en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李迎春,女,1969年出生,副教授,硕士研究生导师。主要研究方向为摩擦学及表面工程。E-mail:lyc2004henan.china@126.com

通讯作者:

邱明,女,1969年出生,博士,教授,博士研究生导师。主要研究方向为高性能轴承摩擦学设计。E-mail:qiuming69@126.com

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20221203002

参考文献 1
刘二勇,曾志翔,赵文杰.海水环境中金属材料腐蚀磨损及耐磨防腐一体化技术的研究进展[J].表面技术,2017,46(11):149-157.LIU Eryong,ZENG Zhixiang,ZHAO Wenjie.Corrosive wear and integrated anti-wear & anti-corrosion technology metallic materials in seawater[J].Surface Technology,2017,46(11):149-157.(in Chinese)
参考文献 2
邢益彬,蒋百灵,李洪涛,等.铝合金双极板磁控溅射Ag掺杂类石墨薄膜表面改性研究[J].表面技术,2017,46(8):67-71.XING Yibin,JIANG Bailing,LI Hongtao,et al.Surface modification of Ag-doped graphite films by magnetron sputtering of aluminum alloy bipolar plate[J].Surface Technology,2017,46(8):67-71.(in Chinese)
参考文献 3
谷守旭,李迎春,邱明,等.碳靶电流对磁控溅射 GLC/Ti 薄膜结构及摩擦学性能的影响[J].润滑与密封,2021,46(9):32-39.GU Shouxu,LI Yingchun,QIU Ming,et al.Effect of carbon target current on structure and tribological properties of magnetron sputtering GLC/Ti films[J].Lubrication Engineering,2021,46(9):32-39.(in Chinese)
参考文献 4
WANG Yongjun,LI Hongxuan,JI Li,et al.Microstructure,mechanical and tribological properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering[J].Surface and Coatings Technology,2011,205(8):3058-3065.
参考文献 5
VIANA G A,LACERDA R G,FREIRE J F L,et al.ESR investigation of graphite-like amorphous carbon films revealing itinerant states as the ones responsible for the signal[J].Journal of Non-Crystalline Solids,2008,354(19–25):2135-2137.
参考文献 6
李蕾.强韧类石墨碳基薄膜材料的设计制备与磨蚀行为研究[D].宁波:中国科学院大学,2018.LI Lei.Study on the design,preparation and abrasion behavior of strong and tough graphite-like carbon based thin Films[D].Ningbo:University of Chinese Academy of Sciences,2018.(in Chinese)
参考文献 7
马国政,雍青松,王海斗,等.调制周期对纳米多层类石墨薄膜力学性能及摩擦学性能的影响[J].机械工程学报,2018,54(15):92-99.MA Guozheng,YONG Qingsong,WANG Haidou,et al.Effect of modulation period on mechanical properties and tribological properties of nano-multilayer graphite-like Films[J].Journal of Mechanical Engineering,2018,54(15):92-99.(in Chinese)
参考文献 8
施文彦,陆斌斌,陈妍,等.碳靶电流对掺铬类石墨镀层结构和性能的影响研究[J].表面技术,2017,46(8):109-114.SHI Wenyan,LU Binbin,CHEN Yan,et al.Effect of carbon target current on structure and properties of chromium-doped graphite coatings[J].Surface technology,2017,46(8):109-114.(in Chinese)
参考文献 9
王瑜,王春伟,袁战伟,等.靶电流对磁控溅射类石墨镀层组织与性能的影响[J].热加工工艺,2017,46(16):161-163.WANG Yu,WANG Chunwei,YUAN Zhanwei,et al.Effect of target current on microstructure and properties of magnetron sputtering graphite coating[J].Hot Working Technology,2017,46(16):161-163.(in Chinese)
参考文献 10
郭巧琴,李建平.基体偏压对磁控溅射类石墨镀层耐蚀性的影响[J].电镀与精饰,2015,37(5):6-8,18.GUO Qiaoqin,LI Jianping.Effect of matrix bias on corrosion resistance of magnetron sputtering graphite coatings[J].Electroplating and Finishing,2015,37(5):6-8,18.(in Chinese)
参考文献 11
王佳凡,王永欣,陈克选,等.Cr 掺杂对GLC薄膜结构及其摩擦学性能的影响[J].摩擦学学报,2015,32(2):206-213.WANG Jiafan,WANG Yongxin,CHEN Kexuan,et al.Effect of Cr doping on the structure and tribological properties of GLC thin films[J].Tribology,2015,32(2):206-213.(in Chinese)
参考文献 12
李蕾,郭鹏,刘林林,等.金属过渡层类型对非晶碳膜结构性能的影响[J].无机材料学报,2018,33(3):331-338.LI Lei,GUO Peng,LIU Linlin,et al.Effect of metal transition layer type on structure and properties of amorphous carbon films[J].Journal of Inorganic Materials,2018,33(3):331-338.(in Chinese)
参考文献 13
朱志勇,施雯,苑俊峰,等.非平衡磁控溅射制备 CrTiAlN/GLC复合涂层的表面性能及摩擦磨损性能研究[J].上海金属,2013,35(1):21-25.ZHU Zhiyong,SHI Wen,YUAN Junfeng,et al.Surface properties and tribological properties of CrTiAlN/GLC composite coatings prepared by non-equilibrium magnetron sputtering[J].Shanghai Metals,2013,35(1):21-25.(in Chinese)
参考文献 14
GUAN Xiaoyan,LU Zhibin,WANG Liping.Achieving high tribological performance of graphite-like carbon coatings on Ti6Al4V in aqueous environments by gradient interface design[J].Tribology Letters,2011,44(3):315-325.
参考文献 15
BAI W Q,LI L L,WANG X L,et al.Effects of Ti content on microstructure,mechanical and tribological properties of Ti-doped amorphous carbon multilayer films[J].Surface & Coatings Technology,2015,266:70-78.
参考文献 16
BAI W Q,XIE Y J,LI L L,et al.Tribological and corrosion behaviors of Zr-doped graphite-like carbon nanostructured coatings on Ti6Al4V alloy[J].Surface & Coatings Technology,2017,320:235-239.
参考文献 17
党文伟,李晓升,赵金龙.15-5PH 不锈钢表面沉积TiCrN薄膜的耐环境腐蚀性能研究[J].材料保护,2022,55(4):20-24.DANG Wenwei,LI Xiaosheng,ZHAO Jinlong.Study on environmental corrosion resistance of TiCrN film deposited on the surface of 15-5PH stainless steel[J].Materials Protection,2022,55(4):20-24.(in Chinese)
参考文献 18
彭新元,周贤良,华小珍.15-5PH 不锈钢的时效硬化行为及耐蚀性能[J].中国有色金属学报,2017,27(5):988-996.PENG Xinyuan,ZHOU Xianliang,HUA Xiaozhen.Aging hardening behavior and corrosion resistance of 15-5PH stainless steel[J].The Chinese Journal of Nonferrous Metals,2017,27(5):988-996.(in Chinese)
参考文献 19
PENG Xinyuan,ZHOU Xianliang,HUA Xiaozhen,et.al.Effect of aging on hardening behavior of 15-5 PH stainless steel[J].Journal of Iron and Steel Research(International),2015,22(7):607-614.
参考文献 20
AGHAIE K M,ADHAMI F.Hot deformation of 15-5PH stainless steel[J].Materials Science and Engineering,2010,527(4):1052−1057.
参考文献 21
刘振宝,梁剑雄,杨志勇,等.碳含量对 15-5PH 沉淀硬化不锈钢板材的组织与性能的影响[J].航空材料学报,2011,31(1):7-12.LIU Zhenbao,LIANG Jianxiong,YANG Zhiyong,et al.Effect of carbon content on microstructure and mechanical properties of type 15-5PH precipitation hardened stainless steel[J].Journal of Aeronautical Materials,2011,31(1):7-12.(in Chinese)
参考文献 22
ASTM Standard practice for the preparation of substitute ocean water:ASTM D1141-98(2021)[S].West Conshohocken:ASTM International,2021.
参考文献 23
FERRARI A C,ROBERTSON J.Resonant Raman spectroscopy of disordered,amorphous,and diamond-like carbon[J].Physical Review B,2001,64(075414):1-13.
参考文献 24
GWANG S Kim,SANG Y Lee,JUN H Hahn.Synthesis of CrN/AlN superlattice coatings using closed-field unbalanced magnetron sputtering process[J].Surface & Coatings Technology,2003,171(1-3):91-95.
参考文献 25
任宁,何东青,张广安.磁控溅射沉积 TiB2/DLC 纳米多层膜的结构及其机械性能研究[J].润滑与密封,2017,42(12):56-63.REN Ning,HE Dongqing,ZHANG Guangan.Study on structure and mechanical properties of TiB2/DLC nanolayered films deposited by Magnetron sputtering[J].Lubrication Engineering,2017,42(12):56-63.(in Chinese)
参考文献 26
MUSIL J,NOVAK P,CERSTVY R,et al.Tribological and mechanical properties of nanocrystalline-TiC/α-C nanocomposite thin films[J].Journal of Vacuum Science &Technology A Vacuum Surfaces & Films,2010,28(2):244-249.
参考文献 27
董丹.Cr 掺杂碳基离子镀层的结构调控与摩擦学性能研究[D].西安:西安理工大学,2018.DONG Dan.Structure regulation and Tribological properties of Cr Doped Carbon-based ion Coatings[D].Xi’ an:Xi’ an University of Technology,2018.(in Chinese)
参考文献 28
王永军,李红轩,吉利,等.非平衡磁控溅射沉积类石墨碳膜结构及其摩擦学性能[J].中国表面工程,2011,24(3):17-22.WANG Yongjun,LI Hongxuan,JI Li,et al.Structure and tribological properties of graphite-like carbon films deposited by non-equilibrium magnetron sputtering[J].China Surface Engineering,2011,24(3):17-22.(in Chinese)
参考文献 29
王永欣,王立平,陈建敏,等.高硬度类石墨碳薄膜及其摩擦学研究进展[J].材料导报,2013,27(11):7-13.WANG Yongxin,WANG Liping,CHEN Jianmin,et al.Research progress of high hardness graphite-carbon films and their tribology[J].Materials Review,2013,27(11):7-13.(in Chinese)
参考文献 30
王伟,文怀兴,陈威.海水环境下材料摩擦学行为研究现状[J].材料导报,2017,31(6):51-55.WANG Wei,WEN Huaixing,CHEN Wei.Research status on tribological behaviors of materials under seawater environment[J].Materials Review,2017,31(6):51-55.(in Chinese)
目录contents

