quality requirements, therefore the final working surface must undergo surface finishing. In this paper, the surface finishing of the blade is realized by the vertical forced vibration finishing process. At present, research on the relationship between excitation parameters and the behavior of granular media is relatively advanced, yet few scholars have studied the influence of container size on the behavior of granular media. In order to explore the influence of container size on the finishing effect of compressor blades, the dimensions of the regular prismatic container were taken as variables, and based on the discrete element method, the change in the mechanical behavior of granular media on blades and the change in the processing effect for different container size parameters were analyzed. Subsequently, optimum container size parameters were determined. The effectiveness of the simulation was verified via contact force test analysis and processing tests. Results show that when the installation position of the blade is relatively unchanged, during the vibration process, the mechanical behavior of the granular media on the blade is affected by the size of the container, which in turn affects the processing effect of the blade. The height of the container has the most obvious influence on the processing effect of the blade. As the height of the container increases, the contact force on the blade surface increases, the relative velocity between the blade surface and the granular media increases, the processing efficiency increases, and thus processing is more uniform. The container width has the second greatest effect on the machining effect of the blade. As the width of the container increases, the contact force on the blade surface gradually decreases, the relative velocity between the blade surface and the granular media initially increases before decreasing, the processing efficiency initially increases before decreasing, and the uniformity gradually deteriorates. The length of the container has the least influence on the processing effect. As the length of the container increases, the contact force on the blade surface gradually decreases, the relative velocity between the blade surface and the granular media initially increases before decreasing, the processing efficiency decreases, and the uniformity deteriorates. After a comparative analysis, the optimum container size parameters were determined; when the height of the container was 300 mm, the width was 120 mm, and the length was 200 mm, the processing effect was optimal. After the optimum container size parameters were used to process the specimen, the surface roughness was reduced from 0.645 μm to 0.246 μm, reaching the surface roughness industrial requirements for an aero-engine blade. The surface profile was relatively flat, and the milling marks were removed. Moreover, a preliminary understanding of the influence of container size on the motion behavior of granular media under vertical vibration was obtained, providing a theoretical basis for the optimization of container size in barrel finishing processing.