    摘要

    针对马氏体沉淀硬化不锈钢 15-5PH(0Cr15Ni5Cu4Nb)在海水环境中易腐蚀磨损的问题,采用直流磁控溅射的方法在 15-5PH 钢样片上制备调制周期分别为 940、375 和 234 nm 的掺杂 Cr 的类石墨碳基多层膜(分别标记为 Cr / GLC-S1、 Cr / GLC-S2 和 Cr / GLC-S3),采用扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、MFT-5000 多功能摩擦磨损试验机等仪器设备系统考察三种类石墨碳基多层薄膜的结构及摩擦学性能。研究结果表明:不同调制周期的类石墨多层膜表面均呈现“菜花状”形貌,随着调制周期的减小,“菜花状”颗粒逐渐减小,膜层变得致密;sp2 键含量逐渐增大,石墨化程度加剧,机械性能更加优异。在干摩擦条件下,调制周期适中的 Cr / GLC-S2 薄膜具有良好的减摩耐磨性能,磨损形式以磨粒磨损为主,而调制周期较大的 Cr / GLC-S1 和调制周期较小的 Cr / GLC-S3 薄膜,在高载荷下均发生不同程度的脆性剥落,导致其摩擦学性能劣化。在人工海水环境中,Cr / GLC-S1 和 Cr / GLC-S2 薄膜在中低载荷下的摩擦学性能较好,磨损形式仍以磨粒磨损为主,在高载荷下三种多层膜均发生不同程度的脆性剥落,特别是调制周期较小的 Cr / GLC-S3 薄膜已失效。针对不同的工况,设计合理的调制周期是提高 GLC 薄膜摩擦学性能的关键,结果可为类石墨碳基薄膜在海洋防护中的实际应用提供一定参考。

    Abstract

    Martensitic precipitation-hardened stainless steel 15-5PH (0Cr15Ni5Cu4Nb) is used for some critical mechanical moving parts in marine equipment, including connecting rods and shafts, which function in the seawater environment for a long time, and are subjected to the dual effects of friction and corrosion. The tribological properties of these moving parts in seawater environment significantly affect the safety and durability of marine engineering equipment. An effective way to improve their tribological properties involves preparing a protective layer of antifriction and wear-resistant coatings on the surface of the friction pair. However, conventional organic protective coatings can not meet the corresponding requirements because seawater is a strong corrosive medium. In this study, to address the problem of corrosion-wear of 15-5PH in seawater environment, Cr / GLC multilayer films with modulation periods of 940, 375, and 234 nm (marked as Cr / GLC-S1, Cr / GLC-S2, and Cr / GLC-S3, respectively) were deposited on 15-5PH stainless steel using DC magnetron sputtering. The structure and tribological properties of the graphite-like carbon films were investigated using scanning electron microscopy, Raman spectroscopy, and an MFT-5000 multifunctional tribometer, among other instruments. From the results, the surfaces of the graphite-like carbon multilayer films with different modulation periods present obvious cauliflower-like particle morphology. As the modulation period decreased, the size of the cauliflower-like particles gradually decreased, the film became denser, and the surface roughness of the multilayer films increased. With a decrease in the modulation period, the content of sp2 bond increased gradually, the degree of graphitization intensified; and the adhesion, hardness, and elastic modulus of the graphite-like carbon films increased gradually, resulting in excellent mechanical properties. Under dry friction, the Cr / GLC-S2 film with a moderate modulation period exhibited better tribological properties, and its wear form was abrasive. However, the Cr / GLC-S1 film with larger modulation period and Cr / GLC-S3 film with smaller modulation period exhibited different degrees of brittle spalling at high loads, resulting in direct contact between the substrate and the couple ball, which resulted in a higher wear rate and poor tribological properties. Under an artificial seawater environment, owing to the lubrication of seawater and the formation of transfer film, the friction coefficients of the three types of graphite-like multilayer films were significantly lower than those of dry friction. The tribological properties of Cr / GLC-S1 and Cr / GLC-S2 were better at medium and low loads. In addition, the wear form remained predominantly abrasive wear because the thicker GLC surface layer produced a good solid lubrication effect, and the formation of penetrating corrosion channels in the film was delayed, resulting in slight wear. However, the three types of multilayer films exhibited different degrees of brittle spalling at high loads. The Cr / GLC-S3 film with a small modulation period was worn out, a large area of the substrate was exposed, and the film was seriously damaged, losing its protective effect on the substrate. Because of the thinner depth of the GLC and Cr sublayers, the longitudinal growth gap formed in the deposition process quickly developed into longitudinal cracks under the interaction of the reciprocating load and corrosion of seawater. Longitudinal cracks quickly penetrated the entire film into the substrate, forming penetrating corrosion channels. Seawater along these etching channels penetrate through the entire film to the matrix, and the combination of the substrate and interlayer is weakened, resulting in serious spalling. Therefore, the design of a reasonable modulation period is the key to improving the tribological properties of GLC films under different working conditions. These results provide a reference for the practical application of graphite-like carbon films in marine protection.

  • 0 前言

  • 海洋装备中一些关键的机械运动零部件(如海水液压马达中的柱塞 / 缸孔、缸体 / 配流盘、滑靴 / 斜盘及轴承等摩擦副、海水液压传动系统、水下作业机器手[1])长期工作在海水环境中,面临着摩擦和腐蚀的双重影响,这些运动零部件在海水环境中的摩擦学性能严重影响海洋工程装备的服役安全性和耐久性,因此,提高其摩擦学性能以满足海洋工程装备的安全运行至关重要,在现有摩擦副表面制备一层具有减摩耐磨防护涂层是有效途径之一。然而,海水具有较强的腐蚀作用,常规的有机防护涂料难以满足这些零部件强韧抗磨蚀需求,近年来,类石墨(Graphite like carbon,GLC)碳基薄膜因其具有良好的化学稳定性、较高的硬度、良好的膜基结合力以及优异的摩擦学性能,成为很有前景的固体润滑防护涂层之一,在机械、光学、微电子等领域被广泛应用[2-5]。但是由于 GLC 薄膜在制备过程中不可避免地存在针孔、微裂纹等缺陷,严重限制了 GLC 薄膜在腐蚀环境中的应用[6-7]。为了解决以上问题,研究人员通过优化工艺参数[8-10]、构筑金属过渡层[11-12]、梯度界面设计[13-14]、交替多层结构设计[715-16]等方法来调控 GLC 薄膜的微观组织和性能,取得了较大进展。其中,交替多层结构设计能够阻碍薄膜的柱状生长,提高薄膜的致密度,同时还能有效减少针孔、微裂纹等缺陷。因此,类石墨多层膜作为防护薄膜有广阔的应用前景,越来越受到研究者的关注。15-5PH(0Cr15Ni5Cu4Nb) 不锈钢作为一种马氏体沉淀硬化不锈钢,具有较高的强度和韧性,不仅广泛应用在航空航天以及核电等尖端领域,而且在海洋工程设备中的使用也日益增多[17-21],如起连接、固定、传递载荷等作用的结构件(如楔块、紧固件、连杆、轴、支架、固定座等),这些零部件在海水中遭受腐蚀与磨损的交互作用,然而,在 15-5PH 不锈钢表面沉积类石墨碳基多层薄膜的研究相对较少,是否能够有效保护这些部件并提高其服役寿命还有待做进一步深入的研究。

  • 本文采用直流磁控溅射技术在 P(100)型单晶硅片和 15-5PH 马氏体沉淀硬化不锈钢上制备不同调制周期的类石墨多层膜,探究调制周期对类石墨碳基多层膜的微观结构、力学性能和摩擦学性能的影响规律,为类石墨碳基薄膜在海洋防护中的实际应用提供一定的参考。

  • 1 试验部

  • 1.1 薄膜的制备

  • 试验材料分别为 P(100)型单晶硅片和 15-5PH 马氏体沉淀硬化不锈钢试样(φ 28 mm×7 mm),单晶硅片用于观察薄膜的微观结构,不锈钢试样用于测试力学性能和摩擦学性能。15-5PH 加热至 1 040℃空冷,后经 480℃的时效处理,热处理后的硬度为 38~40 HRC,试样抛光后表面粗糙度 Ra≤ 0.1 μm。

  • 镀膜采用UDP-700型闭合场非平衡磁控溅射系统。在镀膜之前,依次将试样放入丙酮、乙醇中超声波各清洗 15 min,然后将待镀试样吹干后放入真空室,当真空腔内真空度达到 1.5 mPa 时开始镀膜。在前期多次试验的基础上,采用 Cr 作为打底层,确定类石墨多层膜的底层沉积工艺参数见表1,然后交替开启关闭 Cr 靶和石墨靶,在底层上交替沉积 Cr 和 GLC 子层。在 Cr / GLC 多层膜的制备过程中,基体偏压为 60 V,靶电流为 5 A,薄膜总厚度保持一致,调制周期分别设计为 940、375 和 234 nm, GLC 子层和 Cr 子层的厚度比接近 1,分别具有 2、 5、8 个 Cr 与 GLC 子层的交替沉积结构,对应标记为 Cr / GLC-S1、Cr / GLC-S2、Cr / GLC-S3,其结构示意图如图1 所示,具体制备工艺见表2。

  • 表1 Cr / GLC 多层膜底层的制备工艺参数

  • Table1 Process parameters of backing layer of graphite like carbon multi-layer film

  • 表2 Cr / GLC 多层膜的制备工艺参数

  • Table2 Process parameters of Cr / GLC multi-layer film

  • 图1 Cr / GLC 多层膜结构示意图

  • Fig.1 Structural representation of Cr / GLC multi-layer films

  • 1.2 薄膜的表征

  • 利用 JSM-7800F 场发射扫描电子显微镜观察薄膜的表面和截面形貌;采用法国 Jobin Yvon 公司生产的 HR800 型 Raman 光谱仪对薄膜进行结构分析,激光波长为 514 nm。利用 Nanomechanics 公司的 iNano 型纳米压痕仪(Berkovich 压头,120° 锥角)测试薄膜的硬度及弹性模量,压入深度控制在薄膜厚度的 1 / 10 以内,每个试样测量 5 次,取平均值。

  • 采用 UST-2 划痕仪测试薄膜与基体的结合力,压头为 120 °金刚石压头,载荷范围设定为 0~80 N,加载速度为 100 N / min,划痕长度设为 6 mm。采用 MFT-5000 型多功能摩擦磨损试验机测试薄膜的摩擦学性能,接触方式为球-盘式,摩擦配副为 φ 6 mm 的 Al2O3 陶瓷球(市售,G10 级,Ra≤ 0.02 μm),频率为 2 Hz,磨痕长度 5 mm,试验时间 60 min,分别在 3 N(低载荷)、5 N(中等载荷)及 10 N(高载荷)三种载荷和大气、人工海水(参考标准 ASTM D1141-98 [22]配制)两种环境下测试薄膜的摩擦学性能。

  • 利用白光干涉仪观察磨痕形貌,并按式(2)计算其比磨损率:

  • W=SlFnL
    (2)
  • 式中,W 为比磨损率,m 3 /(N·m);S 为磨痕截面积,m 2l 为往复长度,m;Fn 为法向载荷,N;L 为磨损总行程,m。

  • 2 结果与讨论

  • 2.1 SEM 分析

  • 图2 为三种不同调制周期的类石墨碳基多层膜的截面及表面形貌的 SEM 照片。由图中可以看出,类石墨多层膜由底层及其上交替沉积的 Cr 子层(亮层)和 GLC 子层(暗层)组成,表层为 GLC 层,其中 Cr 打底层呈现典型的柱状结构生长;随着调制周期的减小,Cr 子层、GLC 子层的柱状生长结构逐渐消失。观察其表面形貌可以看出,三种薄膜表面均呈现明显的“菜花状”形貌,颗粒形状明显,颗粒的间隙清晰,无明显的缺陷,膜层致密;随着调制周期的减小,多层膜表面的颗粒尺寸逐渐变小。不同调制周期薄膜的表面粗糙度分别为 0.006、 0.008、0.015 μm,随着调制周期的减小,类石墨多层膜的表面粗糙度逐渐增大。分析认为,这可能是由于随着调制周期的减小,多层膜的层间界面由平整向“山脊”状转变(见图2c 中的放大图),层间界面逐渐变的模糊粗糙,导致多层膜的表面粗糙度逐渐升高。

  • 图2 不同调制周期的 Cr / GLC 多层膜的表面及截面形貌

  • Fig.2 Surface and cross section morphology of Cr / GLC multi-layer films with different modulation periods

  • 2.2 Raman 分析

  • 研究表明,非晶碳基薄膜一般是由位于 1 350 cm−1 处的 D 峰和 1 560 cm−1 处的 G 峰构成,其中,经拟合后 D 峰面积与 G 峰面积的比值 ID / IG 与 sp 2、sp 3 键的含量密切相关,其值越大,sp 2 含量就越高[1123]

  • 图3 为三种类石墨多层膜的拉曼光谱及高斯拟合结果。从图中可以看出,三种薄膜均在 800~2 000 cm−1 范围内表现为一不对称的宽峰,是由位于 1 370 cm−1 附近的 D 峰和 1 560 cm−1 附近的 G 峰叠合而成的,并且 D 峰强度远高于 G 峰强度。表3 为高斯拟合后薄膜的拉曼峰参数,可以看出,随着调制周期的减小,类石墨多层膜的 ID / IG 值不断增大,石墨化程度加剧。这可能是由于随着调制周期的减小,层间界面增多促进了薄膜内部的应力释放,诱使薄膜在沉积过程中形成了更多的 sp 2 杂化结构,提高了薄膜的石墨化程度[7]

  • 图3 三种类石墨多层膜的拉曼光谱

  • Fig.3 Raman spectra of different graphite like carbon multi-layer films

  • 表3 三种类石墨多层膜的拉曼峰参数

  • Table3 Raman peak parameters of graphite like carbon multi-layer films

  • 2.3 硬度及弹性模量

  • 图4 为三种类石墨多层膜的硬度和弹性模量,由图可知,三种多层膜的硬度和弹性模量分别在 15.21 和 176.26 GPa 以上,并且随着调制周期的减小,其硬度与弹性模量逐渐增大,分析认为,类石墨碳基薄膜的硬度和弹性模量不仅与内部的 sp 2 和 sp 3 杂化键的相对含量有关,还与薄膜的层间界面的数量有关。由 Raman 分析可知,随着调制周期的减小,层间界面增多,碳基薄膜的 ID / IG 值增大,即 sp 2 含量增多,sp 3 含量相对减少,石墨化程度升高,不利于硬度的提高;然而层间界面的增多,阻碍了层间位错的生成及运动,有利于提高薄膜的硬度[24-25]。由此可见,多层结构的界面效应对于硬度和弹性模量的影响大于石墨化程度,起主导作用。

  • 图4 三种类石墨多层膜的硬度和弹性模量

  • Fig.4 Hardness and elastic modulus of graphite like carbon multi-layer films

  • 在薄膜的结构设计过程中,薄膜的韧性也至关重要。H3 / E2 (塑性因子)的比值代表了薄膜的抗塑性变形能力[26-27],三种薄膜的 H3 / E2 值分别为 0.113、0.125、0.135,即随着调制周期的减小,薄膜的抗塑性变形能力逐渐增大。

  • 2.4 膜基结合力

  • 图5 为不同调制周期的类石墨多层膜的膜基结合力曲线,其中纵坐标为摩擦力,横坐标为加载力。可以看出,三种薄膜分别在 60、65、67 N 处发生突变。结合图6 的划痕形貌,Cr / GLC-S1 薄膜在划痕长度约 4.6 mm 处出现连续剥落,确定其结合力为 61.3 N;Cr / GLC-S2 薄膜在划痕长度约 5 mm 处出现连续剥落,确定其结合力为 66 N; Cr / GLC-S3 薄膜在划痕长度约 5.01 mm 处出现连续剥落,确定其结合力为 66.8 N。由此可见,多层膜的膜基结合力随着调制周期的减小而逐渐增大。

  • 图5 三种类石墨多层膜的结合力曲线

  • Fig.5 Adhesion curves of graphite like carbon multi-layer films

  • 图6 三种类石墨多层膜的划痕形貌

  • Fig.6 The scratch morphology of graphite like carbon multi-layer films

  • 2.5 摩擦学性能

  • 2.5.1 干摩擦

  • 图7 为不同调制周期的多层膜分别在 3 N(低载荷)、5 N(中等载荷)及 10 N(高载荷)三种载荷下的摩擦因数曲线。从图中可以看出,在不同载荷下,三种类石墨多层膜的摩擦因数曲线在摩擦前期均存在较大波动,随后进入相对稳定阶段,这是由于摩擦初始阶段薄膜表面存在一定的微凸体,微凸体和对偶材料之间形成互锁作用,导致摩擦因数较高;随着摩擦过程的进行,薄膜表面的微凸体逐渐被磨平,摩擦因数减小并趋于稳定[28]。随着载荷的增大,除 Cr / GLC-S3 薄膜外,其他两种调制周期的多层膜的摩擦因数均逐渐降低。在中、高载荷下,随着调制周期的减小薄膜的摩擦因数逐渐升高。

  • 图7 不同载荷下类石墨多层膜的摩擦因数曲线和平均摩擦因数

  • Fig.7 Friction factor curves and average friction factors of graphite like carbon multi-layer films under different loads

  • 图8 为三种类石墨多层膜与 Al2O3 陶瓷球对磨 1 h 后的平均磨损率。从图中可以看出,随着载荷的增大,除 Cr / GL-S3 薄膜外,其余两种类石墨多层膜的磨损率均逐渐降低。在相同载荷下,随着调制周期的减小,类石墨多层膜的磨损率先降低后升高, Cr / GLC-S2 的磨损率最低。

  • 图8 不同载荷下不同调制周期的类石墨多层膜的磨损率

  • Fig.8 Wear rates of graphite like carbon multi-layer films with different modulation periods under different loads

  • 对比三种载荷下类石墨多层膜的磨痕形貌(图9、 10),可以看出,随着载荷的增大,三种薄膜的磨痕宽度均增加,其中 Cr / GLC-S1 薄膜在低载荷时磨痕表面就出现一些很浅的犁沟,随着载荷的增大,犁沟愈发明显,当载荷增至 10 N 时,磨痕周围虽未出现明显的磨屑堆积,但磨痕底部出现较多层间裂纹(图10a),从而降低了子层之间的结合强度,随着这些层间裂纹的不断萌生和扩展,摩擦接触面上会发生局部脆性剥落;从图10b 的 EDS 结果中,在多个区域检测到有 Fe 的信号,表明薄膜已出现脆性剥落。而 Cr / GLC-S2 薄膜的磨损最轻,在中低载荷下,磨痕表面均比较光滑,无明显的犁沟,在高载荷下,磨痕内出现明显的犁沟,表现出典型的磨粒磨损特征;从图10d 的 EDS 结果中,仅检测出 Cr、C 的信号。Cr / GLC-S3 薄膜的磨损最为严重,在低载时,磨痕表面就可观察到大量较深的犁沟,随着载荷的增大,磨痕宽度增加,犁沟愈发严重,磨痕底部粗糙不平,分布有平行的犁沟和磨屑(图10e),并伴有大片剥落区,导致基底与对偶球之间的直接接触和较高的磨损率;图10f 的 EDS 结果中 Fe 元素的含量较高,这一结果表明薄膜在载荷的往复作用下,受损伤严重的区域发生了薄膜从基体的大块剥落。

  • 图9 不同载荷下类石墨多层膜的磨痕形貌

  • Fig.9 Wear scars of graphite like carbon multi-layer films under different loads

  • 图10 三种类石墨多层膜磨痕的 SEM 照片和 EDS 结果 (Fn=10 N)

  • Fig.10 SEM images and EDS scanning spectrum of wear marks of three graphite like carbon multi-layer films (Fn=10 N)

  • 对三种薄膜而言,有三个界面影响薄膜的性能:第一个是 GLC 表层与 Cr 子层界面,第二个是 GLC 子层与 Cr 子层界面,第三个是基底与 Cr 打底层界面。在 3 N 低载荷条件下,接触应力较小,表面形貌及第一个界面对摩擦磨损性能影响较大。对调制周期较大的 Cr / GLC-S1 薄膜,虽然其表面粗糙度较小,但硬度和膜基结合力较低,摩擦过程中产生的石墨化摩擦膜虽降低了摩擦因数,但同时也进一步降低了硬度,硬度降低,薄膜的抗磨性能减弱,磨损率增加,磨痕内观察到由硬质磨屑颗粒或微凸体的压入和犁削作用导致的很浅的犁沟(图9a、 11a)。对调制周期较小的 Cr / GLC-S3 薄膜,虽然硬度和膜基结合力较高,但其表面粗糙度较大,粗糙的表面在摩擦过程中容易产生磨屑,这些磨屑又可能作为磨料,导致其磨损更加严重,从图11c 的 EDS结果中并未检测到 Fe 信号,说明膜层尚未出现脆性开裂或微区剥落。同时 GLC 表层很薄,不足以抵抗外部荷载而发生损伤,导致其下方的 Cr 子层大量裸露在滑动界面处(这一点从图11c 的 EDS 分析中 Cr 的含量很高得以证实),阻碍了碳转移层的形成,这也是造成其磨损率较高的原因。对调制周期适中的 Cr / GLC-S2 薄膜,具有适宜的硬度和良好的膜基结合力,在摩擦过程中形成的石墨化转移膜是低摩擦剪切层,发挥了良好的固体润滑效果,磨损最轻。

  • 图11 不同调制周期的类石墨多层膜磨痕区的 EDS 结果 (Fn=3 N)

  • Fig.11 Results of EDS for graphite like carbon multi-layer films with different modulation periods (Fn=3 N)

  • 在 10 N 高载荷时,三个界面均影响薄膜的摩擦学性能。在较高载荷下,摩擦过程中产生更多的摩擦热,这更促进了石墨化的发生(表4,在 10 N 时的 ID / IG值增大),进一步降低了摩擦因数,然而由于接触应力较大,薄膜与基底的塑性变形增大。对 Cr / GLC-S1 薄膜而言,H3 / E2 较低,抵抗塑性变形的能力较弱,磨痕内部发生严重塑性变形,导致膜层内部出现微裂纹,在外部载荷的往复作用下,微裂纹将快速扩展,并最终导致材料发生微区剥离。对调制周期适中的 Cr / GLC-S2 薄膜,磨痕内部无明显塑性变形及脆性剥落痕迹,这得益于其适当的子层厚度足以抵抗外部荷载而不易产生微裂纹,且同时保证膜层内有足够的层间界面抑制膜层内部微裂纹的扩展。Cr / GLC-S3 薄膜虽有足够多的层间界面作为抑制裂纹扩展的障碍,但较薄的子层厚度在承受外部荷载时因强度不足而促使裂纹萌生,在外部载荷的往复作用下,这些微裂纹快速扩展至基体,导致薄膜的大片剥落。

  • 表4 类石墨多层膜在低载荷(3 N)及高载荷(10 N) 下磨痕区域ID / IG的值

  • Table4 Value of ID / IG of wear marks graphite like carbon multi-layer films under low and high loads (3 N and 10 N)

  • 2.5.2 海水环境

  • 图12 为海水环境中不同调制周期的类石墨多层膜在不同载荷下的摩擦因数曲线,从图中可以看出,Cr / GLC-S1 和 Cr / GLC-S2 薄膜的摩擦因数曲线波动较小,且随着载荷的增大,两种薄膜的摩擦因数均有所降低,但在中高载荷时下降不明显。而 Cr / GLC-S3 薄膜的摩擦因数曲线波动较大,尤其是在中高载荷下,当载荷增至 10 N 时,摩擦因数急剧增大,表明薄膜已剥落露出了基体。

  • 对比三种类石墨多层膜在干摩擦及人工海水环境中的摩擦因数,发现其在海水环境下的摩擦因数明显低于干摩擦,其主要原因在于干摩擦条件下主要减摩机理受石墨化转移膜控制,而海水环境下吸附在类石墨薄膜表面的水分子可以降低其石墨结构中的六元环基面间的结合,使薄膜表面在海水中表现出较低的摩擦剪切阻力[29]。另外,人工海水中的 Ca2+ 和 Mg2+ 在摩擦过程中生成了 CaCO3 和 Mg(OH)2,具有一定的润滑作用[30],加上在摩擦配副表面形成的转移膜的共同作用下,薄膜在海水环境中具有较低的摩擦因数。

  • 图12 不同载荷下类石墨多层膜的摩擦因数曲线和平均摩擦因数

  • Fig.12 Friction factor curves and average friction factors of graphite like carbon multi-layer films under different loads

  • 三种类石墨多层膜在人工海水环境中的磨损率如图13 所示,从图中可以看出,随着载荷的增大,除 Cr / GLC-S3 薄膜外,其余两种多层膜的磨损率均先减小后增大;而 Cr / GLC-S3 薄膜的磨损率在 5 N 时已很高,10 N 时被磨破,故不再计算其磨损率。在载荷相同条件下,调制周期较大的 Cr / GLC-S1 薄膜的耐磨性较好,随着调制周期的减小,类石墨多层膜的磨损率逐渐增大,这是由于随着调制周期的减小,层间界面增多,多层膜中 GLC 子层和 Cr 子层的厚度变薄,较薄的 GLC 表层难以抵御摩擦和腐蚀的交互作用而较快产生微裂纹,靠近裂纹的 Cr 子层在海水的腐蚀作用下材料键合被削弱,进而与腐蚀液发生电化学反应产生电子的得失[6],造成材料损失。

  • 图13 不同载荷下类石墨多层膜的磨损率

  • Fig.13 Wear rates of graphite like carbon multi-layer films under different loads

  • 对比三种类石墨多层膜的磨痕形貌(图14、15),发现在 3 N 低载荷下,Cr / GLC-S1 和 Cr / GLC-S2 薄膜磨痕表面有轻微的犁沟,表现为轻微的磨粒磨损; 随着载荷的增大,磨痕宽度和深度增大,磨痕表面犁沟更明显,磨粒磨损加剧;当载荷增大至 10 N 时,磨痕内部存在着犁沟和剥落区域,且 Cr / GLC-S2 薄膜的剥落区域较宽、较深(图14h、15b),磨损较 Cr / GLC-S1 严重,EDS 结果中已检测出 Fe 信号(图16b),磨损形式由单一、轻微的磨粒磨损转变为严重的磨粒磨损和局部脆性剥落。而 Cr / GLC-S3 薄膜在低载荷时就已出现较严重的磨粒磨损,随着载荷的增大,脆性剥落不断加剧,当载荷增大至 10 N 时,磨痕内已露出大片不锈钢基体(图15c)。图16c 的 EDS 结果中有大量 Fe 元素,这一结果表明薄膜在载荷和海水的交互作用下,受损伤严重的区域发生了薄膜从基体的整体剥落。

  • 图14 不同载荷下类石墨多层膜的磨痕形貌(Fn=10 N)

  • Fig.14 Wear scars of graphite like carbon multi-layer films under different loads (Fn=10 N)

  • 图15 类石墨多层膜磨痕的 SEM 照片(Fn=10 N)

  • Fig.15 SEM images of wear marks of graphite like carbon multi-layer films (Fn=10 N)

  • 图16 海水环境中不同调制周期的类石墨多层膜磨痕区的 EDS 结果(Fn=10 N)

  • Fig.16 Results of EDS for graphite like carbon multi-layer films with different modulation periods in seawater (Fn=10 N)

  • Cr / GLC 多层膜在海水环境中的磨损模型如图17 所示,在 3 N 低载荷条件下(图17a),接触应力较小,在对摩副和薄膜对磨过程中,虽然 GLC 薄膜固体润滑效应和海水润滑效应的协同作用使 GLC 多层膜表现出较干摩擦条件下更低的摩擦因数,但是在摩擦接触面之间也不可避免地发生固固接触造成磨粒磨损的犁削效应,对调制周期较大的 Cr / GLC-S1 多层膜,GLC 表层和 Cr 子层的厚度较大,腐蚀介质海水通过在制备过程中产生的缺陷进入薄膜到达 GLC-Cr 层间界面的路径较长,摩擦损伤并未深入膜层深处,仅发生在 GLC 表层(从磨痕轮廓曲线中测得磨痕深度为 124 μm,未超过 GLC 表层深度),较厚的 GLC 表层较好地发挥了固体润滑作用,故而磨损较轻。而对于调制周期较小的 Cr / GLC-S3 多层膜,GLC 表层和 Cr 子层的厚度较小,较薄的 GLC 表层难以抵御摩擦和腐蚀的交互作用很快被磨损,磨损深度(约 280 μm)已超过 GLC 表层厚度,到达 Cr 子层,致使 GLC 薄膜的固体润滑效应减弱,同时较薄的 GLC 子层在海水的楔入作用下 Cl更易到达层间结合处发生电化学腐蚀[6],最终导致 Cr / GLC-S3 薄膜的磨损。

  • 图17 类石墨多层膜在海水环境中的摩擦磨损示意图

  • Fig.17 Friction and wear schematic of graphite-like carbon multi-layer films in seawater

  • 在 10 N 高载荷下(图17b),接触应力较大,薄膜在较大的外部载荷和海水中 Cl的侵蚀作用下,在制备过程中形成的纵向生长间隙成为萌生纵向裂纹的裂纹源,随着摩擦过程的进行,这些纵向裂纹不断合并和扩展,人工海水通过这些缺陷进入薄膜的内部,腐蚀了 Cr 子层与 GLC 子层之间的界面,进一步减弱了层间界面结合,当裂纹贯穿整个膜层时,形成贯穿性腐蚀通道[6],海水沿着浸蚀通道贯穿整个膜层到达基体,打底层和基体材料之间的结合随之也被弱化,进而产生剥落。对于调制周期较大的 Cr / GLC-S1 多层膜,GLC 子层和 Cr 子层较厚,延缓了这种贯穿性腐蚀通道的形成,仅有少量微区剥落。对于调制周期较小的 Cr / GLC-S3 多层膜,由于 GLC 子层和 Cr 子层较薄,在往复载荷和海水介质腐蚀的交互作用下,纵向裂纹很快贯穿整个膜层到达基体,发生严重剥落,从图16c 中可以观察到磨痕中大面积的剥落区域。调制周期适中的 Cr / GLC-S2 多层膜,磨损程度介于二者之间。

  • 3 结论

  • (1)随着调制周期的减小,类石墨多层膜表面 “菜花状”颗粒逐渐减小,膜层变得致密,同时 sp 2 键含量逐渐增大,石墨化程度加剧。

  • (2)随着调制周期的减小,多层膜的硬度和弹性模量逐渐升高,膜基结合力逐渐增大。

  • (3)在干摩擦条件下,调制周期适中的 Cr / GLC-S2 薄膜具有良好的减摩耐磨性能,磨损形式以磨粒磨损为主,而调制周期较大的 Cr / GLC-S1 和调制周期较小的 Cr / GLC-S3 薄膜,在高载荷下均发生不同程度的脆性剥落,摩擦学性能劣化。

  • (4)在人工海水环境中, Cr / GLC-S1 和 Cr / GLC-S2 薄膜在中低载荷下具有良好的摩擦学性能,磨损机制主要为磨粒磨损;在载荷相同条件下,调制周期较大的 Cr / GLC-S1 薄膜的耐磨性较好,这得益于其较厚的 GLC 表层较好地发挥了固体润滑效果,同时延缓了膜层内贯穿性腐蚀通道的形成。

  • (5)研究成果为类石墨碳基薄膜在海洋防护中的实际应用奠定了理论基础。

  • 参考文献

    • [1] 刘二勇,曾志翔,赵文杰.海水环境中金属材料腐蚀磨损及耐磨防腐一体化技术的研究进展[J].表面技术,2017,46(11):149-157.LIU Eryong,ZENG Zhixiang,ZHAO Wenjie.Corrosive wear and integrated anti-wear & anti-corrosion technology metallic materials in seawater[J].Surface Technology,2017,46(11):149-157.(in Chinese)

    • [2] 邢益彬,蒋百灵,李洪涛,等.铝合金双极板磁控溅射Ag掺杂类石墨薄膜表面改性研究[J].表面技术,2017,46(8):67-71.XING Yibin,JIANG Bailing,LI Hongtao,et al.Surface modification of Ag-doped graphite films by magnetron sputtering of aluminum alloy bipolar plate[J].Surface Technology,2017,46(8):67-71.(in Chinese)

    • [3] 谷守旭,李迎春,邱明,等.碳靶电流对磁控溅射 GLC/Ti 薄膜结构及摩擦学性能的影响[J].润滑与密封,2021,46(9):32-39.GU Shouxu,LI Yingchun,QIU Ming,et al.Effect of carbon target current on structure and tribological properties of magnetron sputtering GLC/Ti films[J].Lubrication Engineering,2021,46(9):32-39.(in Chinese)

    • [4] WANG Yongjun,LI Hongxuan,JI Li,et al.Microstructure,mechanical and tribological properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering[J].Surface and Coatings Technology,2011,205(8):3058-3065.

    • [5] VIANA G A,LACERDA R G,FREIRE J F L,et al.ESR investigation of graphite-like amorphous carbon films revealing itinerant states as the ones responsible for the signal[J].Journal of Non-Crystalline Solids,2008,354(19–25):2135-2137.

    • [6] 李蕾.强韧类石墨碳基薄膜材料的设计制备与磨蚀行为研究[D].宁波:中国科学院大学,2018.LI Lei.Study on the design,preparation and abrasion behavior of strong and tough graphite-like carbon based thin Films[D].Ningbo:University of Chinese Academy of Sciences,2018.(in Chinese)

    • [7] 马国政,雍青松,王海斗,等.调制周期对纳米多层类石墨薄膜力学性能及摩擦学性能的影响[J].机械工程学报,2018,54(15):92-99.MA Guozheng,YONG Qingsong,WANG Haidou,et al.Effect of modulation period on mechanical properties and tribological properties of nano-multilayer graphite-like Films[J].Journal of Mechanical Engineering,2018,54(15):92-99.(in Chinese)

    • [8] 施文彦,陆斌斌,陈妍,等.碳靶电流对掺铬类石墨镀层结构和性能的影响研究[J].表面技术,2017,46(8):109-114.SHI Wenyan,LU Binbin,CHEN Yan,et al.Effect of carbon target current on structure and properties of chromium-doped graphite coatings[J].Surface technology,2017,46(8):109-114.(in Chinese)

    • [9] 王瑜,王春伟,袁战伟,等.靶电流对磁控溅射类石墨镀层组织与性能的影响[J].热加工工艺,2017,46(16):161-163.WANG Yu,WANG Chunwei,YUAN Zhanwei,et al.Effect of target current on microstructure and properties of magnetron sputtering graphite coating[J].Hot Working Technology,2017,46(16):161-163.(in Chinese)

    • [10] 郭巧琴,李建平.基体偏压对磁控溅射类石墨镀层耐蚀性的影响[J].电镀与精饰,2015,37(5):6-8,18.GUO Qiaoqin,LI Jianping.Effect of matrix bias on corrosion resistance of magnetron sputtering graphite coatings[J].Electroplating and Finishing,2015,37(5):6-8,18.(in Chinese)

    • [11] 王佳凡,王永欣,陈克选,等.Cr 掺杂对GLC薄膜结构及其摩擦学性能的影响[J].摩擦学学报,2015,32(2):206-213.WANG Jiafan,WANG Yongxin,CHEN Kexuan,et al.Effect of Cr doping on the structure and tribological properties of GLC thin films[J].Tribology,2015,32(2):206-213.(in Chinese)

    • [12] 李蕾,郭鹏,刘林林,等.金属过渡层类型对非晶碳膜结构性能的影响[J].无机材料学报,2018,33(3):331-338.LI Lei,GUO Peng,LIU Linlin,et al.Effect of metal transition layer type on structure and properties of amorphous carbon films[J].Journal of Inorganic Materials,2018,33(3):331-338.(in Chinese)

    • [13] 朱志勇,施雯,苑俊峰,等.非平衡磁控溅射制备 CrTiAlN/GLC复合涂层的表面性能及摩擦磨损性能研究[J].上海金属,2013,35(1):21-25.ZHU Zhiyong,SHI Wen,YUAN Junfeng,et al.Surface properties and tribological properties of CrTiAlN/GLC composite coatings prepared by non-equilibrium magnetron sputtering[J].Shanghai Metals,2013,35(1):21-25.(in Chinese)

    • [14] GUAN Xiaoyan,LU Zhibin,WANG Liping.Achieving high tribological performance of graphite-like carbon coatings on Ti6Al4V in aqueous environments by gradient interface design[J].Tribology Letters,2011,44(3):315-325.

    • [15] BAI W Q,LI L L,WANG X L,et al.Effects of Ti content on microstructure,mechanical and tribological properties of Ti-doped amorphous carbon multilayer films[J].Surface & Coatings Technology,2015,266:70-78.

    • [16] BAI W Q,XIE Y J,LI L L,et al.Tribological and corrosion behaviors of Zr-doped graphite-like carbon nanostructured coatings on Ti6Al4V alloy[J].Surface & Coatings Technology,2017,320:235-239.

    • [17] 党文伟,李晓升,赵金龙.15-5PH 不锈钢表面沉积TiCrN薄膜的耐环境腐蚀性能研究[J].材料保护,2022,55(4):20-24.DANG Wenwei,LI Xiaosheng,ZHAO Jinlong.Study on environmental corrosion resistance of TiCrN film deposited on the surface of 15-5PH stainless steel[J].Materials Protection,2022,55(4):20-24.(in Chinese)

    • [18] 彭新元,周贤良,华小珍.15-5PH 不锈钢的时效硬化行为及耐蚀性能[J].中国有色金属学报,2017,27(5):988-996.PENG Xinyuan,ZHOU Xianliang,HUA Xiaozhen.Aging hardening behavior and corrosion resistance of 15-5PH stainless steel[J].The Chinese Journal of Nonferrous Metals,2017,27(5):988-996.(in Chinese)

    • [19] PENG Xinyuan,ZHOU Xianliang,HUA Xiaozhen,et.al.Effect of aging on hardening behavior of 15-5 PH stainless steel[J].Journal of Iron and Steel Research(International),2015,22(7):607-614.

    • [20] AGHAIE K M,ADHAMI F.Hot deformation of 15-5PH stainless steel[J].Materials Science and Engineering,2010,527(4):1052−1057.

    • [21] 刘振宝,梁剑雄,杨志勇,等.碳含量对 15-5PH 沉淀硬化不锈钢板材的组织与性能的影响[J].航空材料学报,2011,31(1):7-12.LIU Zhenbao,LIANG Jianxiong,YANG Zhiyong,et al.Effect of carbon content on microstructure and mechanical properties of type 15-5PH precipitation hardened stainless steel[J].Journal of Aeronautical Materials,2011,31(1):7-12.(in Chinese)

    • [22] ASTM Standard practice for the preparation of substitute ocean water:ASTM D1141-98(2021)[S].West Conshohocken:ASTM International,2021.

    • [23] FERRARI A C,ROBERTSON J.Resonant Raman spectroscopy of disordered,amorphous,and diamond-like carbon[J].Physical Review B,2001,64(075414):1-13.

    • [24] GWANG S Kim,SANG Y Lee,JUN H Hahn.Synthesis of CrN/AlN superlattice coatings using closed-field unbalanced magnetron sputtering process[J].Surface & Coatings Technology,2003,171(1-3):91-95.

    • [25] 任宁,何东青,张广安.磁控溅射沉积 TiB2/DLC 纳米多层膜的结构及其机械性能研究[J].润滑与密封,2017,42(12):56-63.REN Ning,HE Dongqing,ZHANG Guangan.Study on structure and mechanical properties of TiB2/DLC nanolayered films deposited by Magnetron sputtering[J].Lubrication Engineering,2017,42(12):56-63.(in Chinese)

    • [26] MUSIL J,NOVAK P,CERSTVY R,et al.Tribological and mechanical properties of nanocrystalline-TiC/α-C nanocomposite thin films[J].Journal of Vacuum Science &Technology A Vacuum Surfaces & Films,2010,28(2):244-249.

    • [27] 董丹.Cr 掺杂碳基离子镀层的结构调控与摩擦学性能研究[D].西安:西安理工大学,2018.DONG Dan.Structure regulation and Tribological properties of Cr Doped Carbon-based ion Coatings[D].Xi’ an:Xi’ an University of Technology,2018.(in Chinese)

    • [28] 王永军,李红轩,吉利,等.非平衡磁控溅射沉积类石墨碳膜结构及其摩擦学性能[J].中国表面工程,2011,24(3):17-22.WANG Yongjun,LI Hongxuan,JI Li,et al.Structure and tribological properties of graphite-like carbon films deposited by non-equilibrium magnetron sputtering[J].China Surface Engineering,2011,24(3):17-22.(in Chinese)

    • [29] 王永欣,王立平,陈建敏,等.高硬度类石墨碳薄膜及其摩擦学研究进展[J].材料导报,2013,27(11):7-13.WANG Yongxin,WANG Liping,CHEN Jianmin,et al.Research progress of high hardness graphite-carbon films and their tribology[J].Materials Review,2013,27(11):7-13.(in Chinese)

    • [30] 王伟,文怀兴,陈威.海水环境下材料摩擦学行为研究现状[J].材料导报,2017,31(6):51-55.WANG Wei,WEN Huaixing,CHEN Wei.Research status on tribological behaviors of materials under seawater environment[J].Materials Review,2017,31(6):51-55.(in Chinese)

  • 参考文献

    • [1] 刘二勇,曾志翔,赵文杰.海水环境中金属材料腐蚀磨损及耐磨防腐一体化技术的研究进展[J].表面技术,2017,46(11):149-157.LIU Eryong,ZENG Zhixiang,ZHAO Wenjie.Corrosive wear and integrated anti-wear & anti-corrosion technology metallic materials in seawater[J].Surface Technology,2017,46(11):149-157.(in Chinese)

    • [2] 邢益彬,蒋百灵,李洪涛,等.铝合金双极板磁控溅射Ag掺杂类石墨薄膜表面改性研究[J].表面技术,2017,46(8):67-71.XING Yibin,JIANG Bailing,LI Hongtao,et al.Surface modification of Ag-doped graphite films by magnetron sputtering of aluminum alloy bipolar plate[J].Surface Technology,2017,46(8):67-71.(in Chinese)

    • [3] 谷守旭,李迎春,邱明,等.碳靶电流对磁控溅射 GLC/Ti 薄膜结构及摩擦学性能的影响[J].润滑与密封,2021,46(9):32-39.GU Shouxu,LI Yingchun,QIU Ming,et al.Effect of carbon target current on structure and tribological properties of magnetron sputtering GLC/Ti films[J].Lubrication Engineering,2021,46(9):32-39.(in Chinese)

    • [4] WANG Yongjun,LI Hongxuan,JI Li,et al.Microstructure,mechanical and tribological properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering[J].Surface and Coatings Technology,2011,205(8):3058-3065.

    • [5] VIANA G A,LACERDA R G,FREIRE J F L,et al.ESR investigation of graphite-like amorphous carbon films revealing itinerant states as the ones responsible for the signal[J].Journal of Non-Crystalline Solids,2008,354(19–25):2135-2137.

    • [6] 李蕾.强韧类石墨碳基薄膜材料的设计制备与磨蚀行为研究[D].宁波:中国科学院大学,2018.LI Lei.Study on the design,preparation and abrasion behavior of strong and tough graphite-like carbon based thin Films[D].Ningbo:University of Chinese Academy of Sciences,2018.(in Chinese)

    • [7] 马国政,雍青松,王海斗,等.调制周期对纳米多层类石墨薄膜力学性能及摩擦学性能的影响[J].机械工程学报,2018,54(15):92-99.MA Guozheng,YONG Qingsong,WANG Haidou,et al.Effect of modulation period on mechanical properties and tribological properties of nano-multilayer graphite-like Films[J].Journal of Mechanical Engineering,2018,54(15):92-99.(in Chinese)

    • [8] 施文彦,陆斌斌,陈妍,等.碳靶电流对掺铬类石墨镀层结构和性能的影响研究[J].表面技术,2017,46(8):109-114.SHI Wenyan,LU Binbin,CHEN Yan,et al.Effect of carbon target current on structure and properties of chromium-doped graphite coatings[J].Surface technology,2017,46(8):109-114.(in Chinese)

    • [9] 王瑜,王春伟,袁战伟,等.靶电流对磁控溅射类石墨镀层组织与性能的影响[J].热加工工艺,2017,46(16):161-163.WANG Yu,WANG Chunwei,YUAN Zhanwei,et al.Effect of target current on microstructure and properties of magnetron sputtering graphite coating[J].Hot Working Technology,2017,46(16):161-163.(in Chinese)

    • [10] 郭巧琴,李建平.基体偏压对磁控溅射类石墨镀层耐蚀性的影响[J].电镀与精饰,2015,37(5):6-8,18.GUO Qiaoqin,LI Jianping.Effect of matrix bias on corrosion resistance of magnetron sputtering graphite coatings[J].Electroplating and Finishing,2015,37(5):6-8,18.(in Chinese)

    • [11] 王佳凡,王永欣,陈克选,等.Cr 掺杂对GLC薄膜结构及其摩擦学性能的影响[J].摩擦学学报,2015,32(2):206-213.WANG Jiafan,WANG Yongxin,CHEN Kexuan,et al.Effect of Cr doping on the structure and tribological properties of GLC thin films[J].Tribology,2015,32(2):206-213.(in Chinese)

    • [12] 李蕾,郭鹏,刘林林,等.金属过渡层类型对非晶碳膜结构性能的影响[J].无机材料学报,2018,33(3):331-338.LI Lei,GUO Peng,LIU Linlin,et al.Effect of metal transition layer type on structure and properties of amorphous carbon films[J].Journal of Inorganic Materials,2018,33(3):331-338.(in Chinese)

    • [13] 朱志勇,施雯,苑俊峰,等.非平衡磁控溅射制备 CrTiAlN/GLC复合涂层的表面性能及摩擦磨损性能研究[J].上海金属,2013,35(1):21-25.ZHU Zhiyong,SHI Wen,YUAN Junfeng,et al.Surface properties and tribological properties of CrTiAlN/GLC composite coatings prepared by non-equilibrium magnetron sputtering[J].Shanghai Metals,2013,35(1):21-25.(in Chinese)

    • [14] GUAN Xiaoyan,LU Zhibin,WANG Liping.Achieving high tribological performance of graphite-like carbon coatings on Ti6Al4V in aqueous environments by gradient interface design[J].Tribology Letters,2011,44(3):315-325.

    • [15] BAI W Q,LI L L,WANG X L,et al.Effects of Ti content on microstructure,mechanical and tribological properties of Ti-doped amorphous carbon multilayer films[J].Surface & Coatings Technology,2015,266:70-78.

    • [16] BAI W Q,XIE Y J,LI L L,et al.Tribological and corrosion behaviors of Zr-doped graphite-like carbon nanostructured coatings on Ti6Al4V alloy[J].Surface & Coatings Technology,2017,320:235-239.

    • [17] 党文伟,李晓升,赵金龙.15-5PH 不锈钢表面沉积TiCrN薄膜的耐环境腐蚀性能研究[J].材料保护,2022,55(4):20-24.DANG Wenwei,LI Xiaosheng,ZHAO Jinlong.Study on environmental corrosion resistance of TiCrN film deposited on the surface of 15-5PH stainless steel[J].Materials Protection,2022,55(4):20-24.(in Chinese)

    • [18] 彭新元,周贤良,华小珍.15-5PH 不锈钢的时效硬化行为及耐蚀性能[J].中国有色金属学报,2017,27(5):988-996.PENG Xinyuan,ZHOU Xianliang,HUA Xiaozhen.Aging hardening behavior and corrosion resistance of 15-5PH stainless steel[J].The Chinese Journal of Nonferrous Metals,2017,27(5):988-996.(in Chinese)

    • [19] PENG Xinyuan,ZHOU Xianliang,HUA Xiaozhen,et.al.Effect of aging on hardening behavior of 15-5 PH stainless steel[J].Journal of Iron and Steel Research(International),2015,22(7):607-614.

    • [20] AGHAIE K M,ADHAMI F.Hot deformation of 15-5PH stainless steel[J].Materials Science and Engineering,2010,527(4):1052−1057.

    • [21] 刘振宝,梁剑雄,杨志勇,等.碳含量对 15-5PH 沉淀硬化不锈钢板材的组织与性能的影响[J].航空材料学报,2011,31(1):7-12.LIU Zhenbao,LIANG Jianxiong,YANG Zhiyong,et al.Effect of carbon content on microstructure and mechanical properties of type 15-5PH precipitation hardened stainless steel[J].Journal of Aeronautical Materials,2011,31(1):7-12.(in Chinese)

    • [22] ASTM Standard practice for the preparation of substitute ocean water:ASTM D1141-98(2021)[S].West Conshohocken:ASTM International,2021.

    • [23] FERRARI A C,ROBERTSON J.Resonant Raman spectroscopy of disordered,amorphous,and diamond-like carbon[J].Physical Review B,2001,64(075414):1-13.

    • [24] GWANG S Kim,SANG Y Lee,JUN H Hahn.Synthesis of CrN/AlN superlattice coatings using closed-field unbalanced magnetron sputtering process[J].Surface & Coatings Technology,2003,171(1-3):91-95.

    • [25] 任宁,何东青,张广安.磁控溅射沉积 TiB2/DLC 纳米多层膜的结构及其机械性能研究[J].润滑与密封,2017,42(12):56-63.REN Ning,HE Dongqing,ZHANG Guangan.Study on structure and mechanical properties of TiB2/DLC nanolayered films deposited by Magnetron sputtering[J].Lubrication Engineering,2017,42(12):56-63.(in Chinese)

    • [26] MUSIL J,NOVAK P,CERSTVY R,et al.Tribological and mechanical properties of nanocrystalline-TiC/α-C nanocomposite thin films[J].Journal of Vacuum Science &Technology A Vacuum Surfaces & Films,2010,28(2):244-249.

    • [27] 董丹.Cr 掺杂碳基离子镀层的结构调控与摩擦学性能研究[D].西安:西安理工大学,2018.DONG Dan.Structure regulation and Tribological properties of Cr Doped Carbon-based ion Coatings[D].Xi’ an:Xi’ an University of Technology,2018.(in Chinese)

    • [28] 王永军,李红轩,吉利,等.非平衡磁控溅射沉积类石墨碳膜结构及其摩擦学性能[J].中国表面工程,2011,24(3):17-22.WANG Yongjun,LI Hongxuan,JI Li,et al.Structure and tribological properties of graphite-like carbon films deposited by non-equilibrium magnetron sputtering[J].China Surface Engineering,2011,24(3):17-22.(in Chinese)

    • [29] 王永欣,王立平,陈建敏,等.高硬度类石墨碳薄膜及其摩擦学研究进展[J].材料导报,2013,27(11):7-13.WANG Yongxin,WANG Liping,CHEN Jianmin,et al.Research progress of high hardness graphite-carbon films and their tribology[J].Materials Review,2013,27(11):7-13.(in Chinese)

    • [30] 王伟,文怀兴,陈威.海水环境下材料摩擦学行为研究现状[J].材料导报,2017,31(6):51-55.WANG Wei,WEN Huaixing,CHEN Wei.Research status on tribological behaviors of materials under seawater environment[J].Materials Review,2017,31(6):51-55.(in Chinese)

  • 手机扫一扫看